JP2022164120A - 経路制御装置、経路制御方法及び経路制御プログラム - Google Patents

経路制御装置、経路制御方法及び経路制御プログラム Download PDF

Info

Publication number
JP2022164120A
JP2022164120A JP2021069407A JP2021069407A JP2022164120A JP 2022164120 A JP2022164120 A JP 2022164120A JP 2021069407 A JP2021069407 A JP 2021069407A JP 2021069407 A JP2021069407 A JP 2021069407A JP 2022164120 A JP2022164120 A JP 2022164120A
Authority
JP
Japan
Prior art keywords
security device
normal
security
route
route control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021069407A
Other languages
English (en)
Other versions
JP7270668B2 (ja
Inventor
竜我 松村
Ryuga Matsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2021069407A priority Critical patent/JP7270668B2/ja
Publication of JP2022164120A publication Critical patent/JP2022164120A/ja
Application granted granted Critical
Publication of JP7270668B2 publication Critical patent/JP7270668B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Small-Scale Networks (AREA)

Abstract

【課題】インライン接続されたセキュリティ装置を備えるネットワークシステムの可用性を高くする。【解決手段】判定部22は、セキュリティ装置53から取得された信号に基づき、セキュリティ装置53が正常か否かを判定する。経路切替部23は、セキュリティ装置53が正常と判定された場合には、第1機器51と第2機器52とのうち一方から他方への通信データがセキュリティ装置53を介して送信され、セキュリティ装置53が正常でないと判定された場合には、一方から他方への通信データがセキュリティ装置53を介さずバイパスして送信されるように経路を切り替える。【選択図】図2

