JP2022171223A - γ- STAINLESS STEEL WIRE AND METHOD FOR MANUFACTURING THE SAME - Google Patents

γ- STAINLESS STEEL WIRE AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2022171223A
JP2022171223A JP2021077752A JP2021077752A JP2022171223A JP 2022171223 A JP2022171223 A JP 2022171223A JP 2021077752 A JP2021077752 A JP 2021077752A JP 2021077752 A JP2021077752 A JP 2021077752A JP 2022171223 A JP2022171223 A JP 2022171223A
Authority
JP
Japan
Prior art keywords
stainless steel
wire
based stainless
steel wire
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021077752A
Other languages
Japanese (ja)
Other versions
JP6945906B1 (en
Inventor
強 西村
Tsutomu Nishimura
貴伸 西村
Takanobu Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI ENGINEERING KK
Original Assignee
KANSAI ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI ENGINEERING KK filed Critical KANSAI ENGINEERING KK
Priority to JP2021077752A priority Critical patent/JP6945906B1/en
Application granted granted Critical
Publication of JP6945906B1 publication Critical patent/JP6945906B1/en
Publication of JP2022171223A publication Critical patent/JP2022171223A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a stainless steel wire which has increased workability by maintaining a γ amount remaining on a finished metal wire at a high numerical value, and a practical method for manufacturing the stainless steel wire.SOLUTION: A γ-stainless steel wire is provided, having a composition of, by mass%, C:0.08% or less, Si: 1.00% or less, Mn: 2.00% or less, P:0.045% or less, S:0.030% or less, Ni: 8.0-10.50%, Cr: 18.00-20.00% and the remainder consisting of Fe, and having a wire diameter of 0.08 mm or more and 2.60 mm or less, a tensile strength of 1550 N/mm2 or more and 3500 N/Mm2 or less and a γ amount of 30 vol.% or more and 90 vol.% or less. A method for manufacturing the γ-stainless steel wire comprises: arranging at least two drawing tools back and forth in the wire drawing direction of a γ-stainless steel base wire; and heating and drawing a wire with the latter drawing tool using working heat generated by the wire drawing of the γ-stainless steel with the former drawing tool.SELECTED DRAWING: Figure 4

Description

本発明は、2台の引抜加工治具(ダイス)を伸線方向に配置し,前段の引抜加工治具での引抜で発生する熱を利用して後段の引抜加工治具で伸線加工することにより、オーステナイト組織を残留させたγ系ステンレス鋼線及びその製造方法に関する。 In the present invention, two drawing jigs (dies) are arranged in the wire drawing direction, and wire drawing is performed by the latter drawing jig using the heat generated by drawing in the former drawing jig. More particularly, the present invention relates to a γ-based stainless steel wire in which an austenite structure is retained and a method for producing the same.

ステンレス鋼の伸線加工は、所望する線径を得ることと、所望の強度を得ることを目的として行われる。線径は、伸線加工で使用する治具(ダイス)の穴径により決定される。また、強度は加工の度合いで決まる。加工の度合いは、加工に伴う線径の断面積の減り具合、即ち減面率「(1-(d ÷d ))×100%」と強度との関係図表を予め諸実験によって確保し、実生産に於いてこれを活用する。即ち、強度は減面率によってコントロールされる。 Wire drawing of stainless steel is performed for the purpose of obtaining a desired wire diameter and obtaining a desired strength. The wire diameter is determined by the hole diameter of a jig (die) used in wire drawing. Also, the strength is determined by the degree of processing. The degree of processing is determined by various experiments in advance using a diagram of the relationship between the degree of reduction in the cross-sectional area of the wire diameter due to processing, that is, the rate of area reduction "(1-(d 1 2 ÷ d 2 2 )) x 100%" and the strength. We will secure it and utilize it in actual production. That is, the strength is controlled by the area reduction rate.

ところで、γ系ステンレス鋼線は、加工を受けるとγ→α´加工変態を生じる。このγ→α´加工変態は、加工を受ける直前の温度に顕著に影響を受け、150℃程度の加熱で強加工(滅面率90%)を受けても常温加工時の30%程度しか変態が進行せず、体積の70%がγ組織として残留し、更なる加工を可能とする。従って、γ系ステンレス鋼線の伸線加工には、150℃程度の加熱状態で強加工するのが好適である。 By the way, a γ-based stainless steel wire undergoes a γ→α' deformation transformation when subjected to working. This γ→α' working transformation is significantly affected by the temperature immediately before being worked, and even if it is subjected to strong working (90% surface loss) by heating at about 150 ° C, it transforms only about 30% of the room temperature working. does not progress and 70% of the volume remains as a γ structure, enabling further processing. Therefore, it is suitable to draw a γ-based stainless steel wire in a heated state of about 150° C. and to hard work the wire.

しかし、ここで実務的に問題となる技術課題は、伸線加工が秒速数mの高速で走行するγ系ステンレス鋼線に対する作業であるため、このγ系ステンレス鋼線を連続伸線機の狭いダイスBOX付近で、いかにして上述の温度に昇温するかが、本発明の伸線加工の課題となる。
高々150℃程度の加熱と云っても、秒速数mの高速で走るγ系ステンレス鋼線を1秒以下の短時間で昇温することはそう簡単ではない。
However, the technical issue that is a practical problem here is the operation of the γ-stainless steel wire, which runs at a high speed of several meters per second. How to raise the temperature in the vicinity of the die BOX to the above-described temperature is the subject of the wire drawing process of the present invention.
It is not so easy to raise the temperature of a γ-stainless steel wire running at a high speed of several meters per second in a short time of 1 second or less, even if it is said to be heated to about 150°C at most.

本発明者は、ステンレス鋼線を加熱する方法として、先に誘導加熱装置を使った加熱伸線法を提案し、特許が認められた(特許文献1:特許2050506号、なお、その発明内容については公告公報である特公平07-080008号公報を参照してください)。
しかし、この発明を実施するために必須の誘導加熱装置(IH)が1セット600万円と非常に高価で、これを連続伸線機の各釜のダイス前に複数台セツ卜するには余程の実績を示さなければ実用化には踏み切れず、商業的生産への移行には課題が多く在った。
その対応の一つとして、本発明者は、耐熱潤滑油法(特許文献2:特開2012-81502号公報参照)を開発し、耐熱潤滑油を利用した加熱伸線法として出願をした。この方法では、例えば2200N/mmの引張強度のオーステナイト系ステンレス鋼線を得ることができる(段落0022,0024参照)。しかし、特許文献2の発明もまた特許文献1の発明と同様に、実験的には確立したが、長時間、150℃以上の高温に順応出来得る耐熱潤滑油の開発、などの解決すべき要件があり、特許文献1と同様に商業的生産への移行には課題が多く在った。
このような事情から、現時点では、仕上金属線に残留するγ量を高い数値に維持して加工性を高めたステンレス鋼線及びその実用的な製造法方法は得られていないのが現状である。
The inventor of the present invention previously proposed a heating wire drawing method using an induction heating device as a method for heating a stainless steel wire, and was granted a patent (Patent Document 1: Patent 2050506, which describes the content of the invention. Please refer to Japanese Patent Publication No. 07-080008, which is a public notice).
However, the induction heating device (IH), which is essential to implement this invention, is very expensive at 6 million yen per set, and it is not possible to set multiple units of this in front of the dies of each pot of the continuous wire drawing machine. There were many problems in the transition to commercial production because it could not be put into practical use unless it showed a certain level of performance.
As one of the countermeasures, the present inventor developed a heat-resistant lubricating oil method (Patent Document 2: see Japanese Patent Laid-Open No. 2012-81502) and filed an application as a hot wire drawing method using a heat-resistant lubricating oil. In this way, for example, austenitic stainless steel wires with a tensile strength of 2200 N/mm can be obtained (see paragraphs 0022, 0024). However, the invention of Patent Document 2 was experimentally established as well as the invention of Patent Document 1, but there are requirements to be solved, such as the development of a heat-resistant lubricating oil that can adapt to high temperatures of 150 ° C or higher for a long time. There were many problems in the transition to commercial production as in Patent Document 1.
Under these circumstances, at present, a stainless steel wire in which the amount of γ remaining in the finished metal wire is maintained at a high value to improve workability and a practical manufacturing method thereof have not been obtained. .

