JP2022176622A - Method for inspecting member for battery, method for manufacturing member for battery, and method for manufacturing battery pack - Google Patents

Method for inspecting member for battery, method for manufacturing member for battery, and method for manufacturing battery pack Download PDF

Info

Publication number
JP2022176622A
JP2022176622A JP2021083143A JP2021083143A JP2022176622A JP 2022176622 A JP2022176622 A JP 2022176622A JP 2021083143 A JP2021083143 A JP 2021083143A JP 2021083143 A JP2021083143 A JP 2021083143A JP 2022176622 A JP2022176622 A JP 2022176622A
Authority
JP
Japan
Prior art keywords
battery member
battery
current collector
inspecting
resin current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021083143A
Other languages
Japanese (ja)
Inventor
真也 小林
Shinya Kobayashi
勇輔 中嶋
Yusuke Nakajima
英明 堀江
Hideaki Horie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
APB Corp
Original Assignee
Sanyo Chemical Industries Ltd
APB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd, APB Corp filed Critical Sanyo Chemical Industries Ltd
Priority to JP2021083143A priority Critical patent/JP2022176622A/en
Priority to PCT/JP2022/020489 priority patent/WO2022244760A1/en
Publication of JP2022176622A publication Critical patent/JP2022176622A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a method for inspecting a member for a battery that can easily discover a malfunction such as a short-circuit and contribute to an improvement in manufacturing efficiency.SOLUTION: A method for inspecting a member for a battery includes: a conveyance and measurement step of, with a member for a battery having at least resin collectors and having an exposure surface on which the resin collectors are exposed as an object of inspection, conveying the member for a battery with a conveying mechanism having a conveyance surface parallel to the exposure surface of the member for a battery and bringing a conductor probe into contact with a position on the surface of the member for a battery in conduction with the exposure surface, thereby measuring the electrical characteristics at a plurality of places on the surface of the member for a battery; and a determination step of determining whether a place with the electrical characteristics being outside an allowable range is present in the member for a battery.SELECTED DRAWING: Figure 2

Description

本発明は、電池用部材の検査方法、電池用部材の製造方法、及び、組電池の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for inspecting a battery member, a method for manufacturing a battery member, and a method for manufacturing an assembled battery.

大容量電池の需要が高まり、複数個の単電池を積層した組電池が多く製造される中、それらの製造過程において不具合品を効率良く取り除く必要性が高まっている。 As the demand for large-capacity batteries increases and many assembled batteries in which a plurality of single cells are stacked are manufactured, there is an increasing need to efficiently remove defective products in the manufacturing process.

特許文献1には、正極板と負極板をセパレータを介して積層して構成した極板群を電槽内に挿入して成る電池の短絡検査方法であって、極板群を電槽に挿入する前に極板群を加圧しながら短絡不良を検査することを特徴とする電池の短絡検査方法が開示されている。 Patent Document 1 discloses a battery short-circuit inspection method in which an electrode plate group formed by laminating a positive electrode plate and a negative electrode plate with a separator interposed therebetween is inserted into a battery case. A battery short-circuit inspection method is disclosed in which short-circuit defects are inspected while applying pressure to the electrode plate group before the assembly.

特許文献2には、組電池を構成する単電池を検査する方法であって、複数個の単電池を積層状に配列し、配列した単電池群を積層方向に押圧した状態で各単電池を検査することを特徴とする単電池の検査方法が開示されている。 Patent Document 2 discloses a method for inspecting a unit cell that constitutes an assembled battery, wherein a plurality of unit cells are arranged in a stack, and each unit cell is inspected in a state in which the arrayed unit cell group is pressed in the stacking direction. A method for inspecting a unit cell is disclosed.

特開2001-236985号公報JP-A-2001-236985 特開2005-339925号公報JP 2005-339925 A

しかしながら、特許文献1に記載の検査方法では、単電池を組んだ極板群を加圧した状態で短絡不良を検査するため、極板群に不具合が発見された場合、どの単電池に不具合が生じているのかを特定することが容易ではない。 However, in the inspection method described in Patent Literature 1, short circuit defects are inspected in a state in which pressure is applied to the electrode plate group in which the unit cells are assembled. It is not easy to identify what is happening.

一方、特許文献2に記載の検査方法では、積層状に配列した単電池群を積層方向に押圧した状態で各単電池を検査するため、単電池群に不具合が発見された場合、不具合が生じている単電池を単電池群から取り替える必要がある。 On the other hand, in the inspection method described in Patent Document 2, each unit cell is inspected while the unit cell group arranged in a stack is pressed in the stacking direction, so if a defect is found in the unit cell group, a defect occurs. It is necessary to replace the battery that is in the battery pack.

このように、従来の検査方法は、単電池単位、より具体的には、単電池に用いられる樹脂集電体、電極シート、セパレータ付き電極シート、又は、電池シートといった電池用部材単位で不具合を効率的に発見する方法ではなかった。更に、従来の検査方法は、不具合を効率的に発見する方法ではなかったため、製造効率の低下を招く要因となっていた。 As described above, the conventional inspection method detects defects in unit cells, more specifically, in units of battery members such as resin current collectors, electrode sheets, electrode sheets with separators, and battery sheets used in unit cells. It wasn't an efficient way to find out. Furthermore, the conventional inspection method is not a method for efficiently discovering defects, which causes a decrease in manufacturing efficiency.

本発明は、上記の問題を解決するためになされたものであり、短絡等の不具合を簡便に発見できるとともに、製造効率の向上に寄与できる電池用部材の検査方法を提供することを目的とするものである。また、本発明は、上記電池用部材の検査方法を用いた電池用部材の製造方法を提供することを目的とするものである。更に、本発明は、上記電池用部材の検査方法を用いた組電池の製造方法を提供することを目的とするものである。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for inspecting battery members that can easily detect defects such as short circuits and contribute to improving manufacturing efficiency. It is. Another object of the present invention is to provide a method for manufacturing a battery member using the method for inspecting a battery member. A further object of the present invention is to provide a method for manufacturing an assembled battery using the method for inspecting battery members.

本発明は、樹脂集電体を少なくとも有し、かつ、上記樹脂集電体が露出した露出表面を有する電池用部材を検査対象物として、上記電池用部材の上記露出表面に平行な搬送面を有する搬送機構で上記電池用部材を搬送するとともに、導電体プローブを上記電池用部材の表面のうちの上記露出表面に導通する位置に接触させることで上記電池用部材の表面の複数箇所における電気特性を測定する、搬送及び測定工程と、上記電気特性が許容範囲外である箇所が上記電池用部材に存在するか否かを判定する、判定工程と、を備える、ことを特徴とする電池用部材の検査方法;上記電池用部材の検査方法により上記電気特性が許容範囲外である箇所が存在しないと判定された電池用部材を選別する、選別工程を備える、ことを特徴とする電池用部材の製造方法;上記電池用部材の検査方法により上記電気特性が許容範囲外である箇所が存在しないと判定された電池用部材を用いた電池シートを、複数枚積層する、積層工程を備える、ことを特徴とする組電池の製造方法である。 In the present invention, a battery member having at least a resin current collector and an exposed surface where the resin current collector is exposed is used as an inspection object, and a conveying surface parallel to the exposed surface of the battery member is measured. The battery member is transported by the transport mechanism having the electric characteristic at a plurality of locations on the surface of the battery member by bringing the conductor probe into contact with the exposed surface of the surface of the battery member at a position where it conducts. and a determination step of determining whether or not the battery member has a portion where the electrical characteristics are out of the allowable range. A method for inspecting a battery member characterized by comprising a sorting step of sorting a battery member determined by the inspection method of the battery member that there is no location where the electrical characteristics are out of the allowable range. Manufacturing method; comprising a stacking step of stacking a plurality of battery sheets using the battery member determined by the inspection method for the battery member that there is no portion where the electrical characteristics are out of the allowable range. It is a manufacturing method of the assembled battery characterized by this.

本発明によれば、電池用部材単位で短絡等の不具合を簡便に発見できる。更に、本発明によれば、製造工程の一部である搬送工程と検査工程の一部である測定工程とを同時に行うことで工程数を削減できるとともに、製造時間、製造コスト、及び、製造スペースを削減できるため、電池用部材の製造効率を向上させることができる。これにより、不具合が生じていない単電池を用いて組電池を製造できるため、組電池の製造歩留まりを向上させることができる。 ADVANTAGE OF THE INVENTION According to this invention, malfunctions, such as a short circuit, can be easily discovered by a battery member unit. Furthermore, according to the present invention, the number of processes can be reduced by simultaneously performing the transport process, which is part of the manufacturing process, and the measuring process, which is part of the inspection process. can be reduced, the manufacturing efficiency of battery members can be improved. As a result, it is possible to manufacture the assembled battery using the single cells that do not have any problems, so that the manufacturing yield of the assembled battery can be improved.

図1は、本発明の電池用部材の検査方法の一例を示す斜視模式図である。FIG. 1 is a schematic perspective view showing an example of the method for inspecting a battery member according to the present invention. 図2は、本発明の電池用部材の検査方法の一例について、図1の後段階を示す斜視模式図である。FIG. 2 is a schematic perspective view showing an example of the method for inspecting a battery member according to the present invention, showing the latter stage of FIG. 図3は、本発明の電池用部材の検査方法の一例について、図2の後段階を示す斜視模式図である。FIG. 3 is a schematic perspective view showing an example of the method for inspecting a battery member according to the present invention, showing the latter stage of FIG. 図4は、本発明の電池用部材の検査方法の別の一例を示す斜視模式図である。FIG. 4 is a schematic perspective view showing another example of the method for inspecting a battery member according to the present invention. 図5は、本発明の電池用部材の検査方法の別の一例について、図4の後段階を示す斜視模式図である。FIG. 5 is a schematic perspective view showing another example of the method for inspecting a battery member according to the present invention, showing the latter stage of FIG. 図6は、本発明の電池用部材の検査方法の別の一例について、図5の後段階を示す斜視模式図である。FIG. 6 is a schematic perspective view showing another example of the method for inspecting a battery member according to the present invention, showing the latter stage of FIG. 図7は、本発明の電池用部材の検査方法において電池用部材として用いられる電池シートの一例を示す一部切り欠き斜視模式図である。FIG. 7 is a partially cutaway schematic perspective view showing an example of a battery sheet used as a battery member in the battery member inspection method of the present invention. 図8は、組電池の一例を示す一部切り欠き斜視模式図である。FIG. 8 is a partially cutaway schematic perspective view showing an example of an assembled battery.

[電池用部材の検査方法]
本発明の電池用部材の検査方法は、樹脂集電体を少なくとも有し、かつ、樹脂集電体が露出した露出表面を有する電池用部材を検査対象物として、電池用部材の露出表面に平行な搬送面を有する搬送機構で電池用部材を搬送するとともに、導電体プローブを電池用部材の表面のうちの露出表面に導通する位置に接触させることで電池用部材の表面の複数箇所における電気特性を測定する、搬送及び測定工程と、電気特性が許容範囲外である箇所が電池用部材に存在するか否かを判定する、判定工程と、を備える。
[Method for inspecting battery member]
In the method for inspecting a battery member of the present invention, a battery member having at least a resin current collector and an exposed surface where the resin current collector is exposed is used as an inspection object. The battery member is transported by a transport mechanism having a smooth transport surface, and the conductor probe is brought into contact with the exposed surface of the surface of the battery member at a position where it conducts. and a determination step of determining whether or not the battery member has a portion where the electrical characteristics are out of the allowable range.

本発明の電池用部材の検査方法では、電気特性の第1態様として、電気抵抗を測定する。より具体的には、本発明の電池用部材の検査方法において、搬送及び測定工程では、電気特性として電気抵抗を測定し、判定工程では、電気抵抗が許容範囲外である箇所が電池用部材に存在するか否かを判定する。 In the method for inspecting a battery member of the present invention, electrical resistance is measured as a first aspect of electrical characteristics. More specifically, in the method for inspecting a battery member of the present invention, electrical resistance is measured as an electrical characteristic in the transportation and measurement steps, and in the determination step, a portion where the electrical resistance is outside the allowable range is detected in the battery member. Determine if it exists.