Description

本開示は、インライン接続されたセキュリティ装置を備えるネットワークシステムの可用性を高める技術に関する。
製造業等の工場の生産ラインにおいてIoT(Internet of Things)技術の導入が広がっている。これに伴い、生産ラインにセキュリティ対策を実施することの重要性が高まっている。しかし、生産ラインを構成するネットワークシステムの構成変更は難しいこと、現場ではネットワークシステムに対する知識が不足していること等の理由から、セキュリティ対策の実施は遅れている。
比較的導入が容易なセキュリティ対策として、通信データを監視するセキュリティ装置を、OT(Operational Technology)系ネットワークの各所にインライン接続により設置するという対策がある。特許文献1には、インライン接続によりセキュリティ装置を接続することが記載されている。セキュリティ装置をインライン接続するとは、ネットワーク機器といった機器間にセキュリティ装置を直列に接続することである。
特開2008-028740号公報
セキュリティ装置をインライン接続してしまうと、セキュリティ装置が故障した場合に機器間の通信が行えなくなるため、ネットワークシステムの可用性が低下してしまう。
本開示は、インライン接続されたセキュリティ装置を備えるネットワークシステムの可用性を高くすることを目的とする。
本開示に係る経路制御装置は、
第1機器と第2機器との間にインライン接続されるセキュリティ装置をバイパス可能にする経路制御装置であり、
前記セキュリティ装置から取得された信号に基づき、前記セキュリティ装置が正常か否かを判定する判定部と、
前記判定部によって前記セキュリティ装置が正常と判定された場合には、前記第1機器と前記第2機器とのうち一方から他方への通信データが前記セキュリティ装置を介して送信され、前記判定部によって前記セキュリティ装置が正常でないと判定された場合には、前記一方から前記他方への通信データが前記セキュリティ装置を介さずバイパスして送信されるように経路を切り替える経路切替部と
を備える。
本開示では、セキュリティ装置が正常な場合には通信データがセキュリティ装置を介して送信され、セキュリティ装置が正常でない場合には通信データがセキュリティ装置を介さずバイパスして送信されるように経路が切り替えられる。これにより、セキュリティ装置が故障した場合にも第1機器と第2機器との間の通信を行うことが可能である。そのため、インライン接続されたセキュリティ装置を備えるネットワークシステムの可用性を高くすることができる。
実施の形態1に係るネットワークシステム100の構成図。 実施の形態1に係る経路制御装置10の構成図。 実施の形態1に係る設定データ31の説明図。 実施の形態1に係る基準信号データ32の説明図。 実施の形態1に係る経路制御装置10の処理概要のフローチャート。 実施の形態1に係るデータ取得処理(図5のステップS1)の説明図。 実施の形態1に係る判定処理(ステップS2)及び経路切替処理(ステップS3)のフローチャート。 実施の形態1に係る正常経路の説明図。 実施の形態1に係るバイパス経路の説明図。 実施の形態1に係る100BASE-TXを用いる場合のデータ変換の説明図。 実施の形態1に係る信号列から基準信号データ32を計算する方法の説明図。 実施の形態1に係る部分信号列と基準信号データ32との相関係数Cを計算する方法の説明図。 実施の形態1に係る部分信号列と基準信号データ32との相関係数Cを計算する方法の説明図。 実施の形態1に係る部分信号列と基準信号データ32との相関係数Cを計算する方法の説明図。 変形例1に係る経路制御装置10の構成図。 変形例2に係る経路制御装置10の構成図。
実施の形態1.
***構成の説明***
図1を参照して、実施の形態1に係るネットワークシステム100の構成を説明する。
ネットワークシステム100は、経路制御装置10と、第1機器51と、第2機器52と、セキュリティ装置53とを備える。経路制御装置10は、第1機器51と第2機器52とセキュリティ装置53と伝送路60を介して接続されている。言い換えると、第1機器51と第2機器52との間に、セキュリティ装置53が経路制御装置10を介してインライン接続されている。
経路制御装置10は、第1機器と第2機器との間にインライン接続されたセキュリティ装置をバイパス可能にするためのコンピュータである。第1機器51及び第2機器52は、ハブ及びスイッチといったネットワーク機器である。また、第1機器51及び第2機器52は、ネットワーク機器ではなく、PC(Personal Computer)といったコンピュータ、又は、センサといったIoT機器であってもよい。セキュリティ装置53は、第1機器と第2機器との間の通信データを監視して、不正な通信データの検知等を行うコンピュータである。
図2を参照して、実施の形態1に係る経路制御装置10の構成を説明する。
経路制御装置10は、コンピュータである。
経路制御装置10は、プロセッサ11と、記憶装置12と、入出力インタフェース13A,13Bと、分配器14A,14Bと、A/Dコンバータ15A,15Bと、切替スイッチ16A,16Bとのハードウェアを備える。プロセッサ11は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
プロセッサ11は、プロセッシングを行うIC(Integrated Circuit)である。プロセッサ11は、具体例としては、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。
記憶装置12は、データを記憶する記憶装置である。記憶装置12は、具体例としては、RAM(Random Access Memory)、HDD(Hard Disk