特公平07-080008号公報Japanese Patent Publication No. 07-080008 特開2012-81502号公報Japanese Unexamined Patent Application Publication No. 2012-81502

上記事情に鑑み、本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、加工されるステンレス鋼母線自体の加工発熱を活用してγ→α´加工変態を減少させ、加工性に優れたγ組織を多く残留させて加工限界を最高度に延長して伸線加工を行い、生産性の向上、コストダウン、更には新製品の開発に寄与出来る画期的な発明として 本発明に係るγ組織を多く残留させた「γ系ステンレス鋼線」及び「このγ系ステンレス鋼線を伸線加工により製造する方法」の開発に成功した。以下、本発明について具体的に説明する。 In view of the above circumstances, the present inventors have made intensive studies to solve the above problems. This is an epoch-making invention that can contribute to productivity improvement, cost reduction, and development of new products by extending the processing limit to the maximum extent by leaving a large amount of excellent γ structure. We have succeeded in developing a ``γ-based stainless steel wire'' in which a large amount of such γ-structure remains, and a ``method for producing this γ-based stainless steel wire by wire drawing''. The present invention will be specifically described below.

まず、本発明に係る「(SUS304の組成を有する)γ系ステンレス鋼線の製造方法」の概要を説明する。
一般に金属は、加工を受けると、金属独自の結晶のすベリ面上を元素が移動して変形が進行して内部応力を蓄積し、同時に転位も集積して不働転位となり、加工を困難にする。更に、γ系ステンレス鋼線はこれらの変形機構以外に組織そのものが加工を受けて、γ→α´加工変態を 生じて硬化が進行する。
この場合の加工変態は、加工を受ける直前の温度の影響を顕著に受け、200℃程度の加熱で殆んど変化は進行せず、強度の向上も少ない。然し、連続伸線機での加工速度は、線速が秒速2~8mと高速なので、加熱装置を狭い連続伸線機の台場にセットする事は困難である。
First, an outline of the "method for producing a γ-based stainless steel wire (having a composition of SUS304)" according to the present invention will be described.
In general, when a metal is processed, the elements move along the surface of the metal's unique crystals, and deformation progresses, accumulating internal stress. do. In addition to these deformation mechanisms, the structure of the γ-based stainless steel wire itself undergoes working, causing γ→α' working transformation and hardening.
The work transformation in this case is remarkably affected by the temperature immediately before the work is performed. Heating at about 200° C. causes almost no change and little improvement in strength. However, since the processing speed of the continuous wire drawing machine is as high as 2 to 8 m/s, it is difficult to set the heating device in the narrow platform of the continuous wire drawing machine.

そこで、これらの対策とは全く別の新しい手法として、本発明方法(以下、本明細書では「ダブルダイス加熱伸線法」と称する)を開発した。
以下、図1の「ダブルダイス加熱伸線法概要図」、図2の「引抜加工とマルテンサイト発生の温度依存性」、及び図3の「加工温度-減免率-引張強度の関係」を参照して、本発明方法に係る「ダブルダイス加熱伸線法」の概要を説明する。
なお、図1は、本発明の理解を容易にするためにその具体例を示した概略図である。図1では、上段に2個のダイスの配置例、下段に加熱温度を数値等に付して示しているが、図1に記載された具体的な数値等に本発明が特定されるという趣旨でないことを念のため指摘する。
また、図2は、加工温度が高い方が、マルテンサイトの発生割合を低く押さ得ることができること示し、図3は、加工温度が高い方が、引張強度の上昇を抑えることができることを示している。
Therefore, the method of the present invention (hereinafter referred to as "double die heating wire drawing method") has been developed as a completely new technique that is completely different from these countermeasures.
See Figure 1 for "Schematic diagram of double die heating wire drawing method", Figure 2 for "Temperature dependence of drawing and martensite generation", and Figure 3 for "Relationship between working temperature, exemption rate and tensile strength". Then, the outline of the "double die heating wire drawing method" according to the method of the present invention will be described.
It should be noted that FIG. 1 is a schematic diagram showing a specific example for facilitating understanding of the present invention. In FIG. 1, an example of the arrangement of two dies is shown in the upper row, and the heating temperature is shown in the lower row with numerical values, etc., but the intention is that the present invention is specified by the specific numerical values, etc. shown in FIG. Just to be sure, I point out that it is not.
In addition, FIG. 2 shows that the higher the working temperature, the lower the rate of martensite generation, and FIG. 3 shows that the higher the working temperature, the higher the tensile strength can be suppressed. there is

図1の記載から明らかなように、2個のダイス(伸線用治具)を、例えば、100mm~150mm間隔で配置し、前段のNo.1ダイスでの伸線加工によって発生する発熱をそのまま後段のNo.2ダイスに持ち込み、ここで加熱伸線を行う方法、好ましくはNo.1ダイスでの伸線加工の前に予備加熱ゾーンで予備加熱する方法は、まさに理想的な方法と云える。 As is clear from the description in FIG. 1, two dies (wire drawing jigs) are arranged at an interval of, for example, 100 mm to 150 mm, and the heat generated by the wire drawing process in the preceding No. 1 die is It can be said that the ideal method is to bring the wire to the No. 2 die in the subsequent stage and heat wire drawing there, preferably to preheat it in the preheating zone before wire drawing in the No. 1 die. .

(予備加熱)
より具体的に説明すれば、前段のNo.1ダイスでの伸線時のγ→α´加工変態を少しでも少なくするために、No.1 ダイスに入る前にγ系ステンレス鋼線を、例えば70℃~130℃程度に予備加熱し、予備加熱された線をNo.1ダイスに導入すれば、No.1ダイス通過時のγ→α´加工変態は大幅に抑制され、更にNo.1ダイスでの発熱と加算され後段のNo.2ダイスに入る直前の温度を200℃近く迄昇温できればγ→α´加熱変態は激減し、強度向上も半減でき、まさに理想的な加熱伸線が実現できることとなる。
No.1ダイスの前に配置する予備加熱方法には直接加熱(通電、耐熱潤滑油等)、或いは間接加熱(熱風、加熱炉通過等)などが考えられる。予備加熱およびNo.1ダイスとNo.2ダイスを配置した状態をダブルダイスの1セットとすると、これを6セット配置した状態を図4に示す。尚、予備加熱は130℃前後であれば線速が高速であっても充分に昇温は可能である。
(preheating)
More specifically, in order to reduce the γ→α' deformation transformation during wire drawing in the No. 1 die in the previous stage, the γ-based stainless steel wire is processed, for example, before entering the No. 1 die. By preheating the wire to about 70°C to 130°C and introducing the preheated wire into the No. 1 die, the γ→α' deformation transformation during passage through the No. 1 die is greatly suppressed, and furthermore, the No. 1 die If the temperature just before entering the No. 2 die in the latter stage can be increased to nearly 200°C, the γ→α' heating transformation can be drastically reduced and the strength improvement can be halved, realizing the ideal heating wire drawing. It can be done.
Direct heating (electricity, heat-resistant lubricating oil, etc.) or indirect heating (hot air, passing through a heating furnace, etc.) can be considered as a preheating method placed in front of the No. 1 die. FIG. 4 shows a state in which 6 sets of double dies are arranged with preheating and arrangement of No. 1 and No. 2 dies as one set of double dies. Incidentally, if the preheating is around 130° C., it is possible to sufficiently raise the temperature even if the linear velocity is high.

