JP2022168945A - Film filled with hard particles for vibration control and vibration control method - Google Patents
Film filled with hard particles for vibration control and vibration control method Download PDFInfo
- Publication number
- JP2022168945A JP2022168945A JP2021074654A JP2021074654A JP2022168945A JP 2022168945 A JP2022168945 A JP 2022168945A JP 2021074654 A JP2021074654 A JP 2021074654A JP 2021074654 A JP2021074654 A JP 2021074654A JP 2022168945 A JP2022168945 A JP 2022168945A
- Authority
- JP
- Japan
- Prior art keywords
- contact
- film
- hard
- hard particles
- damping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
本発明は、制振用硬質粒子充填フィルム及び制振方法に関する。 The present invention relates to a vibration damping hard particle-filled film and a vibration damping method.
機械結合面に樹脂フィルムを挟むことで減衰性の向上が実現できることが知られている。特許文献1には、少なくとも1つの拘束層と、少なくとも1つの消散層と、複数のスペーサ要素を含む少なくとも1つの動的スペーサ層とを備え、スペーサ要素は、セラミック、ガラス等であって動表面を減衰させるための多層減衰材料が記載されている。
It is known that the damping property can be improved by inserting a resin film between the mechanical joint surfaces.
一般の機械や構造物の接触面では,微小なすべりや表面粗さ突起の塑性変形などによりエネルギー散逸(ここでは接触減衰と呼ぶ)が生じる。例えば、工作機械においては、この接触減衰をうまく活用すれば、特別な減衰機構を付与することなく耐びびり振動性の向上が期待できる。 On the contact surfaces of general machines and structures, energy dissipation (called contact damping here) occurs due to micro-slips and plastic deformation of surface roughness protrusions. For example, in machine tools, by making good use of this contact damping, chatter vibration resistance can be expected to be improved without providing a special damping mechanism.
非特許文献1では結合面の表面粗さや接触応力分布に着目した表面構造設計により、結合面の表面粗さや接触応力分布に着目した表面構造設計により、接触減衰の向上が検討されている。
In
しかしながら、そのような減衰材料は多層で構造が複雑になり、静剛性を担保しつつ減衰性を向上させるという観点を欠くという問題があった。そこで、本発明では、硬質粒子充填フィルムを作製し、その硬質粒子充填フィルムを機械等の構造物の締結部に挟むことで静剛性を担保しつつ減衰性を向上させることを目的とする。 However, such a damping material is multi-layered and has a complicated structure, and there is a problem that it lacks the viewpoint of improving damping performance while securing static rigidity. Therefore, an object of the present invention is to produce a hard particle-filled film and sandwich the hard particle-filled film between fastening portions of a structure such as a machine to improve damping performance while ensuring static rigidity.
上記課題を解決する本発明は以下の通りである。
(1)対面に作用する締付力によって圧縮されて展伸するフィルムと、前記フィルムに充填された、前記フィルムより硬い硬質粒子からなる硬質粒子群と、を備える制振用硬質粒子充填フィルムであって、前記制振用硬質粒子充填フィルムが機械等の構造物の締結部に配され、所定の前記締付力によって圧縮されて展伸されたとき、前記硬質粒子群は前記締結部を構成する2つの締結面に噛み込んで接触する噛み込み接触硬質粒子を含むことを特徴とする制振用硬質粒子充填フィルムである。
「対面」とは対向する面ということで、例えば表面(一方面)と裏面(他方面)であってその場合「対面に作用する」とは、表面(一方面)と裏面(他方面)に作用することを意味する。
(2)前記硬質粒子群は前記噛み込み接触硬質粒子の他に、さらに前記噛み込み接触硬質粒子よりも噛み込みの程度が少ない状態で前記締結面に接触する低面圧接触硬質粒子を含むこと特徴とする(1)に記載の制振用硬質粒子充填フィルムである。
(3)前記制振用硬質粒子充填フィルムの厚みは硬質粒子の平均粒径を超え、前記制振用硬質粒子充填フィルムが前記所定の締付力によって展伸されたとき、前記厚みは、前記平均粒径以下となる厚みの部分を含むようになることを特徴とする(1)又は(2)に記載の制振用硬質粒子充填フィルムである。
(4)対面に作用する締付力によって圧縮されて展伸するフィルムと、前記フィルムに充填された、前記フィルムより硬い硬質粒子からなる硬質粒子群と、を備える制振用硬質粒子充填フィルムであって、前記制振用硬質粒子充填フィルムが機械等の構造物の締結部に配され、所定の前記締付力によって圧縮されて展伸されたとき、前記硬質粒子群は、前記締結部を構成する2つの締結面に噛み込んで接触する噛み込み接触硬質粒子を含むことになる前記制振用硬質粒子充填フィルムを、前記締結部に挟んで締結することを特徴とする機械等の構造物の制振方法である。
(5)前記硬質粒子群は前記噛み込み接触硬質粒子の他に、さらに前記噛み込み接触硬質粒子よりも噛み込みの程度が少ない状態で前記締結面に接触する低面圧接触硬質粒子を含むこと特徴とする(4)に記載の機械等の構造物の制振方法である。
(6)前記制振用硬質粒子充填フィルムの厚みは硬質粒子の平均粒径を超え、前記制振用硬質粒子充填フィルムが前記所定の締付力によって圧縮されて展伸されたとき、前記厚みは前記平均粒径以下となる部分を含むように行うことを特徴とする(4)又は(5)に記載の機械等の構造物の制振方法である。
The present invention for solving the above problems is as follows.
