JP2022169851A - Electric snow-melting device sensor and monitoring system - Google Patents
Electric snow-melting device sensor and monitoring system Download PDFInfo
- Publication number
- JP2022169851A JP2022169851A JP2021075530A JP2021075530A JP2022169851A JP 2022169851 A JP2022169851 A JP 2022169851A JP 2021075530 A JP2021075530 A JP 2021075530A JP 2021075530 A JP2021075530 A JP 2021075530A JP 2022169851 A JP2022169851 A JP 2022169851A
- Authority
- JP
- Japan
- Prior art keywords
- abnormality
- voltage
- threshold
- current
- electric snow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002844 melting Methods 0.000 title claims abstract description 89
- 238000012544 monitoring process Methods 0.000 title claims description 16
- 230000005856 abnormality Effects 0.000 claims abstract description 249
- 238000011084 recovery Methods 0.000 claims abstract description 77
- 230000008018 melting Effects 0.000 claims description 36
- 230000007935 neutral effect Effects 0.000 claims description 23
- 238000004891 communication Methods 0.000 claims description 22
- 238000012806 monitoring device Methods 0.000 claims description 18
- 238000009413 insulation Methods 0.000 claims description 15
- 230000002159 abnormal effect Effects 0.000 claims description 7
- 208000033748 Device issues Diseases 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract 1
- 244000145845 chattering Species 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 210000001015 abdomen Anatomy 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/30—Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Abstract
Description
本発明は、電気融雪器の異常を検出するための電気融雪器センサ、及びそれを有する監視システムに関する。 The present invention relates to an electric snow-melter sensor for detecting an abnormality in an electric snow-melter, and a monitoring system having the same.
鉄道において、線路の分岐箇所に分岐器が設けられている(非特許文献1参照)。図9に示すように、分岐器9は、ポイント91(ポイント部)に、固定された基本レール92、93と、転換されるトングレール94、95とを有し、車両が通過する際に、左右いずれか一方の基本レールにトングレールが密着する。分岐器9に雪が積もると、ポイント91の密着不良や不転換が生じるおそれがある。このため、多雪地域では、降った雪を融かす融雪器が分岐器9に設けられる。融雪器として、ヒータを有する電気融雪器がある(例えば、特許文献1参照)。電気融雪器のヒータは、分岐器9のレールの腹部又は床板下部等に取り付けられ、電流でジュール熱を発生して雪を融かす。したがって、電気融雪器が正常に機能するためには、ヒータが適切に通電される必要がある。
In railways, a turnout is provided at a branch point of a track (see Non-Patent Document 1). As shown in FIG. 9, the
従来から、融雪器(電気融雪器)の通電異常の発生を検出する異常監視システムが知られている(特許文献2参照)。融雪器には、単相3線式で電力が供給される。単相3線には、2線の電圧線と、1線の中性線(特許文献2では「中性電圧線」)がある。この異常監視システムは、中性線に流れる不平衡電流を監視して断線等の異常の発生を検出する。しかし、この異常監視システムは、正常時における中性線の電流を平衡させるため、各電圧線に接続される融雪器の数が異なる場合、融雪器の数が少ない方の配線において、一台の融雪器の配線を中性線の変流器に2回通す必要があり、配線が複雑になる。また、共通の中性線の電流を監視するので、2線のうちのどちらの電圧線に通電異常が発生したか分からない。 2. Description of the Related Art Conventionally, there has been known an anomaly monitoring system for detecting an occurrence of an energization anomaly in a snow-melting device (electric snow-melting device) (see Patent Document 2). Power is supplied to the snow melter by a single-phase three-wire system. The single-phase three-wire includes two voltage wires and one neutral wire (“neutral voltage wire” in Patent Document 2). This abnormality monitoring system monitors the unbalanced current flowing in the neutral line to detect the occurrence of abnormality such as disconnection. However, since this abnormality monitoring system balances the current in the neutral line during normal operation, if the number of snow-melting devices connected to each voltage line is different, the wire with the fewer number of snow-melting devices can be The wiring of the snow melting machine needs to pass through the current transformer of the neutral line twice, which complicates the wiring. In addition, since the current of the common neutral line is monitored, it is impossible to know in which voltage line of the two lines an abnormality has occurred.
中性線の電流ではなく、各電圧線の測定値に基づいて電気融雪器の異常を検出できれば、配線が複雑化しないとともに、どの電圧線に異常が発生したかが分かる。しかしながら、従来はそのようなことができなかった。なぜなら、各電気融雪器に電力を供給する電源は、駅で受電され、電気融雪器のほか、冷暖房、照明、駅務機器等の各負荷設備に分配される。このため、それらの負荷設備の稼働状況に応じて電気融雪器に供給される電圧が変動する。また、電気融雪器のヒータは、種々のタイプが存在し、温度によって抵抗値が変動するものもある(例えば、特許文献3参照)。このような供給電圧や抵抗値等の変動のため、電圧線の測定値に異常を検出するための閾値を設定することが困難だからである。 If an abnormality in the electric snow melter can be detected based on the measured value of each voltage line instead of the current in the neutral line, the wiring will not be complicated, and the voltage line in which the abnormality has occurred can be known. However, conventionally, such a thing was not possible. This is because the power source that supplies electric power to each electric snow-melting device is received at the station and distributed to each load facility such as the electric snow-melting device, air conditioning, lighting, and station service equipment. Therefore, the voltage supplied to the electric snow melter fluctuates according to the operating conditions of those load facilities. There are various types of heaters for electric snow melting devices, some of which have a resistance value that varies depending on the temperature (see, for example, Patent Document 3). This is because it is difficult to set a threshold value for detecting an abnormality in the measured value of the voltage line due to such fluctuations in the supply voltage, the resistance value, and the like.
本発明は、上記問題を解決するものであり、電気融雪器の電気的な異常を容易に検出することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to easily detect an electrical abnormality in an electric snow melter.
本発明の電気融雪器センサは、複数のヒータを有する電気融雪器の異常を検出するためのものであって、電気融雪器は、2線の電圧線と1線の中性線を用いた単相3線式で電力が供給され、ヒータは、分岐器に設けられ、該電気融雪器センサは、前記ヒータに供給する供給電圧を測定する電圧センサと、前記各電圧線の負荷電流を測定する電流センサと、前記供給電圧及び前記各電圧線の負荷電流の測定値に基づいて前記電気融雪器の異常の有無を判定する制御部とを備え、前記供給電圧が所定の小電流異常用電圧閾値以上かつ前記負荷電流が所定の小電流異常閾値未満であるとき、前記制御部は、小電流異常が発生していると判定し、前記負荷電流が所定の小電流異常回復閾値以上になったとき、前記制御部は、前記小電流異常から回復したと判定し、前記小電流異常回復閾値は、前記小電流異常閾値以上の値に設定されていることを特徴とする。 The electric snow-melting device sensor of the present invention is for detecting an abnormality in an electric snow-melting device having a plurality of heaters. Electric power is supplied by a phase three-wire system, the heater is provided in a turnout, and the electric snow melting device sensor includes a voltage sensor for measuring the supply voltage supplied to the heater and the load current of each of the voltage lines. a current sensor; and a controller for determining whether or not there is an abnormality in the electric snow melting machine based on the measured values of the supply voltage and the load current of each voltage line, wherein the supply voltage is a predetermined voltage threshold for small current abnormality. above and the load current is less than a predetermined small-current abnormality threshold, the control unit determines that a small-current abnormality has occurred, and when the load current becomes equal to or greater than a predetermined small-current abnormality recovery threshold. and the controller determines that recovery from the low current abnormality has occurred, and the low current abnormality recovery threshold is set to a value equal to or higher than the low current abnormality threshold.