検査対象物である電池用部材では、面内で均一な抵抗分布であることが望まれる。そのため、本発明の電池用部材の検査方法では、測定された電気抵抗が許容範囲外である箇所が電池用部材に存在する場合、電池用部材に不具合が生じていると判定する。なお、電気抵抗の増加は、導電材料の分散不良に起因し、電池抵抗の悪化につながる。一方、電気抵抗の減少は、絶縁されるべき箇所が導通して電気抵抗が低下する微小短絡に起因し、電池品質や異常時信頼性の悪化につながる。 The battery member, which is the inspection object, is desired to have a uniform resistance distribution in the plane. Therefore, in the method for inspecting a battery member according to the present invention, if the battery member has a portion where the measured electrical resistance is out of the allowable range, it is determined that the battery member is defective. The increase in electrical resistance is caused by poor dispersion of the conductive material, leading to deterioration in battery resistance. On the other hand, the decrease in electrical resistance is caused by a micro short circuit in which a portion that should be insulated becomes conductive and the electrical resistance decreases, leading to deterioration of battery quality and reliability in the event of an abnormality.

本発明の電池用部材の検査方法において、電気抵抗の許容範囲は、電極の仕様に依存する所定値の±30%であることが好ましい。なお、上記所定値については、検査対象物である電池用部材の表面の複数箇所において測定された電気抵抗の平均値からも求めることができる。 In the battery member inspection method of the present invention, the allowable range of electrical resistance is preferably ±30% of a predetermined value that depends on electrode specifications. The predetermined value can also be obtained from the average value of electrical resistances measured at a plurality of locations on the surface of the battery member, which is the inspection object.

本発明の電池用部材の検査方法では、電気特性の第2態様として、電圧を測定する。より具体的には、本発明の電池用部材の検査方法において、搬送及び測定工程では、電気特性として電圧を測定し、判定工程では、電圧が許容範囲外である箇所が電池用部材に存在するか否かを判定する。 In the battery member inspection method of the present invention, the voltage is measured as the second aspect of the electrical characteristics. More specifically, in the method for inspecting a battery member of the present invention, the voltage is measured as an electrical property in the transportation and measurement steps, and in the determination step, the battery member has a portion where the voltage is out of the allowable range. Determine whether or not

検査対象物である電池用部材に短絡箇所が存在する場合、短絡箇所の電圧は0Vとなる。そのため、導電体プローブをピンポイントで短絡箇所に接触させると、例えば、他の箇所の電圧が100mV程度であるにも関わらず、その箇所の電圧は0Vとなる。一方、導電体プローブのサイズによっては、短絡箇所とその周辺の非短絡箇所との電圧を合わせて測定する場合もある。この場合、測定される電圧は、短絡箇所に加えて非短絡箇所も含めた数値となるために0Vとはならず、例えば、50mV程度となる。このような挙動を鑑み、本発明の電池用部材の検査方法では、測定された電圧が許容範囲外である箇所が電池用部材に存在する場合、電池用部材に短絡箇所が存在すると判定する。 When the battery member to be inspected has a short-circuited portion, the voltage of the short-circuited portion is 0V. Therefore, when the conductor probe is brought into contact with the short-circuited portion at a pinpoint, the voltage at that portion becomes 0 V, for example, although the voltage at the other portion is approximately 100 mV. On the other hand, depending on the size of the conductor probe, the voltage at the short-circuited portion and the surrounding non-shorted portion may be measured together. In this case, the voltage to be measured is not 0V because the value includes not only the short-circuited portion but also the non-short-circuited portion, and is, for example, about 50 mV. In view of such behavior, in the battery member inspection method of the present invention, when the battery member has a portion where the measured voltage is out of the allowable range, it is determined that the battery member has a short-circuited portion.

本発明の電池用部材の検査方法において、電圧の許容範囲は、電極の仕様に依存する所定値の±30%であることが好ましい。なお、上記所定値については、検査対象物である電池用部材の表面の複数箇所において測定された電圧の平均値からも求めることができる。 In the battery member inspection method of the present invention, the allowable voltage range is preferably ±30% of a predetermined value that depends on electrode specifications. The predetermined value can also be obtained from the average value of the voltages measured at a plurality of points on the surface of the battery member, which is the object to be inspected.

以上により、本発明の電池用部材の検査方法では、電池用部材単位で短絡等の不具合を簡便に発見できる。 As described above, in the battery member inspection method of the present invention, defects such as a short circuit can be easily found for each battery member.

本発明の電池用部材の検査方法では、樹脂集電体を少なくとも有する電池用部材を検査対象物とする。一方、従来の金属集電体を有する電池用部材では、横方向(面方向)への電気抵抗が低く、電流が面内で均一化されてしまう。そのため、金属集電体を有する電池用部材を検査対象物とする場合は、本発明の電池用部材の検査方法であっても短絡等の不具合を発見できない。このように、本発明の電池用部材の検査方法は、樹脂集電体を有する電池用部材にのみ有効である、と言える。 In the method for inspecting a battery member according to the present invention, a battery member having at least a resin collector is used as an inspection object. On the other hand, in a battery member having a conventional metal current collector, the electrical resistance in the lateral direction (plane direction) is low, and the current is uniform within the plane. Therefore, when a battery member having a metal current collector is to be inspected, defects such as a short circuit cannot be found even by the method for inspecting a battery member according to the present invention. Thus, it can be said that the method for inspecting a battery member of the present invention is effective only for a battery member having a resin current collector.

本発明の電池用部材の検査方法において、検査対象物である電池用部材としては、以下の態様のものが用いられる。 In the method for inspecting a battery member according to the present invention, the following aspects are used as the battery member to be inspected.

本発明の電池用部材の検査方法において、電池用部材の第1態様としては、電池シートが用いられる。より具体的には、本発明の電池用部材の検査方法において、樹脂集電体は、正極樹脂集電体と負極樹脂集電体とを含み、電池用部材は、積層方向に順に積層された正極樹脂集電体と正極活物質層とセパレータと負極活物質層と負極樹脂集電体とを有する電池シートであり、電池用部材の露出表面は、正極樹脂集電体が露出した正極露出表面と、負極樹脂集電体が露出した負極露出表面と、を含み、搬送及び測定工程では、導電体プローブを、正極露出表面及び負極露出表面の一方に接触させる。 In the method for inspecting a battery member of the present invention, a battery sheet is used as the first aspect of the battery member. More specifically, in the battery member inspection method of the present invention, the resin current collector includes a positive electrode resin current collector and a negative electrode resin current collector, and the battery members are stacked in order in the stacking direction. A battery sheet having a positive electrode resin current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode resin current collector, wherein the exposed surface of the battery member is the positive electrode exposed surface where the positive electrode resin current collector is exposed. and a negative electrode exposed surface where the negative electrode resin current collector is exposed, and in the transporting and measuring step, the conductor probe is brought into contact with one of the positive electrode exposed surface and the negative electrode exposed surface.

本発明の電池用部材の検査方法において、電池用部材の第1態様として用いられる電池シートは、単電池と同義である。電池シート、すなわち、単電池としては、例えば、リチウムイオン電池等が挙げられる。本明細書中、リチウムイオン電池は、リチウムイオン二次電池も含む概念とする。 In the method for inspecting a battery member of the present invention, the battery sheet used as the first aspect of the battery member is synonymous with a cell. Battery sheets, that is, cells, include, for example, lithium ion batteries. In this specification, the concept of lithium ion battery includes lithium ion secondary battery.

本発明の電池用部材の検査方法において、電池用部材の第2態様としては、樹脂集電体が用いられる。より具体的には、本発明の電池用部材の検査方法において、電池用部材は、樹脂集電体である。 In the method for inspecting a battery member of the present invention, a resin current collector is used as the second aspect of the battery member. More specifically, in the battery member inspection method of the present invention, the battery member is a resin current collector.

本発明の電池用部材の検査方法において、電池用部材の第3態様としては、電極シートが用いられる。より具体的には、本発明の電池用部材の検査方法において、電池用部材は、樹脂集電体と活物質層とが積層方向に積層されてなる電極シートである。 In the battery member inspection method of the present invention, an electrode sheet is used as the third aspect of the battery member. More specifically, in the battery member inspection method of the present invention, the battery member is an electrode sheet formed by laminating a resin current collector and an active material layer in the lamination direction.

本発明の電池用部材の検査方法において、電池用部材の第3態様として用いられる電極シートは、例えば、電池シートを構成する、正極樹脂集電体と正極活物質層とが積層されてなる正極シート、負極樹脂集電体と負極活物質層とが積層されてなる負極シート等である。 In the battery member inspection method of the present invention, the electrode sheet used as the third aspect of the battery member is, for example, a positive electrode in which a positive electrode resin current collector and a positive electrode active material layer constituting the battery sheet are laminated. A sheet, a negative electrode sheet in which a negative electrode resin current collector and a negative electrode active material layer are laminated, and the like.

本発明の電池用部材の検査方法において、電池用部材の第4態様としては、セパレータ付き電極シートが用いられる。より具体的には、本発明の電池用部材の検査方法において、電池用部材は、樹脂集電体と活物質層とセパレータとが積層方向に順に積層されてなるセパレータ付き電極シートである。 In the method for inspecting a battery member of the present invention, an electrode sheet with a separator is used as the fourth aspect of the battery member. More specifically, in the battery member inspection method of the present invention, the battery member is a separator-attached electrode sheet in which a resin current collector, an active material layer, and a separator are laminated in order in the lamination direction.

本発明の電池用部材の検査方法において、電池用部材の第4態様として用いられるセパレータ付き電極シートは、例えば、電池シートを構成する、正極樹脂集電体と正極活物質層とセパレータとが積層されてなるセパレータ付き正極シート、負極樹脂集電体と負極活物質層とセパレータとが積層されてなるセパレータ付き負極シート等である。 In the method for inspecting a battery member of the present invention, the electrode sheet with a separator used as the fourth aspect of the battery member is, for example, a laminate of a positive electrode resin current collector, a positive electrode active material layer, and a separator, which constitute the battery sheet. and a negative electrode sheet with a separator formed by laminating a negative electrode resin current collector, a negative electrode active material layer, and a separator.

本明細書中、電池シート、樹脂集電体、電極シート、及び、セパレータ付き電極シートを特に区別しない場合、電池用部材と言う。 In this specification, the battery sheet, the resin current collector, the electrode sheet, and the separator-attached electrode sheet are referred to as battery members unless otherwise distinguished.

本発明の電池用部材の検査方法において、搬送及び測定工程では、電池用部材の露出表面に平行な搬送面を有する搬送機構で電池用部材を搬送するとともに、導電体プローブを電池用部材の表面のうちの露出表面に導通する位置に接触させることで電池用部材の表面の複数箇所における電気特性を測定する。このように、本発明の電池用部材の検査方法では、製造工程の一部である、電池用部材を搬送する搬送工程と、検査工程の一部である、電池用部材の表面の複数箇所における電気特性を測定する測定工程とを、同時に行うことができる。本発明の電池用部材の検査方法によれば、製造工程の一部である搬送工程と検査工程の一部である測定工程とを同時に行うことで工程数を削減できるとともに、製造時間、製造コスト、及び、製造スペースを削減できるため、電池用部材の製造効率を向上させることができる。 In the method for inspecting a battery member of the present invention, in the transporting and measuring step, the battery member is transported by a transport mechanism having a transport surface parallel to the exposed surface of the battery member, and the conductor probe is placed on the surface of the battery member. The electrical characteristics at a plurality of locations on the surface of the battery member are measured by contacting the exposed surface of the battery member at a location where electrical continuity is provided. As described above, in the method for inspecting a battery member of the present invention, a transportation step of transporting the battery member, which is a part of the manufacturing process, and a plurality of locations on the surface of the battery member, which is a part of the inspection process. The measuring step of measuring the electrical properties can be performed simultaneously. According to the method for inspecting a battery member of the present invention, the number of steps can be reduced by simultaneously performing the transportation step, which is a part of the manufacturing process, and the measuring step, which is a part of the inspection process. And, since the manufacturing space can be reduced, the manufacturing efficiency of the battery member can be improved.