(1) A vibration-damping hard particle-filled film comprising a film that is compressed and stretched by a clamping force acting on opposite sides, and a hard particle group filled in the film and made of hard particles that are harder than the film. When the vibration-damping hard particle-filled film is placed in a fastening portion of a structure such as a machine and is compressed and stretched by a predetermined fastening force, the hard particle group constitutes the fastening portion. A damping hard particle-filled film characterized by containing biting contact hard particles that bit into and contact two fastening surfaces.
"Facing" means facing surfaces, for example, front (one side) and back (other side). means to work.
(2) The hard particle group includes, in addition to the biting contact hard particles, low surface pressure contact hard particles that contact the fastening surface with a degree of biting less than that of the biting contact hard particles. A vibration damping hard particle-filled film according to (1).
(3) The thickness of the vibration-damping hard particle-filled film exceeds the average particle diameter of the hard particles, and when the vibration-damping hard particle-filled film is stretched by the predetermined tightening force, the thickness is The vibration damping hard particle-filled film according to (1) or (2) is characterized by including a portion having a thickness equal to or smaller than the average particle size.
(4) A vibration-damping hard particle-filled film comprising a film that is compressed and stretched by a clamping force acting on opposite sides, and a hard particle group filled in the film and made of hard particles that are harder than the film. When the hard particle-filled film for vibration damping is arranged in a fastening portion of a structure such as a machine and is compressed and stretched by a predetermined fastening force, the hard particle group moves the fastening portion. A structure such as a machine characterized in that the vibration-damping hard particle-filled film containing biting contact hard particles that bite into and contact with two constituting fastening surfaces is sandwiched between the fastening parts and fastened. is a damping method.
(5) In addition to the biting contact hard particles, the hard particle group further includes low surface pressure contact hard particles that contact the fastening surface with a degree of biting less than that of the biting contact hard particles. A vibration damping method for a structure such as a machine according to (4).
(6) The thickness of the vibration-damping hard particle-filled film exceeds the average particle size of the hard particles, and when the vibration-damping hard particle-filled film is compressed and expanded by the predetermined tightening force, the thickness (4) or (5) is a vibration damping method for a structure such as a machine, characterized in that the vibration is performed so as to include a portion having the average particle size or less.
本発明によれば、機械等の構造物の静剛性を担保しつつ減衰性の向上をさせることができる。 ADVANTAGE OF THE INVENTION According to this invention, damping property can be improved, ensuring the static rigidity of structures, such as a machine.
以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be made without departing from the scope of the invention.
機械等の構造物に必要な性質・特性には静剛性と動剛性がある。求められる静剛性とは、大変形や位置ずれが生じてはいけないことであり、求められる動剛性とは、振動等による影響は好ましくないことである。接触剛性を大きくする(強く締める、締結面をすべりにくくする)ことで静剛性が大きくなり、一方、締結面で摩擦減衰が生じる(締結面ですべりが生じる)ことで減衰性が向上し、動剛性が大きくなる。すなわちすべりにくくすると向上する静剛性と、すべりが生じると向上する動剛性はトレードオフの関係にある。そして、摩擦減衰の特性上、通常の接触では、微小すべりで減衰性を大きくすることは困難である。 Static rigidity and dynamic rigidity are required properties and characteristics of structures such as machines. The required static rigidity means that no large deformation or displacement should occur, and the required dynamic rigidity means that the influence of vibration or the like is undesirable. Static rigidity is increased by increasing contact rigidity (strong tightening, making the fastening surface less slippery). Rigidity increases. In other words, there is a trade-off between the static rigidity, which improves when it is less likely to slip, and the dynamic rigidity, which improves when slip occurs. In addition, due to the characteristics of frictional damping, it is difficult to increase the damping performance with a small slip in normal contact.
本発明ではそのトレードオフの関係を、硬質粒子充填フィルムを用いることにより解決することができた。
図1(a)、(b)に示すように、本発明の一つの実施形態である硬質粒子充填フィルム1は、フィルム2と、フィルム2に充填された硬質粒子3からなる硬質粒子群を備える。フィルム2は、対向する2面(表面と裏面の2面)に作用する締め付け力によって圧縮されて展伸することができる。そのため、フィルム2は弾性体であることが好ましい。フィルムの母材は特には限定されないが、弾性体を形成することができる樹脂等で例えばPDMS(シリコーンの一種、ポリジメシルシロキサン)のようなシリコーンエラストマーや合成樹脂等が好ましい。
In the present invention, the trade-off relationship could be resolved by using a hard particle-filled film.