(ダブルダイス加熱伸線法)
本発明方法は、伸線加工に於ける操作に関して、従来の「減面率強度コントロール法」から「加熱温度コントロール法」に転換した点に特徴がある。
以下、この点について具体的に説明する。
伸線加工に於ける操作は、タイスと呼ばれる入口が大きく、出口が小さな伸線加工治具の中に線を通して出口の直径に合わせるものである。この操作により、単に線径を所定の径にするだけでなく、加工と同時に、加工による強度の向上を図る事ができる。
この場合の強度の向上を支配する要因は、減面率(1‐(d ÷d ))×100%)で、過去の実験及び実績から通常の常温伸線では25~20%でこれを繰り返して全滅面率を85%前後まで加工すれば、線材はそれ以上の加工には耐えられず断線する。断線に致らなくても内部亀裂を生じ、欠陥のある製品となる惧れがある。多くのワイヤー製造メーカーでは作業標準として各減面率は20~25%、全滅面率は80~82%程度を標準化し、単独伸線機7~8台を連続して配置し、これを電気的配線駆動化して連続伸線を行っている。
尚、各伸線機で採用する減面率は各伸線機共、同一減面率(パラレルドラフト)を採用するか、引き抜き力を考慮して漸次減少(テーパードラフト)にするかは適宜選択可能である。
その後、光輝焼鈍して軟化し、再度同じ伸線を、繰り返して線径を細くし、強度をアップする。
(Double-die heating wire drawing method)
The method of the present invention is characterized in that the operation in wire drawing is changed from the conventional "area reduction rate strength control method" to the "heating temperature control method".
This point will be specifically described below.
The wire drawing operation involves passing the wire through a wire drawing jig called a tie, which has a large entrance and a small exit, and matches the diameter of the exit. By this operation, it is possible not only to set the wire diameter to a predetermined diameter, but also to improve the strength by working at the same time as working.
The factor that governs the improvement in strength in this case is the area reduction rate (1-(d 1 2 ÷ d 0 2 )) × 100%), which is 25 to 20% in normal room temperature wire drawing from past experiments and results. If this process is repeated until the annihilation area ratio reaches around 85%, the wire cannot withstand further processing and breaks. Even if the wire does not break, internal cracks may occur, resulting in defective products. In many wire manufacturers, each area reduction rate is 20 to 25%, and the total area rate is about 80 to 82% as a work standard. Continuous wire drawing is performed by driving the wiring.
It should be noted that for each wire drawing machine, the same area reduction rate (parallel draft) is adopted for each wire drawing machine, or the drawing force is taken into account and the area reduction rate is gradually reduced (taper draft). It is possible.
After that, the wire is softened by bright annealing, and the same wire drawing is repeated to reduce the wire diameter and increase the strength.

本発明の伸線加工と対比するために、まず、従来の伸線工程を図5(現状の伸線・焼鈍工程)に示す。
例えば、一例として5.5mmφの圧延ロッド(素材)を使用し、0.90mmφの細線を製造する場合には、図5に示す通り2種類の連続伸線機を使用し、1次伸線と2次伸線との中間に1次焼鈍(1回の光輝焼鈍)を行い、目的の0.90mmφの生産を行なう。図6に、この場合の減面率と強度向上をNi当量21.9注1 について示す。従来のγ系ステンレス線の強度コントロールは全て減面率によってコントロールされており、必要とする強度を生産するには、減面率-強度関係図によりスタートサイズを決め、加工率を算出して製品化を図る。
注1:Ni当量はγ→α´の加工変態の発生状況、即ち、γの安定性について、含有元素の影響を考慮した式で一般には平山の式と呼ばれる式を採用する。Ni当量が大きい程、γは安定している。
平山の式:
Ni当量(%)=Ni(%)+0.65Cr(%)+0.98Mo(%)+1.05Mn(%)+0.35Si(%)+12.6C(%)
一方、γ系ステンレス線のJIS規格には、JIS G 4309(ステンレス鋼線)とJIS G 4314(ばね用ステンレス線)の2つの規格があり、それぞれW1、W2、W1/2HとWPA、WPBの5つの強度規格があり、仲線加工を施す強度規格はW1を除く他の4規格である。サイズ範囲で強度規格を定めている。図7にJIS規格と線径との関係を判り易く図示する。
In order to compare with the wire drawing process of the present invention, first, a conventional wire drawing process is shown in FIG. 5 (current wire drawing/annealing process).
For example, when using a rolled rod (material) of 5.5 mmφ to produce a thin wire of 0.90 mmφ, as shown in Fig. 5, two types of continuous wire drawing machines are used, the primary wire drawing and the secondary wire drawing. Primary annealing (bright annealing once) is carried out between wire drawing to produce the target 0.90mmφ. FIG. 6 shows the area reduction rate and strength improvement in this case for a Ni equivalent of 21.9 Note 1 . The strength control of conventional γ-based stainless steel wire is all controlled by the area reduction ratio. to make it better.
Note 1: Ni equivalent is a formula that considers the influence of contained elements on the occurrence of γ → α' deformation transformation, that is, the stability of γ, and is generally called Hirayama's formula. γ is more stable as the Ni equivalent increases.
Hirayama's formula:
Ni equivalent(%)=Ni(%)+0.65Cr(%)+0.98Mo(%)+1.05Mn(%)+0.35Si(%)+12.6C(%)
On the other hand, there are two JIS standards for γ-based stainless wires, JIS G 4309 (stainless steel wire) and JIS G 4314 (stainless steel wire for springs), which are W1, W2, W1/2H and WPA, WPB, respectively. There are 5 strength standards, and the strength standards for intermediate wire processing are the other 4 standards excluding W1. Strength standards are established within the size range. FIG. 7 shows the relationship between JIS standards and wire diameters in an easy-to-understand manner.

図6は減面率と強度の関係を示した図である。この図から4規格の強度線を作り出すための減面率を求めると、線径にもよるが、減面率20%前後でW2を、40%前後でW1/2Hを70%前後でWPAを82%前後でWPBの規格品の生産が可能となる。しかし、減面率依存の強度規格品の生産には、緻密な対応が必要で、JIS規格のサイズ(線径)は種類が多く、これを全て満たすスタートサイズと伸線加工は複雑そのものです。 FIG. 6 is a diagram showing the relationship between reduction of area and strength. From this figure, the area reduction rate for creating the strength lines of the four standards is obtained, and although it depends on the wire diameter, W2 is obtained at a reduction rate of about 20%, W1/2H at about 40%, and WPA at about 70%. At around 82%, it is possible to produce WPB standard products. However, the production of strength standardized products that depend on the area reduction rate requires a precise response, and there are many types of JIS standard sizes (wire diameters), and the start size and wire drawing process that satisfy all of them are complicated.

本発明方法は、上記の従来技術の課題、すなわち減面率依存の強度規格品の生産には、緻密な対応が必要で、JIS規格のサイズ(線径)は種類が多く、これを全て満たすスタートサイズと伸線加工は複雑となるという課題を解消すべくなされたもので、被加工線自体の加工発熱を利用してγ(オーステナイト組織)→α´(マルテンサイト組織)加工変態を減少させ、加工性に優れたγ組織を多く残留させ、加工限界を最高度に延長させ、生産性の向上、コストダウン、更に新製品の開発に寄与させる画期的な技術及び新製品の開発方法を提案するものである。 In the method of the present invention, the above-mentioned problem of the prior art, that is, the production of strength standard products dependent on the area reduction rate, requires a precise response, and there are many types of JIS standard sizes (wire diameters), and it satisfies all of them. It was developed to solve the problem that the starting size and wire drawing process are complicated, and the work transformation of γ (austenite structure) → α' (martensite structure) is reduced by using the work heat generated by the wire itself. Innovative technology and new product development methods that leave a large amount of γ structure with excellent workability, extend the processing limit to the maximum extent, improve productivity, reduce costs, and contribute to the development of new products. It is proposed.