本明細書中、電池用部材の表面は、樹脂集電体が露出した露出表面、及び、その露出表面に導通する位置を少なくとも含む範囲とする。 In this specification, the surface of the battery member is a range that includes at least the exposed surface where the resin current collector is exposed and the position that conducts to the exposed surface.

本発明の電池用部材の検査方法において、導電体プローブの構成材料は特に限定されないが、金属のコンタミネーション(金属の異物混入)を防止する観点、及び、測定感度を高める観点から、導電体プローブは、炭素材からなることが好ましい。より具体的には、導電体プローブの先端部分(電池用部材の表面と接触する部分)の構成材料は、炭素材料であることが好ましい。導電体プローブの先端部分の構成材料は、銅、アルミニウム等の金属系材料であってもよい。 In the method for inspecting a battery member of the present invention, the constituent material of the conductor probe is not particularly limited. is preferably made of a carbon material. More specifically, the constituent material of the tip portion of the conductor probe (the portion in contact with the surface of the battery member) is preferably a carbon material. The constituent material of the tip portion of the conductor probe may be a metallic material such as copper or aluminum.

本発明の電池用部材の検査方法において、導電体プローブの形態は特に限定されないが、電池用部材の表面の複数箇所における電気特性を広範囲に測定する観点から、導電体プローブは、複数の測定端子を有することが好ましい。 In the battery member inspection method of the present invention, the form of the conductor probe is not particularly limited. It is preferred to have

本発明の電池用部材の検査方法において、導電体プローブが複数の測定端子を有する場合、複数の測定端子は、電池用部材の搬送方向と搬送方向に直交する方向とに沿って配置されていることが好ましい。 In the battery member inspection method of the present invention, when the conductor probe has a plurality of measurement terminals, the plurality of measurement terminals are arranged along the direction in which the battery member is conveyed and in a direction perpendicular to the direction of conveyance. is preferred.

本発明の電池用部材の検査方法において、導電体プローブが複数の測定端子を有する場合、複数の測定端子は、同一方向に突出していることが好ましい。より具体的には、複数の測定端子は、電池用部材の表面に接触させるときの電池用部材に向かう方向に突出していることが好ましい。 In the battery member inspection method of the present invention, when the conductor probe has a plurality of measurement terminals, the plurality of measurement terminals preferably protrude in the same direction. More specifically, it is preferable that the plurality of measurement terminals protrude in the direction toward the battery member when they are brought into contact with the surface of the battery member.

本発明の電池用部材の検査方法において、導電体プローブが複数の測定端子を有する場合、隣り合う測定端子の間隔は、特に限定されないが、等間隔であることが好ましい。 In the battery member inspection method of the present invention, when the conductor probe has a plurality of measuring terminals, the interval between adjacent measuring terminals is not particularly limited, but is preferably equal.

本発明の電池用部材の検査方法において、導電体プローブの先端部分の形状、例えば、測定端子の先端部分の形状としては、特に限定されず、例えば、長方形、正方形等が挙げられる。 In the battery member inspection method of the present invention, the shape of the tip portion of the conductor probe, for example, the shape of the tip portion of the measuring terminal is not particularly limited, and examples thereof include a rectangle and a square.

本発明の電池用部材の検査方法において、導電体プローブの先端部分の面積、例えば、測定端子の先端部分の面積は特に限定されないが、その面積が小さくなるほど局所の情報を得ることができるため、測定感度が高まる。この観点から、導電体プローブの先端部分の面積、例えば、測定端子の先端部分の面積は、好ましくは12cm以下である。 In the battery member inspection method of the present invention, the area of the tip portion of the conductor probe, for example, the area of the tip portion of the measurement terminal is not particularly limited. Increased measurement sensitivity. From this point of view, the area of the tip portion of the conductor probe, for example, the area of the tip portion of the measuring terminal, is preferably 12 cm 2 or less.

本発明の電池用部材の検査方法において、導電体プローブ、例えば、測定端子を電池用部材の表面に接触させるときの圧力は、特に限定されないが、好ましくは5kPa以上である。 In the battery member inspection method of the present invention, the pressure when the conductive probe, for example, the measuring terminal is brought into contact with the surface of the battery member is not particularly limited, but is preferably 5 kPa or more.

本発明の電池用部材の検査方法において、電池用部材を搬送する搬送機構としては、特に限定されないが、電池用部材の表面の複数箇所における電気特性を容易に測定する観点からは、以下の態様が好ましい。 In the method for inspecting a battery member of the present invention, the transport mechanism for transporting the battery member is not particularly limited. is preferred.

本発明の電池用部材の検査方法において、搬送機構は、ベルトコンベアであることが好ましい。搬送機構としてベルトコンベアを用いることにより、導電体プローブを電池用部材の表面に容易に接触させることができる。 In the battery member inspection method of the present invention, the transport mechanism is preferably a belt conveyor. By using a belt conveyor as the transport mechanism, the conductor probe can be easily brought into contact with the surface of the battery member.

本発明の電池用部材の検査方法において、搬送機構がベルトコンベアである場合、ベルトコンベアは、導電性のベルトを有することが好ましい。この場合、ベルトコンベアが有する導電性のベルトと導電体プローブとを電池用部材の表面に接触させることにより、電池用部材の表面の複数箇所における電気特性を測定する。つまり、ベルトコンベアが有する導電性のベルトは、搬送としての機能だけではなく、導電体プローブと同様の機能も果たすことができる。 In the battery member inspection method of the present invention, when the transport mechanism is a belt conveyor, the belt conveyor preferably has a conductive belt. In this case, the electrical characteristics at a plurality of locations on the surface of the battery member are measured by bringing the surface of the battery member into contact with the conductive belt and conductor probes of the belt conveyor. In other words, the conductive belt of the belt conveyor can perform not only the function of conveyance but also the same function as the conductive probe.

本発明の電池用部材の検査方法において、導電性のベルトを有するベルトコンベアを搬送機構として用いるのは、少なくとも、導電体プローブを電池用部材の表面に接触させて電気特性を測定する間であればよい。電池用部材の電気特性の測定前後では、搬送機構として、導電性のベルトを有するベルトコンベアを用いてもよいし、非導電性のベルトを有するベルトコンベアを用いてもよい。 In the method for inspecting a battery member of the present invention, a belt conveyor having a conductive belt is used as a transport mechanism at least during the measurement of the electrical characteristics by contacting the conductive probe to the surface of the battery member. Just do it. Before and after measuring the electrical properties of the battery member, a belt conveyor having a conductive belt or a belt conveyor having a non-conductive belt may be used as the transport mechanism.

本発明の電池用部材の検査方法において、電池用部材の表面の複数箇所における電気特性を容易に測定する観点からは、上述した好ましい態様の搬送機構を採用すること以外に、以下の態様を採用することも好ましい。 In the method for inspecting a battery member of the present invention, from the viewpoint of easily measuring the electrical characteristics at multiple locations on the surface of the battery member, the following aspects are adopted in addition to the above-described preferable transfer mechanism. It is also preferable to

本発明の電池用部材の検査方法において、搬送及び測定工程では、電池用部材を、導電性の搬送トレイに積載した状態で搬送することが好ましい。この場合、導電性の搬送トレイと導電体プローブとを電池用部材の表面に接触させることにより、電池用部材の表面の複数箇所における電気特性を測定する。つまり、導電性の搬送トレイは、導電体プローブと同様の機能を果たすことができる。 In the method for inspecting a battery member of the present invention, it is preferable that the battery member is conveyed in a state of being stacked on a conductive conveying tray in the conveying and measuring step. In this case, the electrical characteristics at a plurality of locations on the surface of the battery member are measured by contacting the surface of the battery member with a conductive carrier tray and a conductor probe. That is, the conductive carrier tray can perform the same function as the conductive probe.

本発明の電池用部材の検査方法において、導電性の搬送トレイを用いる場合、搬送トレイには、導電性のプローブが設けられ、搬送及び測定工程では、搬送トレイに設けられたプローブを、電池用部材の表面に接触させる、ことが好ましい。この場合、搬送トレイに設けられたプローブと導電体プローブとを、電池用部材を挟んで対向させつつ、電池用部材の表面に接触させることができるため、電池用部材の面内における短絡等の不具合箇所をより確実に検出できる。 In the battery member inspection method of the present invention, when a conductive transport tray is used, the transport tray is provided with a conductive probe, and in the transport and measurement process, the probe provided on the transport tray is It is preferable to contact the surface of the member. In this case, the probe and the conductor probe provided on the carrier tray can be brought into contact with the surface of the battery member while facing each other with the battery member interposed therebetween. It is possible to more reliably detect defective parts.

本発明の電池用部材の検査方法において、導電性のプローブが設けられた導電性の搬送トレイを用いる場合、搬送トレイに設けられたプローブは、搬送トレイと同じ材料で一体化していることが好ましい。この場合、搬送トレイとそれに設けられたプローブとの導通性が高まるため、電池用部材の表面の複数箇所における電気特性をより正確に測定できる。 In the battery member inspection method of the present invention, when a conductive carrier tray provided with conductive probes is used, the probes provided on the carrier tray are preferably integrated with the same material as the carrier tray. . In this case, since the conductivity between the carrier tray and the probes provided thereon is enhanced, the electrical characteristics at a plurality of locations on the surface of the battery member can be measured more accurately.

本発明の電池用部材の検査方法において、導電性のプローブが設けられた導電性の搬送トレイを用いる場合、搬送トレイに設けられたプローブの構成材料は特に限定されないが、金属のコンタミネーションを防止する観点、及び、測定感度を高める観点から、搬送トレイに設けられたプローブは、炭素材からなることが好ましい。より具体的には、搬送トレイに設けられたプローブの先端部分(電池用部材の表面と接触する部分)の構成材料は、炭素材料であることが好ましい。搬送トレイに設けられたプローブの先端部分の構成材料は、銅、アルミニウム等の金属系材料であってもよい。 In the battery member inspection method of the present invention, when a conductive carrier tray provided with conductive probes is used, the material of the probes provided on the carrier tray is not particularly limited, but metal contamination is prevented. It is preferable that the probes provided on the carrier tray are made of a carbon material, from the viewpoint of performing measurement and improving the measurement sensitivity. More specifically, the constituent material of the tip portion of the probe provided on the carrier tray (the portion that comes into contact with the surface of the battery member) is preferably a carbon material. The constituent material of the tip portion of the probe provided on the carrier tray may be a metallic material such as copper or aluminum.

本発明の電池用部材の検査方法において、導電性のプローブが設けられた導電性の搬送トレイを用いる場合、搬送トレイに設けられたプローブの先端部分の形状としては、特に限定されず、例えば、長方形、正方形等が挙げられる。 In the method for inspecting a battery member of the present invention, when a conductive transport tray provided with a conductive probe is used, the shape of the tip portion of the probe provided on the transport tray is not particularly limited. A rectangle, a square, etc. are mentioned.

本発明の電池用部材の検査方法において、導電性のプローブが設けられた導電性の搬送トレイを用いる場合、搬送トレイに設けられたプローブの先端部分の面積は特に限定されないが、その面積が小さくなるほど局所の情報を得ることができるため、測定感度が高まる。この観点から、搬送トレイに設けられたプローブの先端部分の面積は、好ましくは12cm以下である。 In the method for inspecting a battery member of the present invention, when a conductive transfer tray provided with conductive probes is used, the area of the tip portion of the probe provided on the transfer tray is not particularly limited, but the area is small. Indeed, since local information can be obtained, the measurement sensitivity increases. From this point of view, the area of the tip portion of the probe provided on the carrier tray is preferably 12 cm 2 or less.

