JP2022162648A - Ac-dc conversion device, and ac conversion device - Google Patents

Ac-dc conversion device, and ac conversion device Download PDF

Info

Publication number
JP2022162648A
JP2022162648A JP2021067547A JP2021067547A JP2022162648A JP 2022162648 A JP2022162648 A JP 2022162648A JP 2021067547 A JP2021067547 A JP 2021067547A JP 2021067547 A JP2021067547 A JP 2021067547A JP 2022162648 A JP2022162648 A JP 2022162648A
Authority
JP
Japan
Prior art keywords
voltage
converter
capacitor
phase
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021067547A
Other languages
Japanese (ja)
Inventor
康太 木内
Kota Kiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2021067547A priority Critical patent/JP2022162648A/en
Priority to TW111107888A priority patent/TWI815333B/en
Priority to KR1020220028063A priority patent/KR20220141738A/en
Priority to CN202210227314.XA priority patent/CN115208185A/en
Publication of JP2022162648A publication Critical patent/JP2022162648A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Abstract

To provide an AC-DC conversion device and an AC conversion device of simple structure.SOLUTION: An inverter device 10 comprises: a converter 11 which rectifies three-phase AC voltage to be input to DC voltage; a smoothing capacitor 121 which smooths the rectified DC voltage; a boost capacitor 122 which is connected in series with the smoothing capacitor 121; and a mode switching unit 50 which can switch a boosting mode in which a charge path 124 for charging the boosting capacitor 122 by the three-phase AC voltage to be input is formed to increase the DC voltage to be output by the converter 11 by the charged boosting capacitor 122 and a normal mode in which the charge path 124 is not formed.SELECTED DRAWING: Figure 2

Description

本発明は交流電圧を直流電圧に変換する技術および交流電圧を交流電圧に変換する技術に関する。 The present invention relates to a technique for converting AC voltage to DC voltage and a technique for converting AC voltage to AC voltage.

交流電圧を直流電圧に変換する交流直流変換装置として図1に示す構成のものが知られている。この交流直流変換装置は、入力される3相の交流電圧を直流電圧に整流するコンバータ11と、直流電圧を平滑する平滑コンデンサ12と、直流電圧を降圧する降圧回路30と、直流電圧を昇圧する昇圧回路40を備える。コンバータ11は、3相の交流電圧を一定の方向(図の下から上に向かう方向)に整流するダイオード111~116を備える。降圧回路30は、降圧のためのスイッチング動作を行うトランジスタ31と、ダイオード32と、インダクタ33を備える。昇圧回路40は、昇圧のためのスイッチング動作を行うトランジスタ41と、ダイオード42を備える。インダクタ33は、降圧回路30と昇圧回路40で共用される。 2. Description of the Related Art As an AC/DC converter for converting an AC voltage into a DC voltage, one having the configuration shown in FIG. 1 is known. This AC/DC converter includes a converter 11 that rectifies an input three-phase AC voltage into a DC voltage, a smoothing capacitor 12 that smoothes the DC voltage, a step-down circuit 30 that steps down the DC voltage, and a step-up DC voltage. A booster circuit 40 is provided. Converter 11 includes diodes 111 to 116 that rectify a three-phase AC voltage in a certain direction (upward direction in the drawing). The step-down circuit 30 includes a transistor 31 that performs a switching operation for stepping down, a diode 32 and an inductor 33 . The booster circuit 40 includes a transistor 41 that performs a switching operation for boosting, and a diode 42 . The inductor 33 is shared by the step-down circuit 30 and the step-up circuit 40 .