この電気融雪器センサにおいて、前記電気融雪器は、受電した電力を前記分岐器ごとに分配して前記ヒータに電力を供給する分電盤と、前記分電盤と前記ヒータとを接続する配線とを有し、前記電圧センサは、前記分電盤内において供給電圧を測定し、前記電流センサは、前記分電盤内において前記分岐器ごとに前記負荷電流を測定することが好ましい。 In this electric snow-melting sensor, the electric snow-melting device includes a distribution board that distributes the received power to each branching device to supply power to the heater, and wiring that connects the distribution board and the heater. wherein the voltage sensor measures the supply voltage in the distribution board, and the current sensor measures the load current for each branch in the distribution board.
この電気融雪器センサにおいて、前記負荷電流が所定の大電流異常閾値を超えているとき、前記制御部は、大電流異常が発生していると判定し、前記負荷電流が所定の大電流異常回復閾値以下になったとき、前記大電流異常から回復したと判定し、前記大電流異常回復閾値は、前記大電流異常閾値以下の値に設定されていることが好ましい。 In this electric snow melting device sensor, when the load current exceeds a predetermined large current abnormality threshold, the control unit determines that a large current abnormality has occurred, and the load current is restored to a predetermined large current abnormality. When it becomes equal to or less than the threshold, it is determined that recovery from the large current abnormality has occurred, and the large current abnormality recovery threshold is preferably set to a value equal to or less than the large current abnormality threshold.
この電気融雪器センサにおいて、前記供給電圧が所定の低電圧異常閾値未満であるとき、前記制御部は、低電圧異常が発生していると判定し、前記供給電圧が所定の低電圧異常回復閾値以上になったとき、前記低電圧異常から回復したと判定し、前記低電圧異常回復閾値は、前記低電圧異常閾値以上の値に設定されていることが好ましい。 In this electric snow melting device sensor, when the supply voltage is less than a predetermined low voltage abnormality threshold, the control unit determines that a low voltage abnormality has occurred, and the supply voltage is reduced to a predetermined low voltage abnormality recovery threshold. It is preferable that the low voltage abnormality recovery threshold value is set to a value equal to or higher than the low voltage abnormality threshold value when it becomes equal to or higher than the low voltage abnormality threshold value.
この電気融雪器センサにおいて、前記供給電圧が所定の高電圧異常閾値を超えているとき、前記制御部は、高電圧異常が発生していると判定し、前記供給電圧が所定の高電圧異常回復閾値以下になったとき、前記高電圧異常から回復したと判定し、前記高電圧異常回復閾値は、前記高電圧異常閾値以下の値に設定されていることが好ましい。 In this electric snow melting device sensor, when the supply voltage exceeds a predetermined high voltage abnormality threshold, the control unit determines that a high voltage abnormality has occurred, and the supply voltage is restored to a predetermined high voltage abnormality recovery. It is preferable that the high voltage abnormality recovery threshold is set to a value equal to or less than the high voltage abnormality threshold when it becomes equal to or less than the threshold.
この電気融雪器センサにおいて、前記供給電圧が所定の電圧なし判定閾値未満であるとき、前記制御部は、供給電圧なしと判定し、前記供給電圧が所定の電圧あり判定閾値以上になったとき、供給電圧ありになったと判定し、前記電圧あり判定閾値は、前記電圧なし判定閾値以上の値に設定されていることが好ましい。 In this electric snow melting device sensor, when the supply voltage is less than a predetermined no-voltage determination threshold value, the control unit determines that there is no supply voltage, and when the supply voltage exceeds the predetermined voltage presence determination threshold value, It is preferable that it is determined that there is supply voltage, and that the voltage presence determination threshold is set to a value equal to or greater than the voltage absence determination threshold.
この電気融雪器センサにおいて、該電気融雪器センサは、前記中性線とアース間の絶縁抵抗を測定するアースセンサをさらに備え、前記絶縁抵抗が所定の絶縁抵抗下限閾値以下であることが所定時間継続したとき、前記制御部は、地絡が発生したと判定することが好ましい。 In this electric snow-melting sensor, the electric snow-melting sensor further includes an earth sensor for measuring insulation resistance between the neutral wire and the earth, and the insulation resistance is equal to or lower than a predetermined insulation resistance lower limit threshold for a predetermined time. When continuing, it is preferable that the control unit determines that a ground fault has occurred.
本発明の監視システムは、前記電気融雪器センサと、監視装置とを有するシステムであって、前記電気融雪器センサは、前記監視装置とデータ通信を行う通信部を有し、前記通信部は、前記制御部による判定結果を前記監視装置に送信し、前記監視装置は、前記電気融雪器センサから受信した判定結果が所定の異常結果であるとき、警報を報知することを特徴とする。 A monitoring system of the present invention is a system having the electric snow-melting sensor and a monitoring device, wherein the electric snow-melting sensor has a communication unit that performs data communication with the monitoring device, and the communication unit The determination result by the control unit is transmitted to the monitoring device, and the monitoring device issues an alarm when the determination result received from the electric snow melting device sensor is a predetermined abnormal result.
本発明の電気融雪器センサによれば、電圧線の供給電圧と負荷電流に基づいて電気融雪器の異常の有無を判定するので、どの電圧線に接続されたヒータに異常が発生したかが分かる。中性線の電流を判定に用いる必要がないので、正常時の中性線の電流を平衡させる必要がなく、既存の電気融雪器の配線を変更せずに電気融雪器を設置できる。また、供給電圧が小電流異常用電圧閾値以上かつ負荷電流が小電流異常閾値未満であるとき、小電流異常が発生していると判定するので、供給電圧の低下に起因する小電流異常の誤判定を防ぐことができる。さらに、負荷電流が小電流異常回復閾値以上になったとき、小電流異常から回復したと判定するので、供給電圧の低下に起因する小電流異常からの回復の誤判定を防ぐことができる。供給電圧の低下に起因する誤判定が防がれるので、異常の有無を判定するための閾値の設定が容易になる。小電流異常回復閾値は、小電流異常閾値以上の値に設定されるので、小電流異常の判定におけるチャタリングを防ぐことができる。したがって、電気融雪器センサは、電気融雪器の電気的な異常を容易に検出することができる。 According to the electric snow melting device sensor of the present invention, the presence or absence of an abnormality in the electric snow melting device is determined based on the supply voltage of the voltage line and the load current. . Since it is not necessary to use the current of the neutral wire for the determination, it is not necessary to balance the current of the neutral wire during normal operation, and the electric snow-melting device can be installed without changing the wiring of the existing electric snow-melting device. When the supply voltage is equal to or higher than the voltage threshold for small current abnormality and the load current is less than the small current abnormality threshold, it is determined that a small current abnormality has occurred. judgment can be avoided. Furthermore, when the load current becomes equal to or higher than the small current abnormality recovery threshold, it is determined that recovery from the small current abnormality has occurred, so it is possible to prevent erroneous determination of recovery from the small current abnormality due to a drop in the supply voltage. Since an erroneous determination due to a drop in supply voltage is prevented, it becomes easier to set a threshold value for determining the presence or absence of an abnormality. Since the small current abnormality recovery threshold is set to a value equal to or higher than the small current abnormality threshold, it is possible to prevent chattering in determining the small current abnormality. Therefore, the electric snow-melter sensor can easily detect an electrical abnormality of the electric snow-melter.