本発明の電池用部材の検査方法において、導電性のプローブが設けられた導電性の搬送トレイを用いる場合、搬送トレイに設けられたプローブを電池用部材の表面に接触させるときの圧力は、特に限定されないが、好ましくは5kPa以上である。 In the battery member inspection method of the present invention, when a conductive transfer tray provided with conductive probes is used, the pressure when the probes provided on the transfer tray are brought into contact with the surface of the battery member is particularly Although not limited, it is preferably 5 kPa or more.

本発明の電池用部材の検査方法において、導電性の搬送トレイを用いる場合、搬送機構としては、導電性のベルトを有するベルトコンベアを用いてもよいし、非導電性のベルトを有するベルトコンベアを用いてもよい。 In the battery member inspection method of the present invention, when a conductive transport tray is used, a belt conveyor having a conductive belt may be used as the transport mechanism, or a belt conveyor having a non-conductive belt may be used. may be used.

なお、本発明の電池用部材の検査方法において、電池用部材が上述したセパレータ付き電極シートである場合は、導電性のベルトを有するベルトコンベアと導電性の搬送トレイとのうちの少なくとも一方を用いるとしても、セパレータ付き電極シートの表面のうちの樹脂集電体が露出した露出表面を搬送面と反対側に向けた上で、その露出表面に導電体プローブを接触させることになる。 In the method for inspecting a battery member of the present invention, when the battery member is the electrode sheet with a separator described above, at least one of a belt conveyor having a conductive belt and a conductive transport tray is used. However, the exposed surface of the electrode sheet with the separator where the resin current collector is exposed is turned to the side opposite to the conveying surface, and then the conductor probe is brought into contact with the exposed surface.

本発明の電池用部材の検査方法において、搬送機構で電池用部材を搬送するとともに、導電体プローブを電池用部材の表面に接触させる際、導電体プローブを、搬送速度に合わせて電池用部材に追従させることが好ましい。つまり、導電体プローブを、電池用部材の表面に接触させたまま、電池用部材と同じ搬送速度で移動させることが好ましい。これにより、電池用部材の搬送と、電池用部材の表面の複数箇所における電気特性の測定とを、同時に、かつ、効率的に行うことができる。 In the battery member inspection method of the present invention, when the battery member is transported by the transport mechanism and the conductor probe is brought into contact with the surface of the battery member, the conductor probe is moved to the battery member according to the transport speed. It is preferable to follow. In other words, it is preferable to move the conductor probe at the same transport speed as the battery member while keeping contact with the surface of the battery member. As a result, the transportation of the battery member and the measurement of the electrical properties at a plurality of locations on the surface of the battery member can be performed simultaneously and efficiently.

図1は、本発明の電池用部材の検査方法の一例を示す斜視模式図である。 FIG. 1 is a schematic perspective view showing an example of the method for inspecting a battery member according to the present invention.

図1では、電池用部材1を、ベルトコンベア(搬送機構)2を用いて搬送方向L1に搬送している。 In FIG. 1, the battery member 1 is conveyed in the conveying direction L1 using the belt conveyor (conveying mechanism) 2 .

電池用部材1は、樹脂集電体が露出した露出表面(図1では、上面及び下面のうちの少なくとも一方)を有している。 The battery member 1 has an exposed surface (at least one of the upper surface and the lower surface in FIG. 1) where the resin current collector is exposed.

ベルトコンベア2は、電池用部材1の露出表面に平行な搬送面を有している。 The belt conveyor 2 has a conveying surface parallel to the exposed surface of the battery member 1 .

ベルトコンベア2は、搬送面の構成部材として、導電性のベルトを有している。 The belt conveyor 2 has a conductive belt as a component of the conveying surface.

ベルトコンベア2の搬送面の上方、図1では電池用部材1のベルトコンベア2と反対側には、導電体プローブ3が配置されている。導電体プローブ3は、搬送速度に合わせて電池用部材1に追従可能なように構成されている。 A conductor probe 3 is arranged above the conveying surface of the belt conveyor 2, that is, on the opposite side of the battery member 1 from the belt conveyor 2 in FIG. The conductor probe 3 is configured to be able to follow the battery member 1 according to the transport speed.

導電体プローブ3は、複数の測定端子3aを有している。 The conductor probe 3 has a plurality of measuring terminals 3a.

複数の測定端子3aは、電池用部材1の搬送方向L1と搬送方向L1に直交する方向L2とに沿って配置されている。これにより、後述する電池用部材1の電気特性の測定時に、導電体プローブ3を、電池用部材1の表面の広範囲に接触させることができる。 The plurality of measurement terminals 3a are arranged along the conveying direction L1 of the battery member 1 and the direction L2 orthogonal to the conveying direction L1. Thereby, the conductor probe 3 can be brought into contact with a wide range of the surface of the battery member 1 at the time of measuring the electrical properties of the battery member 1 to be described later.

複数の測定端子3aは、電池用部材1に向かって同一方向(図1では、下方向)に突出している。 The plurality of measurement terminals 3a protrude in the same direction (downward in FIG. 1) toward the battery member 1. As shown in FIG.

隣り合う測定端子3aの間隔は、特に限定されないが、等間隔であることが好ましい。 The interval between adjacent measurement terminals 3a is not particularly limited, but is preferably equal.

なお、複数の測定端子3aは、搬送方向L1に沿って、いわゆるジグザグ状に配置されていてもよい。また、複数の測定端子3aは、搬送方向L1に直交する方向L2に沿って、いわゆるジグザグ状に配置されていてもよい。 Note that the plurality of measurement terminals 3a may be arranged in a so-called zigzag shape along the transport direction L1. Also, the plurality of measurement terminals 3a may be arranged in a so-called zigzag shape along the direction L2 perpendicular to the transport direction L1.

電池用部材1の検査方法の手順について、図1に加えて、図2及び図3も参照しつつ以下に説明する。図2は、本発明の電池用部材の検査方法の一例について、図1の後段階を示す斜視模式図である。図3は、本発明の電池用部材の検査方法の一例について、図2の後段階を示す斜視模式図である。 Procedures of the inspection method for the battery member 1 will be described below with reference to FIGS. 2 and 3 in addition to FIG. FIG. 2 is a schematic perspective view showing an example of the method for inspecting a battery member according to the present invention, showing the latter stage of FIG. FIG. 3 is a schematic perspective view showing an example of the method for inspecting a battery member according to the present invention, showing the latter stage of FIG.

まず、図1に示すように、ベルトコンベア2を用いて、電池用部材1を搬送方向L1に搬送する。 First, as shown in FIG. 1, the belt conveyor 2 is used to transport the battery member 1 in the transport direction L1.

次に、図2に示すように、ベルトコンベア2で搬送されている電池用部材1の表面(図2では、上面)に、導電体プローブ3を接触させる。この際、導電体プローブ3を、搬送速度に合わせて電池用部材1に追従させながら、電池用部材1の表面に接触させる。なお、導電体プローブ3を、電池用部材1が下方に搬送されてきたタイミングで降下させることで、電池用部材1の表面に接触させてもよい。 Next, as shown in FIG. 2, the conductor probe 3 is brought into contact with the surface (upper surface in FIG. 2) of the battery member 1 being conveyed by the belt conveyor 2 . At this time, the conductor probe 3 is brought into contact with the surface of the battery member 1 while following the battery member 1 according to the transport speed. The conductive probe 3 may be brought into contact with the surface of the battery member 1 by lowering it at the timing when the battery member 1 is conveyed downward.

そして、導電体プローブ3を、電池用部材1の表面に接触させたまま、電池用部材1と同じ搬送速度で移動させる。この際、ベルトコンベア2のベルトと導電体プローブ3とに接続された、電気特性を測定する測定機器4を用いて、電池用部材1の表面の複数箇所における電気特性を測定(モニタリング)する。 Then, the conductor probe 3 is moved at the same transport speed as the battery member 1 while being kept in contact with the surface of the battery member 1 . At this time, electrical characteristics are measured (monitored) at a plurality of locations on the surface of the battery member 1 using a measuring device 4 for measuring electrical characteristics, which is connected to the belt of the belt conveyor 2 and the conductor probe 3 .

その後、図3に示すように、導電体プローブ3を、電池用部材1の表面から離す。 After that, as shown in FIG. 3 , the conductor probe 3 is separated from the surface of the battery member 1 .

図1、図2、及び、図3に示す手順を繰り返すことにより、複数の電池用部材1に対して、電気特性の測定を連続的に行うことができる。 By repeating the procedure shown in FIGS. 1, 2, and 3, the electrical properties of a plurality of battery members 1 can be continuously measured.

図4は、本発明の電池用部材の検査方法の別の一例を示す斜視模式図である。 FIG. 4 is a schematic perspective view showing another example of the method for inspecting a battery member according to the present invention.

図4では、電池用部材1を、導電性の搬送トレイ5に積載した状態で、ベルトコンベア2を用いて搬送方向L1に搬送している。 In FIG. 4, the battery member 1 is conveyed in the conveying direction L1 using the belt conveyor 2 while being stacked on the conductive conveying tray 5 .

搬送トレイ5は、表面及び内部の全体が導電性材料で構成されていてもよいし、表面のみが導電性材料で構成されていてもよい。 The transport tray 5 may be entirely made of a conductive material on its surface and inside, or may be made of a conductive material only on its surface.

搬送トレイ5には、導電性のプローブ5aが複数設けられている。より具体的には、搬送トレイ5に設けられた複数のプローブ5aは、搬送トレイ5と同じ材料で一体化している。 The transport tray 5 is provided with a plurality of conductive probes 5a. More specifically, the plurality of probes 5 a provided on the carrier tray 5 are integrated with the same material as the carrier tray 5 .

搬送トレイ5に設けられた複数のプローブ5aは、電池用部材1に向かって同一方向(図4では、上方向)に突出している。 A plurality of probes 5 a provided on the carrier tray 5 protrude in the same direction (upward in FIG. 4 ) toward the battery member 1 .

搬送トレイ5に設けられた複数のプローブ5aは、電池用部材1の表面(図4では、下面)に接触している。 A plurality of probes 5a provided on the carrier tray 5 are in contact with the surface of the battery member 1 (lower surface in FIG. 4).

隣り合うプローブ5aの間隔は、特に限定されないが、等間隔であることが好ましい。 The interval between adjacent probes 5a is not particularly limited, but is preferably equal.

なお、複数のプローブ5aは、搬送方向L1に沿って、いわゆるジグザグ状に配置されていてもよい。また、複数のプローブ5aは、搬送方向L1に直交する方向L2に沿って、いわゆるジグザグ状に配置されていてもよい。 In addition, the plurality of probes 5a may be arranged in a so-called zigzag shape along the transport direction L1. Also, the plurality of probes 5a may be arranged in a so-called zigzag shape along the direction L2 orthogonal to the transport direction L1.

ベルトコンベア2のベルトと搬送トレイ5とは、接触することで導通している。 The belt of the belt conveyor 2 and the transport tray 5 are electrically connected by contact.

なお、図4に示す状態と異なり、ベルトコンベア2の代わりに、非導電性のベルトを有するベルトコンベアを用いてもよい。 Note that, unlike the state shown in FIG. 4, a belt conveyor having a non-conductive belt may be used instead of the belt conveyor 2. FIG.

搬送トレイ5に積載された電池用部材1の検査方法の手順について、図4に加えて、図5及び図6も参照しつつ以下に説明する。図5は、本発明の電池用部材の検査方法の別の一例について、図4の後段階を示す斜視模式図である。図6は、本発明の電池用部材の検査方法の別の一例について、図5の後段階を示す斜視模式図である。 Procedures of an inspection method for the battery member 1 stacked on the carrier tray 5 will be described below with reference to FIGS. 5 and 6 in addition to FIG. FIG. 5 is a schematic perspective view showing another example of the method for inspecting a battery member according to the present invention, showing the latter stage of FIG. FIG. 6 is a schematic perspective view showing another example of the method for inspecting a battery member according to the present invention, showing the latter stage of FIG.

