JP2022166266A - Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode - Google Patents

Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode Download PDF

Info

Publication number
JP2022166266A
JP2022166266A JP2022132204A JP2022132204A JP2022166266A JP 2022166266 A JP2022166266 A JP 2022166266A JP 2022132204 A JP2022132204 A JP 2022132204A JP 2022132204 A JP2022132204 A JP 2022132204A JP 2022166266 A JP2022166266 A JP 2022166266A
Authority
JP
Japan
Prior art keywords
catalyst layer
electrode
electrolysis
aqueous solution
orp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022132204A
Other languages
Japanese (ja)
Other versions
JP7388500B2 (en
Inventor
健二 坂本
Kenji Sakamoto
正治 土井
Masaharu Doi
清崇 石崎
Kiyotaka Ishizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2022166266A publication Critical patent/JP2022166266A/en
Priority to JP2023192851A priority Critical patent/JP2024010240A/en
Application granted granted Critical
Publication of JP7388500B2 publication Critical patent/JP7388500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a hydrogen generating electrode, capable of easily producing a hydrogen generating electrode of a sufficiently low initial hydrogen overvoltage and excellent durability.
SOLUTION: The method of producing a hydrogen generating electrode comprising a platinum-containing catalyst layer supported by an electroconductive substrate and having been used as a cathode for electrolysis, comprises a step of letting the platinum-containing catalyst layer supported by an electroconductive substrate contact an aqueous solution of pH of from 2.5 to 4.0 and ORP of not higher than 100 mV.
SELECTED DRAWING: None
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は水の電気分解又は食塩などのアルカリ金属塩化物水溶液の電気分解に使用する水素発生用電極の製造方法及び水素発生用電極を用いた電気分解方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for producing a hydrogen generating electrode used for electrolysis of water or an aqueous solution of an alkali metal chloride such as salt, and an electrolysis method using the electrode for hydrogen generation.

水又はアルカリ金属塩化物水溶液の電解工業は電力多消費型産業であり、省エネルギー化のために様々な技術開発が行われている。その省エネルギー化の手段とは、電解電圧の低減、及び/又は、電流効率の向上により、電解時に発生する電力ロスを削減することである。例えば、食塩電解工業において、電流効率は95%以上で操業されており、向上余地は少ない。それに対し、電解電圧は理論分解電圧の約2.3Vに対し3.0V前後で操業されており、電圧削減余地が大きく、電圧を削減するための研究開発が盛んに成されている。 The electrolysis industry of water or alkali metal chloride aqueous solution is a power-intensive industry, and various technological developments are being made for energy saving. The means for saving energy is to reduce the power loss that occurs during electrolysis by reducing the electrolysis voltage and/or improving the current efficiency. For example, in the salt electrolysis industry, the current efficiency is 95% or higher, and there is little room for improvement. On the other hand, the electrolysis voltage is operated at around 3.0 V compared to the theoretical decomposition voltage of about 2.3 V, and there is a large margin for voltage reduction, and extensive research and development efforts are being made to reduce the voltage.

中でも、陰極過電圧を低減するための水素発生用電極、いわゆる活性陰極に関しこれまで多くの提案がなされ、近年、導電性基材上に担持された白金を含む触媒層からなる活性陰極が提案されている。 Among them, many proposals have been made so far for hydrogen generating electrodes for reducing cathode overvoltage, so-called active cathodes, and in recent years, active cathodes consisting of a catalyst layer containing platinum supported on a conductive substrate have been proposed. there is

例えば、特許文献1には「導電性基材上に、白金と遷移金属元素との白金合金が担持されてなる」水素発生用電極が提案されている。 For example, Patent Literature 1 proposes an electrode for hydrogen generation, which is "a conductive base material supported on a platinum alloy of platinum and a transition metal element".

また、特許文献2には「導電性基材上に、白金、ニッケルおよびパラジウムを主成分とする触媒層が担持されてなる」水素発生用電極が提案されている。 Further, Patent Document 2 proposes an electrode for hydrogen generation, which is "a catalyst layer containing platinum, nickel and palladium as main components supported on a conductive substrate".

これらの水素発生用電極は、何れも、長期間にわたり十分な低水素過電圧性能が得られる優れた特性を有し、水又はアルカリ金属塩化物水溶液の電解工業の省エネルギー化に貢献している。 All of these electrodes for hydrogen generation have excellent properties that sufficiently low hydrogen overvoltage performance can be obtained for a long period of time, and contribute to energy saving in the electrolysis industry for water or aqueous alkali metal chloride solutions.

しかし、いずれの水素発生用電極も、製造過程において「水又はアルカリ金属塩化物水溶液中での電気化学的還元処理」を行うが、該電気化学的還元処理により、時として、本来の特性が得られない場合があった。すなわち、電気化学的還元処理を行い製造された導電性基材上に担持された白金を含む触媒層からなる水素発生用陰極で、本来より5~30mVも高い水素過電圧性能を示す場合が有り、本来の低水素過電圧性能を安定的に得られる水素発生用電極の製造方法が求められている。また、電気分解の陰極として使用された水素発生電極は、使用前に比較し5~30mVも高い水素化電圧性能を示す場合があり、使用後の水素発生用電極の過電圧性能を低減可能な製造方法が求められている。 However, any hydrogen generating electrode undergoes "electrochemical reduction treatment in water or an aqueous solution of alkali metal chloride" in the manufacturing process, and the original characteristics are sometimes obtained by the electrochemical reduction treatment. Sometimes it was not possible. That is, a cathode for hydrogen generation consisting of a catalyst layer containing platinum supported on a conductive substrate manufactured by electrochemical reduction treatment may exhibit hydrogen overvoltage performance higher than the original by 5 to 30 mV. There is a need for a method of manufacturing a hydrogen generation electrode that can stably provide the inherent low hydrogen overvoltage performance. In addition, the hydrogen generation electrode used as the cathode for electrolysis may exhibit a hydrogenation voltage performance that is 5 to 30 mV higher than before use, and the overvoltage performance of the hydrogen generation electrode after use can be reduced. A method is needed.

特開2005-330575号公報JP-A-2005-330575 特開2015-143389号公報JP 2015-143389 A

本発明の目的は、水又はアルカリ金属塩化物水溶液電解工業等で陰極として使用可能で、低水素過電圧性能を安定的に得られる、導電性基材上に担持された白金を含む触媒層からなる水素発生用電極の製造方法と電気分解の陰極として使用された後の水素発生用電極の製造方法を提供することにある。 The object of the present invention is a catalyst layer containing platinum supported on a conductive substrate that can be used as a cathode in the water or alkali metal chloride aqueous solution electrolysis industry, etc., and can stably obtain low hydrogen overvoltage performance. It is an object of the present invention to provide a method for producing an electrode for hydrogen generation and a method for producing an electrode for hydrogen generation after being used as a cathode for electrolysis.

発明者は上記の課題を解決するために、導電性基材上に担持された白金を含む触媒層からなる水素発生用電極の製造方法と電気分解の陰極として使用された後の水素発生用電極の製造方法について、鋭意検討を重ねた結果、本発明を完成するに至ったものである。すなわち、本発明は、導電性基材上に担持された白金を含む触媒層を有し、かつ、電気分解の陰極として使用された後の水素発生用電極の製造方法であって、前記導電性基材上に担持された白金を含む触媒層と、pHが2.5~4.0で、ORPが100mV以下の水溶液とを接触させる水素発生用電極の製造方法である。 In order to solve the above problems, the inventors have provided a method for producing a hydrogen generating electrode comprising a catalyst layer containing platinum supported on a conductive substrate, and a hydrogen generating electrode after being used as a cathode for electrolysis. The present invention has been completed as a result of earnest studies on the manufacturing method of . That is, the present invention is a method for producing a hydrogen generating electrode having a catalyst layer containing platinum supported on a conductive substrate and used as a cathode for electrolysis, wherein the conductive A method for producing a hydrogen generating electrode, comprising contacting a catalyst layer containing platinum supported on a substrate with an aqueous solution having a pH of 2.5 to 4.0 and an ORP of 100 mV or less.

以下、本発明について詳細に説明する。 The present invention will be described in detail below.

本発明の水素発生用電極の製造方法は、導電性基材上に担持された白金を含む触媒層と、pHが2.5~4.0で、ORPが100mV以下の水溶液とを接触させることが必須である。 The method for producing a hydrogen generating electrode of the present invention comprises contacting a catalyst layer containing platinum supported on a conductive substrate with an aqueous solution having a pH of 2.5 to 4.0 and an ORP of 100 mV or less. is required.

本発明に用いる水溶液はpHが2.5~4.0であることが必須である。pHが2.5未満の場合は導電性基材が腐食したり、触媒層が脱落したりして、本発明の効果が得られない。また、pHが4.0を超える場合は安定的に低過電圧性能を得ることができない。好ましくはpHが2.9~3.5であり、より好ましくはpHが2.9~3.3である。なお、水溶液のpHは市販のpH計で測定すればよい。 It is essential that the aqueous solution used in the present invention has a pH of 2.5 to 4.0. If the pH is less than 2.5, the conductive substrate may corrode or the catalyst layer may come off, failing to obtain the effects of the present invention. Moreover, when pH exceeds 4.0, low overvoltage performance cannot be stably obtained. Preferably the pH is from 2.9 to 3.5, more preferably from 2.9 to 3.3. The pH of the aqueous solution can be measured with a commercially available pH meter.