本発明の一実施形態に係る電気融雪器センサ及び監視システムを図1乃至図8を参照して説明する。図1に示すように、電気融雪器センサ1は、電気融雪器2の異常を検出するための装置である。電気融雪器2は、複数のヒータ21を有する。
An electric snow melter sensor and monitoring system according to one embodiment of the present invention will now be described with reference to FIGS. As shown in FIG. 1, the electric snow-
電気融雪器2は、2線の電圧線22a、22bと1線の中性線22cを用いた単相3線式で電力が供給される。単相3線式は、交流の電力供給方式の一つであり、日本産業規格JIS C60364-1:2010「低圧電気設備-第1部:基本的原則,一般特性の評価及び用語の定義」の「32.1.1 交流回路の通電導体」に記載されている(同規格の図2参照)。
The
図2に示すように、ヒータ21は、分岐器9に設けられる。本実施形態では、ヒータ21は、分岐器9のポイント91(ポイント部)に設けられる。なお、ヒータ21が設けられる箇所は、ポイント91に限定されず、分岐器9のノーズ96付近等であってもよい。ヒータ21は、分岐器9のレールの腹部又は床板の下部等に取り付けられる。
As shown in FIG. 2 , the
電気融雪器2において、ヒータ21は、負荷として接続されている(図1参照)。負荷とは、電気エネルギーを消費するものである。ヒータ21は、電気エネルギーを熱エネルギー(ジュール熱)に変換するので負荷である。本実施形態では、ヒータ21は、電圧線22aと中性線22cの間、及び電圧線22bと中性線22cの間に接続される。図1において、端子箱23からヒータ21への配線は、3線を単線で表している(単線結線図)。なお、電気融雪器センサ1は、中性線22cの電流を測定しなくてよいので、対をなす電圧線22aと電圧線22bの間にヒータ21を接続することも電気的に可能である。
In the
電気融雪器センサ1は、電圧センサ3と、電流センサ4と、制御部5とを備える。電圧センサ3は、ヒータ21に供給する供給電圧Vを測定する。測定された供給電圧Vの値は、制御部5に入力される。電流センサ4は、各電圧線22a、22bの電流を測定する。単相3線式において各電圧線22a、22bには負荷が接続されるので、各電圧線22a、22bの電流は、負荷電流Iである。すなわち、電流センサ4は、各電圧線22a、22bの負荷電流Iを測定する。測定された負荷電流Iの値は、制御部5に入力される。制御部5は、供給電圧V及び各電圧線22a、22bの負荷電流Iの測定値に基づいて電気融雪器2の異常の有無を判定する。
The electric snow
電気融雪器2は、ヒータ21のほかに、分電盤24と配線を有する。分電盤24は、受電した電力を分岐器9ごとに分配してヒータ21に電力を供給する(図2参照)。各分岐器9の近くに端子箱23が設けられる。電気融雪器2の配線は、分電盤24から各分岐器9近くの端子箱23に接続され、端子箱23からヒータ21に接続される。電圧センサ3は、分電盤24内において供給電圧Vを測定する(図1参照)。電流センサ4は、分電盤24内において分岐器9ごとに負荷電流Iを測定する。すなわち、電流センサ4は、分岐器9ごとに分配された各電圧線22a、22bの負荷電流Iを測定することになる(図1及び図2参照)。各分岐器9に複数のヒータ21が設けられるので、測定される負荷電流Iは、各分岐器9に設けられた複数のヒータ21に流れる電流を電圧線22a、22bごとに足した値になる。
The
電気融雪器センサ1は、電圧センサ3、電流センサ4、及び制御部5のほかに、アースセンサ6、通信部7、及び電源ユニット11を有する。アースセンサ6は、電気融雪器2の中性線22cとアース間の絶縁抵抗を測定する。通信部7は、監視装置8とデータ通信を行う機器である。電源ユニット11は、電気融雪器センサ1の各部に電力を供給する電源である。電気融雪器センサ1は、筐体12に収容される。
The electric snow-
電気融雪器センサ1の構成をさらに詳述する。電気融雪器2は、電気融雪器センサ1による異常検出対象である。電気融雪器2が受電した電力は、分電盤24の主幹ブレーカ25及び制御スイッチ26を介して複数のブレーカ27に分配される。主幹ブレーカ25は、過負荷、短絡等の異常事故発生時に電路を自動遮断する遮断器である。制御スイッチ26は、正常動作時の電路を開閉する開閉器である。制御スイッチ26の開閉は、電気融雪器2の使用・使用停止の制御に用いられる。ブレーカ27は、二次側の回路(ヒータ21及び配線)に過電流が流れたときに、一次側からの電力供給を遮断する遮断器である。主幹ブレーカ25とブレーカ27は、保護協調が行われる。各ブレーカ27からの配線は、各端子箱23に接続される。1台の分岐器9に複数のヒータ21が設けられることから、各端子箱23に複数のヒータ21が並列接続される。
The configuration of the electric snow-
電圧センサ3は、交流電圧トランスデューサであり、制御スイッチ26とブレーカ27との間の電路に接続され、中性線22cに対する電圧線22a、22bの各交流電圧(供給電圧V)を直流信号に変換して制御部5に出力する。
The
電流センサ4は、クランプ式交流電流センサであり、各ブレーカ27と端子箱23との間の電圧線22a、22bにクランプされ、各交流電流(負荷電流I)を非接触で測定して制御部5に出力する。
The
制御部5は、マイクロコントローラであり、CPU、メモリ等を有する。
The
分電盤24の筐体は接地(アース)されている。アースセンサ6は、接地検出器であり、制御スイッチ26とブレーカ27との間の中性線22cと、分電盤24の筐体アースに接続され、その中性線22cと筐体アースとの間の絶縁抵抗を常時監視し、その絶縁抵抗が所定の絶縁抵抗下限閾値以下になった時、制御部5に警報出力を行う。
The housing of the
通信部7は、ローパワー(低消費電力)ワイドエリア(長距離)の無線通信方式でデータ通信を行う装置である。通信部7は、制御部5に接続される。
The
電源ユニット11は、交流を定電圧の直流に変換する装置であり、主幹ブレーカ25と制御スイッチ26との間から交流が入力され、電気融雪器センサ1の各部に直流を供給する。
The
電気融雪器2の異常の有無を判定するため、電気融雪器センサ1には、供給電圧Vと負荷電流Iに、それぞれ複数の閾値が設定される。図3において、縦軸は供給電圧Vである。同図に示すように、供給電圧Vに、低いほうから順に、電圧なし判定閾値V1、電圧あり判定閾値V2、低電圧異常閾値V3、低電圧異常回復閾値V4、高電圧異常回復閾値V5、高電圧異常閾値V6が設定される。低電圧異常閾値V3は供給電圧Vの正常範囲の下限、高電圧異常閾値V6は供給電圧Vの正常範囲の上限である。供給電圧Vのこれらの閾値以外に、小電流異常用電圧閾値V7が設定される。小電流異常用電圧閾値V7は、供給電圧Vの正常範囲内、すなわち低電圧異常閾値V3以上かつ高電圧異常閾値V6以下である(V3≦V7≦V6)。図4において、縦軸は負荷電流Iである。同図に示すように、負荷電流Iに、小さいほうから順に、小電流異常閾値I1、小電流異常回復閾値I2、大電流異常回復閾値I3、大電流異常閾値I4が設定される。小電流異常閾値I1は負荷電流Iの正常範囲の下限、大電流異常閾値I4は正常範囲の上限である。これらの閾値は、制御部5に記憶され、制御部5による判定に用いられる(図1参照)。
A plurality of thresholds are set for the supply voltage V and the load current I in the electric snow-
上記のように構成された電気融雪器センサ1による小電流異常の検出について、図4を参照して説明する。図4において、横軸は時刻tであり、負荷電流Iは変動している。時刻tがt0≦t<t1の間、負荷電流Iは、小電流異常閾値I1以上である(I≧I1)。すなわち、負荷電流Iは、正常範囲の下限以上である。
Detection of a small current abnormality by the electric snow