まず、図4に示すように、ベルトコンベア2を用いて、搬送トレイ5に積載された電池用部材1を搬送方向L1に搬送する。 First, as shown in FIG. 4, the belt conveyor 2 is used to transport the battery member 1 stacked on the transport tray 5 in the transport direction L1.

次に、図5に示すように、ベルトコンベア2で搬送されている電池用部材1の表面(図5では、上面)に、導電体プローブ3を接触させる。この際、導電体プローブ3を、搬送速度に合わせて電池用部材1に追従させながら、電池用部材1の表面に接触させる。なお、導電体プローブ3を、電池用部材1が下方に搬送されてきたタイミングで降下させることで、電池用部材1の表面に接触させてもよい。 Next, as shown in FIG. 5, the conductor probe 3 is brought into contact with the surface (upper surface in FIG. 5) of the battery member 1 being conveyed by the belt conveyor 2 . At this time, the conductor probe 3 is brought into contact with the surface of the battery member 1 while following the battery member 1 according to the transport speed. The conductive probe 3 may be brought into contact with the surface of the battery member 1 by lowering it at the timing when the battery member 1 is conveyed downward.

そして、導電体プローブ3を、電池用部材1の表面に接触させたまま、電池用部材1と同じ搬送速度で移動させる。この際、ベルトコンベア2のベルトと導電体プローブ3とに接続された測定機器4を用いて、電池用部材1の表面の複数箇所における電気特性を測定する。 Then, the conductor probe 3 is moved at the same transport speed as the battery member 1 while being kept in contact with the surface of the battery member 1 . At this time, electrical characteristics are measured at a plurality of locations on the surface of the battery member 1 using a measuring device 4 connected to the belt of the belt conveyor 2 and the conductor probe 3 .

なお、ベルトコンベア2のベルトの代わりに、搬送トレイ5が測定機器4に接続されていてもよい。つまり、搬送トレイ5と導電体プローブ3とが測定機器4に接続されていてもよい。この場合も、測定機器4を用いて、電池用部材1の表面の複数箇所における電気特性を測定できる。 Incidentally, instead of the belt of the belt conveyor 2, the transport tray 5 may be connected to the measuring device 4. FIG. That is, the carrier tray 5 and the conductor probes 3 may be connected to the measuring device 4 . Also in this case, the electrical properties at multiple points on the surface of the battery member 1 can be measured using the measuring device 4 .

その後、図6に示すように、導電体プローブ3を、電池用部材1の表面から離す。 After that, as shown in FIG. 6 , the conductor probe 3 is separated from the surface of the battery member 1 .

図4、図5、及び、図6に示す手順を繰り返すことにより、搬送トレイ5に個別に積載された複数の電池用部材1に対して、電気特性の測定を連続的に行うことができる。 By repeating the procedures shown in FIGS. 4, 5, and 6, the electrical characteristics of a plurality of battery members 1 individually stacked on the carrier tray 5 can be continuously measured.

以下、本発明の電池用部材の検査方法の実施例について説明する。なお、本発明の電池用部材の検査方法は、以下の実施例に限定されるものではない。 Examples of the method for inspecting battery members according to the present invention will be described below. The method for inspecting a battery member according to the present invention is not limited to the following examples.

[実施例1]
実施例1では、まず、図4に示すように、ベルトコンベア2を用いて、搬送トレイ5に積載された電池用部材1を、20m/分の搬送速度で搬送方向L1に搬送した。
[Example 1]
In Example 1, first, as shown in FIG. 4, the belt conveyor 2 was used to transport the battery member 1 stacked on the transport tray 5 in the transport direction L1 at a transport speed of 20 m/min.

電池用部材1としては、電池シートを用いた。 A battery sheet was used as the battery member 1 .

ベルトコンベア2は、搬送面の構成部材として、導電性のベルトを有していた。 The belt conveyor 2 had a conductive belt as a component of the conveying surface.

搬送トレイ5は、サイズが長さ8cm×幅6cmであり、表面が導電性材料で構成されていた。なお、本実施例で用いた搬送トレイ5には、図4と異なり、導電性のプローブ5aが設けられていなかった。 The transport tray 5 had a size of 8 cm long×6 cm wide, and its surface was made of a conductive material. Note that the transport tray 5 used in this example was not provided with the conductive probes 5a, unlike FIG.

次に、図5に示すように、ベルトコンベア2で搬送されている電池用部材1の表面に、先端部分の面積が12cmである測定端子3aを複数有する導電体プローブ3を接触させた。この際、測定端子3aに5kPaの圧力が加わるように、導電体プローブ3を電池用部材1の表面に押圧しつつ接触させた。 Next, as shown in FIG. 5, the surface of the battery member 1 conveyed by the belt conveyor 2 was brought into contact with the conductor probe 3 having a plurality of measuring terminals 3a each having a tip area of 12 cm 2 . At this time, the conductor probe 3 was brought into contact with the surface of the battery member 1 while being pressed so that a pressure of 5 kPa was applied to the measuring terminal 3a.

そして、導電体プローブ3を、電池用部材1の表面に接触させたまま、電池用部材1と同じ搬送速度で移動させた。この際、ベルトコンベア2のベルトと導電体プローブ3とに接続された測定機器4を用いて、電池用部材1の電気抵抗をモニタリングした。測定機器4としては、日置電機社製のケミカルインピーダンスアナライザ「IM3590」を用いた。 Then, the conductor probe 3 was moved at the same transport speed as the battery member 1 while being kept in contact with the surface of the battery member 1 . At this time, the electrical resistance of the battery member 1 was monitored using a measuring device 4 connected to the belt of the belt conveyor 2 and the conductor probe 3 . As the measuring device 4, a chemical impedance analyzer "IM3590" manufactured by Hioki Electric Co., Ltd. was used.

導電体プローブ3を電池用部材1の表面に接触させてから1秒後、図6に示すように、導電体プローブ3を、電池用部材1の表面から離した。 One second after bringing the conductor probe 3 into contact with the surface of the battery member 1, the conductor probe 3 was separated from the surface of the battery member 1 as shown in FIG.

[実施例2]
測定端子3aの先端部分の面積を24cmに変更したこと以外、実施例1と同様にして、電池用部材1の電気抵抗をモニタリングした。
[Example 2]
The electrical resistance of the battery member 1 was monitored in the same manner as in Example 1, except that the area of the tip portion of the measuring terminal 3a was changed to 24 cm 2 .

[実施例3]
測定端子3aの先端部分の面積を48cmに変更したこと以外、実施例1と同様にして、電池用部材1の電気抵抗をモニタリングした。
[Example 3]
The electrical resistance of the battery member 1 was monitored in the same manner as in Example 1, except that the area of the tip portion of the measuring terminal 3a was changed to 48 cm 2 .

実施例1、実施例2、及び、実施例3において、電池用部材1の電気抵抗をモニタリングした結果、正常領域での平均電気抵抗と、意図的に短絡させた異常箇所での電気抵抗と、両者の差(「異常箇所での電気抵抗」-「正常領域での平均電気抵抗」)とは、表1に示す通りとなった。 In Example 1, Example 2, and Example 3, the electrical resistance of the battery member 1 was monitored. Table 1 shows the difference between the two (“electrical resistance at abnormal location”−“average electrical resistance in normal region”).

Figure 2022176622000002
Figure 2022176622000002

表1に示すように、実施例1、実施例2、及び、実施例3において、意図的に短絡させた異常箇所では、正常領域よりも電気抵抗が低下する事象が確認された。 As shown in Table 1, in Example 1, Example 2, and Example 3, it was confirmed that the electrical resistance was lower than that in the normal region at the abnormal location where the short circuit was intentionally made.

[実施例4]
測定機器4として日置電機社製のメモリハイロガー「LR8401」を用いることにより、電池用部材1の電圧をモニタリングしたこと以外、実施例1と同様にして、電池用部材1の検査を行った。
[Example 4]
The battery member 1 was inspected in the same manner as in Example 1, except that the voltage of the battery member 1 was monitored by using a memory high logger “LR8401” manufactured by Hioki Electric Co., Ltd. as the measuring device 4 .

[実施例5]
測定端子3aの先端部分の面積を24cmに変更したこと以外、実施例4と同様にして、電池用部材1の電圧をモニタリングした。
[Example 5]
The voltage of the battery member 1 was monitored in the same manner as in Example 4, except that the area of the tip portion of the measuring terminal 3a was changed to 24 cm 2 .

[実施例6]
測定端子3aの先端部分の面積を48cmに変更したこと以外、実施例4と同様にして、電池用部材1の電圧をモニタリングした。
[Example 6]
The voltage of the battery member 1 was monitored in the same manner as in Example 4, except that the area of the tip portion of the measuring terminal 3a was changed to 48 cm 2 .

実施例4、実施例5、及び、実施例6において、電池用部材1の電圧をモニタリングした結果、正常領域での平均電圧と、意図的に短絡させた異常箇所での電圧と、両者の差(「異常箇所での電圧」-「正常領域での平均電圧」)とは、表2に示す通りとなった。 In Examples 4, 5, and 6, as a result of monitoring the voltage of the battery member 1, the average voltage in the normal region, the voltage at the abnormal location where the short circuit was intentionally made, and the difference between the two (“Voltage at abnormal point”−“Average voltage in normal region”) is as shown in Table 2.

Figure 2022176622000003
Figure 2022176622000003

表2に示すように、実施例4、実施例5、及び、実施例6において、意図的に短絡させた異常箇所では、正常領域よりも電圧が低下する事象が確認された。 As shown in Table 2, in Example 4, Example 5, and Example 6, an event was confirmed in which the voltage dropped below the normal region at the abnormal location where the short circuit was intentionally made.

図7は、本発明の電池用部材の検査方法において電池用部材として用いられる電池シートの一例を示す一部切り欠き斜視模式図である。 FIG. 7 is a partially cutaway schematic perspective view showing an example of a battery sheet used as a battery member in the battery member inspection method of the present invention.

図7に示す電池シート(単電池)10は、略矩形平板状の正極樹脂集電体17の表面に正極活物質層15が設けられた正極12と、略矩形平板状の負極樹脂集電体19の表面に負極活物質層16が設けられた負極13とが、略平板状のセパレータ14を介して積層されて構成され、全体として略矩形平板状となっている。正極12及び負極13は、各々、例えば、リチウムイオン電池の正極及び負極として機能する。 A battery sheet (single cell) 10 shown in FIG. A negative electrode 13 having a negative electrode active material layer 16 provided on the surface of the negative electrode 19 is laminated with a substantially flat plate-shaped separator 14 interposed therebetween to form a substantially rectangular plate shape as a whole. Positive electrode 12 and negative electrode 13 function, for example, as a positive electrode and a negative electrode of a lithium ion battery, respectively.

電池シート10は、正極樹脂集電体17と負極樹脂集電体19との間に配置されてセパレータ14の周縁部を固定し、かつ、正極活物質層15とセパレータ14と負極活物質層16とを封止する、環状の枠部材18を有することが好ましい。 The battery sheet 10 is arranged between the positive electrode resin current collector 17 and the negative electrode resin current collector 19 to fix the periphery of the separator 14 , and also includes the positive electrode active material layer 15 , the separator 14 and the negative electrode active material layer 16 . It is preferable to have an annular frame member 18 that seals the .