As shown in FIGS. 1(a) and 1(b), a hard particle-filled
硬質粒子3の硬さはフィルム2の硬さより硬い。ここで硬さの指標としては、ビッカース硬度で10GPa以上が好ましい。図1(b)に示されるように、硬質粒子充填フィルム1では、多数の硬質粒子3がフィルム2に充填されるので、硬質粒子3は硬質粒子群を形成する。充填率としては、フィルムの強度と減衰性の観点から、フィルム:硬質粒子の体積比で、10:1~1:1が好ましく、4:1~2:1がより好ましい。硬質粒子3の材質は、上記のフィルム2の硬さとの関係や後述する構造物の締結面(接触面)の硬さとの関係で適宜に選択することができる。また、硬質粒子3の大きさは、締結面の粗さとの大小関係の観点から、平均粒径として50~1μmが好ましく、30~10μmがより好ましい。
図2(a)に示したような締結面35、36からなる機械等の構造物の締結部37において、締結面35、36は固体接触している。フィルムとして例えばPDMS(シリコーンの一種、ポリジメシルシロキサン)を母材とするが締結面35、36に挟まれると、同(b)のようになる。同(c)には、同(b)においてフィルム2の代わりに硬質粒子充填フィルム1を使用した場合を示した。締結部37には所定の締付力が作用しているので、硬質粒子充填フィルム1はその締付力によって圧縮されて展伸している。
In a
このような状態において、硬質粒子充填フィルム1は締結面35、36(締結部37)の静剛性を維持することができるのである。そのメカニズムは以下のように推察することができる。
締結部(接触部)37に垂直力(締付力)が負荷された際には、硬質粒子充填フィルム1が圧縮されて徐々に接触面外へ流出(展伸)していき、高面圧となった際には、硬質粒子充填フィルム1内に含有されていた硬質粒子が両接触面35、36と接触し、この硬質粒子が噛み込み接触硬質粒子13として、1つの粗さ突起のような役割を果たして力を支えることで、静剛性が維持されたことが推察される。したがって、フィルム内に含有されている硬質粒子の密度も可能な限り大きい方が、締付時の接触点数が増加し、接触面積が増大するため、静剛性が高くなることが推察される。
In such a state, the hard particle-filled
When a vertical force (clamping force) is applied to the fastening portion (contact portion) 37, the hard particle-filled
さらに、静剛性を担保しつつ減衰性を向上させることできるメカニズムは、後述もするが、図3に基づいて、以下のように推察することができる。
[1]高面圧で塑性接触している硬質粒子は減衰効果を発現せず、単に垂直力を支えて静剛性の維持に寄与しているだけである(図3(a))。[2]比較的低面圧で接触している硬質粒子が、低面圧接触硬質粒子23として振動時に接触面35´、36´で摩擦減衰を生み出し、減衰効果を発現している(同(b))。[3]接触面の粗さが小さい場合は、多くの硬質粒子が[1]の接触状態にあり、接触面の粗さが大きい場合は、多くの硬質粒子が粗さ突起の谷部に入り込み、[1]、[2]のどちらの接触状態にも無くなる硬質粒子であることが推察される(同(c))。したがって,充填している硬質粒子と同等な接触隙間となる粗さを持った接触面で最も減衰効果が発揮されることが推察される(同(b))。[4]硬質粒子の減衰効果だけでなくフィルム母材の粘性減衰も同時に得られ、より大きな減衰効果が発現するのである。低面圧接触硬質粒子23は噛み込み接触粒子13よりも、噛み込みの程度が少ない状態で接触面(締結面)35´、36´に接触するので、硬質粒子が接触面(締結面)35´、36´にかける面圧(圧)は低くなる(逆に接触面(締結面)35´、36´から低面圧接触硬質粒子23が受ける面圧(圧)は低くなるとも言える)。その状態では低面圧である分、噛み込み接触粒子13と対比して低面圧接触硬質粒子23と接触面(締結面)35´、36´の間にはフィルムが介しやすいとも言える。また、低面圧接触硬質粒子23が噛み込む接触面(締結面)は1つの面でもよい。
Furthermore, the mechanism capable of improving the damping property while ensuring the static rigidity will be described later, but based on FIG. 3, it can be inferred as follows.