Drive)である。記憶装置12は、SD(登録商標,Secure Digital)メモリカード、CF(CompactFlash,登録商標)、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD(Digital Versatile Disk)といった可搬記録媒体であってもよい。
入出力インタフェース13A,13Bは、外部の装置と通信するためのインタフェースである。入出力インタフェース13A,13Bは、具体例としては、Ethernet(登録商標)、USB(Universal Serial Bus)のポートである。
分配器14A,14Bは、入力されたデータを複製して出力する装置である。分配器14A,14Bは、入出力インタフェース13A,13Bから入力されたデータを切替スイッチ16A,16Bに出力するとともに、入出力インタフェース13A,13Bから入力されたデータを複製してA/Dコンバータ15A,15Bに出力する。
A/Dコンバータ15A,15Bは、アナログ信号をデジタル信号に変換する装置である。A/Dコンバータ15A,15Bは、分配器14A,14Bによって出力されたアナログデータをデジタルデータに変換して、プロセッサ11に出力する。
切替スイッチ16A,16Bは、プロセッサ11の制御に従い経路を切り替える装置である。切替スイッチ16A,16Bは、切替スイッチ16Aと分配器14Aとが接続されるとともに、切替スイッチ16Bと分配器14Bとが接続された正常経路と、切替スイッチ16Aと切替スイッチ16Bとが接続されたバイパス経路とを切り替える。
経路制御装置10は、機能構成要素として、データ取得部21と、判定部22と、経路切替部23とを備える。経路制御装置10の各機能構成要素の機能はソフトウェアにより実現される。
記憶装置12には、経路制御装置10の各機能構成要素の機能を実現するプログラムが格納されている。このプログラムは、プロセッサ11により読み込まれ、プロセッサ11によって実行される。これにより、経路制御装置10の各機能構成要素の機能が実現される。
記憶装置12には、設定データ31と、基準信号データ32とが記憶されている。
図2では、プロセッサ11は、1つだけ示されていた。しかし、プロセッサ11は、複数であってもよく、複数のプロセッサ11が、各機能を実現するプログラムを連携して実行してもよい。
***動作の説明***
図3から図11を参照して、実施の形態1に係る経路制御装置10の動作を説明する。
実施の形態1に係る経路制御装置10の動作手順は、実施の形態1に係る経路制御方法に相当する。また、実施の形態1に係る経路制御装置10の動作を実現するプログラムは、実施の形態1に係る経路制御プログラムに相当する。
図3を参照して、実施の形態1に係る設定データ31を説明する。
設定データ31は、相関係数の閾値と、故障判定までの間隔との2つの設定それぞれについての設定値を含む。図3では、相関係数の閾値は、設定値として値thが設定されている。図3では、故障判定までの間隔は、設定値として基準時間xが設定されている。
図4を参照して、実施の形態1に係る基準信号データ32を説明する。
基準信号データ32は、時刻毎に計算値が設定されている。図4では、時刻tから時刻tまでのn個の時刻それぞれについての計算値M,...Mが設定されている。
ここでは、セキュリティ装置53から一定期間内に少なくとも1度は、決まった形の信号列である基準信号列が送信されることを前提としている。この一定期間あるいは、一定期間よりも少し長い時間が、故障判定までの間隔である基準時間xになる。基準信号列は、どのような信号列でも構わないが、例えばARP(Address Resolution Protocol)リクエストのように定期的に送信される信号列である。基準信号データ32は、基準信号列から計算される。基準信号列は、ネットワークシステム100の管理者等によって指定される、あるいは、セキュリティ装置53の機種等に応じて決定される。
基準信号列から基準信号データ32を計算する方法については後述する。
図5を参照して、実施の形態1に係る経路制御装置10の処理概要を説明する。
図5の処理の前提として、セキュリティ装置53からは信号が順次送信されているものとする。セキュリティ装置53から第1機器51へ向けて送信された信号は、入出力インタフェース13Aから分配器14Aに出力され、分配器14Aで複製され、A/Dコンバータ15Aでアナログデータからデジタルデータに変換されて、プロセッサ11に出力される。セキュリティ装置53から第2機器52へ向けて送信された信号は、入出力インタフェース13Bから分配器14Bに出力され、分配器14Bで複製され、A/Dコンバータ15Bでアナログデータからデジタルデータに変換されて、プロセッサ11に出力される。
(ステップS1:データ取得処理)
データ取得部21は、プロセッサ11に出力されたデジタルデータである送信信号列を取得する。データ取得部21は、送信信号列を構成する部分信号列を切り出す。データ取得部21は、基準信号データ32と同じn個の信号値からなる部分信号列を切り出す。例えば、図6に示すように、データ取得部21は、1個ずつ信号値をずらしながら、n個の信号値の列を部分信号列として切り出す。そして、データ取得部21は、切り出された部分信号列を順に判定部22に与える。
(ステップS2:判定処理)
判定部22は、セキュリティ装置53から取得された送信信号列に基づき、セキュリティ装置53が正常か否かを判定する。
具体的には、判定部22は、基準時間にセキュリティ装置53から送信された送信信号列から切り出された部分信号列に、基準信号列が含まれる場合に、セキュリティ装置53が正常であると判定する。一方、判定部22は、基準時間にセキュリティ装置53から送信された送信信号列から切り出された部分信号列に、基準信号列が含まれない場合に、セキュリティ装置53が正常でないと判定する。