本発明では、水溶液のpHを2.5~4.0にできれば、その方法に限定はない。所謂、酸を適量添加すればよい。例えば、塩酸、硝酸、硫酸などの鉱酸や、ぎ酸、酢酸、クエン酸、アスパラギン酸、アスコルビン酸、エリソルビン酸などの有機酸の1種以上を水に添加し、pHを2.5~4.0にすればよい。 In the present invention, the method is not limited as long as the pH of the aqueous solution can be adjusted to 2.5 to 4.0. An appropriate amount of so-called acid may be added. For example, one or more of mineral acids such as hydrochloric acid, nitric acid and sulfuric acid and organic acids such as formic acid, acetic acid, citric acid, aspartic acid, ascorbic acid and erythorbic acid are added to water to adjust the pH to 2.5 to 4. .0.

本発明に用いる水溶液は酸化還元電位、すなわちORPが100mV以下であることが必須である。ORPが100mVを超える場合は安定的に低過電圧性能を得ることができない。好ましくはORPが50mV以下である。ORPの下限はない。なお、水溶液のORPは市販のORP計で測定すればよい。 It is essential that the aqueous solution used in the present invention has an oxidation-reduction potential, that is, an ORP of 100 mV or less. If the ORP exceeds 100 mV, stable low overvoltage performance cannot be obtained. ORP is preferably 50 mV or less. There is no lower limit for ORP. The ORP of the aqueous solution can be measured with a commercially available ORP meter.

本発明では、水溶液のORPを100mV以下にできれば、その方法に限定はない。例えば、水に酸を添加し、pHを2.5~4.0に調整した時点で、ORPが100mV以下になっていればそのまま本発明に使用可能である。 In the present invention, the method is not limited as long as the ORP of the aqueous solution can be reduced to 100 mV or less. For example, when the pH is adjusted to 2.5 to 4.0 by adding an acid to water, if the ORP is 100 mV or less, it can be used in the present invention as it is.

しかし、通常、ORPは100mVを超えるため、例えば、所謂、還元剤を適量添加し、ORPを100mV以下に調整する。例えば、アスコルビン酸ナトリウム、ヒドラジン、亜硫酸ナトリウム、エリソルビン酸ナトリウムなどの還元剤を添加し、ORPを100mV以下にすればよい。ORPを100mV以下に調整する別の方法としては、例えば、窒素やアルゴン等の不活性ガスを吹込むこともできる。これらのORPを100mV以下に調整する方法のうち、コスト面から、還元剤を添加する方法が好ましい。 However, since the ORP usually exceeds 100 mV, for example, an appropriate amount of so-called reducing agent is added to adjust the ORP to 100 mV or less. For example, a reducing agent such as sodium ascorbate, hydrazine, sodium sulfite, or sodium erythorbate may be added to lower the ORP to 100 mV or less. Another method for adjusting the ORP to 100 mV or less is to blow an inert gas such as nitrogen or argon. Of these methods for adjusting the ORP to 100 mV or less, the method of adding a reducing agent is preferable from the viewpoint of cost.

上記の通り、酸、及び/又は、還元剤を水に添加し、pHが2.5~4.0で、ORPが100mV以下の水溶液を作製し、前記水溶液を導電性基材上に担持された白金を含む触媒層に接触させればよい。 As described above, an acid and/or a reducing agent is added to water to prepare an aqueous solution having a pH of 2.5 to 4.0 and an ORP of 100 mV or less, and the aqueous solution is supported on a conductive substrate. It may be brought into contact with a catalyst layer containing platinum.

前記触媒層と前記水溶液とを接触させる方法に特に制約はない。例えば、適当な容器に前記水溶液を入れ、その中に前記触媒層が担持された導電性基材を一定時間投入すればよい。 There are no particular restrictions on the method of contacting the catalyst layer and the aqueous solution. For example, the aqueous solution is placed in a suitable container, and the conductive substrate supporting the catalyst layer is placed therein for a certain period of time.

水溶液の温度は、水溶液の融点を超え、沸点未満であればよい。温度が高いと還元剤が分解する場合があるので、好ましくは40℃以下であり、さらに好ましくは、10~35℃であり、所謂、室温でよく、特段の加熱や冷却は不要である。 The temperature of the aqueous solution should be above the melting point of the aqueous solution and below the boiling point. If the temperature is high, the reducing agent may decompose, so the temperature is preferably 40° C. or less, more preferably 10 to 35° C., so-called room temperature, and no special heating or cooling is required.

水溶液と接触させる時間に特段の制約はないが、本発明の効果をより発揮させるため、1時間以上が好ましい。また、基材の腐食を防ぐために、240時間以下が好ましい。特に好ましくは10時間以上、48時間以下である。 The contact time with the aqueous solution is not particularly limited, but it is preferably 1 hour or more in order to exhibit the effect of the present invention more. Moreover, in order to prevent corrosion of the base material, 240 hours or less is preferable. Particularly preferably, it is 10 hours or more and 48 hours or less.

本発明に用いる触媒層は白金を含むことが必須である。白金を含むことで水素発生時の過電圧が極めて低い水素発生用電極が製造可能である。また、好ましくは、前記触媒層はニッケル、パラジウムの少なくとも何れか一方を含むものであり、特に好ましくは、前記触媒層は白金、ニッケル及びパラジウムを含むものである。 The catalyst layer used in the present invention must contain platinum. By including platinum, it is possible to manufacture an electrode for hydrogen generation with extremely low overvoltage during hydrogen generation. Moreover, preferably, the catalyst layer contains at least one of nickel and palladium, and particularly preferably, the catalyst layer contains platinum, nickel, and palladium.

前記触媒層は導電性基材に担持されていることが必須である。用いられる導電性基材の材質は、例えば、ニッケル、鉄、銅、チタン、ステンレス合金鋼が挙げられ、特にアルカリ性溶液に対して耐食性の優れたニッケルが好ましい。 It is essential that the catalyst layer is supported on a conductive substrate. Examples of the material of the conductive base material used include nickel, iron, copper, titanium, and stainless steel alloys, and nickel is particularly preferred because of its excellent corrosion resistance to alkaline solutions.

導電性基材の形状は、特に限定されるものではなく、一般に電解槽の電極に合せた形状でよく、例えば、平板、曲板等が使用可能である。 The shape of the conductive substrate is not particularly limited, and may generally be a shape that matches the electrode of the electrolytic cell. For example, a flat plate, curved plate, etc. can be used.

また、用いられる導電性基材は、多孔板が好ましく、例えば、エキスパンドメタル、パンチングメタル、網等が使用できる。 Moreover, the conductive base material to be used is preferably a perforated plate, and for example, expanded metal, punching metal, mesh or the like can be used.

前記導電性基材に前記触媒層を担持する方法は特に制約はなく、特許文献1や特許文献2に記載の従来手法(触媒成分を含有した液を基材に塗布し、熱分解する)を、適宜、用いればよい。前記触媒層の組成も特に制約はなく、特許文献1や特許文献2に記載の従来組成(白金と、ニッケル、コバルト、銅、銀及び鉄の群から選ばれる一種の遷移金属元素との白金合金であって、白金合金中の白金含有量が、モル比で0.40~0.99の範囲、または、白金、ニッケルおよびパラジウムを主成分とする触媒層)が本発明に好ましく適用可能である。 The method for supporting the catalyst layer on the conductive substrate is not particularly limited, and the conventional method described in Patent Document 1 or Patent Document 2 (applying a liquid containing a catalyst component to the substrate and thermally decomposing) can be used. , may be used as appropriate. The composition of the catalyst layer is also not particularly limited, and the conventional composition described in Patent Document 1 and Patent Document 2 (platinum alloy with a transition metal element selected from the group of platinum and nickel, cobalt, copper, silver and iron and the platinum content in the platinum alloy is in the range of 0.40 to 0.99 in terms of molar ratio, or the catalyst layer mainly composed of platinum, nickel and palladium) is preferably applicable to the present invention. .

前記触媒層を担持する方法は、例えば、白金を含む触媒層形成用液を前記導電性基材上に塗布、乾燥、熱分解し、導電性基材上に触媒層を形成することができる。前記触媒層形成用液にはニッケル、パラジウムの何れか一方、または、両方を含んでもよい。熱分解は、例えば、350~500℃で5~60分が例示される。前記塗布、乾燥、熱分解の一連の作業を、所定回数繰り返せばよく、例えば、2~15回繰り返せばよい。 As a method for supporting the catalyst layer, for example, a catalyst layer forming liquid containing platinum is applied onto the conductive substrate, dried, and thermally decomposed to form the catalyst layer on the conductive substrate. Either or both of nickel and palladium may be contained in the catalyst layer forming liquid. Thermal decomposition is exemplified by, for example, 350-500° C. for 5-60 minutes. A series of operations of coating, drying, and thermal decomposition may be repeated a predetermined number of times, for example, 2 to 15 times.

触媒層形成用液は、例えば、白金化合物、ニッケル化合物、パラジウム化合物を溶媒に溶解することで作製できる。 The catalyst layer forming liquid can be prepared by dissolving, for example, a platinum compound, a nickel compound, and a palladium compound in a solvent.