[1] The hard particles that are in plastic contact under high surface pressure do not exhibit a damping effect, and merely support the vertical force and contribute to maintaining static rigidity (Fig. 3(a)). [2] The hard particles that are in contact with relatively low surface pressure generate frictional damping at the contact surfaces 35' and 36' during vibration as the low surface pressure contact
(硬質粒子充填フィルムの作成)
作成した硬質粒子充填フィルム1の説明を行う。フィルムの母材としてPDMS(ポリジメチルシロキサン)を、フィルムに充填させる硬質粒子として中心粒径21μmの白色溶融アルミナ(WA)を使用した。作成の手順は以下の通りである。まず、PDMSの主剤に硬化剤とWAを入れ、WAが均一になるようにかき混ぜ、厚みが一定の型に樹脂と粒子を流し込み、その後、常温で十分放置させて硬化させた。なおWAの充填率は体積比でPDMS:WA=4:1のフィルム(フィルム1/5、Film1/5、実施例1)と、PDMS:WA=2:1のフィルム(フィルム1/3、Film1/3、実施例2、図1(a)、(b)参照)の2種類を作成し、硬質粒子充填フィルム1の厚さは1mmで統一した。
(Creation of hard particle-filled film)
The produced hard particle-filled
(打撃試験、ハンマリング条件)
実験装置(打撃試験で用いたモデル結合面)の模式図を図4に示す。本装置では梁状の金属試験片(材質:A2017(アルミ)、長さL=180mm、幅W=15mm、厚さT=30mm)を定盤で固定した二つの金属ブロック(材質:A2017(アルミ)、長さL´=80mm、幅W´=40mm、厚さT´=80mm)で挟み込む。接触荷重は図4(a)、(b)に示すとおりボルトの軸力により与えた。締結面の見掛けの接触面積を規定するために、結合面には金属ワッシャー(内径:6mm、外径:10mm、材質:SUS440C)が挟まれている(同(c)参照)。
(Blow test, hammering conditions)
FIG. 4 shows a schematic diagram of the experimental apparatus (model binding surface used in the impact test). In this device, a beam-shaped metal test piece (material: A2017 (aluminum), length L = 180 mm, width W = 15 mm, thickness T = 30 mm) is fixed on a surface plate and two metal blocks (material: A2017 (aluminum) ), length L′=80 mm, width W′=40 mm, thickness T′=80 mm). The contact load was given by the axial force of the bolt as shown in FIGS. 4(a) and 4(b). A metal washer (inner diameter: 6 mm, outer diameter: 10 mm, material: SUS440C) is sandwiched between the connecting surfaces in order to define the apparent contact area of the fastening surfaces (see (c) above).
実験毎に試験片接触部の表面は♯2000耐水研磨紙で研磨した(Rz 1.0μm程度)。打撃試験では、インパルスハンマにより試験片の図4(a)中のA点の位置に紙面奥行き方向の撃力(200N)を加えた。同時に同図B点の位置に固定した加速度センサで加速度波形を測定した、なお、試験片とワッシャーの間に何も挟まない条件(「固体接触」、比較実験例1)、試験片とワッシャーの間にWAのみを挟んだ条件(「PDMS」、比較実験例2)、試験片とワッシャーの間にFilm1/5を挟んだ条件(「Film1/5」、実験例1)、試験片とワッシャーの間にFilm1/3を挟んだ条件(「Film1/3」、実験例2)の計4条件で打撃試験を行った。打撃試験(ハンマリング条件)における軸力(接触面に加わる垂直力)等は表1に示し、また接触面の平均面圧は300Mpaであった。
For each experiment, the surface of the contact portion of the test piece was polished with #2000 waterproof abrasive paper (Rz about 1.0 μm). In the impact test, an impulse force (200 N) was applied to the test piece at point A in FIG. 4(a) in the depth direction of the paper. At the same time, the acceleration waveform was measured with an acceleration sensor fixed at the position of point B in the same figure. Conditions in which only WA was sandwiched between (“PDMS”, Comparative Experimental Example 2), conditions in which
(静的負荷条件)
一方、静的負荷条件は表2のようであって、図4(a)、(b)に示す負荷方向で試験片に準静的負荷をかけ、その時の試験片の変位を読み取ることで、試験片に対する力と変位の関係を取得する。試験片への負荷にはステッピングモータを使用してゆっくりロードセルを押し当て、そのときの静荷重を読み取る。また、試験片変位は同時系列の試験片の変位を触診式マイクロセンサで取得する。静剛性評価試験では上記の工程を複数回(3~5回)行い、力と変位の関係を取得した(「固体接触」のとき比較実験例3、「PDMS」のとき比較実験例4、「Film1/5」のとき実験例3、「Film1/3」のとき実験例4)。
(static load conditions)
On the other hand, the static load conditions are as shown in Table 2. By applying a quasi-static load to the test piece in the loading direction shown in FIGS. Obtain the force-displacement relationship for the specimen. A stepping motor is used to apply a load to the test piece, and the load cell is slowly pressed, and the static load at that time is read. In addition, the displacement of the test piece is acquired by a palpable microsensor of the simultaneous series of test pieces. In the static stiffness evaluation test, the above steps were performed multiple times (3 to 5 times) to acquire the relationship between force and displacement (Comparative Experimental Example 3 for “solid contact”, Comparative Experimental Example 4 for “PDMS”, “ Experimental Example 3 for "
(減衰性評価)
図5において、加速度時間波形の横軸の時間帯は加振時から約0.1[s]後の0.12~0.22[s]を示しており、縦軸は加速度センサで取得した加速度の生波形を示している。図6において、周波数応答の横軸の周波数帯は300~400[Hz]を示しており、縦軸は振動振幅を加振力で割った動的コンプライアンスを0~60[μm/N]で示している.また、図7には減衰振動波形から求めた等価減衰比ζを示した。
(Attenuation evaluation)
In FIG. 5, the time zone of the horizontal axis of the acceleration time waveform indicates 0.12 to 0.22 [s] after about 0.1 [s] from the time of excitation, and the vertical axis is obtained by the acceleration sensor. A raw acceleration waveform is shown. In FIG. 6, the frequency band of the horizontal axis of the frequency response indicates 300 to 400 [Hz], and the vertical axis indicates the dynamic compliance obtained by dividing the vibration amplitude by the excitation force in 0 to 60 [μm / N]. ing. Also, FIG. 7 shows the equivalent damping ratio .zeta. obtained from the damped oscillation waveform.