すなわち、γ系ステンレス線は加工を受けるとγ→α´加工変態を起こす特性を有しているが、この加工変態は、加工直前の温度によって顕著に影響を受け、その温度が200℃前後で加工変態は僅かしか起こらない。言い換えると、本発明は、常温加工の1/10程度しか起こらず、強加工を受けても加工性の優れたγ組織を維持し強度向上も半減することに着目してなされたものである。 In other words, γ-based stainless steel wire has the property of undergoing γ→α' processing transformation when it is processed, but this processing transformation is significantly affected by the temperature immediately before processing, and when the temperature is around 200°C, Little working transformation occurs. In other words, the present invention focuses on the fact that the γ structure with excellent workability is maintained and the strength improvement is halved even when subjected to strong working, which occurs only about 1/10 of normal temperature working.

以下、図面を参照して本発明の概要を説明する。なお、ここでの説明は、発明の理解を容易にするために具体的な数値等を提示して説明するが、本件発明がここで説明された具体的な数値、手段等に特定されるものではない。本発明はあくまで特許請求の範囲で特定された発明であり、図面は発明をより具体的に示したものであることを念のため指摘する。 The outline of the present invention will be described below with reference to the drawings. In addition, although the explanation here presents specific numerical values and the like in order to facilitate the understanding of the invention, the present invention is specified by the specific numerical values, means, etc. described here. is not. It should be noted that the present invention is merely the invention specified in the claims, and that the drawings show the invention more specifically.

本発明に係るダブルダイス伸線法は、通常のダイスボックスを長くし、図1に示す如く、粉末潤滑剤を入れたダイスボックスの中に2個のダイスを、約150mm程度の間隔をあけて設置し、その前に予備加熱ゾーンを配置する。予備加熱(予熱)ゾーンは電熱、潤滑油、熱湯などで加熱を行いダイスボックス内の1個目のダイスに入る線材の温度を50℃~130℃位まで昇温する。 In the double-die wire drawing method according to the present invention, an ordinary die box is lengthened, and two dies are placed in a die box containing a powdered lubricant with an interval of about 150 mm, as shown in FIG. installed, with a preheat zone in front of it. In the preheating (preheating) zone, the temperature of the wire entering the first die in the die box is raised to about 50°C to 130°C by heating with electric heat, lubricating oil, hot water, or the like.

これにより、伸線加工を行う場合に発生する、γ→α´加工変態を少しでも軽減させ、更に1枚目のダイスでの加工発熱を加算し、線材が130℃~250℃の加熱をされた状態で2番目のダイスで加熱伸線を実行する。
図8は、1枚目のダイス(No.1ダイス)での減面率と加工発熱温度との関係を示したものである。この図から、No.1ダイスの減面率を適切に制御することにより、所望の加工発熱温度を得ることができる。
As a result, the γ→α' working transformation that occurs during wire drawing is reduced as much as possible, and the heat generated by the first die is added to heat the wire to 130 ° C to 250 ° C. Heat drawing is performed with the second die in this state.
FIG. 8 shows the relationship between the area reduction rate of the first die (No. 1 die) and the working heat generation temperature. From this figure, it is possible to obtain the desired processing heat generation temperature by appropriately controlling the area reduction rate of the No. 1 die.

以上説明したように、本発明方法によれば、伸線加工で生じる加工発熱(自己発熱)で生じる熱をそのまま有効に活用できるので、非常に省エネな加熱伸線方法であると云える。もちろん、耐熱潤滑油の開発が進み150℃程度までの潤滑剤油ができればこれを活用してもよい。予備加熱ゾーンとダブルダイス中での温度予測状態を図1の下段に示す。予備加熱温度が、例えば100℃を越えれば、No.1ダイスで発熱した熱を加算した状態、即ちNo.2ダイスに入る前に200℃程度の線温になっている事が期待できる。 As described above, according to the method of the present invention, the heat generated by the process heat generation (self-heating) generated in wire drawing can be effectively used as it is, so it can be said that it is a very energy-saving heating wire drawing method. Of course, if the development of heat-resistant lubricating oil advances and a lubricating oil with a temperature up to about 150° C. can be produced, this may be utilized. The lower part of FIG. 1 shows the predicted temperature conditions in the preheating zone and double dies. If the preheating temperature exceeds, for example, 100° C., it can be expected that the heat generated in the No. 1 die is added, that is, the wire temperature is about 200° C. before entering the No. 2 die.

下記表1は、2個ダイスを1つのダイスボックスに組み込んだ、ダイスボックス(例えば、図1に示すダイブルダイスセット)を連続伸線機に配置し、ダブルダイスセットの1つ目のダイスの減面率を20%、2つ目のダイスの減面率を35%とし、連続伸線機(6H)で伸線を行う場合における総減面率の推移を4種類のスタートサイズ(1.00mm,2.00mm,3.00mm及び5.50mm)で示したものである。
Table 1 below shows that a die box (for example, the die set shown in FIG. 1), in which two dies are incorporated in one die box, is placed in a continuous wire drawing machine, and the first die of the double die set is reduced. The area ratio is 20%, the area reduction ratio of the second die is 35%, and the transition of the total area reduction ratio when drawing with a continuous wire drawing machine (6H) is performed with 4 types of start sizes (1.00 mm, 2.00mm, 3.00mm and 5.50mm).

Figure 2022171223000002
Figure 2022171223000002

更に、本発明によれば、伸線加工プロセスに於いて加熱伸線と常温伸線のコンビネーション活用で多くのメリットを得ることができる。すなわち、従来の加工減面率による強度支配から、加熱温度による強度支配への画期的生産技術の転換を図ることができる。
また、図9には表1における5.50mmをスタートサイズとした0.77mmまでの伸線(加熱伸線6Pass)の加熱温度毎の引張強度を示す。この表は全てのダイスボックスでダブルダイス・加熱伸線を行った場合であるが、これを応用すれば、連伸機の途中のPassから通常伸線との組み合わせることにより、1つのスタートサイズの線径から任意の仕上がり線径、引張強度の線材を得ることができる等、応用範囲の広い伸線方法であると云える。
そして、本発明に係るγ系ステンレス鋼の製造方法により、請求項1、2に記載された質量%で、C:0.08%以下、Si:1.00%以下、Mn:2.00%以下、P:0.045%以下、S:0.030%以下、Ni:8.0~10.50%、Cr:18.00~20.00%、残部Feの組成(SUS304の組成)を有し、線径0.08mm以上、2.60mm以下で、引張強度が1550N/mm2以上、3500N/mm2以下であって、かつ、30体積%以上、90体積%以下、若しくは40体積%以上、70体積%以下のγ量を有するγ系ステンレス鋼線を製造することができる。
Furthermore, according to the present invention, many merits can be obtained by utilizing a combination of hot wire drawing and normal temperature wire drawing in the wire drawing process. That is, it is possible to change the epoch-making production technology from the strength control by the conventional processing area reduction rate to the strength control by the heating temperature.
Moreover, FIG. 9 shows the tensile strength for each heating temperature in wire drawing up to 0.77 mm (heated wire drawing 6 passes) with a starting size of 5.50 mm in Table 1. This table shows the case where double dies and heating wire drawing are performed in all die boxes. It can be said that it is a wire drawing method with a wide range of applications, such as being able to obtain a wire with an arbitrary finished wire diameter and tensile strength from the wire diameter.
Then, by the method for producing γ-based stainless steel according to the present invention, the mass % described in claims 1 and 2 is C: 0.08% or less, Si: 1.00% or less, Mn: 2.00% Below, P: 0.045% or less, S: 0.030% or less, Ni: 8.0 to 10.50%, Cr: 18.00 to 20.00%, the balance Fe composition (SUS304 composition) having a wire diameter of 0.08 mm or more and 2.60 mm or less, a tensile strength of 1550 N/mm or more and 3500 N/mm or less, and 30 volume% or more, 90 volume% or less, or 40 volume% or more; A γ-based stainless steel wire having a γ content of 70% by volume or less can be produced.