触媒層形成用液の作製に用いられる白金化合物は、例えば、塩化白金酸、ジニトロジアミン白金などの白金塩等を用いることができる。特にアンミン錯体を形成するジニトロジアンミン白金を用いると、還元処理後の白金合金の結晶子径を例えば200オングストローム以下まで微細化し、反応比表面積を増大させられるため好ましい。これは、前記ジニトロジアミン白金は熱分解温度が約550℃と高いために、熱分解中の白金の凝集が抑制される。 Platinum salts such as chloroplatinic acid and dinitrodiamine platinum can be used as the platinum compound used for preparing the catalyst layer forming liquid. In particular, the use of dinitrodiammineplatinum, which forms an ammine complex, is preferable because the crystallite size of the platinum alloy after reduction treatment can be reduced to, for example, 200 angstroms or less, and the reaction specific surface area can be increased. This is because dinitrodiamineplatinum has a high thermal decomposition temperature of about 550.degree. C., so aggregation of platinum during thermal decomposition is suppressed.

触媒層形成用液の作製に用いられるニッケル化合物、パラジウム化合物は、触媒層の組成が均一になり易く、また、担持物の表面積を高め易い等のため、溶媒に可溶な原料が好ましく、例えば、ニッケル塩、ニッケル微粒子、パラジウム塩、パラジウム微粒子等があげられる。ニッケル塩、パラジウム塩における塩としては、例えば、硝酸塩、硫酸塩、塩化物、炭酸塩、酢酸塩、スルファミン酸塩などの塩類等を用いることができる。 Nickel compounds and palladium compounds used for preparing the catalyst layer forming liquid are preferably raw materials that are soluble in a solvent because the composition of the catalyst layer is likely to be uniform and the surface area of the support is likely to be increased. , nickel salts, nickel fine particles, palladium salts, palladium fine particles, and the like. Salts such as nickel salts and palladium salts can be used, for example, salts such as nitrates, sulfates, chlorides, carbonates, acetates and sulfamates.

前記溶媒は白金化合物とニッケル化合物とパラジウム化合物が完全に溶解できるものが好ましく、水、硝酸、塩酸、硫酸などの無機酸、メタノール、エタノール、プロパノール、ブタノール、酢酸などの有機溶媒、またはこれらを混合物として用いることもできる。また、塗布液中へ基材金属の溶解を抑制する目的で触媒層形成用液のpHを調製して用いてもよく、担持物の表面積を高めるためにリシン、クエン酸等の錯塩を添加し、ニッケルおよびパラジウムを錯体化させてもよい。 The solvent is preferably one in which the platinum compound, the nickel compound and the palladium compound can be completely dissolved. Water, inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid, organic solvents such as methanol, ethanol, propanol, butanol and acetic acid, or mixtures thereof. It can also be used as Further, the pH of the catalyst layer forming liquid may be adjusted for the purpose of suppressing the dissolution of the base metal into the coating liquid, and a complex salt such as lysine or citric acid may be added to increase the surface area of the support. , nickel and palladium.

本発明の水素発生用電極の製造方法で形成される触媒層の組成(白金、ニッケル及びパラジウムの比率)は、触媒層形成用液の組成で定まるため、触媒層形成用液の白金、ニッケル及びパラジウムは、所望の水素発生用電極の触媒層の組成と同一に調整すればよい。また、触媒層形成用液の金属成分濃度は、特に限定されるものではなく、例えば、白金濃度を40~80g/Lとし、ニッケル及びパラジウムを白金に対して所望の比率になるようにすればよい。 The composition of the catalyst layer (ratio of platinum, nickel and palladium) formed by the method for producing a hydrogen generating electrode of the present invention is determined by the composition of the catalyst layer forming liquid. Palladium may be adjusted to have the same composition as the desired catalyst layer of the electrode for hydrogen generation. In addition, the metal component concentration of the catalyst layer forming solution is not particularly limited. good.

前記導電性基材は、予め基材表面を粗面化することが好ましい。これは、粗面化によって接触表面積を大きくでき、基材と担持物の密着性が向上するためである。粗面化の手段としては特に限定されず、公知の方法、例えば、サンドブラスト処理、蓚酸、塩酸溶液などによりエッチング処理し、水洗、乾燥する方法等を用いることができる。 It is preferable that the surface of the conductive substrate be roughened in advance. This is because roughening can increase the contact surface area and improve the adhesion between the substrate and the carrier. The surface roughening means is not particularly limited, and known methods such as sandblasting, etching with oxalic acid or hydrochloric acid solution, washing with water, and drying can be used.

前記触媒層形成用液を前記導電性基材に塗布する方法は、例えば、白金塩を、必要であれば、ニッケル塩とパラジウム塩をも含む触媒層形成用液を、刷毛などを用いて導電性基材に塗布してもよい。また、刷毛塗り以外にスプレー法、ディップコート法など、全ての既知の方法を好適に用いることができる。 The method of applying the catalyst layer forming liquid to the conductive substrate includes, for example, applying a catalyst layer forming liquid containing a platinum salt, and if necessary, a nickel salt and a palladium salt, to a conductive substrate using a brush or the like. It may be applied to a flexible substrate. In addition to brush coating, all known methods such as spraying and dip coating can be suitably used.

塗布後の乾燥温度は、例えば、200℃以下の温度で5~60分間行えばよく、150℃以下の乾燥温度が好ましい。 The drying temperature after coating may be, for example, 200° C. or less for 5 to 60 minutes, preferably 150° C. or less.

乾燥後の熱分解温度は、例えば、200℃を超え700℃以下の範囲で5~60分間行えばよいが、好ましくは350℃を超え500℃以下の範囲で行うとよい。例えば、ジニトロジアミン白金溶液を用いた場合、ジニトロジアミン白金の熱分解温度は550℃であり、500℃以下で熱分解を行うことで白金のシンタリングが抑制され、水素過電圧がより一層低い水素発生用電極を得ることができる。 The thermal decomposition temperature after drying may be, for example, over 200° C. and 700° C. or less for 5 to 60 minutes, preferably over 350° C. and 500° C. or less. For example, when a dinitrodiamine platinum solution is used, the thermal decomposition temperature of dinitrodiamine platinum is 550 ° C., and by performing thermal decomposition at 500 ° C. or less, sintering of platinum is suppressed, and hydrogen generation with even lower hydrogen overvoltage. can obtain an electrode for

本発明では、前記触媒層形成用液の塗布量、塗布回数は特に制約はなく、例えば、導電基材の投影面積あたり13~31mL/m2に制御して塗布した後、乾燥、熱分解する工程を4~8回繰返し、最終的な触媒層重量として10g/m2以上とすればよい。触媒層の重量は、12g/m2以上が好ましく、14g/m2以上であることがさらに好ましい。 In the present invention, there are no particular restrictions on the amount and number of times of application of the liquid for forming a catalyst layer. For example, the step of applying the solution while controlling it to 13 to 31 mL/m2 per projected area of the conductive substrate, followed by drying and thermal decomposition. is repeated 4 to 8 times to obtain a final catalyst layer weight of 10 g/m2 or more. The weight of the catalyst layer is preferably 12 g/m2 or more, more preferably 14 g/m2 or more.

また、触媒層形成用液は基材の片面のみに塗布しても良いが、特に基材が多孔板の場合は、両面に塗布することが好ましい。 The catalyst layer-forming liquid may be applied to only one side of the base material, but is preferably applied to both sides especially when the base material is a perforated plate.

本発明では、前記塗布、乾燥、熱分解を終えた後、300~500℃で0.2~8時間、焼成を行ってもよい。 In the present invention, after finishing the coating, drying and thermal decomposition, baking may be performed at 300 to 500° C. for 0.2 to 8 hours.

前記方法などにより導電性基材に形成した触媒層について、金属状態に還元、合金化させることを目的とした還元処理を行うことが好ましい。還元処理方法は特に限定されないが、例えば、ヒドラジン、ギ酸、蓚酸などの還元力の強い物質との接触による化学還元法、白金とニッケルとパラジウムに対し、還元電位を与える電気化学的還元法等を用いることができる。好ましくは、水又はアルカリ金属塩化物水溶液の電気分解をするときの陰極に用いて行う電気化学的還元法が好ましい。なお、本発明でいう「水の電気分解」とは、「純水の電気分解」ではなく、「NaOH、KOH、HCl、H2SO4等の電解質を含む水の電気分解」を意味する。例えば、前記の導電性基材上に担持された白金を含む触媒層をイオン交換膜法食塩電解槽に陰極として取り付け、食塩電解を行えば、前記触媒層が電気化学的に還元される。 It is preferable to subject the catalyst layer formed on the conductive base material by the above-described method to a reduction treatment for the purpose of reduction and alloying to a metallic state. The reduction treatment method is not particularly limited, but for example, a chemical reduction method by contact with a substance having a strong reducing power such as hydrazine, formic acid, and oxalic acid, an electrochemical reduction method that gives a reduction potential to platinum, nickel, and palladium. can be used. Preferably, the electrochemical reduction method is carried out by using it as a cathode when electrolyzing water or an aqueous alkali metal chloride solution. In the present invention, "electrolysis of water" does not mean "electrolysis of pure water" but means "electrolysis of water containing electrolytes such as NaOH, KOH, HCl and H2SO4". For example, if the catalyst layer containing platinum supported on the conductive substrate is attached as a cathode to an ion-exchange membrane method salt electrolysis cell and salt electrolysis is performed, the catalyst layer is electrochemically reduced.