正極樹脂集電体17及び負極樹脂集電体19は、枠部材18により所定間隔をもって対向するように位置決めされているとともに、セパレータ14及び正極活物質層15、並びに、セパレータ14及び負極活物質層16も、枠部材18により所定間隔をもって対向するように位置決めされている。 The positive electrode resin current collector 17 and the negative electrode resin current collector 19 are positioned by the frame member 18 so as to face each other with a predetermined gap, and the separator 14 and the positive electrode active material layer 15, and the separator 14 and the negative electrode active material layer. 16 are also positioned by a frame member 18 so as to face each other with a predetermined spacing.

正極樹脂集電体17とセパレータ14との間隔、及び、負極樹脂集電体19とセパレータ14との間隔は、電池シート10、例えば、リチウムイオン電池の容量に応じて調整される。このように、正極樹脂集電体17、負極樹脂集電体19、及び、セパレータ14の位置関係は、必要な間隔が得られるように定められている。 The distance between the positive electrode resin current collector 17 and the separator 14 and the distance between the negative electrode resin current collector 19 and the separator 14 are adjusted according to the capacity of the battery sheet 10, for example, the lithium ion battery. In this manner, the positional relationship among the positive electrode resin current collector 17, the negative electrode resin current collector 19, and the separator 14 is determined so as to obtain the required spacing.

以下に、電池シートの各構成要素の好ましい態様について説明する。樹脂集電体、電極シートの各構成要素、及び、セパレータ付き電極シートの各構成要素の好ましい態様についても同様である。 Preferred aspects of each component of the battery sheet are described below. The same applies to preferred aspects of each constituent element of the resin current collector, the electrode sheet, and each constituent element of the separator-attached electrode sheet.

正極活物質層は、正極活物質を含む。 The positive electrode active material layer contains a positive electrode active material.

正極活物質としては、例えば、リチウムと遷移金属との複合酸化物{遷移金属元素が1種類である複合酸化物(例えば、LiCoO、LiNiO、LiAlMnO、LiMnO、LiMn等)、遷移金属元素が2種類である複合酸化物(例えば、LiFeMnO、LiNi1-xCo、LiMn1-yCo、LiNi1/3Co1/3Al1/3、LiNi0.8Co0.15Al0.05等)、遷移金属元素が3種類以上である複合酸化物[例えば、LiMM’M’’(M、M’、及び、M’’は、各々異なる遷移金属元素であり、a+b+c=1を満たす。例えば、LiNi1/3Mn1/3Co1/3等)等]等}、リチウム含有遷移金属リン酸塩(例えば、LiFePO、LiCoPO、LiMnPO、LiNiPO等)、遷移金属酸化物(例えば、MnO、V等)、遷移金属硫化物(例えば、MoS、TiS等)、導電性高分子(例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ-p-フェニレン、ポリビニルカルバゾール等)等が挙げられる。なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであってもよい。 Examples of positive electrode active materials include composite oxides of lithium and transition metal {composite oxides containing one type of transition metal element (eg, LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 , LiMn 2 O 4 , etc.) , composite oxides containing two types of transition metal elements (for example, LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co y O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, etc.), composite oxides containing three or more transition metal elements [for example, LiM a M′ b M″ c O 2 (M, M′, and M'' are respectively different transition metal elements and satisfy a+b + c =1. salts (e.g. LiFePO4 , LiCoPO4 , LiMnPO4 , LiNiPO4 etc.), transition metal oxides (e.g. MnO2 , V2O5 etc. ), transition metal sulfides (e.g. MoS2 , TiS2 etc.), conductive polymers (eg, polyaniline, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, polyvinylcarbazole, etc.); The lithium-containing transition metal phosphate may have a transition metal site partially substituted with another transition metal.

上述した正極活物質は、1種類単独で用いられてもよいし、2種類以上で併用されてもよい。 One of the positive electrode active materials described above may be used alone, or two or more of them may be used in combination.

正極活物質は、導電助剤及び被覆用樹脂で被覆された被覆正極活物質であることが好ましい。正極活物質が被覆用樹脂で被覆されていると、電極の体積変化が緩和されるため、電極の膨張を抑制できる。 The positive electrode active material is preferably a coated positive electrode active material coated with a conductive aid and a coating resin. When the positive electrode active material is coated with the coating resin, the volume change of the electrode is moderated, so expansion of the electrode can be suppressed.

導電助剤としては、例えば、金属系導電助剤[例えば、アルミニウム、ステンレス(SUS)、銀、金、銅、チタン等]、炭素系導電助剤[例えば、グラファイト、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、これらの混合物、これらの合金、これらの金属酸化物等が挙げられる。中でも、電気的安定性の観点から、アルミニウム、ステンレス、銀、金、銅、チタン、炭素系導電助剤、及び、これらの混合物が好ましく、銀、金、アルミニウム、ステンレス、及び、炭素系導電助剤がより好ましく、炭素系導電助剤が特に好ましい。 Examples of conductive aids include metallic conductive aids [e.g., aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon-based conductive aids [e.g., graphite, carbon black (acetylene black, chain black, furnace black, channel black, thermal lamp black, etc.], mixtures thereof, alloys thereof, metal oxides thereof, and the like. Among them, from the viewpoint of electrical stability, aluminum, stainless steel, silver, gold, copper, titanium, carbon-based conductive additives, and mixtures thereof are preferable, and silver, gold, aluminum, stainless steel, and carbon-based conductive additives are preferable. agent is more preferable, and a carbon-based conductive aid is particularly preferable.

導電助剤は、粒子系セラミック材料や樹脂材料の周りに導電性材料(好ましくは、上述した導電助剤のうちで金属のもの)をめっき等でコーティングしたものでもよい。 The conductive aid may be a particulate ceramic material or a resin material coated with a conductive material (preferably a metallic one among the conductive aids described above) by plating or the like.

上述した導電助剤は、1種類単独で用いられてもよいし、2種類以上で併用されてもよい。 One type of the conductive aids described above may be used alone, or two or more types may be used in combination.

導電助剤の形態(形状)は、特に限定されず、粒子形態であってもよいし、粒子形態以外の形態であってもよい。導電助剤について、粒子形態以外の形態は、カーボンナノファイバー、カーボンナノチューブ等、いわゆるフィラー系導電助剤として実用化されている形態であってもよい。 The form (shape) of the conductive aid is not particularly limited, and may be in the form of particles, or may be in a form other than the form of particles. Regarding the conductive aid, the form other than the particle form may be a form that has been put into practical use as a so-called filler-based conductive aid, such as carbon nanofibers and carbon nanotubes.

被覆用樹脂と導電助剤との比率は、特に限定されないが、電池の内部抵抗等の観点から、重量比率で被覆用樹脂(樹脂固形分重量):導電助剤が、1:0.01~1:50であることが好ましく、1:0.2~1:3.0であることがより好ましい。 The ratio of the coating resin and the conductive aid is not particularly limited, but from the viewpoint of the internal resistance of the battery, etc., the weight ratio of the coating resin (resin solid content weight): conductive aid is from 1:0.01. It is preferably 1:50, more preferably 1:0.2 to 1:3.0.

被覆用樹脂としては、特開2017-054703号公報に非水系二次電池活物質被覆用樹脂として記載されたものが好適に用いられる。 As the coating resin, those described as non-aqueous secondary battery active material coating resins in JP-A-2017-054703 are preferably used.

正極活物質層は、被覆正極活物質に含まれる導電助剤以外に、別の導電助剤を更に含んでもよい。 The positive electrode active material layer may further contain another conductive support agent in addition to the conductive support agent contained in the coated positive electrode active material.

別の導電助剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものが好適に用いられる。 As another conductive aid, the same one as the conductive aid contained in the above-described coated positive electrode active material is preferably used.

正極活物質層は、正極活物質を含み、かつ、正極活物質同士を結着する結着材(バインダとも言う)を含まない非結着体であることが好ましい。 The positive electrode active material layer is preferably a non-binding material that contains a positive electrode active material and does not contain a binder (also referred to as a binder) that binds the positive electrode active materials together.

非結着体は、正極活物質の位置が結着材により固定されておらず、正極活物質同士、更には、正極活物質と集電体とが不可逆的に固定されていないものを意味する。 The non-bound body means that the position of the positive electrode active material is not fixed by a binder, and the positive electrode active material and the current collector are not fixed irreversibly. .

正極活物質層は、粘着性樹脂を更に含んでもよい。 The positive electrode active material layer may further contain an adhesive resin.

粘着性樹脂としては、例えば、特開2017-054703号公報に記載された非水系二次電池活物質被覆用樹脂に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調整したもの、特開平10-255805公報に粘着剤として記載されたもの等が好適に用いられる。 As the adhesive resin, for example, a non-aqueous secondary battery active material coating resin described in JP-A-2017-054703 is mixed with a small amount of an organic solvent to adjust its glass transition temperature to room temperature or lower. Those described as adhesives in JP-A-10-255805 are preferably used.

粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性(水、溶剤、熱等を使用せずに僅かな圧力を加えることで接着する性質)を有する樹脂を意味する。一方、結着材として用いられる溶液乾燥型の電極バインダは、溶媒成分を揮発させることで乾燥、固体化して活物質同士を強固に接着固定するものを意味する。このように、溶液乾燥型の電極バインダ(結着剤)と粘着性樹脂とは、異なる材料である。 Adhesive resin means a resin that does not solidify even when the solvent component is volatilized and dried, and has adhesiveness (the property of adhering by applying a slight pressure without using water, solvent, heat, etc.) do. On the other hand, a solution-drying type electrode binder used as a binding material is one that evaporates a solvent component to dry and solidify, thereby firmly adhering and fixing active materials to each other. Thus, the solution-drying type electrode binder (binder) and the adhesive resin are different materials.

正極活物質層の厚みは、特に限定されないが、電池性能の観点から、好ましくは150~600μm、より好ましくは200~450μmである。 Although the thickness of the positive electrode active material layer is not particularly limited, it is preferably 150 to 600 μm, more preferably 200 to 450 μm from the viewpoint of battery performance.

負極活物質層は、負極活物質を含む。 The negative electrode active material layer contains a negative electrode active material.

負極活物質としては、公知のリチウムイオン電池用負極活物質が使用可能であり、例えば、炭素系材料[例えば、黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えば、フェノール樹脂、フラン樹脂等を焼成し炭素化したもの等)、コークス類(例えば、ピッチコークス、ニードルコークス、石油コークス等)、炭素繊維等]、珪素系材料[例えば、珪素、酸化珪素(SiOx)、珪素-炭素複合体(例えば、炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの、炭化珪素等)、珪素合金(例えば、珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金、珪素-スズ合金等)等]、導電性高分子(例えば、ポリアセチレン、ポリピロール等)、金属(例えば、スズ、アルミニウム、ジルコニウム、チタン等)、金属酸化物(例えば、チタン酸化物、リチウム・チタン酸化物等)、金属合金(例えば、リチウム-スズ合金、リチウム-アルミニウム合金、リチウム-アルミニウム-マンガン合金等)、これらと炭素系材料との混合物等が挙げられる。 As the negative electrode active material, known negative electrode active materials for lithium ion batteries can be used. carbonized resin etc.), cokes (e.g., pitch coke, needle coke, petroleum coke, etc.), carbon fiber, etc.], silicon-based materials [e.g., silicon, silicon oxide (SiOx), silicon-carbon Composites (e.g., carbon particles coated with silicon and/or silicon carbide, silicon particles or silicon oxide particles coated with carbon and/or silicon carbide, silicon carbide, etc.), silicon alloys (e.g. , silicon-aluminum alloy, silicon-lithium alloy, silicon-nickel alloy, silicon-iron alloy, silicon-titanium alloy, silicon-manganese alloy, silicon-copper alloy, silicon-tin alloy, etc.)], conductive polymer ( polyacetylene, polypyrrole, etc.), metals (e.g., tin, aluminum, zirconium, titanium, etc.), metal oxides (e.g., titanium oxides, lithium-titanium oxides, etc.), metal alloys (e.g., lithium-tin alloys, lithium-aluminum alloys, lithium-aluminum-manganese alloys, etc.), mixtures of these with carbonaceous materials, and the like.