(ステップS3:経路切替処理)
経路切替部23は、セキュリティ装置53が正常と判定された場合には、第1機器51と第2機器52との一方から他方への通信データがセキュリティ装置53を介して送信され、セキュリティ装置53が正常でないと判定された場合には、第1機器51と第2機器52との一方から他方への通信データがセキュリティ装置53を介さずバイパスして送信されるように経路を切り替える。
図7を参照して、実施の形態1に係る判定処理(ステップS2)及び経路切替処理(ステップS3)を説明する。
ステップS101からステップS104の処理と、ステップS106からステップS108の処理と、ステップS110の処理とが判定処理に相当する。ステップS105の処理とステップS109の処理とが経路切替処理に相当する。
(ステップS101:リセット処理)
判定部22は、タイマーを0にリセットする。
(ステップS102:相関計算処理)
判定部22は、未処理の部分信号列を取得する。そして、判定部22は、取得された部分信号列と、基準信号データ32との相関係数Cを計算する。部分信号列と基準信号データ32との相関係数Cを計算する方法については後述する。
(ステップS103:閾値判定処理)
判定部22は、ステップS102で計算された相関係数Cが、設定データ31が示す相関係数の閾値thを超えたか否かを判定する。
判定部22は、相関係数Cが閾値thを超えた場合には、処理をステップS104に進める。一方、判定部22は、相関係数Cが閾値thを超えていない場合には、処理をステップS107に進める。
(ステップS104:第1状態判定処理)
判定部22は、現在管理されているセキュリティ装置53の状態が正常状態であったか否かを判定する。
判定部22は、状態が正常状態であった場合には、処理をステップS101に戻す。一方、判定部22は、状態が正常状態でなかった場合(ここでは、故障状態と呼ぶ)には、処理をステップS105に進める。
(ステップS105:第1経路切替処理)
経路切替部23は、切替スイッチ16A及び切替スイッチ16Bに対して正常切替信号を送信して、経路を正常経路に切り替える。
図8に示すように、正常経路は、第1機器51から第2機器52への通信データと、第2機器52から第1機器51への通信データとが、セキュリティ装置53を介して送信される経路である。具体的には、切替スイッチ16Aは、分配器14A側のポートを開け、切替スイッチ16B側のポートを閉じる。また、切替スイッチ16Bは、分配器14B側のポートを開け、切替スイッチ16A側のポートを閉じる。
これにより、第1機器51から送信された通信データは、切替スイッチ16Aから分配器14A及び入出力インタフェース13Aを介してセキュリティ装置53に送信される。そして、セキュリティ装置53から、入出力インタフェース13B及び分配器14Bを介して、切替スイッチ16Bから第2機器52へ送信される。第2機器52から送信された通信データは、切替スイッチ16Bから分配器14B及び入出力インタフェース13Bを介してセキュリティ装置53に送信される。そして、セキュリティ装置53から、入出力インタフェース13A及び分配器14Aを介して、切替スイッチ16Aから第1機器51へ送信される。
(ステップS106:第1状態切替処理)
経路切替部23は、セキュリティ装置53の状態を故障状態から正常状態に切り替える。
(ステップS107:第2状態判定処理)
判定部22は、現在管理されているセキュリティ装置53の状態が正常状態であったか否かを判定する。
判定部22は、状態が正常状態であった場合には、処理をステップS108に進める。一方、判定部22は、状態が故障状態であった場合には、処理をステップS102に戻す。
(ステップS108:タイマー判定処理)
判定部22は、タイマーが示す時間が、設定データ31が示す故障判定までの間隔である基準時間xを超えているか否かを判定する。
判定部22は、タイマーが示す時間が基準時間xを超えている場合には、処理をステップS109に進める。一方、判定部22は、タイマーが示す時間が基準時間xを超えていない場合には、処理をステップS102に戻す。
(ステップS109:第2経路切替処理)
経路切替部23は、切替スイッチ16A及び切替スイッチ16Bに対して故障切替信号を送信して、経路をバイパス経路に切り替える。
図9に示すように、バイパス経路は、第1機器51から第2機器52への通信データと、第2機器52から第1機器51への通信データとが、セキュリティ装置53を介さずバイパスして送信される経路である。具体的には、切替スイッチ16Aは、分配器14A側のポートを閉じ、切替スイッチ16B側のポートを開ける。また、切替スイッチ16Bは、分配器14B側のポートを閉じ、切替スイッチ16A側のポートを開ける。
これにより、第1機器51から送信された通信データは、切替スイッチ16Aから切替スイッチ16Bに送信され、切替スイッチ16Bから第2機器52に送信される。第2機器52から送信された通信データは、切替スイッチ16Bから切替スイッチ16Aに送信され、切替スイッチ16Aから第1機器51に送信される。
(ステップS110:第2状態切替処理)
経路切替部23は、セキュリティ装置53の状態を正常状態から故障状態に切り替える。
図10及び図11を参照して、基準信号列から基準信号データ32を計算する方法について説明する。