食塩電解条件は、特に制約はなく、イオン交換膜法食塩電解の電解条件をそのまま適用すればよい。例えば、温度:70~90℃、電解電流密度:1~10kA/m2で実施すればよく、好ましくは、温度:80~88℃、電解電流密度:3~8kA/m2である。触媒層の還元時間は、特に制約はないが、3分間以上継続すればよく、時間の上限はない。 Salt electrolysis conditions are not particularly limited, and the electrolysis conditions for ion-exchange membrane method salt electrolysis may be applied as they are. For example, temperature: 70 to 90° C., electrolysis current density: 1 to 10 kA/m 2 , preferably temperature: 80 to 88° C., electrolysis current density: 3 to 8 kA/m 2 . The reduction time of the catalyst layer is not particularly limited, but it may be continued for 3 minutes or longer, and there is no upper limit on the time.

特許文献1や特許文献2に記載の水素発生用電極は優れた性能を発揮するものの、従来の製造方法で製作すると、場合によっては80mVを超える過電圧を示す場合がある。ところが、本発明の製造方法(請求項1)を適用することによって、80mV未満の優れた過電圧を示す水素発生用電極が容易に得られる。 Although the electrodes for hydrogen generation described in Patent Literature 1 and Patent Literature 2 exhibit excellent performance, they may show an overvoltage exceeding 80 mV in some cases when manufactured by a conventional manufacturing method. However, by applying the manufacturing method of the present invention (claim 1), it is possible to easily obtain a hydrogen generating electrode exhibiting an excellent overvoltage of less than 80 mV.

従来の製造方法では80mVを超える過電圧を示す場合がある原因は必ずしも明確でないが、前記還元処理時に鉄などで被毒されることがあるためと想定される。このため、電気化学的還元を施したのち、触媒を脱落させることなく被毒物質を除去する工程が必須である。本発明の製造方法である、導電性基材上に担持された白金を含む触媒層と、pHが2.5~4.0で、ORPが100mV以下の水溶液とを接触させることで、触媒を脱落させることなく被毒物質が除去されるものと推定している。 Although the reason why the overvoltage exceeding 80 mV is sometimes exhibited in the conventional manufacturing method is not necessarily clear, it is presumed that it may be poisoned by iron or the like during the reduction treatment. Therefore, after the electrochemical reduction, a step of removing the poisoning substance without detaching the catalyst is essential. By contacting a catalyst layer containing platinum supported on a conductive substrate, which is the production method of the present invention, with an aqueous solution having a pH of 2.5 to 4.0 and an ORP of 100 mV or less, the catalyst is removed. It is presumed that poisonous substances are removed without falling off.

従って、本発明は水又はアルカリ金属塩化物水溶液中での電気化学的還元処理を施した後、pHが2.5~4.0で、ORPが100mV以下の水溶液と前記触媒層を接触させることが好ましい。触媒層の還元時間は、前記の如く、3分間以上継続すればよく、還元処理を3分間で止め、その後、pHが2.5~4.0で、ORPが100mV以下の水溶液と前記触媒層を接触させてもよい。 Therefore, in the present invention, after electrochemical reduction treatment in water or an aqueous alkali metal chloride solution, the catalyst layer is brought into contact with an aqueous solution having a pH of 2.5 to 4.0 and an ORP of 100 mV or less. is preferred. As described above, the reduction time of the catalyst layer may be continued for 3 minutes or longer, and the reduction treatment is stopped after 3 minutes. may be brought into contact.

また、導電性基材上に担持された白金を含む触媒層は、一定期間、水又はアルカリ金属塩化物水溶液の電気分解の陰極として使用した後のものであっても、pHが2.5~4.0で、ORPが100mV以下の水溶液と接触させることで本発明の効果を得ることができる。この触媒層は、前記した触媒層の電気化学的還元処理を施した後のものであってもよく、電気化学的還元処理を施さないものでもよい。さらに、この触媒層をpHが2.5~4.0で、ORPが100mV以下の水溶液に接触させる前に、電気化学的還元処理を施してもよく、電気化学的還元処理を施さなくてもよい。例えば、触媒の還元が終了した後、4~8年間、水又はアルカリ金属塩化物水溶液の電気分解の陰極として使用した後に、pHが2.5~4.0で、ORPが100mV以下の水溶液と前記触媒層を接触させることによって、水素発生過電圧が80mV未満の水素発生用電極を得ることができる。 In addition, the catalyst layer containing platinum supported on the conductive substrate has a pH of 2.5 to 2.5 even after being used as a cathode for electrolysis of water or an aqueous alkali metal chloride solution for a certain period of time. The effects of the present invention can be obtained by contacting with an aqueous solution having an ORP of 4.0 or less and an ORP of 100 mV or less. This catalyst layer may be one after the electrochemical reduction treatment of the catalyst layer described above, or may be one without the electrochemical reduction treatment. Furthermore, before contacting this catalyst layer with an aqueous solution having a pH of 2.5 to 4.0 and an ORP of 100 mV or less, electrochemical reduction treatment may be performed, or electrochemical reduction treatment may not be performed. good. For example, after the reduction of the catalyst is completed, it is used as a cathode for electrolysis of water or an aqueous alkali metal chloride solution for 4 to 8 years, and then an aqueous solution with a pH of 2.5 to 4.0 and an ORP of 100 mV or less. A hydrogen generation electrode having a hydrogen generation overvoltage of less than 80 mV can be obtained by contacting the catalyst layer.

導電性基材上に担持された白金を含む触媒層を、pHが2.5~4.0で、ORPが100mV以下の水溶液と接触させる場合には、当該触媒層を、水又はアルカリ金属塩化物水溶液の電気分解に用いる電解セルから取り外し、pHが2.5~4.0で、ORPが100mV以下の水溶液と接触させることで、本発明の効果を得ることができる。その他の方法として、当該触媒層を、水又はアルカリ金属塩化物水溶液の電気分解に用いる電解セルから取り外すことなく、前記導電性基材上に担持された白金を含む触媒層が陰極として装着された状態で、pHが2.5~4.0で、ORPが100mV以下の水溶液と接触させることでも本発明の効果を得ることができる。電解セルから取り外さない場合は、電解セルから前記導電性基材上に担持された白金を含む触媒層の取り外しや再取り付けが不要となり、陰極製造がより簡便に実施可能である。 When the catalyst layer containing platinum supported on a conductive substrate is brought into contact with an aqueous solution having a pH of 2.5 to 4.0 and an ORP of 100 mV or less, the catalyst layer is treated with water or an alkali metal chloride. The effect of the present invention can be obtained by removing from the electrolytic cell used for electrolysis of the aqueous solution and bringing it into contact with an aqueous solution having a pH of 2.5 to 4.0 and an ORP of 100 mV or less. Alternatively, a catalyst layer containing platinum supported on the conductive substrate was mounted as a cathode without removing the catalyst layer from the electrolysis cell used for the electrolysis of water or an aqueous alkali metal chloride solution. The effect of the present invention can also be obtained by contacting with an aqueous solution having a pH of 2.5 to 4.0 and an ORP of 100 mV or less. If it is not removed from the electrolysis cell, it becomes unnecessary to remove and reattach the catalyst layer containing platinum supported on the conductive substrate from the electrolysis cell, and the cathode can be manufactured more easily.

例えば、前記導電性基材上に担持された白金を含む触媒層が陰極として装着された状態で、ビニールシートを隔膜に用いて電解セルを組み立て、陰極室にpHが2.5~4.0で、ORPが100mV以下の水溶液を満たせば、前記触媒層とpHが2.5~4.0で、ORPが100mV以下の水溶液を接触させることが可能である。 For example, an electrolytic cell is assembled using a vinyl sheet as a diaphragm in a state where the catalyst layer containing platinum supported on the conductive substrate is mounted as a cathode, and the cathode chamber has a pH of 2.5 to 4.0. If the catalyst layer is filled with an aqueous solution having an ORP of 100 mV or less, the catalyst layer can be brought into contact with an aqueous solution having a pH of 2.5 to 4.0 and an ORP of 100 mV or less.

また、例えば、前記導電性基材上に担持された白金を含む触媒層が陰極として装着された状態で、2つの陰極を、各々、対向させた状態で電解セルを組み立て、該陰極室にpHが2.5~4.0で、ORPが100mV以下の水溶液を満すことでも、前記触媒層とpHが2.5~4.0で、ORPが100mV以下の水溶液を接触させることが可能である。 Further, for example, in a state in which a catalyst layer containing platinum supported on the conductive substrate is mounted as a cathode, an electrolytic cell is assembled with two cathodes facing each other, and a pH is added to the cathode chamber. is 2.5 to 4.0 and the ORP is 100 mV or less, the catalyst layer can be brought into contact with the aqueous solution having a pH of 2.5 to 4.0 and an ORP of 100 mV or less. be.

上記の方法で陰極を製造した後、電解セルを解体し、例えば、陽イオン交換膜を隔膜に用いて電解セルを組み立て、水又はアルカリ金属塩化物水溶液の電気分解を実施すれば、従来よりも低電圧で電気分解を実施することが可能である。 After manufacturing the cathode by the above method, the electrolytic cell is dismantled, for example, an electrolytic cell is assembled using a cation exchange membrane as a diaphragm, and water or an aqueous alkali metal chloride solution is electrolyzed. It is possible to carry out electrolysis at low voltages.