時刻t=t1に、負荷電流Iが小電流異常閾値I1未満に低下している。この時、供給電圧Vが小電流異常用電圧閾値V7以上であれば、負荷電流Iが正常範囲の下限未満であるので、制御部5は、電気融雪器2に小電流異常が発生していると判定する。すなわち、供給電圧Vが所定の小電流異常用電圧閾値V7以上かつ負荷電流Iが所定の小電流異常閾値I1未満であるとき、制御部5は、小電流異常が発生していると判定する。このように、電気融雪器センサ1によって、電気融雪器2の小電流異常が検出される。小電流異常の原因は、例えば、ヒータ21の断線又は電気的な接触不良である。
At time t=t1, the load current I drops below the small current abnormality threshold I1. At this time, if the supply voltage V is equal to or higher than the voltage threshold for small current abnormality V7, the load current I is less than the lower limit of the normal range, so the
そして、時刻t=t3に、負荷電流Iが小電流異常回復閾値I2以上に上昇している。この時、制御部5は、電気融雪器2が小電流異常から回復したと判定する。すなわち、負荷電流Iが所定の小電流異常回復閾値I2以上になったとき、制御部5は、小電流異常から回復したと判定する。小電流異常からの回復の原因は、例えば、故障の修理である。つまり、小電流異常からの回復を検出したことにより、修理が完了したことが分かる。
Then, at time t=t3, the load current I rises above the small current abnormality recovery threshold I2. At this time, the
本実施形態では、小電流異常回復閾値I2は、小電流異常閾値I1よりも大きい(I2>I1)。このため、時刻tがt2≦t<t3の間、負荷電流Iが小電流異常閾値I1以上に上昇しているが(I≧I1)、制御部5は、小電流異常から回復したと判定しない。このような閾値のヒステリシスは、制御部5による判定が正常と小電流異常の状態間を短時間に繰り返すこと(チャタリング)を防止するためである。なお、他の方法でチャタリングを防止すれば、小電流異常回復閾値I2は小電流異常閾値I1と同じでもよい(I2=I1)。チャタリング防止には、例えば、負荷電流Iの測定値のアナログ回路による積分がある。したがって、小電流異常回復閾値I2は、小電流異常閾値I1以上の値とされる(I2≧I1)。
In this embodiment, the low-current abnormality recovery threshold I2 is larger than the low-current abnormality threshold I1 (I2>I1). Therefore, while the time t is t2≦t<t3, the load current I rises to the small current abnormality threshold I1 or more (I≧I1), but the
図5は、制御部5による正常と小電流異常の判定を示す状態遷移図である。上述したように、正常(状態s0)から小電流異常(状態s1)への異常検出の判定(イベントe01)には、供給電圧Vと負荷電流Iの条件がある(V≧V7かつI<I1)。小電流異常(状態s1)から正常(状態s0)への回復の判定(イベントe10)には、負荷電流Iの条件があるが(I≧I2)、供給電圧Vの条件が無い。
FIG. 5 is a state transition diagram showing determination of normality and small current abnormality by the
もし、負荷電流Iが正常(状態s0)から小電流異常(状態s1)への異常検出の判定(イベントe01)を負荷電流Iの条件(I<I1)のみで行った場合、電気融雪器2に供給される電圧が低下すると、供給電圧Vの低下によって負荷電流Iが減少するので、ヒータ21が断線等していなくても、電気融雪器2に小電流異常が発生しているとの誤判定が生じる可能性がある。このため、負荷電流Iが小電流異常閾値I1未満であっても、供給電圧Vが小電流異常用電圧閾値V7未満のときは、小電流異常が発生していると判定しない。すなわち、供給電圧Vが所定の小電流異常用電圧閾値V7以上かつ負荷電流Iが所定の小電流異常閾値I1未満であるとき(V≧V7かつI<I1)、制御部5は、小電流異常が発生していると判定する。
If the load current I is normal (state s0) to a small current abnormality (state s1) and the abnormality detection determination (event e01) is performed only under the condition of the load current I (I<I1), the
論理式「V≧V7かつI<I1」の否定、すなわち、「(V≧V7かつI<I1)ではない」は、「V<V7またはI≧I1」である(ブール代数におけるド・モルガンの法則)。これに前述した閾値のヒステリシスを加味すると、「V<V7またはI≧I2」(I2≧I1)となる。もし、小電流異常(状態s1)から正常(状態s0)への回復の判定(イベントe10)をこの条件(V<V7またはI≧I2)で行った場合、供給電圧Vが小電流異常用電圧閾値V7未満になったとき(V<V7)、ヒータ21の断線等が解消していなくても、電気融雪器2が小電流異常から回復したとの誤判定が生じる。つまり、実際にはヒータ21の断線が原因で負荷電流Iが小さくなっていても、負荷電流Iが小さいのは供給電圧Vが低いからだと誤判定することになる。このため、回復の判定には、供給電圧Vを条件に入れない。すなわち、負荷電流Iが所定の小電流異常回復閾値I2以上になったとき(I≧I2)、制御部5は、小電流異常から回復したと判定する。なお、小電流異常用電圧閾値V7に他の電圧閾値(V1及びV2、V3及びV4)と同様にヒステリシスを設けてもよい。
The negation of the logical expression "V≧V7 and I<I1", i.e. "not (V≧V7 and I<I1)", is "V<V7 or I≧I1" (de Morgan's law). Adding the above-described threshold hysteresis to this results in "V<V7 or I≧I2" (I2≧I1). If the determination (event e10) of the recovery from the small current abnormality (state s1) to the normal state (state s0) is performed under this condition (V<V7 or I≧I2), the supply voltage V is the voltage for small current abnormality When it becomes less than the threshold value V7 (V<V7), it is erroneously determined that the
このように、小電流異常の発生と回復を判定する条件において、供給電圧Vの扱いに非対称性を設けることは、本願の発明者が試験を行って見出した。 In this way, the inventors of the present application conducted tests and found out that asymmetry is provided in the treatment of the supply voltage V under the conditions for determining the occurrence and recovery of the small current abnormality.