以下、本発明の実施例(実施例1~6)を説明する。
以下に詳述するが、実施例1は、同一母線、同一ダブルダイスセット連伸機、同じ減面率の加工プロセスで加熱温度だけを変えて任意のJIS規格強度線の生産方法に関する実施例である。
実施例2は、同一母線、同一ダブルダイスセット連伸機、同じ減面率加工プロセスで、任意のダブルダイスセットで加熱温度を選択して任意の強度JIS規格品の生産方法である。
実施例3は、高加工減面率化によるワンオペレーション化(熱処理省略、伸線機釜数減少)の実施例である。
実施例4は、加熱伸線法を活用してピアノ線級の高強度線をSUS304で生産する方法の実施例である。
実施例5は、耐疲労強度線の製造方法の実施例である。
そして、実施例6は、引張強度が1,600N/mm以上でγ量が30%以上のSUS304線の製造方法の実施例である。
Examples (Examples 1 to 6) of the present invention are described below.
As will be described in detail below, Example 1 is an example relating to a method for producing arbitrary JIS standard strength lines by changing only the heating temperature in the same bus bar, the same double die set continuous machine, and the same area reduction rate. be.
Example 2 is a method of producing a JIS standard product with an arbitrary strength by selecting a heating temperature with an arbitrary double die set using the same bus bar, the same double die set continuous machine, and the same area reduction processing.
Example 3 is an example of a one-operation operation (omitting heat treatment and reducing the number of wire drawing machines) by increasing the area reduction rate.
Example 4 is an example of a method for producing a high-strength wire of piano wire grade from SUS304 by utilizing the hot wire drawing method.
Example 5 is an example of a method for producing a fatigue resistance strength curve.
Example 6 is an example of a method for producing a SUS304 wire having a tensile strength of 1,600 N/mm 2 or more and a γ content of 30% or more.

実施例1:同一母線、同一ダブルダイスセット連伸機、同じ減面率の加工プロセスで加熱温度だけを変えて任意のJIS規格強度線の生産方法
ダブルダイス連続伸線機(6釜)を使用し、伸線加工を行った場合の各減面率と加熱温度、引張強度の上昇状況の例を図10に示す。実験結果は、200℃、140℃、80℃の実験結果を示す。
このグラフの右側に線径毎の引張強度の規格値を引張強さの目盛りを一致させている。図10を見るとダブルダイスのセットでの各規格値に適用すべき加熱伸線の温度が判る。今一つの例として、仕上がり線径0.77mmをダブルダイス連伸機6セットで伸線を行う場合を考えてみる。
表1よりスタートサイズは5.50mmを準備する必要がある。図10より0.77mmの4つの規格強度の範囲を読み取り、JIS規格と対比させてそれぞれに適した加熱温度を選択すればよい。この場合の0.77mmのW1/2Hは加熱温度200℃で伸線した場合、WPAは140℃で伸線した場合、WPBは80℃で、伸線すれば3強度規格を全く同じプロセスで伸線したにも拘らず満足させることができる事が可能となる。
この事から分かるように、本発明は、従来から今日なお踏習されている減面率コントロール方式から本発明に係る加熱温度コントリール方式への転換と云える。
Example 1: Production method of any JIS standard strength wire by changing only the heating temperature in the same busbar, the same double die set continuous drawing machine, and the same area reduction rate Using a double die continuous wire drawing machine (6 tanks) FIG. 10 shows an example of the rate of area reduction, heating temperature, and increase in tensile strength when wire drawing is performed. Experimental results show experimental results at 200°C, 140°C and 80°C.
On the right side of this graph, the scale of the tensile strength is matched with the standard value of the tensile strength for each wire diameter. Looking at FIG. 10, it can be seen that the heating wire drawing temperature to be applied to each standard value in the double die set. As another example, let us consider the case of drawing a wire with a finished wire diameter of 0.77 mm using six sets of double die drawing machines.
From Table 1, it is necessary to prepare a start size of 5.50mm. The four standard strength ranges of 0.77 mm can be read from FIG. 10, and the appropriate heating temperature can be selected by comparing with the JIS standard. In this case, W1/2H of 0.77 mm is drawn at a heating temperature of 200°C, WPA is drawn at 140°C, and WPB is drawn at 80°C. It is possible to be satisfied in spite of this.
As can be seen from this fact, the present invention can be said to be a conversion from the area reduction rate control method that has been practiced even today to the heating temperature control method according to the present invention.

実施例2:同一母線、同一ダブルダイスセット連伸機、同じ減面率加工プロセスで、任意のダブルダイスセットで加熱温度を選択して任意の強度JIS規格品の生産方法
この生産方法は、図11に示す通り、ダブルダイスセットのNo.毎に加熱温度を選別して目標とする強度を確保する方法である。例えば、W1/2Hを確保する場合には、200℃の加熱伸線を6セット全て採用して伸線、WPBを生産する場合には、200℃の加熱伸線をNo.4のダブルダイスセットまで採用してその後のNo.5~No.6のダブルダイスセットは常温伸線を行う。この場合にはダブルダイスの後のダイスのみを使用し、減面率20%程度の加工で強度の確保を行ってもよい。同じく140℃の加熱伸線をダブルダイスセットNo,5まで採用し、その後は常温伸線を採用してもWPBの生産ができる。
Example 2: Using the same bus bar, the same double die set continuous machine, and the same area reduction process, selecting the heating temperature with an arbitrary double die set to produce a JIS standard product with arbitrary strength This production method is as shown in the figure. 11, the heating temperature is selected for each number of the double die set to secure the target strength. For example, when securing W1/2H, all six sets of 200°C heat wire drawing are employed for wire drawing, and when producing WPB, 200°C heat wire drawing is used as No. 4 double dice set and then No. 5 to No. The double die set of 6 performs normal temperature wire drawing. In this case, only the die after the double die may be used, and the strength may be ensured by processing with a reduction of area of about 20%. Similarly, WPB can be produced by adopting heated wire drawing at 140° C. up to double die set No. 5, and then adopting ordinary temperature wire drawing.