図5より、試験片は、撃力の引荷により加振され、その後加速度振幅は単調に減少している。そして、加速度振幅の減少速度は実験条件の違いにより大きく異なっていることがわかる。
図6より、ワッシャーとの接触条件(一般的な固体接触を想定)に比較して、どの条件でも動的コンプライアンスの最大値が小さくなっていることが読み取れる。まず、PDMSとの接触条件について、PDMS自体の内部減衰によりコンプライアンスが小さくなったことが推察される。次に、フィルム1/5およびフィルム1/3との接触条件について、PDMSとの接触条件の際と同様に、PDMS自体の内部減衰に加え,フィルム内の硬質粒子が試験片に噛み込む際の塑性変形や硬質粒子による摩擦減衰により、ワッシャーとの接触条件やPDMSとの接触条件に比較して、さらにコンプライアンスが小さくなったことが推察される。そのため、硬質粒子含有率の高いフィルム1/3の方が、フィルム1/5よりコンプライアンスが小さくなったと推察される。
As can be seen from FIG. 5, the test piece was vibrated by the impulsive force, and then the acceleration amplitude monotonously decreased. Also, it can be seen that the rate of decrease in the acceleration amplitude varies greatly depending on the difference in the experimental conditions.
From FIG. 6, it can be read that the maximum value of the dynamic compliance is smaller under any condition compared to the contact condition with the washer (assuming general solid contact). First, regarding the contact conditions with PDMS, it is presumed that the compliance decreased due to the internal attenuation of PDMS itself. Next, regarding the contact conditions with the
次に、図7より、ワッシャーとの接触条件での減衰比(ζnormal=0.008)に比較して、コンプライアンスの変化傾向と同様に減衰比が大きくなっていることが読み取れる(ζPDMS=0.010、ζFilm1/5=0.020、ζFilm1/3=0.029)。一方、図5より、上記の傾向で実際に加速度波形が早く減衰していることが読み取れる。
以上より、ワッシャーとの接触条件に対して、硬質粒子を十分充填したフィルム1/3のコンプライアンスが約1/3倍まで小さくなり、減衰比としては約3.6倍大きくなった。したがって、硬質粒子充填フィルムを接触部に挟むことで制振性が大きく向上していたことがわかる。
Next, from FIG. 7, it can be read that the damping ratio is larger (ζ PDMS = 0.010, ?Film1/5 = 0.020, ?Film1/3 = 0.029). On the other hand, from FIG. 5, it can be read that the acceleration waveform actually attenuates quickly in accordance with the above tendency.
As described above, the compliance of the
(静剛性評価)
図8(a)に静剛性評価試験を行った際の試験片とワッシャーとの接触条件(曲線)、同(b)に試験片とPDMSとの接触条件(曲線)、同(c)に試験片とフィルム1/5との接触条件(曲線)、同(d)に試験片とフィルム1/3との接触条件(曲線)それぞれの変位と力との関係を示す。横軸はロードセル押し込み時の試験片変位[μm]を示しており、縦軸は押し込み時の力[N]を示している。また、それぞれの図において左上に記載してある直線の式は最小二乗法によって求めた直線を表している。
(Static stiffness evaluation)
FIG. 8(a) shows the contact condition (curve) between the test piece and the washer when the static stiffness evaluation test was performed, (b) shows the contact condition (curve) between the test piece and PDMS, and (c) shows the test The relationship between displacement and force is shown for the contact condition (curve) between the piece and the
図8(a)~(d)より、どの条件においても1度目の負荷時にすべりが生じており、その後はほぼ弾性的に変位していることが読み取れる.ここで、すべり量および弾性変形となった後のその剛性についてまとめたものを、それぞれ図9(a)および同(b)に示す。 From Figs. 8(a) to (d), it can be read that under any conditions, slip occurs at the time of the first load, and then the displacement is almost elastic. Here, a summary of the amount of slip and the rigidity after elastic deformation are shown in FIGS. 9(a) and 9(b), respectively.