図10では、100BASE-TXを用いる場合が例として示されている。100BASE-TXでは、任意のMAC(Media Access Control)フレームに対して、4B/5B符号化が行われ、次にスクランブルが行われ、次にパラレル/シリアル変換が行われ、次にNRZI(Non Return to Zero Inversion)符号化が行われ、次にMLT-3(Multi Level Transmission-3)符号化が行われる。その後、波形変換が行われ、そして電気波形への変換が行われて送信される。このうち、図10において枠で囲まれた4B/5B符号化からMLT-3符号化までは、100BASE-TXの規格で定められており、100BASE-TXを用いる場合には必ず同じ処理が行われる。したがって、MACフレームのデータ系列が分かっていれば、波形変換の直前の出力値であるMLT-3符号化の出力値までは計算することが可能である。
図10では、100BASE-TXを例として示しているが、他の規格であっても、任意のデータ列から波形変換の直前の出力値を計算することが可能である。
ここでは、波形変換の直前の出力値である数値列を信号系列A(m)とする。mは正の整数である。また、図11に示すように、信号系列を電気信号に変換する際の1つの値に対する時間間隔をTとし、経路制御装置10のサンプリング周波数をfとする。ここで、サンプリング定理から、f>2/Tである。
図11に示すように、i番目のサンプリングを行った時刻i/fが、信号系列A(m)におけるc番目の時刻T・c以降、かつ、c+1番目の時刻T・c+1前であるとする。この場合には、基準信号データ32の計算値Mは、信号系列A(c)になる。つまり、M=A(c)である。但し、M=A(0)であり、かつ、T・c≦i/f<T・(c+1)である。
したがって、ARPリクエストのように基準信号データ32の生成元とする信号列を決めることにより、信号系列A(m)を計算することができ、信号系列A(m)から時間間隔T及びサンプリング周波数をfに基づき、i=1,...,nの各整数iについて基準信号データ32の計算値Mを計算することができる。
なお、図5のステップS1で用いられる送信信号列は、セキュリティ装置53から出力された出力波形がサンプリング間隔1/f毎にサンプリングされて生成されている信号列である。A/Dコンバータ15A又はA/Dコンバータ15Bから出力された出力信号列が、サンプリング間隔1/f毎にサンプリングされた信号列であれば、出力信号列がそのまま送信信号列になる。A/Dコンバータ15A又はA/Dコンバータ15Bから出力された信号列が、サンプリング間隔1/f毎にサンプリングされた信号列でなければ、データ取得部21によって出力信号列が、サンプリング間隔1/f毎にサンプリングされた信号列に変換され送信信号列にされる。
図12から図14を参照して、部分信号列と基準信号データ32との相関係数Cを計算する方法について説明する。
ある数列x,yについて、相関係数Corrを、数1によって計算できる。
Figure 2022164120000002
図12に示すように、部分信号列が得られたとする。このとき、時間軸におけるメモリが各サンプリングポイントiになり、各サンプリングポイントiにおける部分信号列の値をSample(i)と表す。ここでは、iは、時間軸の始点における値が0であり、1メモリ毎に1増加する。なお、図12では、部分信号列はきれいな波形として表されているが、実際にはノイズ等の影響があり、きれいな波形にはならない。
図13に示すように、判定部22は、数列xにおける要素xを、x=Sample(0)のように設定する。ここで、元の信号系列を電気信号に変換した際の時間間隔T分だけ離れたサンプリングポイントの数mは、サンプリング間隔が1/fであることから、m=Tとなる。ここでは、小数点以下は切り捨てとする。判定部22は、この数mを用いて、i=1,...,nの各整数iについての数列xにおける要素xを、x=Sample(0+im)と定義する。
判定部22は、数列yには、基準信号データ32の値をそのまま対応させる。つまり、判定部22は、y=M(0),y=M(1),...,y=M(n)とする。そして、数1により、数列x,yの相関係数Corrを計算して相関係数Corr(0)とする。
図14に示すように、判定部22は、数列xにおける要素xを、x=Sample(1)のように設定する。判定部22は、i=1,...,nの各整数iについての数列xにおける要素xを、x=Sample(1+im)と定義する。数列yは、相関係数Corr(0)を計算した際と同じである。そして、数1により、数列x,yの相関係数Corrを計算して相関係数Corr(1)とする。
同様に、判定部22は、L≦mの範囲で、数列xにおける要素xを、x=Sample(L)のように設定し、要素xを、x=Sample(L+im)と定義して、相関係数Corr(L)を計算する処理を繰り返す。そして、判定部22は、L=0,1,...の相関係数Corr(L)のうち最大値Max(Corr)を相関係数Cとする。
***実施の形態1の効果***
以上のように、実施の形態1に係る経路制御装置10は、セキュリティ装置53が正常と判定された場合には、第1機器51から第2機器52への通信データがセキュリティ装置53を介して送信され、セキュリティ装置53が正常でないと判定された場合には、第1機器51から第2機器52への通信データがセキュリティ装置53を介さずバイパスして送信されるように経路を切り替える。
これにより、セキュリティ装置53が故障した場合であっても、第1機器51と第2機器52との通信を継続することが可能である。そのため、インライン接続されたセキュリティ装置53を備えるネットワークシステム100の可用性を高くすることが可能である。
また、実施の形態1に係る経路制御装置10は、物理的に経路を切り替える構成である。そのため、経路制御装置10の電源が入らない状態になる等しても、第1機器51と第2機器52との間の通信を切れないように構成することが可能である。したがって、経路制御装置10を導入することによる可用性の低下を抑えることが可能である。