上述した負極活物質は、1種類単独で用いられてもよいし、2種類以上で併用されてもよい。 One type of the negative electrode active material described above may be used alone, or two or more types may be used in combination.

負極活物質は、導電助剤及び被覆用樹脂で被覆された被覆負極活物質であってもよい。負極活物質が被覆用樹脂で被覆されていると、電極の体積変化が緩和されるため、電極の膨張を抑制できる。 The negative electrode active material may be a coated negative electrode active material coated with a conductive aid and a coating resin. When the negative electrode active material is coated with the coating resin, the volume change of the electrode is moderated, so expansion of the electrode can be suppressed.

被覆負極活物質に含まれる導電助剤及び被覆用樹脂としては、上述した被覆正極活物質に含まれる導電助剤及び被覆用樹脂と同様のものが好適に用いられる。 As the conductive aid and coating resin contained in the coated negative electrode active material, the same conductive aid and coating resin as those contained in the coated positive electrode active material described above are preferably used.

負極活物質層は、被覆負極活物質に含まれる導電助剤以外に、別の導電助剤を更に含んでもよい。 The negative electrode active material layer may further contain another conductive support agent in addition to the conductive support agent contained in the coated negative electrode active material.

別の導電助剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものが好適に用いられる。 As another conductive aid, the same one as the conductive aid contained in the above-described coated positive electrode active material is preferably used.

負極活物質層は、正極活物質層と同様に、負極活物質同士を結着する結着材を含まない非結着体であることが好ましい。 Like the positive electrode active material layer, the negative electrode active material layer is preferably a non-binding material that does not contain a binder that binds the negative electrode active materials together.

負極活物質層は、正極活物質層と同様に、粘着性樹脂を更に含んでもよい。 Like the positive electrode active material layer, the negative electrode active material layer may further contain an adhesive resin.

負極活物質層の厚みは、特に限定されないが、電池性能の観点から、好ましくは150~600μm、より好ましくは200~450μmである。 Although the thickness of the negative electrode active material layer is not particularly limited, it is preferably 150 to 600 μm, more preferably 200 to 450 μm from the viewpoint of battery performance.

正極樹脂集電体及び負極樹脂集電体は、各々、導電性高分子材料からなる樹脂集電体である。 Each of the positive electrode resin current collector and the negative electrode resin current collector is a resin current collector made of a conductive polymer material.

正極樹脂集電体及び負極樹脂集電体の形態(形状)は、各々、特に限定されず、導電性高分子材料からなるシート状の集電体であってもよいし、導電性高分子材料で構成された微粒子からなる堆積層であってもよい。 The form (shape) of the positive electrode resin current collector and the negative electrode resin current collector is not particularly limited, and may be a sheet-like current collector made of a conductive polymer material, or a conductive polymer material. It may be a deposited layer composed of fine particles composed of

正極樹脂集電体及び負極樹脂集電体の厚みは、各々、特に限定されないが、好ましくは50~500μmである。 The thickness of each of the positive electrode resin current collector and the negative electrode resin current collector is not particularly limited, but is preferably 50 to 500 μm.

正極樹脂集電体及び負極樹脂集電体を構成する導電性高分子材料としては、例えば、導電性高分子や樹脂に必要に応じて導電剤を添加したもの等が挙げられる。 Examples of the conductive polymer material that constitutes the positive electrode resin current collector and the negative electrode resin current collector include conductive polymers and resins to which a conductive agent is added as necessary.

導電性高分子材料を構成する導電剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものが好適に用いられる。 As the conductive agent that constitutes the conductive polymer material, the same conductive aid as that contained in the above-described coated positive electrode active material is preferably used.

導電性高分子材料を構成する樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂、これらの混合物等が挙げられる。中でも、電気的安定性の観点から、ポリエチレン、ポリプロピレン、ポリメチルペンテン、及び、ポリシクロオレフィンが好ましく、ポリエチレン、ポリプロピレン、及び、ポリメチルペンテンがより好ましい。 Examples of resins constituting conductive polymer materials include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), and polyethernitrile (PEN). , polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin, these and the like. Among them, from the viewpoint of electrical stability, polyethylene, polypropylene, polymethylpentene, and polycycloolefin are preferred, and polyethylene, polypropylene, and polymethylpentene are more preferred.

上述した樹脂は、1種類単独で用いられてもよいし、2種類以上で併用されてもよい。 The resins described above may be used singly or in combination of two or more.

セパレータとしては、公知のリチウムイオン電池用セパレータが使用可能であり、例えば、ポリエチレン又はポリプロピレン製の多孔性フィルム、多孔性ポリエチレンフィルムと多孔性ポリプロピレンフィルムとの積層フィルム、合成繊維(例えば、ポリエステル繊維、アラミド繊維等)又はガラス繊維等からなる不織布、これらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等が挙げられる。 As the separator, known lithium ion battery separators can be used. Aramid fiber, etc.) or nonwoven fabric made of glass fiber, etc., and those having ceramic fine particles such as silica, alumina, titania, etc. adhered to the surface thereof.

電池シートは、正極活物質層及び負極活物質層に存在する電解液を含む。 The battery sheet includes an electrolyte present in the positive electrode active material layer and the negative electrode active material layer.

電解液としては、公知のリチウムイオン電池の製造時に用いられる、電解質及び非水溶媒を含有する公知の電解液が使用可能である。 As the electrolytic solution, a known electrolytic solution containing an electrolyte and a non-aqueous solvent, which is used in the production of known lithium ion batteries, can be used.

電解質としては、公知の電解液に用いられるもの等が使用可能であり、例えば、LiN(FSO、LiPF、LiBF、LiSbF、LiAsF、LiClO等の無機酸のリチウム塩、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機酸のリチウム塩等が挙げられる。中でも、電池出力及び充放電サイクル特性の観点から、LiN(FSO、LiN(CFSO、LiN(CSO等のイミド系電解質、及び、LiPFが好ましい。 As the electrolyte , those used in known electrolytic solutions can be used . Lithium salts of organic acids such as LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 and LiC(CF 3 SO 2 ) 3 are included. Among them, imide-based electrolytes such as LiN(FSO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 and LiPF 6 are preferred from the viewpoint of battery output and charge-discharge cycle characteristics. preferable.

非水溶媒としては、公知の電解液に用いられるもの等が使用可能であり、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン、これらの混合物等が挙げられる。 As the non-aqueous solvent, those used in known electrolytic solutions can be used. compounds, amide compounds, sulfones, sulfolane, mixtures thereof, and the like.

電解液の電解質濃度は、好ましくは1~5mol/L、より好ましくは1.5~4mol/L、更に好ましくは2~3mol/Lである。 The electrolyte concentration of the electrolytic solution is preferably 1 to 5 mol/L, more preferably 1.5 to 4 mol/L, still more preferably 2 to 3 mol/L.

電解液の電解質濃度が1mol/Lよりも低いと、電池の入出力特性が充分に得られないことがある。電解液の電解質濃度が5mol/Lよりも高いと、電解質が析出してしまうことがある。 If the electrolyte concentration of the electrolytic solution is lower than 1 mol/L, the battery may not have sufficient input/output characteristics. If the electrolyte concentration of the electrolytic solution is higher than 5 mol/L, the electrolyte may precipitate.

電解液の電解質濃度は、電池シート、例えば、リチウムイオン電池から電解液を溶媒等を用いずに抽出して、その濃度を測定することにより確認可能である。 The electrolyte concentration of the electrolytic solution can be confirmed by extracting the electrolytic solution from a battery sheet, for example, a lithium ion battery without using a solvent or the like and measuring the concentration.

[電池用部材の製造方法]
本発明の電池用部材の製造方法は、本発明の電池用部材の検査方法により電気特性が許容範囲外である箇所が存在しないと判定された電池用部材を選別する、選別工程を備える。
[Method for manufacturing battery member]
The method for manufacturing a battery member of the present invention comprises a sorting step of sorting out battery members determined by the method of inspecting a battery member of the present invention to have no portion where the electrical characteristics are out of the allowable range.

本発明の電池用部材の製造方法では、選別工程により、電気特性が許容範囲外である箇所が存在する不具合品を取り除きつつ、電気特性が許容範囲外である箇所が存在しない電池用部材を効率的に得ることができる。 In the method for manufacturing a battery member of the present invention, the sorting step efficiently removes defective products that have locations where the electrical characteristics are out of the allowable range, and efficiently selects battery members that do not have locations where the electrical characteristics are out of the allowable range. can be obtained on a regular basis.

[組電池の製造方法]
本発明の組電池の製造方法は、本発明の電池用部材の検査方法により電気特性が許容範囲外である箇所が存在しないと判定された電池用部材を用いた電池シートを、複数枚積層する、積層工程を備える。
[Method for manufacturing assembled battery]
In the assembled battery manufacturing method of the present invention, a plurality of battery sheets using battery members determined by the method of inspecting battery members of the present invention to have electrical characteristics outside the allowable range are not present. , a lamination step.

図8は、組電池の一例を示す一部切り欠き斜視模式図である。図8では、外装体の一部が除去された状態を示している。 FIG. 8 is a partially cutaway schematic perspective view showing an example of an assembled battery. FIG. 8 shows a state in which a portion of the exterior body is removed.

図8に示す組電池100は、電池シート10が複数枚積層されつつ接続されてなる。図8に示す例では、図7に示す電池シート10が5枚積層された状態を示している。組電池100では、負極樹脂集電体19の上面と正極樹脂集電体17の下面とが隣接するように、電池シート10が積層されている。この場合、電池シート10は、複数枚直列接続されている。 The assembled battery 100 shown in FIG. 8 is formed by stacking and connecting a plurality of battery sheets 10 . The example shown in FIG. 8 shows a state in which five battery sheets 10 shown in FIG. 7 are stacked. In the assembled battery 100, the battery sheets 10 are laminated such that the upper surface of the negative electrode resin current collector 19 and the lower surface of the positive electrode resin current collector 17 are adjacent to each other. In this case, a plurality of battery sheets 10 are connected in series.

組電池100は、外装体110に収容されている。 The assembled battery 100 is housed in an exterior body 110 .

外装体110としては、例えば、金属缶ケース、高分子金属複合フィルム等が挙げられる。 Examples of the exterior body 110 include a metal can case, a polymer-metal composite film, and the like.

組電池100の最下面を構成する正極樹脂集電体の表面上には、導電性シートが設けられている。導電性シートの一部は、外装体110から引き出されて正極引出端子120となっている。 A conductive sheet is provided on the surface of the positive electrode resin current collector that constitutes the bottom surface of the assembled battery 100 . A part of the conductive sheet is pulled out from the outer package 110 to serve as a positive electrode extraction terminal 120 .

組電池100の最上面を構成する負極樹脂集電体の表面上には、別の導電性シートが設けられている。別の導電性シートの一部は、外装体110から引き出されて負極引出端子130となっている。 Another conductive sheet is provided on the surface of the negative electrode resin current collector that constitutes the uppermost surface of the assembled battery 100 . A part of another conductive sheet is pulled out from the outer package 110 to serve as a negative electrode extraction terminal 130 .

正極引出端子120及び負極引出端子130となる導電性シートの構成材料としては、導電性を有する材料であれば特に限定されず、例えば、銅、アルミニウム、チタン、ステンレス鋼、ニッケル、これらの合金等の金属、焼成炭素、導電性高分子、導電性ガラス等が挙げられる。 The constituent material of the conductive sheet that serves as the positive electrode lead terminal 120 and the negative electrode lead terminal 130 is not particularly limited as long as it is a material having conductivity, and examples thereof include copper, aluminum, titanium, stainless steel, nickel, and alloys thereof. metal, calcined carbon, conductive polymer, conductive glass, and the like.