本発明の水素発生用電極は、水又はアルカリ金属塩化物水溶液を電気分解し、前記陰極上から水素ガス及びアルカリ金属水酸化物水溶液を生成し、陽極上から酸素ガス又は塩素ガスを生成することを特徴とする電解、すなわち、隔膜を挟んで陽極を配置した電解槽で水又は食塩などのアルカリ金属塩化物水溶液の電気分解での用途において、水素発生用電極として用いると、低水素過電圧が得られると共に、陰極液中に鉄イオンを混入させない特別な工夫をすることなく低過電圧特性を長期間安定に維持し、かつ、停止や再起動操作時に触媒が剥離や脱落を生じることもない、すなわち、水素過電圧性能と耐久性に極めて優れた水素発生用電極である。ここで、隔膜とは、代表的に、陽イオンを選択的に透過する陽イオン交換膜などが挙げられる。 The electrode for hydrogen generation of the present invention electrolyzes water or an aqueous alkali metal chloride solution to produce hydrogen gas and an aqueous alkali metal hydroxide solution on the cathode, and to produce oxygen gas or chlorine gas on the anode. That is, when used as an electrode for hydrogen generation in the electrolysis of water or an aqueous alkali metal chloride solution such as salt in an electrolytic cell in which the anode is placed across the diaphragm, a low hydrogen overvoltage can be obtained. In addition, the low overvoltage characteristics are stably maintained for a long period of time without special measures to prevent iron ions from entering the catholyte, and the catalyst does not peel off or come off during shutdown or restart operations. It is an electrode for hydrogen generation with extremely excellent hydrogen overvoltage performance and durability. Here, the diaphragm typically includes a cation exchange membrane that selectively permeates cations.

従って、水又は食塩などのアルカリ金属塩化物水溶液の電気分解工業分野において、水素発生用電極を本発明が提供する製造方法で製造された水素発生用電極に変更するのみで、当該電気分解工業の所要エネルギーが低減可能となる。 Therefore, in the field of the electrolysis industry for aqueous solutions of alkali metal chlorides such as water or salt, simply by changing the electrode for hydrogen generation to the electrode for hydrogen generation produced by the production method provided by the present invention, the electrolysis industry Required energy can be reduced.

本発明によれば、初期の水素過電圧が十分に低く、かつ、耐久性に優れた水素発生用電極が容易に得られ、水又はアルカリ金属水溶液の電気分解工業等の所要エネルギーを大幅に削減可能である。 According to the present invention, an electrode for hydrogen generation with sufficiently low initial hydrogen overvoltage and excellent durability can be easily obtained, and the required energy for the electrolysis industry of water or alkali metal aqueous solution can be greatly reduced. is.

以下の実施例により、本発明を具体的に説明するが、本発明は実施例のみに限定されるものではない。 The present invention will be specifically described by the following examples, but the present invention is not limited only to the examples.

<導電性基材>
導電性基材はニッケルエキスパンドメタルを用いた。ニッケルエキスパンドメタルは、前処理として、10wt%の塩酸溶液を用いて温度50℃で10分間エッチングした後、水洗、乾燥した。
<Conductive substrate>
Nickel expanded metal was used as the conductive base material. As a pretreatment, the nickel expanded metal was etched with a 10 wt % hydrochloric acid solution at a temperature of 50° C. for 10 minutes, then washed with water and dried.

<触媒層形成用液の作製>
白金とニッケルを含む触媒層形成用液は、白金含有量が100g/Lのジニトロジアンミン白金硝酸溶液(田中貴金属製)60mLに硝酸ニッケル6水和物8.94gを溶解し、次いで、水を用いて100mLにメスアップして作製した(白金:50モル%、ニッケル:50モル%)。
<Preparation of liquid for forming catalyst layer>
The catalyst layer forming solution containing platinum and nickel was obtained by dissolving 8.94 g of nickel nitrate hexahydrate in 60 mL of a dinitrodiammineplatinum nitric acid solution (manufactured by Tanaka Kikinzoku) with a platinum content of 100 g/L, and then using water. (Platinum: 50 mol %, Nickel: 50 mol %).

白金、ニッケル及びパラジウムを含む触媒層形成用液は、白金含有量が100g/Lのジニトロジアンミン白金硝酸溶液(田中貴金属製)60mLに硝酸ニッケル6水和物8.94gと硝酸パラジウム2水和物(小島化学薬品製)0.82gを溶解し、次いで、水を用いて100mLにメスアップして作製した(白金:48モル%、ニッケル:48モル%、パラジウム:4モル%)。 The catalyst layer forming solution containing platinum, nickel and palladium was prepared by adding 8.94 g of nickel nitrate hexahydrate and palladium nitrate dihydrate to 60 mL of a dinitrodiammineplatinum nitric acid solution (manufactured by Tanaka Kikinzoku) with a platinum content of 100 g/L. 0.82 g (manufactured by Kojima Chemicals) was dissolved and then diluted to 100 mL with water (platinum: 48 mol %, nickel: 48 mol %, palladium: 4 mol %).

<水素発生過電圧の測定>
32wt%水酸化ナトリウム水溶液の電解液(容量約1L)を用いて、対極にNi、温度88℃、電流密度6.0kA/m2の条件で10分間、水電解を行い、カレントインタラプター法により、水素発生過電圧を測定した。
<Measurement of hydrogen generation overvoltage>
Using an electrolytic solution of 32 wt% sodium hydroxide aqueous solution (capacity of about 1 L), water electrolysis was performed for 10 minutes under the conditions of Ni as the counter electrode, temperature of 88 ° C., and current density of 6.0 kA / m2, and by the current interrupter method, Hydrogen evolution overvoltage was measured.

<pHの測定>
水溶液のpHは、ポータブル型pHメーター(D-72:株式会社堀場製作所製)に防水プラスチックpH電極(9265-10D:株式会社堀場製作所製)を取付けて測定した。
<Measurement of pH>
The pH of the aqueous solution was measured by attaching a waterproof plastic pH electrode (9265-10D: manufactured by Horiba, Ltd.) to a portable pH meter (D-72: manufactured by Horiba, Ltd.).

<ORPの測定>
水溶液のORPは、ポータブル型pHメーター(D-72:株式会社堀場製作所製)に防水白金複合形のORP電極(9300-10D:株式会社堀場製作所製)を取付けて測定した。
<Measurement of ORP>
The ORP of the aqueous solution was measured by attaching a waterproof platinum composite type ORP electrode (9300-10D: manufactured by Horiba, Ltd.) to a portable pH meter (D-72: manufactured by Horiba, Ltd.).

実施例1
<触媒層形成用液の作製>で作製した、白金とニッケルを含む触媒層形成用液(白金:50モル%、ニッケル:50モル%)を、ローラーを用いて、1.2m×0.4mのニッケルエキスパンドメタルの片面に10mL/m2の塗布量で塗布し、引き続き、ニッケルエキスパンドメタルの他方の面に10mL/m2の塗布量で塗布し、熱風式乾燥機内で80℃にて10分間乾燥後、箱型焼成炉を用いて空気流通下のもと400℃で10分間熱分解した。この一連の操作を6回繰り返し、導電性基材上に触媒層を形成した。
Example 1
The catalyst layer-forming liquid containing platinum and nickel (platinum: 50 mol %, nickel: 50 mol %) prepared in <Preparation of catalyst layer-forming liquid> was spread to a size of 1.2 m × 0.4 m using a roller. 10 mL/m2 coating amount on one side of the nickel expanded metal, then 10 mL/m2 coating amount on the other side of the nickel expanded metal, and dried in a hot air dryer at 80°C for 10 minutes. was thermally decomposed at 400° C. for 10 minutes under air flow using a box-type kiln. This series of operations was repeated six times to form a catalyst layer on the conductive substrate.

次に、前記操作により触媒層を形成した導電性基材から5cm×6cmを切出し、イオン交換膜法食塩電解セルの陰極として取り付けた。前記食塩電解セルの陽極、イオン交換膜は何れも5cm×6cmであった。 Next, a 5 cm×6 cm piece was cut out from the conductive base material on which the catalyst layer was formed by the above operation, and attached as a cathode of an ion-exchange membrane method salt electrolysis cell. Both the anode and the ion exchange membrane of the salt electrolysis cell were 5 cm×6 cm.

前記食塩電解セルの陽極室に飽和塩水を、陰極室に水を供給しながら、18Aの電解電流を印加し、触媒層の電気化学的還元を施した。この時、陰極室、陽極室の温度は88℃、陽極液出口の食塩濃度は200g/L、陰極室出口の水酸化ナトリウム濃度は33wt%であった。また、陰極室に供給した水には鉄が約10ppm存在していた。前記条件で食塩電解を8日間継続し、電解セルを解体し前記触媒層を形成した導電性基材を取り出した。 While supplying saturated salt water to the anode chamber of the salt electrolysis cell and water to the cathode chamber, an electrolytic current of 18 A was applied to electrochemically reduce the catalyst layer. At this time, the temperatures of the cathode chamber and the anode chamber were 88° C., the salt concentration at the anolyte outlet was 200 g/L, and the sodium hydroxide concentration at the cathode chamber outlet was 33 wt %. Also, approximately 10 ppm of iron was present in the water supplied to the cathode chamber. Salt electrolysis was continued for 8 days under the above conditions, the electrolysis cell was disassembled, and the conductive base material with the catalyst layer formed thereon was taken out.

次に、500mLの水に、クエン酸を13.2gとアスコルビン酸ナトリウムを9.8g溶解させた。この液はpHが3.1で、ORPが45mVであった。 Next, 13.2 g of citric acid and 9.8 g of sodium ascorbate were dissolved in 500 mL of water. This liquid had a pH of 3.1 and an ORP of 45 mV.