経路制御装置10の電源が入らない状態になった場合に、第1機器51と第2機器52との間の通信が切れないように構成することについて補足する。図2に示すように、第1機器51からセキュリティ装置53までを繋ぐ経路制御装置10における経路には、入出力インタフェース13Aと分配器14Aと切替スイッチ16Aとの機器が存在する。これらの機器については、経路制御装置10の電源が入っていなくても、通信データが通るように構成することは可能である。つまり、あたかも入出力インタフェース13Aから切替スイッチ16Aまでがケーブルで接続されているように構成することが可能である。第2機器52からセキュリティ装置53までを繋ぐ経路制御装置10における経路についても同様である。したがって、経路制御装置10の電源が入らない状態になったとしても、第1機器51と第2機器52との間の通信を切れないように構成することは可能である。
また、実施の形態1に係る経路制御装置10は、送信信号列の電気的な波形に基づき、セキュリティ装置53が正常か否かを判定している。そのため、セキュリティ装置53で用いる通信フレームに関する処理と、セキュリティ装置53で採用している通信プロトコルに関する処理とを経路制御装置10が行う必要がない。したがって、経路制御装置10にはセキュリティ装置53に応じた処理を実装する必要がなく、経路制御装置10を容易に導入することが可能である。
また、実施の形態1に係る経路制御装置10は、送信信号列と基準信号データ32との相関係数を計算することにより、セキュリティ装置53が正常か否かを判定している。
相関係数を計算する方法は、送信信号列の電圧レベルを検知する方法等と比べると、誤判定が起こりづらい。送信信号列の電圧レベルを検知する方法の場合には、判断基準となる電圧が予期せぬ信号により発生すること等があり得るため、誤判定が起こる可能性がある。しかし、ある程度の長さの信号間の相関係数を計算すれば、誤判定を起こりにくくすることが可能である。
また、相関係数を計算する方法であれば、基準信号データ32の生成元となる信号列を変更するといった拡張を行うことも可能である。
なお、実施の形態1に係る経路制御装置10は、電源又は回路の故障といったハードウェアの異常により、セキュリティ装置53が電気信号を出力できなくなった場合については、セキュリティ装置53の故障として適切に検知することができる。しかし、実施の形態1に係る経路制御装置10は、ソフトウェアのバグ等により、セキュリティ装置53が正常とは異なる振る舞いをしているが、基準信号データ32の生成元となった信号列は出力されている場合については、セキュリティ装置53の故障として検知することができない。
また、実施の形態1に係る経路制御装置10は、物理的にセキュリティ装置53からの電気信号が遮断され、通信が途切れるような状態についても、セキュリティ装置53の故障として検知する。同様に、実施の形態1に係る経路制御装置10は、セキュリティ装置53の振る舞いの異常ではなく、物理的にセキュリティ装置53との間の通信路が遮断され、信号が止まってしまうような状態についても、セキュリティ装置53の故障として検知する。
***他の構成***
<変形例1>
経路制御装置10は、セキュリティ装置53が正常でないと判定された場合に、ネットワークシステム100の管理者の端末といった指定端末に、セキュリティ装置53が正常でないと判定されたことを通知してもよい。
この場合には、図15に示すように、経路制御装置10は、機能構成要素として、通知部24を備える。通知部24は、図7のステップS110で正常状態から故障状態に切り替えられた際、指定端末にセキュリティ装置53が正常でないと判定されたことを通知する。
<変形例2>
実施の形態1では、各機能構成要素がソフトウェアで実現された。しかし、変形例2として、各機能構成要素はハードウェアで実現されてもよい。この変形例2について、実施の形態1と異なる点を説明する。
図16を参照して、変形例2に係る経路制御装置10の構成を説明する。
各機能構成要素がハードウェアで実現される場合には、経路制御装置10は、プロセッサ11に代えて、電子回路17を備える。電子回路17は、各機能構成要素の機能を実現する専用の回路である。
電子回路17としては、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)が想定される。
各機能構成要素を1つの電子回路17で実現してもよいし、各機能構成要素を複数の電子回路17に分散させて実現してもよい。
<変形例3>
変形例3として、一部の各機能構成要素がハードウェアで実現され、他の各機能構成要素がソフトウェアで実現されてもよい。
プロセッサ11と電子回路17とを処理回路という。つまり、各機能構成要素の機能は、処理回路により実現される。
なお、以上の説明における「部」を、「回路」、「工程」、「手順」、「処理」又は「処理回路」に読み替えてもよい。
以上、本開示の実施の形態及び変形例について説明した。これらの実施の形態及び変形例のうち、いくつかを組み合わせて実施してもよい。また、いずれか1つ又はいくつかを部分的に実施してもよい。なお、本開示は、以上の実施の形態及び変形例に限定されるものではなく、必要に応じて種々の変更が可能である。
100 ネットワークシステム、10 経路制御装置、11 プロセッサ、12 記憶装置、13 入出力インタフェース、14 分配器、15 A/Dコンバータ、16 切替スイッチ、17 電子回路、21 データ取得部、22 判定部、23 経路切替部、24 通知部、31 設定データ、32 基準信号データ、51 第1機器、52 第2機器、53 セキュリティ装置、60 伝送路。