図9(a)より、それぞれのすべり量を比較すると、ワッシャーとの接触条件では2.26[μm]、PDMSとの接触条件では9.44[μm]、フィルム1/5との接触条件では10.31[μm]、フィルム1/3との接触条件では6.77[μm]となった。すなわち、ワッシャーとの接触条件に対してどの条件でもすべり量が増大していることが読み取れる。
From FIG. 9(a), when comparing the respective slip amounts, 2.26 [μm] under the contact condition with the washer, 9.44 [μm] under the contact condition with PDMS, and 9.44 [μm] under the contact condition with the
一方で、PDMSとの接触条件やフィルム1/5との接触条件に対して、フィルム1/3との接触条件では比較的すべり量が小さくなっている。また、図9(b)より、それぞれの静剛性を比較すると、ワッシャーとの接触条件では12.7[N/μm],PDMSとの接触条件では10.9[N/μm]、フィルム1/5との接触条件では11.7[N/μm]、フィルム1/3との接触条件では10.6[N/μm]となった.多少の相違はあるものの、その相違は約10%~20%程度であり、ほぼ同等な静剛性であることが読み取れる。
On the other hand, the sliding amount is relatively small under the contact condition with the film ⅓ as compared with the contact condition with PDMS and the contact condition with the film ⅕. Further, from FIG. 9(b), comparing the respective static stiffnesses, it is 12.7 [N/μm] under the condition of contact with the washer, 10.9 [N/μm] under the condition of contact with PDMS, and 1/ It was 11.7 [N/μm] under the contact condition with 5 and 10.6 [N/μm] under the contact condition with the
以上より、静剛性評価試験の結果をまとめると、どの条件においても一度すべりが生じ、その後は弾性的に変形する。その際、すべり量はワッシャーとの接触条件(固体接触)が最も小さく、他条件ではより大きなすべり量となることが明らかとなった。しかし、硬質粒子を十分充填したフィルム1/3を挟んだ場合は、PDMSやフィルム1/5と比較して比較的すべり量は小さくなった。また、弾性変形となった後の静剛性については、多少の相違はあるがどの条件においてもほとんど同等であった。 Summarizing the results of the static stiffness evaluation test from the above, slip occurs once under any conditions, and then elastically deforms. At that time, it was clarified that the amount of slip was the smallest under the condition of contact with the washer (solid contact), and that the amount of slip was greater under other conditions. However, when the ⅓ film fully filled with hard particles was sandwiched, the amount of slip was relatively small compared to PDMS and the ⅕ film. Also, the static stiffness after elastic deformation was almost the same under all conditions, although there were some differences.
図10(a)に、試験片とワッシャーとの接触条件での実験後、(b)に試験片とフィルム1/3との接触条件での実験後それぞれについて、レーザー顕微鏡で撮影した試験片の接触部観察像での観察を示す(円環状の接触面を顕微鏡で観察した)。図10(a)、(b)より、ワッシャーとの接触条件での実験後の試験片表面と比較し、フィルム1/3との接触条件での実験後の試験片表面では、接触部に多数の圧痕が生じていることが確認できる。これにより、接触部に硬質粒子充填フィルムを挟み込み、締結力が付加された際に、フィルム内の硬質粒子が試験片に噛み込んでいることがわかる。
In FIG. 10 (a), after the experiment under the contact condition of the test piece and the washer, and in (b), after the experiment under the contact condition of the test piece and the
図10(b)からの次の計測を行うことができた。接触領域内の硬質粒子は180000個、塑性接触している硬質粒子(噛み込み接触硬質粒子)接触点数=真実接触面積/硬質粒子1個の接触面積は約36000点である。したがって、塑性接触し、垂直力を支える接触点=36000/180000≒0.20で約20%となり、残りの約80%の硬質粒子(低面圧接触硬質粒子を含む)が接触面(円環状のワッシャが接触している箇所)で摩擦減衰や塑性変形を生み出し、減衰効果が表れると推定される。 The following measurements from FIG. 10(b) could be made. The number of hard particles in the contact area is 180,000, and the number of contact points of hard particles in plastic contact (biting contact hard particles)=real contact area/contact area of one hard particle is about 36,000 points. Therefore, the contact point that makes plastic contact and supports the normal force = 36000/180000 ≈ 0.20, which is about 20%, and the remaining about 80% of the hard particles (including low surface pressure contact hard particles) is the contact surface (annular It is presumed that friction damping and plastic deformation are generated at the point where the washer is in contact), and the damping effect appears.
図11(a)に示すように、2つのカラーをM6ボルトで締め付けた場合と、(b)2つのカラー間に硬質粒子充填フィルムを挟み込んでM6ボルトで締め付けた場合とで2つのカラーの幅をデジタルノギス(最小読み取り単位10μm)でそれぞれ6回測定し、その平均値を比較した.このとき,締め付け時の面圧は打撃試験や静剛性評価試験時の実験条件に合わせて300[MPa]としている。それぞれの測定値を平均した結果は、フィルム無し時の平均値:37.815[mm]、硬質粒子充填フィルム有りの時の平均値:37.833[mm]したがって硬質粒子充填フィルムを挟んで締め付けた際の硬質粒子充填フィルムの厚みは約20[μm]となっており、硬質粒子の粒径と同等である。 As shown in FIG. 11(a), two collars are tightened with M6 bolts and (b) a hard particle-filled film is sandwiched between the two collars and tightened with M6 bolts. was measured six times with a digital vernier caliper (minimum reading unit: 10 µm), and the average values were compared. At this time, the surface pressure during tightening is set to 300 [MPa] in accordance with the experimental conditions of the impact test and the static rigidity evaluation test. The result of averaging the respective measured values is the average value without the film: 37.815 [mm], the average value with the hard particle-filled film: 37.833 [mm]. The thickness of the hard particle-filled film is about 20 [μm], which is equivalent to the particle size of the hard particles.