特開平9-149643号公報JP-A-9-149643

図1の交流直流変換装置に降圧回路30と昇圧回路40の両方が設けられているのは、コンバータ11で整流後の直流電圧が目標電圧より高い場合と低い場合があるためである。図1の右表はコンバータ11に入力される交流電圧とコンバータ11で整流後の直流電圧(入力交流電圧の√2倍)を示すが、整流後の直流電圧が目標電圧の320Vより高い場合と低い場合がある。整流後の直流電圧が目標電圧320Vより高い場合は降圧回路30によって目標電圧まで降圧し、整流後の直流電圧が目標電圧320Vより低い場合は昇圧回路40によって目標電圧まで昇圧する。このように、コンバータ11で整流後の直流電圧が目標電圧より高くも低くもなり得る場合、降圧回路30と昇圧回路40の両方が必要となるため、構成の複雑化やコストの増大を招いていた。 The AC/DC converter of FIG. 1 is provided with both the step-down circuit 30 and the step-up circuit 40 because the DC voltage after rectification in the converter 11 may be higher or lower than the target voltage. The right table of Fig. 1 shows the AC voltage input to the converter 11 and the DC voltage after rectification by the converter 11 (√2 times the input AC voltage). may be low. If the DC voltage after rectification is higher than the target voltage of 320V, the step-down circuit 30 steps it down to the target voltage. As described above, when the DC voltage after rectification in converter 11 can be higher or lower than the target voltage, both step-down circuit 30 and step-up circuit 40 are required, which complicates the configuration and increases cost. rice field.

本発明はこうした状況に鑑みてなされたものであり、その目的は、構成が簡素な交流直流変換装置や交流変換装置を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to provide an AC/DC converter or an AC converter with a simple configuration.

上記課題を解決するために、本発明のある態様の交流直流変換装置は、入力される交流電圧を直流電圧に整流する整流部と、整流された直流電圧を平滑する平滑コンデンサと、平滑コンデンサと直列に接続される増圧コンデンサと、入力される交流電圧によって増圧コンデンサを充電する充電経路が形成され、充電された増圧コンデンサによって整流部が出力する直流電圧を増加させる増圧モードと、充電経路が形成されない通常モードを切替可能なモード切替部と、を備える。 In order to solve the above-described problems, an AC-DC converter according to one aspect of the present invention includes a rectifying section that rectifies an input AC voltage to a DC voltage, a smoothing capacitor that smoothes the rectified DC voltage, and a smoothing capacitor. a boosting mode in which a step-up capacitor connected in series and a charging path for charging the step-up capacitor are formed by an input AC voltage, and the charged step-up capacitor increases the DC voltage output from the rectifier; and a mode switching unit capable of switching a normal mode in which a charging path is not formed.

この態様によれば、増圧コンデンサを利用した増圧モードによって、整流部が出力する直流電圧を増加させることができるため、整流部の後段に昇圧回路を設ける必要がなくなる。 According to this aspect, the DC voltage output from the rectifier can be increased in the boost mode using the boost capacitor, so there is no need to provide a booster circuit after the rectifier.

本発明の別の態様は、交流変換装置である。この装置は、入力される交流電圧を直流電圧に整流する整流部と、整流された直流電圧を平滑する平滑コンデンサと、平滑コンデンサと直列に接続される増圧コンデンサと、入力される交流電圧によって増圧コンデンサを充電する充電経路が形成され、充電された増圧コンデンサによって整流部が出力する直流電圧を増加させる増圧モードと、充電経路が形成されない通常モードを切替可能なモード切替部と、整流部が出力する直流電圧を交流電圧に変換する直流交流変換部と、を備える。 Another aspect of the invention is an AC converter. This device consists of a rectifying section that rectifies an input AC voltage to a DC voltage, a smoothing capacitor that smoothes the rectified DC voltage, a boost capacitor that is connected in series with the smoothing capacitor, and an input AC voltage. a mode switching unit capable of switching between a boosting mode in which a charging path for charging the boosting capacitor is formed and the DC voltage output by the rectifying unit is increased by the charged boosting capacitor, and a normal mode in which the charging path is not formed; a DC/AC conversion unit that converts the DC voltage output by the rectification unit into an AC voltage.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 Any combination of the above constituent elements, and any conversion of expressions of the present invention into methods, devices, systems, recording media, computer programs, etc. are also effective as embodiments of the present invention.

本発明によれば、構成が簡素な交流直流変換装置や交流変換装置を提供できる。 According to the present invention, it is possible to provide an AC/DC converter or an AC converter with a simple configuration.

従来の交流直流変換装置を示す。1 shows a conventional AC-DC converter. インバータ装置の構成を概略的に示す。1 schematically shows the configuration of an inverter device; 図1の例に対して本実施形態を適用した例を示す。An example in which the present embodiment is applied to the example in FIG. 1 is shown.