小電流異常の誤判定防止と閾値設定について図6を参照してさらに説明する。上段のグラフは、供給電圧Vの時間変化、下段のグラフは、負荷電流Iの時間変化を例示する。 Prevention of erroneous determination of small current abnormality and threshold setting will be further described with reference to FIG. The upper graph illustrates the time change of the supply voltage V, and the lower graph illustrates the time change of the load current I.
時刻t=t4に、電気融雪器2を使用開始する。その直後は、ヒータ21の温度が低いので、ヒータ21の抵抗値が低く、負荷電流Iが大きい。その後、ヒータ21の温度上昇により、負荷電流Iは、次第に減少する。なお、電気融雪器2が温度にかかわらず抵抗値が一定のヒータ21を有しても、以下の説明は同じである。
At time t=t4, the
時刻t=t5に、供給電圧Vが変動し始める。この例では、供給電圧Vは、周期的に変動する。負荷電流Iは、供給電圧Vの変動に伴って変動する。なお、供給電圧Vは、駅利用者が多い時間帯に低くなる傾向がある。 At time t=t5, the supply voltage V begins to fluctuate. In this example, the supply voltage V varies periodically. The load current I varies as the supply voltage V varies. It should be noted that the supply voltage V tends to be low during times when there are many station users.
時刻t=t6に、供給電圧V及び負荷電流Iの閾値を設定する。小電流異常用電圧閾値V7は、この時点の供給電圧Vに設定される。小電流異常用電圧閾値V7は、供給電圧Vの正常範囲内である。小電流異常閾値I1は、この時点の負荷電流Iより一定値(例えば1.1[A])小さい値に設定される。この小電流異常閾値I1は、ヒータ21が一つ断線したときの負荷電流Iの減少を検出できる値である。小電流異常回復閾値I2の設定については、後述する。
At time t=t6, thresholds for supply voltage V and load current I are set. The small current abnormality voltage threshold V7 is set to the supply voltage V at this time. The voltage threshold V7 for small current abnormality is within the normal range of the supply voltage V. The small current abnormality threshold I1 is set to a value smaller than the load current I at this time by a certain value (for example, 1.1 [A]). The small current abnormality threshold value I1 is a value that can detect a decrease in the load current I when one
時刻t=t7に、負荷電流Iが小電流異常閾値I1未満になる。この原因は、供給電圧Vの低下であり、電気融雪器2に異常は発生していない。時刻tがt7≦t<t8の間、供給電圧Vが小電流異常用電圧閾値V7未満であるので、制御部5は、電気融雪器2に小電流異常が発生していると判定しない。
At time t=t7, the load current I becomes less than the small current abnormality threshold I1. The cause of this is a drop in the supply voltage V, and no abnormality has occurred in the electric snow-melting
時刻t=t8に、負荷電流Iが小電流異常閾値I1以上になる。時刻t=t9に、再び負荷電流Iが小電流異常閾値I1未満になる。この原因は、供給電圧Vの低下であり、電気融雪器2に異常は発生していない。時刻tがt9≦t<t10の間、供給電圧Vが小電流異常用電圧閾値V7未満であるので、制御部5は、電気融雪器2に小電流異常が発生していると判定しない。
At time t=t8, the load current I becomes equal to or greater than the small current abnormality threshold I1. At time t=t9, the load current I becomes less than the small current abnormality threshold I1 again. The cause of this is a drop in the supply voltage V, and no abnormality has occurred in the electric snow-melting
このように、電気融雪器センサ1において、供給電圧Vの低下に起因する小電流異常の誤判定が防止される。
Thus, in the electric snow
小電流異常からの回復の誤判定防止と閾値設定について図7を参照してさらに説明する。上段のグラフは、供給電圧Vの時間変化、下段のグラフは、負荷電流Iの時間変化を例示する。 Prevention of erroneous determination of recovery from a small current abnormality and threshold setting will be further described with reference to FIG. The upper graph illustrates the time change of the supply voltage V, and the lower graph illustrates the time change of the load current I.
時刻t=t11に、電気融雪器2を使用開始する。その直後は、ヒータ21の温度が低いので、ヒータ21の抵抗値が低く、負荷電流Iが大きい。その後、ヒータ21の温度上昇により、負荷電流Iは、次第に減少する。なお、電気融雪器2が温度にかかわらず抵抗値が一定のヒータ21を有しても、以下の説明は同じである。
At time t=t11, the
時刻t=t12に、供給電圧Vが変動し始める。この例では、供給電圧Vは、周期的に変動する。負荷電流Iは、供給電圧Vの変動に伴って変動する。 At time t=t12, the supply voltage V begins to fluctuate. In this example, the supply voltage V varies periodically. The load current I varies as the supply voltage V varies.
時刻t=t13に、供給電圧V及び負荷電流Iの閾値を設定する。小電流異常用電圧閾値V7は、この時点の供給電圧Vに設定される。小電流異常用電圧閾値V7は、供給電圧Vの正常範囲内である。小電流異常閾値I1は、この時点の負荷電流Iより一定値(例えば1.1[A])小さい値に設定される。この小電流異常閾値I1は、ヒータ21が一つ断線したときの負荷電流Iの減少を検出できる値である。小電流異常回復閾値I2は、小電流異常閾値I1より若干大きい値に設定される。
At time t=t13, thresholds for supply voltage V and load current I are set. The small current abnormality voltage threshold V7 is set to the supply voltage V at this time. The voltage threshold V7 for small current abnormality is within the normal range of the supply voltage V. The small current abnormality threshold I1 is set to a value smaller than the load current I at this time by a certain value (for example, 1.1 [A]). The small current abnormality threshold value I1 is a value that can detect a decrease in the load current I when one
時刻t=t14に、負荷電流Iが小電流異常閾値I1未満に低下する。この時、一部のヒータ21が断線している。しかし、時刻tがt14≦t<t15の間、供給電圧Vが小電流異常用電圧閾値V7未満であるので、制御部5は、電気融雪器2に小電流異常が発生しているとまだ判定しない。
At time t=t14, the load current I drops below the small current abnormality threshold I1. At this time, some
時刻t=t15に、供給電圧Vが小電流異常用電圧閾値V7以上かつ負荷電流Iが小電流異常閾値I1未満となったので、制御部5は、電気融雪器2に小電流異常が発生したと判定する。 At time t=t15, the supply voltage V became equal to or higher than the small current abnormality voltage threshold V7 and the load current I became less than the small current abnormality threshold I1. I judge.