一方、図12に示すように、実験例2では、硬質粒子がアルミ試験片表面に食い込んだ痕と思われる多数の圧痕が観察される。また、締結前は厚さ1mmの硬質粒子充填フィルムは締結時においては厚みが約20μm(硬質粒子の中心粒径は21μmm)と圧縮されていた。以上より、締め付け力増加にともない硬質粒子充填フィルムは押しつぶされて(圧縮・展伸されて)、最終的に接触面間にとどまった1層の硬質粒子層が垂直荷重を支持していることがわかる.すなわち、金属表面同士が直接接触するのではなく,硬質粒子を介した接触が生じている。なお、フィルム1/5とフィルム1/3の場合では、硬質粒子の隙間には母材のPDMSが存在すると思われる。すなわち、硬質粒子充填フィルムが締付力によって圧縮されて展伸されたとき、その厚みは、硬質粒子の平均粒径以下となる厚みの部分を含むようになることが好ましい。
On the other hand, as shown in FIG. 12, in Experimental Example 2, a large number of indentations, which are thought to be due to the hard particles digging into the surface of the aluminum test piece, are observed. Moreover, the hard particle-filled film having a thickness of 1 mm before fastening was compressed to a thickness of about 20 μm (the median particle size of the hard particles was 21 μmm) at the time of fastening. From the above, it can be concluded that the hard particle-filled film is crushed (compressed and stretched) as the tightening force increases, and finally the single hard particle layer remaining between the contact surfaces supports the vertical load. Recognize. That is, rather than direct contact between metal surfaces, contact occurs via hard particles. In the case of
ところで、締結面(接触面)に作用する締結力は次のようである。一般的な締結部では数100Nから数1000N以上の締結力を要する。一方、締結面(接触面)の硬さは使用する金属の硬さで決まり,一般的にはビッカース硬度で0.5GPaから3GPa程度である。そのため、硬質粒子の好ましい硬さは締結面の硬さの3倍以上である10GPa以上となる。なぜならば、硬質粒子の硬さが10GPa以上であれば,一般的に使用される接触面を塑性変形させて噛み込むのに十分な硬さを有するためである。 By the way, the fastening force acting on the fastening surface (contact surface) is as follows. A general fastening portion requires a fastening force of several 100N to several 1000N or more. On the other hand, the hardness of the fastening surface (contact surface) is determined by the hardness of the metal used, and is generally about 0.5 GPa to 3 GPa in terms of Vickers hardness. Therefore, the preferred hardness of the hard particles is 10 GPa or more, which is at least three times the hardness of the fastening surface. This is because if the hardness of the hard particles is 10 GPa or more, they have sufficient hardness to plastically deform and bite into the generally used contact surface.
また、前記の図6より樹脂フィルムの有無により固有振動数(コンプライアンスピークにおける振動周波数)に大きな違いはなく、フィルムを挟んだ場合でも十分な静剛性を維持していることがわかる。以上から、金属表面間に挟まった硬質粒子(噛み込み接触硬質粒子)が鉛直方向およびすべり方向に対する力を支えて静剛性を担保すると同時に,比較的接触面圧の低い状態で接触面に残留した硬質粒子(低面圧接触硬質粒子)が金属表面間で微小に摺動することで減衰性を向上させたと考えられる。また、硬質粒子で支えられた接触面の隙間に入り込んだPDMSフィルムも減衰性向上に寄与する一因となっている。 Further, from FIG. 6, it can be seen that there is no significant difference in the natural frequency (vibration frequency at the compliance peak) depending on the presence or absence of the resin film, and sufficient static rigidity is maintained even when the film is sandwiched. From the above, the hard particles (biting contact hard particles) sandwiched between the metal surfaces supported the force in the vertical and sliding directions to ensure static rigidity, and at the same time remained on the contact surface with a relatively low contact surface pressure. It is considered that the hard particles (hard particles with low surface pressure contact) slide finely between the metal surfaces to improve the damping property. In addition, the PDMS film that has entered the gaps of the contact surface supported by the hard particles also contributes to the improvement of the damping property.
さらに、静剛性維持メカニズムを考慮に入れたうえで、打撃試験の結果を考察する。図2(c)に示すような接触状態において、元の接触面同士に噛み込み、1つの粗さ突起のように振る舞う粒子(噛み込み接触硬質粒子)の他に、粒径によっては低面圧で元の接触面に接触している粒子(低面圧接触硬質粒子)や、接触面に接触せず母材であるPDMSに包まれたままの粒子も存在することが推察される。 In addition, we consider the results of the impact test, taking into account the static stiffness maintenance mechanism. In the contact state as shown in FIG. It is speculated that there are particles that are in contact with the original contact surface (low surface pressure contact hard particles) and particles that are not in contact with the contact surface and are still wrapped in PDMS, which is the base material.
加振時のように接触面にせん断力が負荷された場合には、それぞれ接触面に噛み込んだ粒子(噛み込み接触硬質粒子)による塑性変形、低面圧で接触している粒子(低面圧接触硬質粒子)による摩擦減衰、PDMSの粘性減衰が発現していることが推察される。
接触面の粗さを変化させた場合の振動の変化、接触面の変化および硬質粒子のみを接触面に噛み込ませた場合の接触面粗さの変化に対する振動の変化については、フィルム1/3を挟み、試験片の粗さを変化させた場合について、加速度時間波形および周波数応答を、図13(a)、(b)にそれぞれ示す。それぞれの粗さは最大高さ粗さ(Rz)で凡例に示しており,最大高さ粗さが、約1[μm](実験例5)、約15[μm](実験例6)、約40[μm](実験例7)の最大高さ粗さに対する実験結果である。
When a shear force is applied to the contact surface, such as during excitation, plastic deformation due to particles caught in the contact surface (biting contact hard particles) and particles in contact with low surface pressure (low surface It is speculated that frictional damping due to pressure-contact hard particles) and viscous damping of PDMS are exhibited.