上述した通り、本発明の電池用部材の検査方法では、電池用部材単位で短絡等の不具合を簡便に発見できる。これにより、本発明の組電池の製造方法では、確実に不具合が生じていない電池シートを用いて組電池を製造できるため、組電池の製造歩留まりを向上させることができる。 As described above, in the battery member inspection method of the present invention, defects such as a short circuit can be easily found for each battery member. As a result, in the assembled battery manufacturing method of the present invention, the assembled battery can be manufactured using the battery sheet without any defects, and thus the manufacturing yield of the assembled battery can be improved.

本発明の電池用部材の検査方法で検査対象物とされる電池用部材は、特に、携帯電話、パーソナルコンピューター、ハイブリッド自動車、及び、電気自動車の用途で用いられるリチウムイオン電池に有用である。 The battery member to be inspected by the battery member inspection method of the present invention is particularly useful for lithium ion batteries used in mobile phones, personal computers, hybrid vehicles, and electric vehicles.

1 電池用部材
2 ベルトコンベア(搬送機構)
3 導電体プローブ
3a 測定端子
4 測定機器
5 搬送トレイ
5a プローブ
10 電池シート(単電池)
12 正極
13 負極
14 セパレータ
15 正極活物質層
16 負極活物質層
17 正極樹脂集電体
18 枠部材
19 負極樹脂集電体
100 組電池
110 外装体
120 正極引出端子
130 負極引出端子
L1 搬送方向
L2 搬送方向に直交する方向
1 battery member 2 belt conveyor (conveyance mechanism)
3 Conductor probe 3a Measuring terminal 4 Measuring device 5 Transport tray 5a Probe 10 Battery sheet (single cell)
12 Positive electrode 13 Negative electrode 14 Separator 15 Positive electrode active material layer 16 Negative electrode active material layer 17 Positive electrode resin current collector 18 Frame member 19 Negative electrode resin current collector 100 Battery assembly 110 Exterior body 120 Positive electrode extraction terminal 130 Negative extraction terminal L1 Conveyance direction L2 Conveyance direction orthogonal to direction

Claims (16)

樹脂集電体を少なくとも有し、かつ、前記樹脂集電体が露出した露出表面を有する電池用部材を検査対象物として、前記電池用部材の前記露出表面に平行な搬送面を有する搬送機構で前記電池用部材を搬送するとともに、導電体プローブを前記電池用部材の表面のうちの前記露出表面に導通する位置に接触させることで前記電池用部材の表面の複数箇所における電気特性を測定する、搬送及び測定工程と、
前記電気特性が許容範囲外である箇所が前記電池用部材に存在するか否かを判定する、判定工程と、を備える、ことを特徴とする電池用部材の検査方法。
A transport mechanism having a transport surface parallel to the exposed surface of the battery member having at least a resin current collector and having an exposed surface where the resin current collector is exposed as an inspection target. While conveying the battery member, a conductor probe is brought into contact with the exposed surface of the surface of the battery member, thereby measuring electrical characteristics at a plurality of locations on the surface of the battery member. a conveying and measuring process;
A method for inspecting a battery member, comprising: determining whether or not the battery member has a portion where the electrical characteristics are out of an allowable range.
前記搬送及び測定工程では、前記電気特性として電気抵抗を測定し、
前記判定工程では、前記電気抵抗が許容範囲外である箇所が前記電池用部材に存在するか否かを判定する、請求項1に記載の電池用部材の検査方法。
In the transporting and measuring step, electrical resistance is measured as the electrical property,
2. The method for inspecting a battery member according to claim 1, wherein, in said determining step, it is determined whether or not there is a portion in said battery member where said electrical resistance is out of an allowable range.
前記搬送及び測定工程では、前記電気特性として電圧を測定し、
前記判定工程では、前記電圧が許容範囲外である箇所が前記電池用部材に存在するか否かを判定する、請求項1に記載の電池用部材の検査方法。
In the conveying and measuring step, voltage is measured as the electrical characteristic,
2. The method for inspecting a battery member according to claim 1, wherein, in said determining step, it is determined whether or not there is a portion in said battery member where said voltage is out of an allowable range.
前記樹脂集電体は、正極樹脂集電体と負極樹脂集電体とを含み、
前記電池用部材は、積層方向に順に積層された前記正極樹脂集電体と正極活物質層とセパレータと負極活物質層と前記負極樹脂集電体とを有する電池シートであり、
前記電池用部材の前記露出表面は、前記正極樹脂集電体が露出した正極露出表面と、前記負極樹脂集電体が露出した負極露出表面と、を含み、
前記搬送及び測定工程では、前記導電体プローブを、前記正極露出表面及び前記負極露出表面の一方に接触させる、請求項1~3のいずれかに記載の電池用部材の検査方法。
The resin current collector includes a positive electrode resin current collector and a negative electrode resin current collector,
The battery member is a battery sheet having the positive electrode resin current collector, the positive electrode active material layer, the separator, the negative electrode active material layer, and the negative electrode resin current collector which are stacked in order in the stacking direction,
The exposed surface of the battery member includes a positive electrode exposed surface where the positive electrode resin current collector is exposed and a negative electrode exposed surface where the negative electrode resin current collector is exposed,
4. The method for inspecting a battery member according to claim 1, wherein in said transporting and measuring step, said conductor probe is brought into contact with one of said positive electrode exposed surface and said negative electrode exposed surface.
前記電池用部材は、前記樹脂集電体である、請求項1~3のいずれかに記載の電池用部材の検査方法。 4. The method for inspecting a battery member according to claim 1, wherein said battery member is said resin current collector. 前記電池用部材は、前記樹脂集電体と活物質層とが積層方向に積層されてなる電極シートである、請求項1~3のいずれかに記載の電池用部材の検査方法。 4. The method for inspecting a battery member according to claim 1, wherein said battery member is an electrode sheet in which said resin current collector and an active material layer are laminated in a lamination direction. 前記電池用部材は、前記樹脂集電体と活物質層とセパレータとが積層方向に順に積層されてなるセパレータ付き電極シートである、請求項1~3のいずれかに記載の電池用部材の検査方法。 Inspection of the battery member according to any one of claims 1 to 3, wherein the battery member is an electrode sheet with a separator in which the resin current collector, the active material layer and the separator are laminated in order in the lamination direction. Method. 前記搬送機構は、ベルトコンベアである、請求項1~7のいずれかに記載の電池用部材の検査方法。 8. The battery member inspection method according to claim 1, wherein said transport mechanism is a belt conveyor. 前記ベルトコンベアは、導電性のベルトを有する、請求項8に記載の電池用部材の検査方法。 9. The battery member inspection method according to claim 8, wherein said belt conveyor has a conductive belt. 前記搬送及び測定工程では、前記電池用部材を、導電性の搬送トレイに積載した状態で搬送する、請求項1~9のいずれかに記載の電池用部材の検査方法。 10. The method for inspecting a battery member according to claim 1, wherein, in said transporting and measuring step, said battery member is transported while being stacked on a conductive transport tray. 前記搬送トレイには、導電性のプローブが設けられ、
前記搬送及び測定工程では、前記搬送トレイに設けられた前記プローブを、前記電池用部材の表面に接触させる、請求項10に記載の電池用部材の検査方法。
The transport tray is provided with a conductive probe,
11. The method for inspecting a battery member according to claim 10, wherein in the transporting and measuring step, the probe provided on the transport tray is brought into contact with the surface of the battery member.
前記搬送トレイに設けられた前記プローブは、前記搬送トレイと同じ材料で一体化している、請求項11に記載の電池用部材の検査方法。 12. The battery member inspection method according to claim 11, wherein said probes provided on said carrier tray are integrated with the same material as said carrier tray. 前記搬送トレイに設けられた前記プローブは、炭素材からなる、請求項11又は12に記載の電池用部材の検査方法。 13. The battery member inspection method according to claim 11, wherein said probes provided on said carrier tray are made of a carbon material. 前記導電体プローブは、炭素材からなる、請求項1~13のいずれかに記載の電池用部材の検査方法。 14. The battery member inspection method according to claim 1, wherein said conductor probe is made of a carbon material. 請求項1~14のいずれかに記載の電池用部材の検査方法により前記電気特性が許容範囲外である箇所が存在しないと判定された電池用部材を選別する、選別工程を備える、ことを特徴とする電池用部材の製造方法。 A screening step of selecting battery members determined by the battery member inspection method according to any one of claims 1 to 14 as not having a location where the electrical characteristics are out of the allowable range. A method for manufacturing a battery member. 請求項1~14のいずれかに記載の電池用部材の検査方法により前記電気特性が許容範囲外である箇所が存在しないと判定された電池用部材を用いた電池シートを、複数枚積層する、積層工程を備える、ことを特徴とする組電池の製造方法。 Laminating a plurality of battery sheets using battery members determined by the battery member inspection method according to any one of claims 1 to 14 that there is no location where the electrical characteristics are out of the allowable range, A method for manufacturing an assembled battery, comprising a stacking step.
JP2021083143A 2021-05-17 2021-05-17 Method for inspecting member for battery, method for manufacturing member for battery, and method for manufacturing battery pack Pending JP2022176622A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021083143A JP2022176622A (en) 2021-05-17 2021-05-17 Method for inspecting member for battery, method for manufacturing member for battery, and method for manufacturing battery pack
PCT/JP2022/020489 WO2022244760A1 (en) 2021-05-17 2022-05-17 Battery member inspection method, battery member manufacturing method, and battery pack manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021083143A JP2022176622A (en) 2021-05-17 2021-05-17 Method for inspecting member for battery, method for manufacturing member for battery, and method for manufacturing battery pack

Publications (1)

Publication Number Publication Date
JP2022176622A true JP2022176622A (en) 2022-11-30

Family

ID=84234311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021083143A Pending JP2022176622A (en) 2021-05-17 2021-05-17 Method for inspecting member for battery, method for manufacturing member for battery, and method for manufacturing battery pack

Country Status (1)

Country Link
JP (1) JP2022176622A (en)

Similar Documents

Publication Publication Date Title
US9350006B2 (en) Electrode assembly and electrochemical device including the same
WO2021100819A1 (en) Inspection method and manufacturing method of battery pack
KR101664945B1 (en) Method for manufacturing electrode assembly and electrode assembly manufactured using the same
JP6358911B2 (en) Electric storage device manufacturing apparatus and electric storage device manufacturing method
CN105720228A (en) Electrode Body And Electrode Body Manufacturing Method
JP2008027662A (en) Secondary battery
KR102505716B1 (en) Electrode assembly
KR102303703B1 (en) Solid-state battery and method for manufacturing the same
KR101806416B1 (en) A lithium ion secondary battery comprising a reference electrode
JP7360763B2 (en) assembled battery
US11316236B2 (en) Method for producing electrode for solid-state batteries
JP5289983B2 (en) Electrochemical cell
KR20190001461A (en) Electrode assembly and lithium secondary battery including the same
WO2022244760A1 (en) Battery member inspection method, battery member manufacturing method, and battery pack manufacturing method
JP2022176622A (en) Method for inspecting member for battery, method for manufacturing member for battery, and method for manufacturing battery pack
WO2022244759A1 (en) Inspection method for layered sheet, production method for layered sheet, and production method for battery pack
US20240014436A1 (en) Lithium-ion battery manufacturing device and manufacturing method
JP2022176623A (en) Method for inspecting laminated sheet, method for manufacturing laminated sheet, and method for manufacturing battery pack
US20230223550A1 (en) Cell unit
WO2023136353A1 (en) Battery inspection method
JP2022176624A (en) Method for inspecting laminated sheet, method for manufacturing laminated sheet, and method for manufacturing battery pack
JP2022176621A (en) Method for inspecting battery sheet, method for manufacturing battery sheet, and method for manufacturing battery pack
JP7090139B2 (en) Inspection method and manufacturing method of assembled battery
JP7090683B2 (en) How to inspect single batteries and how to manufacture assembled batteries
KR101574546B1 (en) Battery cell having a reference electrode and Reference electrode applied for the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240516