その後も(t≧t15)、一部のヒータ21の断線が継続している。時刻t=t16に、供給電圧Vが小電流異常用電圧閾値V7未満となったが、制御部5は、電気融雪器2の小電流異常から回復したと誤判定しない。すなわち、電気融雪器2に小電流異常が発生しているとの判定が継続する。
Even after that (t≧t15), disconnection of some
このように、電気融雪器センサ1において、発生と回復の判定条件の非対称性によって、供給電圧Vの低下に起因する小電流異常からの回復の誤判定が防止される。
Thus, in the electric snow
電気融雪器センサ1は、電気融雪器2の小電流異常以外の異常も検出する。
The electric snow-
負荷電流Iが所定の大電流異常閾値I4を超えているとき、制御部5は、電気融雪器2に大電流異常が発生していると判定する。そして、負荷電流Iが所定の大電流異常回復閾値I3以下になったとき、制御部5は、電気融雪器2が大電流異常から回復したと判定する(図4参照)。大電流異常回復閾値I3は、大電流異常閾値I4以下の値に設定されている。大電流異常は、例えば、ヒータ21又は配線の短絡又は不完全短絡によって生じる。
When the load current I exceeds a predetermined large current abnormality threshold value I4, the
なお、変形例として、供給電圧Vが所定の電圧閾値(例えば低電圧異常閾値V3)以上かつ負荷電流Iが所定の大電流異常回復閾値I3以下になったとき、制御部5は、電気融雪器2が大電流異常から回復したと判定してもよい。これにより、供給電圧Vの低下によって負荷電流Iが減少しても、制御部5は、電気融雪器2が大電流異常から回復したと判定しない。
As a modification, when the supply voltage V is equal to or higher than a predetermined voltage threshold (for example, a low voltage abnormality threshold V3) and the load current I is equal to or lower than a predetermined high current abnormality recovery threshold I3, the
供給電圧Vが所定の低電圧異常閾値V3未満であるとき、制御部5は、低電圧異常が発生していると判定する(図3における時刻t=t17)。そして、供給電圧Vが所定の低電圧異常回復閾値V4以上になったとき、制御部5は、低電圧異常から回復したと判定する(図3における時刻t=t18)。低電圧異常回復閾値V4は、低電圧異常閾値V3以上の値に設定されている。低電圧異常は、例えば、電気融雪器2が受電する電圧の低下によって生じる。例えば、供給電圧Vの正常範囲が105[V]プラスマイナス10[V]である場合、低電圧異常閾値V3は105[V]-10[V]に設定される。なお、低電圧異常閾値V3は、小電流異常用電圧閾値V7とは独立に設定される閾値である。
When the supply voltage V is less than the predetermined low voltage abnormality threshold value V3, the
供給電圧Vが所定の高電圧異常閾値V6を超えているとき、制御部5は、高電圧異常が発生していると判定する(図3における時刻t=t19)。そして、供給電圧Vが所定の高電圧異常回復閾値V5以下になったとき、制御部5は、高電圧異常から回復したと判定する(図3における時刻t=t20)。高電圧異常回復閾値V5は、高電圧異常閾値V6以下の値に設定されている。高電圧異常は、電気融雪器2が受電する電圧の過度な上昇によって生じる。例えば、供給電圧Vの正常範囲が105[V]プラスマイナス10[V]である場合、高電圧異常閾値V6は105[V]+10[V]に設定される。
When the supply voltage V exceeds a predetermined high voltage abnormality threshold value V6, the
図8に示すように、供給電圧Vが所定の電圧なし判定閾値V1未満であるとき、制御部5は、供給電圧なしと判定する(図8における時刻t=t21)。そして、供給電圧Vが所定の電圧あり判定閾値V2以上になったとき、制御部5は、供給電圧ありになったと判定する(図3における時刻t=t22)。電圧あり判定閾値V2は、電圧なし判定閾値V1以上の値に設定されている。また、2線の電圧線22a、22bがともに供給電圧なしの判定となった場合、制御部5は、電気融雪器2が使用停止中であると判定する。供給電圧なしの判定は、例えば、制御スイッチ26のオフ、主幹ブレーカ25の遮断、又は電気融雪器2が受電する電圧の過度な低下や停電によって生じる(図1参照)。電気融雪器センサ1が電気融雪器2の供給電圧なしを安定して検出するために、電気融雪器センサ1の電源ユニット11に蓄電器を設けてもよい。
As shown in FIG. 8, when the supply voltage V is less than the predetermined no voltage determination threshold value V1, the
アースセンサ6によって測定された絶縁抵抗が所定の絶縁抵抗下限閾値以下であること(アース検知)が所定時間T継続したとき、制御部5は、電気融雪器2に地絡が発生したと判定する。電気融雪器2は、気象条件によって絶縁抵抗が不安定になることがある。所定時間T(継続時間の条件)を設定することにより(T>0)、気象条件による誤検知が防がれる。なお、気象条件変化に伴う絶縁抵抗の変動も監視する場合、所定時間Tを0に設定してもよい(即時警報)。
When the insulation resistance measured by the
本発明の一実施形態に係る監視システム10は、電気融雪器センサ1と、監視装置8とを有する。前述したように、電気融雪器センサ1は、監視装置8とデータ通信を行う通信部7を有する。通信部7は、制御部5による判定結果を監視装置8に送信する。監視装置8は、電気融雪器センサ1から受信した判定結果が所定の警報対象であるとき、警報を報知する。警報の報知は、画面表示又は音等により行われる。所定の警報対象は、例えば、小電流異常、大電流異常、低電圧異常、高電圧異常、地絡、及び供給電圧なしである。小電流異常、大電流異常、低電圧異常、高電圧異常、地絡の各異常からの回復、及び供給電圧ありへの変化も警報対象とされる。なお、本実施形態では、電気融雪器センサ1は、制御部5による判定結果を監視装置8に即時送信する機能に加えて、定時送信機能を有する。定時送信機能として、電気融雪器センサ1は、電圧及び電流等の測定値及びアース検知の継続時間、並びに各センサ状態等を一定時間毎に監視装置8に送信する。その一定時間は、例えば、10秒から24時間の範囲において10秒単位で設定可能である。このような定時送信機能により、電気融雪器センサ1自体の死活監視が可能である。
A
以上、本実施形態に係る電気融雪器センサ1によれば、2線の電圧線22a、22bの供給電圧Vと負荷電流Iに基づいて電気融雪器2の異常の有無を判定するので、どの電圧線22a、22bに接続されたヒータ21に異常が発生したかが分かる。中性線22cの電流を判定に用いる必要がないので、正常時の中性線22cの電流を平衡させる必要がなく、既存の電気融雪器2の配線を変更せずに電気融雪器を設置できる。また、供給電圧Vが小電流異常用電圧閾値V7以上かつ負荷電流Iが小電流異常閾値I1未満であるとき、小電流異常が発生していると判定するので、供給電圧Vの低下に起因する小電流異常の誤判定を防ぐことができる。さらに、負荷電流Iが小電流異常回復閾値I2以上になったとき、小電流異常から回復したと判定するので、供給電圧Vの低下に起因する小電流異常からの回復の誤判定を防ぐことができる。供給電圧Vの低下に起因する誤判定が防がれるので、異常の有無を判定するための閾値の設定が容易になる。小電流異常回復閾値I2は、小電流異常閾値I1以上の値に設定されるので、小電流異常の判定におけるチャタリングを防ぐことができる。したがって、電気融雪器センサ1は、電気融雪器2の電気的な異常を容易に検出することができる。