前記のpHが3.1で、ORPが45mVの水溶液中に、電気化学的還元が終了した前記触媒層を形成した導電性基材を浸漬し、室温で24時間、前記液と前記触媒層を接触させ、水素発生用電極を製造した。 The electrochemically reduced conductive substrate having the catalyst layer formed thereon is immersed in the aqueous solution having a pH of 3.1 and an ORP of 45 mV, and the solution and the catalyst layer are separated at room temperature for 24 hours. It was made to contact and the electrode for hydrogen generation was manufactured.

その後、前記水素発生用電極の水素発生過電圧を測定した結果、74mVであった。 Thereafter, the hydrogen generation overvoltage of the hydrogen generation electrode was measured and found to be 74 mV.

比較例1
pHが3.1で、ORPが45mVの水溶液と、電気化学的還元が終了した触媒層を接触させなかった以外は実施例1と同様に水素発生用電極を製造し、水素発生過電圧を測定した結果、85mVであった。
Comparative example 1
A hydrogen generation electrode was produced in the same manner as in Example 1, except that the aqueous solution having a pH of 3.1 and an ORP of 45 mV was not brought into contact with the catalyst layer after electrochemical reduction, and the hydrogen generation overvoltage was measured. As a result, it was 85 mV.

実施例2
pHが3.1で、ORPが45mVの水溶液の代わりに、500mLの水にアスコルビン酸を36.0gとアスコルビン酸ナトリウムを5.0g溶解させた水溶液を前記触媒層に接触させた以外は実施例1と同様に水素発生用電極を製造し、水素発生過電圧を測定した結果、75mVであった。
Example 2
Example except that an aqueous solution of 36.0 g of ascorbic acid and 5.0 g of sodium ascorbate dissolved in 500 mL of water was brought into contact with the catalyst layer instead of the aqueous solution having a pH of 3.1 and an ORP of 45 mV. A hydrogen generation electrode was produced in the same manner as in 1, and the hydrogen generation overvoltage was measured to be 75 mV.

なお、前記水溶液はpHが3.2で、ORPが37mVであった。 The aqueous solution had a pH of 3.2 and an ORP of 37 mV.

実施例3
pHが3.1で、ORPが45mVの水溶液の代わりに、500mLの水にエリソルビン酸を37.5gとエリソルビン酸ナトリウム・1水和物を5.9g溶解させた水溶液を前記触媒層に接触させた以外は実施例1と同様に水素発生用電極を製造し、水素発生過電圧を測定した結果、71mVであった。
Example 3
Instead of the aqueous solution having a pH of 3.1 and an ORP of 45 mV, an aqueous solution prepared by dissolving 37.5 g of erythorbic acid and 5.9 g of sodium erythorbate monohydrate in 500 mL of water was brought into contact with the catalyst layer. A hydrogen generating electrode was produced in the same manner as in Example 1 except that the hydrogen generating overvoltage was measured and found to be 71 mV.

なお、前記水溶液はpHが3.2で、ORPが21mVであった。 The aqueous solution had a pH of 3.2 and an ORP of 21 mV.

比較例2
pHが3.1で、ORPが45mVの水溶液の代わりに、500mLの水にアスコルビン酸を0.67gとアスコルビン酸ナトリウムを1.0g溶解させた水溶液を前記触媒層に接触させた以外は実施例1と同様に水素発生用電極を製造し、水素発生過電圧を測定した結果、84mVであった。
Comparative example 2
Example except that an aqueous solution prepared by dissolving 0.67 g of ascorbic acid and 1.0 g of sodium ascorbate in 500 mL of water was brought into contact with the catalyst layer instead of the aqueous solution having a pH of 3.1 and an ORP of 45 mV. A hydrogen generating electrode was produced in the same manner as in 1, and the hydrogen generating overvoltage was measured to be 84 mV.

なお、前記水溶液はpHが4.3で、ORPが33mVであった。 The aqueous solution had a pH of 4.3 and an ORP of 33 mV.

比較例3
pHが3.1で、ORPが45mVの水溶液の代わりに、500mLの水にアスコルビン酸を0.33g溶解させた水溶液を前記触媒層に接触させた以外は実施例1と同様に水素発生用電極を製造し、水素発生過電圧を測定した結果、81mVであった。
Comparative example 3
An electrode for hydrogen generation in the same manner as in Example 1 except that an aqueous solution of 0.33 g of ascorbic acid dissolved in 500 mL of water was brought into contact with the catalyst layer instead of the aqueous solution having a pH of 3.1 and an ORP of 45 mV. was produced, and the hydrogen generation overvoltage was measured and found to be 81 mV.

なお、前記水溶液はpHが3.4で、ORPが160mVであった。 The aqueous solution had a pH of 3.4 and an ORP of 160 mV.

比較例4
pHが3.1で、ORPが45mVの水溶液の代わりに、500mLに10%硫酸を滴下し、pHを3.3にした水溶液を前記触媒層に接触させた以外は実施例1と同様に水素発生用電極を製造し、水素発生過電圧を測定した結果、83mVであった。
Comparative example 4
Instead of the aqueous solution having a pH of 3.1 and an ORP of 45 mV, 10% sulfuric acid was added dropwise to 500 mL, and an aqueous solution adjusted to pH 3.3 was brought into contact with the catalyst layer in the same manner as in Example 1. A hydrogen generation electrode was manufactured and the hydrogen generation overvoltage was measured to be 83 mV.

なお、前記水溶液はpHが3.3で、ORPが255mVであった。 The aqueous solution had a pH of 3.3 and an ORP of 255 mV.

実施例4
白金とニッケルを含む触媒層形成用液(白金:50モル%、ニッケル:50モル%)の代わりに、<触媒層形成用液の作製>で作製した白金、ニッケル及びパラジウムを含む触媒層形成用液(白金:48モル%、ニッケル:48モル%、パラジウム:4モル%)を用いた以外は実施例1と同様に水素発生用電極を製造し、水素発生過電圧を測定した結果、65mVであった。
Example 4
Instead of the catalyst layer forming liquid containing platinum and nickel (platinum: 50 mol%, nickel: 50 mol%), for forming a catalyst layer containing platinum, nickel and palladium prepared in <Preparation of catalyst layer forming liquid> A hydrogen generation electrode was produced in the same manner as in Example 1 except that the liquid (platinum: 48 mol%, nickel: 48 mol%, palladium: 4 mol%) was used, and the hydrogen generation overvoltage was measured. rice field.

比較例5
pHが3.1で、ORPが45mVの水溶液と、電気化学的還元が終了した触媒層を接触させなかった以外は実施例4と同様に水素発生用電極を製造し、水素発生過電圧を測定した結果、81mVであった。
Comparative example 5
An electrode for hydrogen generation was produced in the same manner as in Example 4 except that the aqueous solution having a pH of 3.1 and an ORP of 45 mV was not brought into contact with the catalyst layer after completion of electrochemical reduction, and the hydrogen generation overvoltage was measured. As a result, it was 81 mV.

実施例と比較例の結果から、本発明の製造方法を適用した場合、水素発生過電圧が80mV以下の低い値が得られるが、本発明の製造方法の範囲を逸脱すると、水素過電圧が80mVを超えることが分かった。 From the results of Examples and Comparative Examples, when the production method of the present invention is applied, a low value of hydrogen generation overvoltage of 80 mV or less can be obtained. I found out.

実施例5
pHが3.1で、ORPが45mVの水溶液の代わりに、500mLの水にエリソルビン酸を20.8gとエリソルビン酸ナトリウム・1水和物を5.8g溶解させた水溶液を前記触媒層に接触させた以外は実施例1と同様に水素発生用電極を製造し、水素発生過電圧を測定した結果、79mVであった。
Example 5
Instead of an aqueous solution having a pH of 3.1 and an ORP of 45 mV, an aqueous solution prepared by dissolving 20.8 g of erythorbic acid and 5.8 g of sodium erythorbate monohydrate in 500 mL of water was brought into contact with the catalyst layer. A hydrogen generating electrode was produced in the same manner as in Example 1 except that the hydrogen generating overvoltage was measured and found to be 79 mV.

なお、前記水溶液はpHが3.5で、ORPが63mVであった。 The aqueous solution had a pH of 3.5 and an ORP of 63 mV.

実施例6
pHが3.1で、ORPが45mVの水溶液の代わりに、500mLの水にエリソルビン酸を42.5gとエリソルビン酸ナトリウム・1水和物を3.3g溶解させた水溶液を、46時間、前記触媒層に接触させた以外は実施例1と同様に水素発生用電極を製造し、水素発生過電圧を測定した結果、71mVであった。
Example 6
Instead of an aqueous solution with a pH of 3.1 and an ORP of 45 mV, an aqueous solution prepared by dissolving 42.5 g of erythorbic acid and 3.3 g of sodium erythorbate monohydrate in 500 mL of water was added to the catalyst for 46 hours. A hydrogen generating electrode was produced in the same manner as in Example 1 except that the electrode was brought into contact with the layer, and the hydrogen generating overvoltage was measured to be 71 mV.

なお、前記水溶液はpHが2.9で、ORPが52mVであった。 The aqueous solution had a pH of 2.9 and an ORP of 52 mV.