実施例3:高加工減面率化によるワンオペレーション化(熱処理省略、伸線機釜数減少)
一般の伸線作業は入り口が大きく出口が小さい円錐状の穴を有するダイスと呼ばれる治具の中に線を通して引き抜き出口の穴の直径が線製品の径になると同時に金属の加工硬化による強度の向上を計る。この場合、加工の程度を表すために、線の断面積の減少具合を各減面率と呼び(1‐(d ÷d ))×100%)で表わし、これを連続して7~8回繰り返して連続伸線を行う。スタートサイズと仕上がり径との断面積減少率を全減面率と呼び、(1‐(d ÷d ))×100%)で表す。
各減面率や全減面率を何%にするかは、線とダイスの摩擦の問題、材質、伸線機の構造など、複雑な要因があり、各メーカーの秘密事項ではあるが、一般的には概ね各減面率は20~25%、全減面率は80~85%程度で、更に細く伸線を必要とする場合には中間焼鈍を行って、軟化させた後再度伸線を行う。
本発明に係るダブルダイス加熱伸線法では、2枚のダイスをセットするダブルダイスセットのNo.1ダイスの減面率を20%程度、No.2ダイスを35%としての6H連続伸線機のPassスケジュールの一例を表1に示す。ダブルダイス加熱伸線法の場合、表1に示す通り、ダブルダイス1セットで計48%の減面率で加工でき、これを3セット設置(計6Pass)すれば85%、5セット設置(計10Pass)すれば96%程度となり、通常の常温伸線の場合の各減免率21%での16ブロックでの連続伸線、連伸機2機種の加工に相当する強加工ができる事になり、しかも、中間焼鈍なしで引き続き伸線できることから、顕著な生産の合理化とコストダウンが可能となる。しかも、被加工線自体の加工発熱を利用することより、誘導加熱装置の活用と比較しても、比較にならない省エネとコストダウンが期待できる
Example 3: One-operation operation by increasing the processing area reduction rate (omitting heat treatment, reducing the number of wire drawing machines)
In general wire drawing work, the wire is passed through a jig called a die, which has a conical hole with a large entrance and a small exit. measure. In this case, in order to express the degree of processing, the degree of reduction in the cross-sectional area of the wire is called each area reduction rate (1-(d 1 2 ÷ d 0 2 )) × 100%). Continuous wire drawing is repeated 7 to 8 times. The cross-sectional area reduction rate between the start size and the finished diameter is called the total area reduction rate, and is expressed by ( 1- ( d02/ d82 )) x 100%).
There are complicated factors such as the friction problem between the wire and the die, the material, the structure of the wire drawing machine, etc., and it is a secret matter of each manufacturer, but it is a general matter. Generally, each area reduction rate is 20 to 25%, and the total area reduction rate is about 80 to 85%. When further thinning is required, intermediate annealing is performed to soften the wire and then draw again. I do.
In the double die heating wire drawing method according to the present invention, the area reduction rate of the No. 1 die of the double die set in which two dies are set is about 20%. Table 1 shows an example of a pass schedule for a 6H continuous wire drawing machine with 2 dies at 35%. In the case of the double die heating wire drawing method, as shown in Table 1, one set of double dies can be processed with a total area reduction rate of 48%. 10 passes), it will be about 96%, and it will be possible to perform continuous wire drawing in 16 blocks at a reduction rate of 21% in the case of normal room temperature wire drawing, and heavy processing equivalent to processing with two types of wire drawing machines. Moreover, since the wire can be continuously drawn without intermediate annealing, it is possible to significantly streamline production and reduce costs. Moreover, by using the heat generated by the work itself, energy savings and cost reductions can be expected that are incomparable compared to the use of induction heating equipment.

実施例4:加熱伸線法を活用してピアノ線級の高強度線をSUS304で生産する方法。
γ系ステンレス鋼線は前述している通り、加工誘起マルテンサイトが加工とともに増加するので強加工はできない。現状ではピアノ線並みの強度をステンレス鋼線で確保するためには、Mnなどの量を増したり、Niの量を減じたりして含有元素を変更しての対処しかできていない。そこで、純粋のSUS304でピアノ線並みの強度を得るために本発明に係る加熱伸線法を活用する。
今、加熱温度を140℃でダブルダイス5セットを用い、伸線加工、96%の全減面率を加えて加工すると引張強度は1,700N/mm程度しか得られないが、残留しているγの量は全体の70%以上もあり、更なる強加工に充分耐え得る状態にある。140℃で96%の全減面率を加えた中間線を再度ダブルダイス伸線機で加工を加えると、図12に示す如く、2回目の伸線で引張強度は2,600N/mm以上を得ることができる。
即ち、従来のSUS304ではせいぜい2,400N/mm迄に対して、本発明を適用することにより更なる強度向上が可能であり、2回目の伸線で得られる2,600N/mmという引張強度の値はピアノ線(WPA)種に充分に匹敵する値である。
このプロセスはほんの一例であり、本発明を適用することにより、加熱伸線と常温伸線の組み合わせ等によってピアノ線以上の強度の確保の可能性は十分に存在する。
Example 4: A method of producing a high-strength wire of piano wire grade from SUS304 using a hot wire drawing method.
As described above, γ-based stainless steel wire cannot be subjected to heavy working because deformation-induced martensite increases with working. At present, in order to secure the strength of a stainless steel wire comparable to that of a piano wire, it is only possible to change the contained elements by increasing the amount of Mn or the like or decreasing the amount of Ni. Therefore, the hot wire drawing method according to the present invention is used to obtain a strength equivalent to that of a piano wire with pure SUS304.
Now, if we use 5 sets of double dies at a heating temperature of 140°C and wire drawing with a total area reduction of 96%, the tensile strength is only about 1,700 N/ mm2 , but there is residual The amount of γ is 70% or more of the total, and the steel is in a state of being able to withstand further heavy working. When the intermediate wire with a total area reduction of 96% at 140°C is processed again with a double die wire drawing machine, as shown in Fig. 12, the tensile strength of the second wire drawing is 2,600 N/ mm2 or more. can be obtained.
That is, the strength of conventional SUS304 is up to 2,400 N/mm 2 at most, but by applying the present invention, it is possible to further improve the strength. The strength values are well comparable to the piano wire (WPA) type.
This process is just one example, and there is ample possibility of securing a strength equal to or greater than that of a piano wire by applying the present invention by combining heated wire drawing and normal temperature wire drawing.

実施例5:耐疲労強度線の製造
ばね用ステンレス鋼線を生産する場合にγ組織を多量に含有した状態、即ち、加熱伸線を140℃~250℃に加熱して伸線した線は疲労試験に於ける疲労強度が2倍以上もあることが確認された。これを図13に示す。疲労試験に於ける疲労強度が2倍以上もある理由は、疲労破壊を生じる際、亀裂が発生し、その先端が伝播する際に先端部分の応力によってγ→α´変態が生じて硬化し、更なる伝播を防止し、疲労破壊を防ぐためと考えられる。
疲労破壊テストに於ける実験データーによると、常温伸線と140℃の加熱伸線材を比較してみると、常温伸線は引張強度も線径も大きいのに、疲労試験結果では図13に示される通り、加熱伸線材が2倍近くも優れていることが判る。この実施例から、本発明に係る加製伸線材の製法により耐疲労強度線を製造することができることが確認された。
Example 5 Production of Fatigue-Resistant Strength Wire When producing a stainless steel wire for a spring, a state containing a large amount of γ structure, that is, a wire drawn by heating to 140° C. to 250° C. is subject to fatigue. It was confirmed in the test that the fatigue strength was more than doubled. This is shown in FIG. The reason why the fatigue strength in the fatigue test is more than doubled is that when fatigue fracture occurs, a crack occurs, and when the tip propagates, the stress at the tip portion causes γ → α' transformation and hardening. This is considered to prevent further propagation and prevent fatigue fracture.
According to the experimental data in the fatigue fracture test, when comparing the room temperature wire drawing and the wire drawing material heated at 140°C, the room temperature wire drawing has higher tensile strength and wire diameter, but the fatigue test results are shown in Fig. 13. As can be seen, the heated wire drawing material is nearly twice as good. From this example, it was confirmed that a fatigue resistance strength wire can be produced by the method for producing a processed drawn wire material according to the present invention.