As described above, according to the electric snow-
電流センサ4が分岐器9ごとに負荷電流Iを測定するので、分岐器9ごとに分配された各電圧線22a、22bの負荷電流Iが測定され、分岐器9ごとの各電圧線22a、22bの異常を検出できる。また、電圧センサ3が分電盤24内において供給電圧Vを測定し、電流センサ4が分電盤24内において負荷電流Iを測定するので、電圧センサ3及び電流センサ4の設置が容易である。
Since the
電流センサ4が電圧線22a、22bの負荷電流Iを測定するので、大電流異常閾値I4の設定によって大電流異常の発生を検出でき、大電流異常回復閾値I3の設定によって大電流異常からの回復を検出できる。大電流異常回復閾値I3は、大電流異常閾値I4以下の値に設定されるので、大電流異常の判定におけるチャタリングを防ぐことができる。
Since the
電圧センサ3が電圧線22a、22bの供給電圧Vを測定するので、低電圧異常閾値V3の設定によって低電圧異常の発生を検出でき、低電圧異常回復閾値V4の設定によって低電圧異常からの回復を検出できる。低電圧異常回復閾値V4は、低電圧異常閾値V3以上の値に設定されるので、低電圧異常の判定におけるチャタリングを防ぐことができる。
Since the
電圧センサ3が電圧線22a、22bの供給電圧Vを測定するので、高電圧異常閾値V6の設定によって高電圧異常の発生を検出でき、高電圧異常回復閾値V5の設定によって高電圧異常からの回復を検出できる。高電圧異常回復閾値V5は、高電圧異常閾値V6以下の値に設定されるので、高電圧異常の判定におけるチャタリングを防ぐことができる。
Since the
電圧センサ3が電圧線22a、22bの供給電圧Vを測定するので、電圧なし判定閾値V1の設定によって供給電圧なしを検出でき、電圧あり判定閾値V2の設定によって、供給電圧ありを検出できる。電圧あり判定閾値V2は、電圧なし判定閾値V1以上の値に設定されるので、供給電圧なしの判定におけるチャタリングを防ぐことができる。
Since the
アースセンサ6が中性線22cとアース間の絶縁抵抗を測定するので、電気融雪器2の地絡を検出できる。
Since the
本実施形態に係る監視システム10によれば、監視装置8は、電気融雪器センサ1から受信した判定結果が所定の異常結果であるとき、警報を報知するので、システムのユーザは、リモートで電気融雪器2の異常が分かる。
According to the
なお、本発明は、上記の実施形態の構成に限られず、発明の要旨を変更しない範囲で種々の変形が可能である。例えば、通信部7がローパワー・ワイドエリア以外の無線通信方式又は有線通信によって監視装置8とデータ通信を行うように監視システム10を構成してもよい。
The present invention is not limited to the configurations of the above-described embodiments, and various modifications are possible without changing the gist of the invention. For example, the
1 電気融雪器センサ
2 電気融雪器
21 ヒータ
22a、22b 電圧線
22c 中性線
3 電圧センサ
4 電流センサ
5 制御部
6 アースセンサ
7 通信部
8 監視装置
10 監視システム
I 負荷電流
I1 小電流異常閾値
I2 小電流異常回復閾値
I3 大電流異常回復閾値
I4 大電流異常閾値
V 供給電圧
V1 電圧なし判定閾値
V2 電圧あり判定閾値
V3 低電圧異常閾値
V4 低電圧異常回復閾値
V5 高電圧異常回復閾値
V6 高電圧異常閾値
V7 小電流異常用電圧閾値
1 electric snow-
Claims (8)
電気融雪器は、2線の電圧線と1線の中性線を用いた単相3線式で電力が供給され、
ヒータは、分岐器に設けられ、
該電気融雪器センサは、前記ヒータに供給する供給電圧を測定する電圧センサと、
前記各電圧線の負荷電流を測定する電流センサと、
前記供給電圧及び前記各電圧線の負荷電流の測定値に基づいて前記電気融雪器の異常の有無を判定する制御部とを備え、
前記供給電圧が所定の小電流異常用電圧閾値以上かつ前記負荷電流が所定の小電流異常閾値未満であるとき、前記制御部は、小電流異常が発生していると判定し、前記負荷電流が所定の小電流異常回復閾値以上になったとき、前記制御部は、前記小電流異常から回復したと判定し、
前記小電流異常回復閾値は、前記小電流異常閾値以上の値に設定されていることを特徴とする電気融雪器センサ。 An electric snow melter sensor for detecting an abnormality in an electric snow melter having a plurality of heaters,
The electric snow melter is powered by a single-phase three-wire system using two voltage wires and one neutral wire,
The heater is provided in the branch,
The electric snow melter sensor comprises a voltage sensor that measures a supply voltage supplied to the heater;
a current sensor that measures the load current of each voltage line;
a control unit that determines whether or not there is an abnormality in the electric snow melter based on the measured values of the supply voltage and the load current of each voltage line;
When the supply voltage is equal to or higher than a predetermined voltage threshold for small current abnormality and the load current is less than a predetermined small current abnormality threshold, the control unit determines that a small current abnormality has occurred, and the load current is When it becomes equal to or greater than a predetermined small current abnormality recovery threshold, the control unit determines that recovery from the small current abnormality has occurred,
The electric snow melting device sensor, wherein the low-current abnormality recovery threshold is set to a value equal to or higher than the low-current abnormality threshold.