実施例7
pHが3.1で、ORPが45mVの水溶液の代わりに、500mLの水にエリソルビン酸を42.5gとエリソルビン酸ナトリウム・1水和物を1.7g溶解させた水溶液を、46時間、前記触媒層に接触させた以外は実施例1と同様に水素発生用電極を製造し、水素発生過電圧を測定した結果、72mVであった。
Example 7
Instead of an aqueous solution with a pH of 3.1 and an ORP of 45 mV, an aqueous solution prepared by dissolving 42.5 g of erythorbic acid and 1.7 g of sodium erythorbate monohydrate in 500 mL of water was added to the catalyst for 46 hours. An electrode for hydrogen generation was produced in the same manner as in Example 1 except that the electrode was brought into contact with the layer, and the hydrogen generation overvoltage was measured to be 72 mV.

なお、前記水溶液はpHが2.6で、ORPが42mVであった。 The aqueous solution had a pH of 2.6 and an ORP of 42 mV.

比較例6
pHが3.1で、ORPが45mVの水溶液の代わりに、500mLの水にエリソルビン酸を42.5g溶解させた水溶液に窒素ガスを吹き込みORPを調整した液と、46時間、前記触媒層に接触させた以外は実施例1と同様に水素発生用電極を製造し、水素発生過電圧を測定した結果、81mVであった。
Comparative example 6
Instead of an aqueous solution with a pH of 3.1 and an ORP of 45 mV, the catalyst layer was contacted with a solution obtained by blowing nitrogen gas into an aqueous solution in which 42.5 g of erythorbic acid was dissolved in 500 mL of water to adjust the ORP for 46 hours. A hydrogen generating electrode was produced in the same manner as in Example 1 except that the hydrogen generating overvoltage was measured and found to be 81 mV.

なお、前記水溶液はエリソルビン酸溶解後にpHが2.3であり、ORPは110mVから、窒素ガスを吹き込み98mVに調整した。 The aqueous solution had a pH of 2.3 after dissolving erythorbic acid, and the ORP was adjusted from 110 mV to 98 mV by blowing nitrogen gas.

実施例8
<触媒層形成用液の作製>で作製した、白金とニッケルを含む触媒層形成用液(白金:50モル%、ニッケル:50モル%)を、ローラーを用いて、1.4m×0.4mのニッケルエキスパンドメタルの片面に10mL/m2の塗布量で塗布し、引き続き、ニッケルエキスパンドメタルの他方の面に10mL/m2の塗布量で塗布し、熱風式乾燥機内で80℃にて10分間乾燥後、箱型焼成炉を用いて空気流通下のもと400℃で10分間熱分解した。この一連の操作を6回繰り返し、導電性基材上に触媒層を形成した。
Example 8
The catalyst layer-forming liquid containing platinum and nickel (platinum: 50 mol %, nickel: 50 mol %) prepared in <Preparation of catalyst layer-forming liquid> was spread over a 1.4 m × 0.4 m square using a roller. 10 mL/m2 coating amount on one side of the nickel expanded metal, then 10 mL/m2 coating amount on the other side of the nickel expanded metal, and dried in a hot air dryer at 80°C for 10 minutes. was thermally decomposed at 400° C. for 10 minutes under air flow using a box-type kiln. This series of operations was repeated six times to form a catalyst layer on the conductive substrate.

次に、前記操作により触媒層を形成した導電性基材6枚をイオン交換膜法食塩電解セルの陰極として取り付けた。前記食塩電解セルの陽極、イオン交換膜は何れも面積が3.3m2であった。 Next, six conductive substrates on which catalyst layers were formed by the above operation were attached as cathodes of an ion-exchange membrane method salt electrolysis cell. The area of both the anode and the ion exchange membrane of the salt electrolysis cell was 3.3 m 2 .

前記食塩電解セルの陽極室に飽和塩水を、陰極室に水を供給しながら、1kAの電解電流を印加し、触媒層の電気化学的還元を施した。次いで、電流を16.4kAに増し、陰極室、陽極室の温度は88℃、陽極液出口の食塩濃度は200g/L、陰極室出口の水酸化ナトリウム濃度は33wt%に調整しながら、食塩電解を7年間実施した。次いで、前記電解セルを解体し、前記触媒層を形成した導電性基材を取り出した。 An electrolysis current of 1 kA was applied while supplying saturated salt water to the anode chamber of the salt electrolysis cell and water to the cathode chamber to electrochemically reduce the catalyst layer. Next, the current was increased to 16.4 kA, the temperature of the cathode chamber and the anode chamber was adjusted to 88° C., the salt concentration at the anolyte outlet was adjusted to 200 g/L, and the sodium hydroxide concentration at the cathode chamber outlet was adjusted to 33 wt %. was carried out for seven years. Next, the electrolysis cell was disassembled, and the conductive substrate on which the catalyst layer was formed was taken out.

次に、500mLの水に、エリソルビン酸を39.2gとエリソルビン酸ナトリウム・1水和物を6.2g溶解させた。この液はpHが3.2で、ORPが45mVであった。 Next, 39.2 g of erythorbic acid and 6.2 g of sodium erythorbate monohydrate were dissolved in 500 mL of water. This liquid had a pH of 3.2 and an ORP of 45 mV.

前記電解セルから取り出した前記触媒層を形成した導電性基材から5cm×6cmを切出し、前記のpHが3.1で、ORPが45mVの水溶液中に浸漬し、室温で24時間、前記液と前記触媒層を接触させ、水素発生用電極を製造した。 A 5 cm × 6 cm piece was cut out from the conductive substrate on which the catalyst layer was formed and was taken out from the electrolytic cell, immersed in the aqueous solution having a pH of 3.1 and an ORP of 45 mV, and allowed to stand at room temperature for 24 hours with the solution. The catalyst layers were brought into contact to produce an electrode for hydrogen generation.

その後、前記水素発生用電極の水素発生過電圧を測定した結果、77mVであった。 Thereafter, the hydrogen generation overvoltage of the hydrogen generation electrode was measured and found to be 77 mV.

比較例7
pHが3.2で、ORPが45mVの水溶液と、前記電解セルから取り出した前記触媒層とを接触させなかった以外は実施例8と同様に水素発生用電極を製造し、水素発生過電圧を測定した結果、104mVであった。
Comparative example 7
A hydrogen generation electrode was produced in the same manner as in Example 8 except that the aqueous solution having a pH of 3.2 and an ORP of 45 mV was not brought into contact with the catalyst layer taken out from the electrolytic cell, and the hydrogen generation overvoltage was measured. As a result, it was 104 mV.

実施例9
実施例8と同様に導電性基材に触媒層を形成し、さらに、実施例8と同様に食塩電解を7年間実施した後に電解セルを解体した。
Example 9
A catalyst layer was formed on the conductive substrate in the same manner as in Example 8, and the electrolysis cell was disassembled after salt electrolysis was performed for 7 years in the same manner as in Example 8.

次いで、導電性基材に担持された触媒層が電解セルの陰極として装着された状態で、ビニールシートを隔膜に用いて電解セルを組み立てた。 Next, an electrolytic cell was assembled using a vinyl sheet as a diaphragm in a state in which the catalyst layer supported on the conductive substrate was mounted as the cathode of the electrolytic cell.

次に、2m3の水に、エリソルビン酸を150kgとエリソルビン酸ナトリウム・1水和物を20kg溶解させた。この液はpHが3.0で、ORPが43mVであった。 Next, 150 kg of erythorbic acid and 20 kg of sodium erythorbate monohydrate were dissolved in 2 m3 of water. This liquid had a pH of 3.0 and an ORP of 43 mV.

前記電解セルの陰極室に、前記のpHが3.0で、ORPが43mVの水溶液を満たし、室温で24時間、前記液と前記触媒層を接触させ、水素発生用電極を製造した。 The cathode chamber of the electrolytic cell was filled with the aqueous solution having a pH of 3.0 and an ORP of 43 mV, and the solution and the catalyst layer were brought into contact at room temperature for 24 hours to produce an electrode for hydrogen generation.

前記電解セルを解体し、陽イオン交換膜を隔膜に用いて電解セルを組み立て、電流を16.4kA、陰極室、陽極室の温度は88℃、陽極液出口の食塩濃度は200g/L、陰極室出口の水酸化ナトリウム濃度は32wt%に調整しながら、食塩電解を実施したところ、電解電圧は2.97Vを示した。 The electrolytic cell was dismantled, and an electrolytic cell was assembled using a cation exchange membrane as a diaphragm. Salt electrolysis was performed while adjusting the sodium hydroxide concentration at the outlet of the chamber to 32 wt %, and the electrolysis voltage was 2.97V.

比較例8
pHが3.0で、ORPが43mVの水溶液の代わりに、pHが7.2で、ORPが250mVの純水を前記触媒層に接触させた以外は実施例9と同様に水素発生用電極を製造した。
Comparative example 8
A hydrogen generating electrode was provided in the same manner as in Example 9, except that pure water with a pH of 7.2 and an ORP of 250 mV was brought into contact with the catalyst layer instead of the aqueous solution with a pH of 3.0 and an ORP of 43 mV. manufactured.

前記電解セルを解体し、実施例9と同様に、陽イオン交換膜を隔膜に用いて電解セルを組み立て、電流を16.4kA、陰極室、陽極室の温度は88℃、陽極液出口の食塩濃度は200g/L、陰極室出口の水酸化ナトリウム濃度は32wt%に調整しながら、食塩電解を実施したところ、電解電圧は3.02Vを示し、実施例9に比べ50mV高い値を示した。 The electrolytic cell was disassembled and assembled using a cation exchange membrane as a diaphragm in the same manner as in Example 9. The current was 16.4 kA, the temperature of the cathode chamber and the anode chamber was 88 ° C. Salt electrolysis was performed while adjusting the concentration to 200 g/L and the concentration of sodium hydroxide at the outlet of the cathode chamber to 32 wt %.