Regarding the change in vibration when the roughness of the contact surface is changed, the change in the contact surface, and the change in vibration with respect to the change in contact surface roughness when only hard particles are caught in the contact surface, the
図13(b)より、Rz=1[μm]の場合の結果と比較して、より最大高さ粗さの大きなRz=15[μm]の場合のピーク値が最も小さく、さらに最大高さ粗さの大きなRz=40[μm]の結果では、ピーク値は大きくなっていることが読み取れる。したがって、最大高さ粗さが、充填されている粒子1個分と同程度の場合に最も振動が抑制されることが推察される。 From FIG. 13(b), compared to the result of Rz=1 [μm], the peak value in the case of Rz=15 [μm], which has a larger maximum height roughness, is the smallest, and the maximum height roughness It can be read that the peak value is large in the result of Rz=40 [μm], which has a large height. Therefore, it is inferred that vibration is most suppressed when the maximum height roughness is approximately the same as one packed particle.
工作機械の制振技術の向上に利用することができる。 It can be used to improve the damping technology of machine tools.
1:制振用硬質粒子充填フィルム(硬質粒子充填フィルム)
2:フィルム
3:硬質粒子
13:噛み込み接触硬質粒子
23:低面圧接触硬質粒子
35、36、35´、36´:締結面(接触面)
37、37´:締結部
1: Hard particle-filled film for damping (hard particle-filled film)
2: Film 3: Hard particles 13: Biting contact hard particles 23: Low surface pressure contact
37, 37': fastening part
Claims (6)
The thickness of the vibration-damping hard particle-filled film exceeds the average particle diameter of the hard particles, and when the vibration-damping hard particle-filled film is compressed and expanded by the predetermined tightening force, the thickness is the average 6. A vibration damping method for a structure such as a machine according to claim 4 or 5, characterized in that the vibration damping method for a structure such as a machine or the like is performed so as to include a portion having a particle size or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021074654A JP2022168945A (en) | 2021-04-27 | 2021-04-27 | Film filled with hard particles for vibration control and vibration control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021074654A JP2022168945A (en) | 2021-04-27 | 2021-04-27 | Film filled with hard particles for vibration control and vibration control method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022168945A true JP2022168945A (en) | 2022-11-09 |
Family
ID=83943853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021074654A Pending JP2022168945A (en) | 2021-04-27 | 2021-04-27 | Film filled with hard particles for vibration control and vibration control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022168945A (en) |
-
2021
- 2021-04-27 JP JP2021074654A patent/JP2022168945A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Spurr | A theory of brake squeal | |
Sjöberg et al. | Non-linear behavior of a rubber isolator system using fractional derivatives | |
Constantinou et al. | Frictional characteristics of Teflon–steel interfaces under dynamic conditions | |
De et al. | Estimation of dynamic interfacial properties of geosynthetics | |
US8789666B2 (en) | Friction couple | |
Wang et al. | The effect of the grooved elastic damping component in reducing friction-induced vibration | |
Wang et al. | Improving dynamic and tribological behaviours by means of a Mn–Cu damping alloy with grooved surface features | |
Zhang et al. | A dynamic poroelastic model for auxetic polyurethane foams involving viscoelasticity and pneumatic damping effects in the linear regime | |
JP2022168945A (en) | Film filled with hard particles for vibration control and vibration control method | |
Friesen | Chatter in wet brakes | |
Eiss et al. | Stick–slip friction in dissimilar polymer pairs used in automobile interiors | |
Wu et al. | The influence of end-stop buffer characteristics on the severity of suspension seat end-stop impacts | |
Bednarz | The new methodology for assessing of the applicability of elastomeric materials in the vibration isolation systems of railway lines | |
Ono et al. | Experimental identification of elastic, damping and adhesion forces in collision of spherical sliders with stationary magnetic disks | |
Kanehira et al. | Evaluation of an energy dissipation mechanism by friction for brake shims | |
Shi et al. | An evaluation of the dynamic dent resistance of automotive steels | |
JP7428364B2 (en) | Vibration damping mass device and vibration damping mass device set | |
Bhagat et al. | Damping behavior of planar random carbon fiber reinforced 6061 Al matrix composites fabricated by high-pressure infiltration casting | |
Nishizawa et al. | Study of Dynamic Pad Stiffness Influencing Brake Squeal | |
JP4243475B2 (en) | Seismic sliding bearing | |
JPH11280297A (en) | Base isolation slide journal device | |
Lee et al. | Path dependent high strain, strain-rate deformation of polymer toroidal elements | |
YOKOI et al. | A Fundamental Study on Frictional Noise: 2nd Report, The Generating Mechanism of Squeal Noise of Higher Modes | |
Oura et al. | Comparison of Pad Stiffness under Static Pressure and Vibration with Small Amplitude | |
Thornley et al. | Some Static and Dynamic Characteristics of Bonded, Machined Joint Faces |