前記電圧センサは、前記分電盤内において供給電圧を測定し、
前記電流センサは、前記分電盤内において前記分岐器ごとに前記負荷電流を測定することを特徴とする請求項1に記載の電気融雪器センサ。 The electric snow melting device has a distribution board that distributes the received power to each branching device and supplies power to the heater, and wiring that connects the distribution board and the heater,
The voltage sensor measures the supply voltage in the distribution board,
2. The electric snow melting device sensor according to claim 1, wherein the current sensor measures the load current for each branching device in the distribution board.
前記大電流異常回復閾値は、前記大電流異常閾値以下の値に設定されていることを特徴とする請求項1又は請求項2に記載の電気融雪器センサ。 When the load current exceeds a predetermined large current abnormality threshold, the control unit determines that a large current abnormality has occurred, and when the load current becomes equal to or less than a predetermined large current abnormality recovery threshold, Determining that recovery from the large current abnormality has occurred,
3. The electric snow melting device sensor according to claim 1, wherein the large current abnormality recovery threshold is set to a value equal to or less than the large current abnormality threshold.
前記低電圧異常回復閾値は、前記低電圧異常閾値以上の値に設定されていることを特徴とする請求項1乃至請求項3のいずれか一項に記載の電気融雪器センサ。 When the supply voltage is less than a predetermined low voltage abnormality threshold, the control unit determines that a low voltage abnormality has occurred, and when the supply voltage is equal to or higher than a predetermined low voltage abnormality recovery threshold, the Judging that it has recovered from the low voltage abnormality,
The electric snow melting device sensor according to any one of claims 1 to 3, wherein the low voltage abnormality recovery threshold is set to a value equal to or higher than the low voltage abnormality threshold.
前記高電圧異常回復閾値は、前記高電圧異常閾値以下の値に設定されていることを特徴とする請求項1乃至請求項4のいずれか一項に記載の電気融雪器センサ。 When the supply voltage exceeds a predetermined high voltage abnormality threshold, the control unit determines that a high voltage abnormality has occurred, and when the supply voltage becomes equal to or less than a predetermined high voltage abnormality recovery threshold, Determining that recovery from the high voltage abnormality has occurred,
The electric snow melting device sensor according to any one of claims 1 to 4, wherein the high voltage abnormality recovery threshold is set to a value equal to or less than the high voltage abnormality threshold.
前記電圧あり判定閾値は、前記電圧なし判定閾値以上の値に設定されていることを特徴とする請求項1乃至請求項5のいずれか一項に記載の電気融雪器センサ。 The control unit determines that there is no supply voltage when the supply voltage is less than a predetermined no-voltage determination threshold, and determines that there is a supply voltage when the supply voltage is equal to or greater than a predetermined no-voltage determination threshold. death,
The electric snow melting device sensor according to any one of claims 1 to 5, wherein the threshold for determining whether there is voltage is set to a value equal to or greater than the threshold for determining whether there is voltage.
前記絶縁抵抗が所定の絶縁抵抗下限閾値以下であることが所定時間継続したとき、前記制御部は、地絡が発生したと判定することを特徴とする請求項1乃至請求項6のいずれか一項に記載の電気融雪器センサ。 The electric snow melter sensor further comprises a ground sensor for measuring insulation resistance between the neutral wire and ground,
7. The control unit determines that a ground fault has occurred when the insulation resistance is equal to or lower than a predetermined insulation resistance lower limit threshold for a predetermined period of time. An electric snow melter sensor according to any one of claims 1 to 3.
前記電気融雪器センサは、前記監視装置とデータ通信を行う通信部を有し、
前記通信部は、前記制御部による判定結果を前記監視装置に送信し、
前記監視装置は、前記電気融雪器センサから受信した判定結果が所定の異常結果であるとき、警報を報知することを特徴とする監視システム。
A monitoring system comprising the electric snow melter sensor according to any one of claims 1 to 7 and a monitoring device,
The electric snow melting device sensor has a communication unit that performs data communication with the monitoring device,
The communication unit transmits a determination result by the control unit to the monitoring device,
The monitoring system, wherein the monitoring device issues an alarm when the determination result received from the electric snow melting device sensor is a predetermined abnormal result.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021075530A JP2022169851A (en) | 2021-04-28 | 2021-04-28 | Electric snow-melting device sensor and monitoring system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021075530A JP2022169851A (en) | 2021-04-28 | 2021-04-28 | Electric snow-melting device sensor and monitoring system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022169851A true JP2022169851A (en) | 2022-11-10 |
Family
ID=83944440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021075530A Pending JP2022169851A (en) | 2021-04-28 | 2021-04-28 | Electric snow-melting device sensor and monitoring system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022169851A (en) |
-
2021
- 2021-04-28 JP JP2021075530A patent/JP2022169851A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100883777B1 (en) | Method for Disorder Display of Terminal Unit in Power Distribution Automation System | |
JP4653238B2 (en) | Delta I ground fault protection relay system for DC traction power supply system and control method thereof | |
WO2018198438A1 (en) | Dc ground fault detection system and dc ground fault detection method for dc electric railway | |
KR101268620B1 (en) | System and method for detecting the high impedence ground fault using distribution automation system | |
CN113049901A (en) | Electrical control and protection device | |
KR20140101539A (en) | A high tension panel, low tension panel, dstribution panel and motor control panel for Fire Sensing Fuction | |
RU2356151C1 (en) | METHOD FOR AUTOMATIC CONTROL OF 0,4 kV OVERHEAD LINE NEUTRAL WIRE | |
CN111474466A (en) | Circuit arrangement for detecting closed switch contacts and for protecting ground conductor against interruption in single-phase or polyphase supply lines | |
KR100694279B1 (en) | Ground fault protective relaying method using distance relay in traction power supply system | |
KR20060132419A (en) | Pilot ground fault protective relaying scheme in traction power supply system | |
US10530149B2 (en) | Methods for detecting an interruption of an active conductor in an ungrounded direct-voltage power supply system | |
US6407897B1 (en) | Network protector with diagnostics | |
KR100755452B1 (en) | Bus differential protective relaying system in ungrounded DC traction power supply system and control method thereof | |
WO2006001566A1 (en) | Ground overcurrent protection relay system for ungrounded dc power feed system and method of controlling the same | |
NO20200398A1 (en) | Procedure for charging a vehicle and vehicles | |
JP2008504795A5 (en) | ||
JP2004239863A (en) | Grounding method for transformer | |
KR20200014118A (en) | Power Distribution Board with Fault Fiagnosis Function | |
EP2961919B1 (en) | Subsea electrical unit and system | |
JP2022169851A (en) | Electric snow-melting device sensor and monitoring system | |
KR101080265B1 (en) | Rail potential control system capable of distinguishing between ground fault and non-ground fault when rising from the rail potential | |
JP2018164358A (en) | Disconnection discrimination device and wiring discrimination device of DC power supply circuit | |
US20200264240A1 (en) | Wiring-integrity automatic monitoring system having improved features | |
ES2807266T3 (en) | Procedure and device for the monitoring of electrical lines and connections in rectification substations and in the corresponding line sections of electric railways | |
JP2018066569A (en) | Arc fault detection system and arc fault detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240415 |