実施例9では本発明の製造方法により水素発生用電極を製造したが、比較例8では本発明の製造方法とは異なっていた。その他の条件は同じであったため、実施例9の電解電圧が比較例8の電解電圧に比較して50mVも低い値を示した理由は、実施例9で製造された水素発生用電極が優れた性能を有することを示すものといえた。 In Example 9, an electrode for hydrogen generation was produced by the production method of the present invention, but in Comparative Example 8, the production method was different from that of the present invention. Since the other conditions were the same, the reason why the electrolysis voltage of Example 9 was 50 mV lower than that of Comparative Example 8 was that the electrode for hydrogen generation produced in Example 9 was excellent. It can be said that it shows that it has performance.

本発明の製造方法で得られた水素発生用電極は、水の電気分解又は食塩などのアルカリ金属塩化物水溶液の電気分解に使用でき、食塩電解工業を始めとして広範な電解工業に利用される可能性を有する。 The electrode for hydrogen generation obtained by the production method of the present invention can be used for the electrolysis of water or the electrolysis of an aqueous solution of an alkali metal chloride such as salt, and can be used in a wide range of electrolysis industries including the salt electrolysis industry. have sex.

Claims (7)

導電性基材上に担持された白金を含む触媒層を有し、かつ、電気分解の陰極として使用された後の水素発生用電極の製造方法であって、前記導電性基材上に担持された白金を含む触媒層と、pHが2.5~4.0で、ORPが100mV以下の水溶液とを接触させる水素発生用電極の製造方法。 A method for producing a hydrogen generating electrode having a catalyst layer containing platinum supported on a conductive substrate and having been used as a cathode for electrolysis, the electrode being supported on the conductive substrate A method for producing a hydrogen generating electrode, comprising contacting a catalyst layer containing platinum with an aqueous solution having a pH of 2.5 to 4.0 and an ORP of 100 mV or less. 前記導電性基材上に担持された白金を含む触媒層が、水又はアルカリ金属塩化物水溶液中での電気化学的還元処理を施した後のものである請求項1に記載の水素発生用電極の製造方法。 2. The electrode for hydrogen generation according to claim 1, wherein the catalyst layer containing platinum supported on the conductive substrate has been subjected to an electrochemical reduction treatment in water or an aqueous alkali metal chloride solution. manufacturing method. 前記導電性基材上に担持された白金を含む触媒層が、水又はアルカリ金属塩化物水溶液の電気分解の陰極として使用した後のものである請求項1又は請求項2に記載の水素発生用電極の製造方法。 3. The method for generating hydrogen according to claim 1, wherein the catalyst layer containing platinum supported on the conductive substrate is used as a cathode for electrolysis of water or an aqueous alkali metal chloride solution. A method of manufacturing an electrode. 前記導電性基材上に担持された白金を含む触媒層が、電解セルの陰極として装着された状態である請求項1~請求項3のいずれかの項に記載の水素発生用電極の製造方法。 The method for producing an electrode for hydrogen generation according to any one of claims 1 to 3, wherein the catalyst layer containing platinum supported on the conductive substrate is mounted as a cathode of an electrolytic cell. . 前記導電性基材上に担持された白金を含む触媒層が、ニッケル及び/又はパラジウムを含む請求項1~請求項4のいずれかの項に記載の水素発生用電極の製造方法。 The method for producing a hydrogen generating electrode according to any one of claims 1 to 4, wherein the catalyst layer containing platinum supported on the conductive substrate contains nickel and/or palladium. 請求項1~請求項5のいずれかの項に記載の水素発生用電極の製造方法により得た水素発生用電極を陰極として使用し、隔膜を挟んで陽極を配置した電解槽で水又はアルカリ金属塩化物水溶液を電気分解し、前記陰極上から水素ガス及びアルカリ金属水酸化物水溶液を生成し、陽極上から酸素ガス又は塩素ガスを生成する電気分解方法。 Using the electrode for hydrogen generation obtained by the method for producing an electrode for hydrogen generation according to any one of claims 1 to 5 as a cathode, water or an alkali metal is placed in an electrolytic cell in which an anode is arranged with a diaphragm sandwiched therebetween. An electrolysis method comprising electrolyzing an aqueous chloride solution to produce hydrogen gas and an aqueous alkali metal hydroxide solution on the cathode, and producing oxygen gas or chlorine gas on the anode. 隔膜が陽イオン交換膜である請求項6に記載の電気分解方法。 7. The electrolysis method according to claim 6, wherein the diaphragm is a cation exchange membrane.
JP2022132204A 2018-03-20 2022-08-23 Method for manufacturing hydrogen generation electrode and electrolysis method using hydrogen generation electrode Active JP7388500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023192851A JP2024010240A (en) 2018-03-20 2023-11-13 Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018052782 2018-03-20
JP2018052782 2018-03-20
JP2018106216 2018-06-01
JP2018106216 2018-06-01
JP2018160405A JP7135596B2 (en) 2018-03-20 2018-08-29 Method for producing hydrogen generating electrode and electrolysis method using hydrogen generating electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018160405A Division JP7135596B2 (en) 2018-03-20 2018-08-29 Method for producing hydrogen generating electrode and electrolysis method using hydrogen generating electrode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023192851A Division JP2024010240A (en) 2018-03-20 2023-11-13 Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode

Publications (2)

Publication Number Publication Date
JP2022166266A true JP2022166266A (en) 2022-11-01
JP7388500B2 JP7388500B2 (en) 2023-11-29

Family

ID=68844878

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018160405A Active JP7135596B2 (en) 2018-03-20 2018-08-29 Method for producing hydrogen generating electrode and electrolysis method using hydrogen generating electrode
JP2022132204A Active JP7388500B2 (en) 2018-03-20 2022-08-23 Method for manufacturing hydrogen generation electrode and electrolysis method using hydrogen generation electrode
JP2023192851A Pending JP2024010240A (en) 2018-03-20 2023-11-13 Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018160405A Active JP7135596B2 (en) 2018-03-20 2018-08-29 Method for producing hydrogen generating electrode and electrolysis method using hydrogen generating electrode

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023192851A Pending JP2024010240A (en) 2018-03-20 2023-11-13 Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode

Country Status (1)

Country Link
JP (3) JP7135596B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135596B2 (en) 2018-03-20 2022-09-13 東ソー株式会社 Method for producing hydrogen generating electrode and electrolysis method using hydrogen generating electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210541A (en) * 2018-03-20 2019-12-12 東ソー株式会社 Method of manufacturing electrode for generating hydrogen and electrolysis method using electrode for generating hydrogen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3482124D1 (en) * 1983-08-22 1990-06-07 Ici Plc TREATMENT OF CATHODES FOR THEIR USE IN ELECTROLYTIC CELLS.
JP2006118023A (en) 2004-10-25 2006-05-11 Tosoh Corp Method for manufacturing electrode for generating hydrogen
JP2006118022A (en) 2004-10-25 2006-05-11 Tosoh Corp Electrode for generating hydrogen, precursor of electrode for generating hydrogen, manufacturing method therefor, and electrolysis method using it
JP6609913B2 (en) 2013-12-26 2019-11-27 東ソー株式会社 Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210541A (en) * 2018-03-20 2019-12-12 東ソー株式会社 Method of manufacturing electrode for generating hydrogen and electrolysis method using electrode for generating hydrogen

Also Published As

Publication number Publication date
JP2024010240A (en) 2024-01-23
JP7388500B2 (en) 2023-11-29
JP7135596B2 (en) 2022-09-13
JP2019210541A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
EP2098616B1 (en) Cathode for hydrogen generation
CN1763252B (en) Hydrogen evolving cathode
JP4673628B2 (en) Cathode for hydrogen generation
TW200304503A (en) Electrode for generation of hydrogen
JP5042389B2 (en) Active cathode for hydrogen generation
JP2000239882A (en) Activated cathode and its production
BRPI0719830B1 (en) Cathode for Electrolytic Processes and Method for Preparation of a Cathode
WO2015098058A1 (en) Electrode for hydrogen generation, process for producing same, and method of electrolysis therewith
JP2024010240A (en) Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode
JP4882218B2 (en) Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same
HU201124B (en) Process for producing cathode applicable in alkaline chloride electrolytic cell
JP2015143388A (en) Electrode for hydrogen generation, method for producing the same, and method of electrolysis therewith
JP6609913B2 (en) Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same
JP6878917B2 (en) Electrode for hydrogen generation, its manufacturing method, and electrolysis method using it
WO2020110527A1 (en) Hydrogen generation electrode, method of producing same, and hydrogen production method
JP6753195B2 (en) Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode
WO2002002847A1 (en) Activation of a cathode
JP6926782B2 (en) Hydrogen generation electrode and its manufacturing method and electrolysis method using hydrogen generation electrode
US20150017554A1 (en) Process for producing transport and storage-stable oxygen-consuming electrode
JPH06173061A (en) Gas electrode structure and electrolytic method using said gas electrode structure
JP5271429B2 (en) Cathode for hydrogen generation
KR102664290B1 (en) Method for Preparing Electrode for Electrolysis
JP2024010642A (en) Electrode for generating chlorine
JP2024011284A (en) Hydrogen generating electrode and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R151 Written notification of patent or utility model registration

Ref document number: 7388500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151