実施例6:引張強度が1,600N/mm以上でγ量が30%以上のSUS304線の製造
全減面率50%以上の加工を常温で受けるとSUS304の場合、図14に示すように、組織は全体積の80%以上がα´マルテンサイトで占める。これを強度の点から見ると、図15に示すように、1,500N/mm前後を示す。
即ち、1,600N/mm以上では常温伸線の場合、α´マルテンサイトの量は80%以上、オーステナイト量は20%以下である。これに対し、加熱伸線を行えば、140℃の場合、減面率96%で漸く1,600N/mmに達するが、γの残留は75%以上でα´は25%以下である。
即ち、1,600N/mm以上の高強度でγが75%含有しているのは加熱伸線法により加工した製品であると云うことができる。
なお、表2は、SUS304に含まれる元素を示すが、SUS304は表2に記載された成分以外にも多くの元素を含んでおり、これらの元素はγ→α´加工変態、即ち、γの安定性に影響を与える。更に、各元素の含有量にはそれぞれ許容範囲があり複雑にγ→α´加工変態に影響する。γの安定性に関しては多くの研究があるが、最も一般式として活用されているのが平山の式と呼ばれている。
参考までにこのNi当量の加熱伸線の影響を図16および図17に示す。この図からもわかる通り、常温伸線に於いては明らかにNi当量が加工変態への影響が存在するが、加熱伸線の場合には200℃近傍では、その影響は少なくなり100N/mm程度しかない。また、マルテンサイトも10%程度に抑えることができる。
Example 6: Production of SUS304 wire with tensile strength of 1,600 N/ mm2 or more and γ content of 30% or more
In the case of SUS304, when subjected to processing with a total area reduction of 50% or more at room temperature, α' martensite occupies 80% or more of the total volume of the structure, as shown in FIG. In terms of strength, as shown in FIG. 15, it is around 1,500 N/mm 2 .
That is, at 1,600 N/mm 2 or more, the amount of α' martensite is 80% or more and the amount of austenite is 20% or less in the case of normal temperature wire drawing. On the other hand, if the wire is drawn by heating at 140.degree.
That is, it can be said that the product processed by the hot wire drawing method has a high strength of 1,600 N/mm 2 or more and contains 75% of γ.
Although Table 2 shows the elements contained in SUS304, SUS304 contains many elements other than the components listed in Table 2, and these elements are γ → α' processing transformation, that is, γ Affects stability. Furthermore, the content of each element has its own allowable range and affects the γ→α' deformation transformation in a complicated manner. There are many studies on the stability of γ, but the most commonly used formula is called Hirayama's formula.
For reference, FIG. 16 and FIG. 17 show the influence of the heated wire drawing on the Ni equivalent. As can be seen from this figure, in the normal temperature wire drawing, the Ni equivalent clearly has an effect on the deformation transformation, but in the case of the hot wire drawing, the effect is reduced at around 200 ° C., reaching 100 N/mm 2 . There is only a degree. Also, martensite can be suppressed to about 10%.

Figure 2022171223000003
Figure 2022171223000003

本発明によれば、γ→α´加工変態を減少させ、加工性に優れたγ組織を多く残留させて加工限界を最高度に延長して伸線加工を行い、生産性の向上、コストダウン、更には新製品の開発に寄与することができるオーステナイトステンレス鋼線の製造方法を提供することができる。
According to the present invention, the γ→α' working transformation is reduced, a large amount of γ structure with excellent workability remains, and the working limit is extended to the maximum extent to perform wire drawing, thereby improving productivity and reducing costs. Furthermore, it is possible to provide a method for producing an austenitic stainless steel wire that can contribute to the development of new products.

ダブルダイス加熱伸線法概要図Outline drawing of the double-die heating wire drawing method 引抜加工とマルテンサイト発生の温度依存性を示す図Diagram showing temperature dependence of drawing and martensite generation 加熱温度、引張強度、減免率の関係を示す図Diagram showing the relationship between heating temperature, tensile strength, and exemption rate ダブルダイス加熱伸線プロセスを示す図Diagram showing double die heating wire drawing process 現状の伸線・焼鈍工程を示す図Diagram showing the current wire drawing and annealing process 減免率と強度との関係を示す図Diagram showing the relationship between exemption rate and intensity JIS規格による線径と強度の関係を示す図Diagram showing the relationship between wire diameter and strength according to JIS standards No.1ダイスでの減面率と加工加熱温度との関係を示す図A diagram showing the relationship between the area reduction rate and the processing heating temperature for the No. 1 die 加熱温度、引張強度、減免率の関係を示す図Diagram showing the relationship between heating temperature, tensile strength, and exemption rate 同一母線、同一ダブルダイスセット連伸機、同じ減免率の加工プロセスで加熱温度だけを変えてJIS規格強度線の生産例を示す図Diagram showing an example of producing a JIS standard strength line by changing only the heating temperature in the same bus bar, the same double die set continuous machine, and the same reduction rate processing process. 同一母線、同一ダブルダイスセット連伸機、同じ減免率の加工プロセスで任意のダブルダイスセットの加熱温度を選択して任意のJIS規格強度規格線の生産例を示す図Diagram showing an example of production of any JIS standard strength standard wire by selecting any heating temperature of any double die set in the same bus bar, the same double die set continuous machine, and the same reduction rate processing process. 高強度ステンレス線の生産の一例を示す図Diagram showing an example of high-strength stainless steel wire production S-N曲線(通常伸線と加熱伸線)を示す図Diagram showing S-N curves (normal wire drawing and heat drawing) 減免率とマルテンサイト量の関係を示す図Diagram showing the relationship between reduction rate and amount of martensite 加熱温度、減免率、引張強度の関係を示す図Diagram showing the relationship between heating temperature, exemption rate, and tensile strength Ni当量の加熱伸線の影響を示す図(その1)Diagram showing the effect of heat drawing on Ni equivalent (Part 1) Ni当量の加熱伸線の影響を示す図(その2)Diagram showing the effect of hot wire drawing on Ni equivalent (Part 2)

Claims (12)