Claims (7)

  1. 第1機器と第2機器との間にインライン接続されるセキュリティ装置をバイパス可能にする経路制御装置であり、
    前記セキュリティ装置から取得された信号に基づき、前記セキュリティ装置が正常か否かを判定する判定部と、
    前記判定部によって前記セキュリティ装置が正常と判定された場合には、前記第1機器と前記第2機器とのうち一方から他方への通信データが前記セキュリティ装置を介して送信され、前記判定部によって前記セキュリティ装置が正常でないと判定された場合には、前記一方から前記他方への通信データが前記セキュリティ装置を介さずバイパスして送信されるように経路を切り替える経路切替部と
    を備える経路制御装置。
  2. 前記判定部は、基準時間に前記セキュリティ装置から送信された送信信号列に、基準信号列が含まれる場合に、前記セキュリティ装置が正常であると判定し、前記基準時間に前記セキュリティ装置から送信された送信信号列に、前記基準信号列が含まれない場合に、前記セキュリティ装置が正常でないと判定する
    請求項1に記載の経路制御装置。
  3. 前記判定部は、前記送信信号列を構成する1つ以上の部分信号列それぞれを対象の部分信号列として、前記対象の部分信号列と、前記基準信号列との相関係数を計算して、少なくともいずれかの部分信号列についての相関係数が閾値を超える場合に、前記送信信号列に前記基準信号列が含まれると判定する
    請求項2に記載の経路制御装置。
  4. 前記経路制御装置は、前記第1機器と前記第2機器と前記セキュリティ装置との間に接続される
    ことを特徴とする請求項1から3までのいずれか1項に記載の経路制御装置。
  5. 前記経路制御装置は、さらに、
    前記セキュリティ装置が正常でないと判定された場合に、指定端末に通知する通知部
    を備える請求項1から4までのいずれか1項に記載の経路制御装置。
  6. 第1機器と第2機器との間にインライン接続されるセキュリティ装置をバイパス可能にする経路制御方法であり、
    前記セキュリティ装置から取得された信号に基づき、前記セキュリティ装置が正常か否かを判定し、
    前記セキュリティ装置が正常と判定された場合には、前記第1機器と前記第2機器とのうち一方から他方への通信データが前記セキュリティ装置を介して送信され、前記セキュリティ装置が正常でないと判定された場合には、前記一方から前記他方への通信データが前記セキュリティ装置を介さずバイパスして送信されるように経路を切り替える経路制御方法。
  7. 第1機器と第2機器との間にインライン接続されるセキュリティ装置をバイパス可能にする経路制御プログラムであり、
    前記セキュリティ装置から取得された信号に基づき、前記セキュリティ装置が正常か否かを判定する判定処理と、
    前記判定処理によって前記セキュリティ装置が正常と判定された場合には、前記第1機器と前記第2機器とのうち一方から他方への通信データが前記セキュリティ装置を介して送信され、前記判定処理によって前記セキュリティ装置が正常でないと判定された場合には、前記一方から前記他方への通信データが前記セキュリティ装置を介さずバイパスして送信されるように経路を切り替える経路切替処理と
    を行う経路制御装置としてコンピュータを機能させる経路制御プログラム。
JP2021069407A 2021-04-16 2021-04-16 経路制御装置、経路制御方法及び経路制御プログラム Active JP7270668B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021069407A JP7270668B2 (ja) 2021-04-16 2021-04-16 経路制御装置、経路制御方法及び経路制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021069407A JP7270668B2 (ja) 2021-04-16 2021-04-16 経路制御装置、経路制御方法及び経路制御プログラム