質量%で、C:0.08%以下、Si:1.00%以下、Mn:2.00%以下、P:0.045%以下、S:0.030%以下、Ni:8.0~10.50%、Cr:18.00~20.00%、残部Feの組成を有し、線径0.08mm以上、2.60mm以下で、引張強度が1550N/mm以上、3500N/mm以下であって、かつ、30体積%以上、90体積%以下のγ量を有することを特徴とするγ系ステンレス鋼線。 % by mass, C: 0.08% or less, Si: 1.00% or less, Mn: 2.00% or less, P: 0.045% or less, S: 0.030% or less, Ni: 8.0 to 10.50%, Cr: 18.00 to 20.00%, and the balance Fe, a wire diameter of 0.08 mm or more and 2.60 mm or less, and a tensile strength of 1550 N/mm 2 or more and 3500 N/mm 2 and having a γ content of 30% by volume or more and 90% by volume or less. 40体積%以上、70体積%以下のγ量を有することを特徴とする請求項1記載のγ系ステンレス鋼線。 2. The γ-based stainless steel wire according to claim 1, having a γ content of 40% by volume or more and 70% by volume or less. γ系ステンレス鋼母線の伸線加工方向に沿って少なくとも2台の引抜加工治具を前後に配置し、γ系ステンレス鋼線を前段の引抜加工治具に通して伸線加工した後、後段の引抜加工治具で予め設定した所定の加熱温度で加熱伸線加工する工程を複数工程行ってγ系ステンレス鋼線を製造する方法であって、
後段の引抜加工治具での加熱伸線加工は、前段の引抜加工治具によるγ系ステンレス鋼線の伸線加工により発生した加工熱を利用して、上記所定の加熱温度で伸線加工することを特徴とする請求項1又は2に記載のγ系ステンレス鋼線の製造方法。
At least two drawing jigs are arranged in front and behind along the wire drawing direction of the γ-based stainless steel busbar, and the γ-based stainless steel wire is passed through the drawing jig in the previous stage to be drawn, and then drawn in the subsequent stage. A method for manufacturing a γ-based stainless steel wire by performing a plurality of steps of heating and drawing a wire at a predetermined heating temperature set in advance using a drawing jig, the method comprising:
Heated wire drawing by the drawing jig in the latter stage draws the wire at the above-mentioned predetermined heating temperature using the processing heat generated by the drawing of the γ stainless steel wire by the drawing jig in the former stage. The method for producing a γ-based stainless steel wire according to claim 1 or 2, characterized in that:
前段の引抜加工治具による伸線加工により、γ系ステンレス鋼線の温度を前段の引抜加工治具による伸線加工前の温度より100℃~250℃昇温することを特徴とする請求項3に記載のγ系ステンレス鋼線の製造方法。 Claim 3, wherein the temperature of the γ stainless steel wire is raised by 100° C. to 250° C. from the temperature before the wire drawing by the former drawing jig by the wire drawing by the former drawing jig. The method for producing the γ-based stainless steel wire according to 1. γ系ステンレス鋼母線の伸線加工方向に沿って少なくとも2台の引抜加工治具を前後に配置し、前記γ系ステンレス鋼線を前段の引抜加工治具に通して伸線加工した後、後段の引抜加工治具で予め設定した所定の加熱温度で加熱伸線加工する工程を複数工程行う際に、少なくとも一部の工程はγ系ステンレス鋼線を前段の引抜加工治具に通す前に、γ系ステンレス鋼線を予備加熱する工程を有することを特徴とする請求項3又は4記載のγ系ステンレス鋼線の製造方法。 At least two drawing jigs are arranged in front and behind along the drawing direction of the γ-based stainless steel busbar, and after the γ-based stainless steel wire is passed through the drawing jig in the former stage and wire-drawn, it is drawn in the latter stage. When performing a plurality of steps of heating wire drawing at a predetermined heating temperature with the drawing jig, at least part of the steps is performed before passing the γ-based stainless steel wire through the drawing jig in the previous stage. 5. The method for producing a γ-based stainless steel wire according to claim 3 or 4, further comprising a step of preheating the γ-based stainless steel wire. 前記予備加熱する工程は、γ系ステンレス鋼母線を50℃以上昇温する工程であることを特徴とする請求項5記載のγ系ステンレス鋼線の製造方法。 6. The method for producing a γ-based stainless steel wire according to claim 5, wherein the step of preheating is a step of raising the temperature of the γ-based stainless steel busbar by 50° C. or higher. 前記予備加熱する工程は、γ系ステンレス鋼母線を50℃~200℃昇温する工程であることを特徴とする請求項6記載のγ系ステンレス鋼線の製造方法。 The method for producing a γ-based stainless steel wire according to claim 6, wherein the step of preheating is a step of raising the temperature of the γ-based stainless steel busbar by 50°C to 200°C. 予備加熱する工程で加熱されたγ系ステンレス鋼母線を前記前段の引抜加工治具に通して前段の引抜加工治具による伸線加工前の温度より100℃~250℃昇温し、この加熱状態でγ系ステンレス鋼母線を後段の引抜加工治具に所定の加熱温度で通して加熱伸線加工を行うことを特徴とする請求項5~7のいずれか1項に記載のγ系ステンレス鋼線の製造方法。 The γ-based stainless steel busbar heated in the preheating step is passed through the preceding drawing jig to raise the temperature by 100° C. to 250° C. from the temperature before wire drawing by the preceding drawing jig, and this heated state. 8. The γ-based stainless steel wire according to any one of claims 5 to 7, wherein the γ-based stainless steel wire is drawn by passing the γ-based stainless steel busbar through a subsequent drawing jig at a predetermined heating temperature. manufacturing method. 請求項3~8の何れか1項に記載のγ系ステンレス鋼線の製造方法に適用される引抜加工治具を収納したダイスボックスであって、伸線加工されるγ系ステンレス鋼母線の入口側から出口側にかけて順に前段の引抜加工治具と後段の引抜加工治具を設置していることを特徴とするダイスボックス。 A die box containing a drawing jig applied to the method for producing a γ-based stainless steel wire according to any one of claims 3 to 8, wherein the inlet of the γ-based stainless steel bus wire to be drawn. A die box characterized in that a front-stage drawing jig and a rear-stage drawing jig are installed in order from the side to the exit side. 請求項5~8の何れか1項に記載のγ系ステンレス鋼線の製造方法に適用される引抜加工治具を収納したダイスボックスであって、伸線加工されるγ系ステンレス母鋼線の入口側から出口側にかけて順に予備加熱手段、前段の引抜加工治具及び後段の引抜加工治具を設置していることを特徴とするダイスボックス。 A die box containing a drawing jig applied to the method for producing a γ-based stainless steel wire according to any one of claims 5 to 8, wherein the γ-based stainless mother steel wire to be drawn is drawn. A die box characterized in that a preheating means, a front-stage drawing jig, and a rear-stage drawing jig are installed in order from an inlet side to an outlet side. 予備加熱手段は、直接加熱手段及び/又は間接加熱手段の一種又は二種以上であることを特徴とする請求項10に記載のダイスボックス。 11. The die box according to claim 10, wherein the preheating means is one or more of direct heating means and/or indirect heating means. 前段の引抜加工治具を設置した領域及び後段の引抜加工治具を設置した領域に粉末潤滑剤を充填していることを特徴とする請求項9~11のいずれか1項に記載のダイスボックス。 12. The die box according to any one of claims 9 to 11, characterized in that powder lubricant is filled in the area where the former stage drawing jig is installed and the area where the latter stage drawing jig is installed. .
JP2021077752A 2021-04-30 2021-04-30 γ-based stainless steel wire and its manufacturing method Active JP6945906B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021077752A JP6945906B1 (en) 2021-04-30 2021-04-30 γ-based stainless steel wire and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021077752A JP6945906B1 (en) 2021-04-30 2021-04-30 γ-based stainless steel wire and its manufacturing method

Publications (2)

Publication Number Publication Date
JP6945906B1 JP6945906B1 (en) 2021-10-06
JP2022171223A true JP2022171223A (en) 2022-11-11

Family

ID=77915191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021077752A Active JP6945906B1 (en) 2021-04-30 2021-04-30 γ-based stainless steel wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6945906B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116463562A (en) * 2023-03-10 2023-07-21 无锡熠卿锋金属科技有限公司 Low-carbon steel wire for high-cleaning-strength electrophoretic paint and production process thereof

Also Published As

Publication number Publication date
JP6945906B1 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
CN104668820B (en) A kind of production method of heat resisting steel welding wire
CN102671938B (en) High speed production method for controlling banded structure of low carbon steel wire rod
CN105002445B (en) It is a kind of to be used to manufacture 4130X seamless steel pipes of on-board high-voltage gas cylinder and preparation method thereof
CN112239830A (en) Low-cost high-ductility disc strip for CRB600H and rolling process thereof
JP2022171223A (en) γ- STAINLESS STEEL WIRE AND METHOD FOR MANUFACTURING THE SAME
CN102010973A (en) Simple method for deformation control during carburizing and quenching of large-diameter heavy-duty gears
JP5222711B2 (en) Medium and high carbon steel sheet and manufacturing method thereof
DE102009052779A1 (en) Method for manufacturing stainless steel-cold strip or other high-alloyed materials, involves cold rolling stainless steel- warm strip in single-stage rolling process
JP6432614B2 (en) Cold rolling method and manufacturing method of metal tube
CN104099517B (en) A kind of manufacture method of 225MPa ranks low-yield building aseismicity steel
JP2007029965A (en) High carbon steel wire, method for producing the same, and high strength pc steel twisted wire
KR20030023601A (en) Heat-treated modified cross-section steel wire and method and apparatus for its production
CN105274434B (en) It is a kind of to reduce the hot-rolled low-alloy steel and production method for causing cracking by segregation
WO2004092424A1 (en) Heat treating method for steel wire
CN110735084A (en) pipeline steel X42M hot rolled steel strip and preparation method thereof
JPS60114517A (en) Production of steel wire rod which permits omission of soft annealing treatment
JP6286627B1 (en) Manufacturing method of highly ductile hardened steel wire
KR20100048256A (en) Manufacturing method for wire rod dispensing with heat treatment, dies and dies arrangement for manufacturing the wire rod
JP2017115186A (en) Manufacturing method of high strength stainless ultrafine wire
CN113953335A (en) Manufacturing method for eliminating hot-rolled edge cracks of oriented silicon steel
RU2346778C1 (en) Method for manufacture of compression springs
JPS6130217A (en) Manufacture of high-strength high-ductility titanium-alloy wire
CN104032121A (en) Steel bar heat treatment method
JP2009120907A (en) Steel wire having excellent low temperature twisting property, and method for producing the same
JP2013047367A (en) Method for producing ultrafine wire of high-strength stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210511

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210908

R150 Certificate of patent or registration of utility model

Ref document number: 6945906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150