Publications (2)

Publication Number Publication Date
JP2022164120A true JP2022164120A (ja) 2022-10-27
JP7270668B2 JP7270668B2 (ja) 2023-05-10

Family

ID=83743064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021069407A Active JP7270668B2 (ja) 2021-04-16 2021-04-16 経路制御装置、経路制御方法及び経路制御プログラム

Country Status (1)

Country Link
JP (1) JP7270668B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503936A (ja) * 1999-07-03 2003-01-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コンテンションチャネルを要求するワイヤレスネットワーク
CN206878844U (zh) * 2017-02-28 2018-01-12 北京匡恩网络科技有限责任公司 通信处理装置及通信系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503936A (ja) * 1999-07-03 2003-01-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コンテンションチャネルを要求するワイヤレスネットワーク
CN206878844U (zh) * 2017-02-28 2018-01-12 北京匡恩网络科技有限责任公司 通信处理装置及通信系统

Also Published As

Publication number Publication date
JP7270668B2 (ja) 2023-05-10

Similar Documents

Publication Publication Date Title
US20160072642A1 (en) High-bandwidth chassis and rack management by vlan
US10114790B2 (en) Port mirroring for peripheral component interconnect express devices
JP2005209190A (ja) 高可用性クラスタノードの複数状態ステータスの報告
US9647852B2 (en) Selective single-ended transmission for high speed serial links
US20200117554A1 (en) Ips soc pll monitoring and error reporting
WO2011044806A1 (zh) 一种直流电源的均流方法和装置
CN110535715B (zh) 基于Linux的端口状态实时检测方法、电路和交换机
CN112437037A (zh) 基于sketch的DDoS洪泛攻击检测方法及装置
CN109687943B (zh) 一种双机备份冗余控制系统
JP7270668B2 (ja) 経路制御装置、経路制御方法及び経路制御プログラム
CN113767381A (zh) 使用信号指纹识别的系统异常检测
KR101473144B1 (ko) Can 통신 기반의 반도체 테스트 방법 및 시스템
US8154880B1 (en) Method and apparatus for active line interface isolation
KR20210063011A (ko) 저전력 투-버스트 데이터 전송을 위한 or-네트워크 버스 인코딩 장치 및 방법
CN114641765B (zh) Ethercat控制器
US11411293B1 (en) Fault protected signal splitter apparatus
KR100930931B1 (ko) 플렉스레이통신 고장 강건을 위한 플렉스레이 시스템
CN114301807B (zh) 一种双系同步网线故障测试装置及方法
US20120030372A1 (en) Redundant ethernet connection system and method
US9240892B1 (en) Method and apparatus for reduction of communications media energy consumption
US11894596B2 (en) Fault protected signal splitter apparatus
US10831686B1 (en) Method of determining hard disk operation status
US10476776B2 (en) Methods, systems and computer readable media for wide bus pattern matching
JP4220430B2 (ja) 二重化ネットワーク制御システム
JP2006133924A (ja) 制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230425

R150 Certificate of patent or registration of utility model

Ref document number: 7270668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150