以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施形態は例示であり、本発明の範囲を何ら限定するものではない。実施形態に記載されるすべての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description and drawings, the same or equivalent components, members, and processes are denoted by the same reference numerals, and overlapping descriptions are omitted as appropriate. The scales and shapes of the illustrated parts are set for convenience in order to facilitate explanation, and should not be construed as limiting unless otherwise specified. The embodiments are illustrative and do not limit the scope of the invention in any way. Not all features or combinations thereof described in the embodiments are essential to the invention.

図2は、本発明の交流変換装置の実施形態としてのインバータ装置10の構成を概略的に示す。インバータ装置10は、交流電源から入力される互いに位相が異なる多相の交流電圧を整流して直流電圧に変換する整流部としてのコンバータ11と、コンバータ11で整流された直流電圧を平滑して波形を整える平滑コンデンサ121と、コンバータ11によって整流された直流電圧を降圧する降圧部としての降圧回路30と、降圧回路30で降圧された直流電圧を平滑して波形を整える平滑コンデンサ130と、降圧回路30によって降圧された直流電圧を交流電圧に変換する直流交流変換部としてのインバータ13を備える。 FIG. 2 schematically shows the configuration of an inverter device 10 as an embodiment of the AC converter of the present invention. The inverter device 10 includes a converter 11 as a rectifying unit that rectifies multiphase AC voltages having different phases from each other input from an AC power supply and converts them into DC voltages, and a converter 11 that smoothes the DC voltages rectified by the converter 11 to form waveforms. a step-down circuit 30 as a step-down unit for stepping down the DC voltage rectified by the converter 11; a smoothing capacitor 130 for smoothing the DC voltage stepped down by the step-down circuit 30 and adjusting the waveform; An inverter 13 is provided as a DC/AC converter that converts the DC voltage stepped down by 30 into an AC voltage.

コンバータ11は、交流電源から入力される3相(U,V,W)の交流電圧を一定の方向(図の下から上に向かう方向)に整流するダイオード111~116を備える。ダイオード111はU相の交流電圧が正の時に電流を流し、ダイオード112はU相の交流電圧が負の時に電流を流し、ダイオード113はV相の交流電圧が正の時に電流を流し、ダイオード114はV相の交流電圧が負の時に電流を流し、ダイオード115はW相の交流電圧が正の時に電流を流し、ダイオード116はW相の交流電圧が負の時に電流を流す。これらのブリッジ状に接続されたダイオード111~116によって、コンバータ11の高電位出力端子117と低電位出力端子118の間には、方向が一定で大きさが変動する脈流が現われる。平滑コンデンサ121および後述する増圧コンデンサ122は、コンバータ11で得られた脈流を平滑して波形の整った直流電圧を生成する。 The converter 11 includes diodes 111 to 116 that rectify a three-phase (U, V, W) AC voltage input from an AC power supply in a certain direction (upward direction in the drawing). Diode 111 allows current to flow when the U-phase AC voltage is positive, diode 112 allows current to flow when the U-phase AC voltage is negative, diode 113 allows current to flow when the V-phase AC voltage is positive, and diode 114 allows current to flow when the U-phase AC voltage is positive. current when the V-phase AC voltage is negative, diode 115 conducts current when the W-phase AC voltage is positive, and diode 116 conducts current when the W-phase AC voltage is negative. These bridge-connected diodes 111 to 116 produce a pulsating current whose direction is constant and whose magnitude fluctuates between the high potential output terminal 117 and the low potential output terminal 118 of the converter 11 . Smoothing capacitor 121 and boosting capacitor 122, which will be described later, smooth the pulsating current obtained in converter 11 to generate a DC voltage with a regular waveform.

降圧回路30は、コンバータ11の高電位出力端子117に接続され、降圧のためのスイッチング動作を行うトランジスタ31と、トランジスタ31の出力段とコンバータ11の低電位出力端子118の間に接続され、低電位側から高電位側に電流を流すダイオード32と、トランジスタ31の出力段に接続され、降圧された直流電圧を出力するインダクタ33を備える。トランジスタ31がオンの時はコンバータ11の高電位出力端子117からの高電位VDCがインダクタ33に加わり、トランジスタ31がオフの時はダイオード32を介してコンバータ11の低電位出力端子118からの低電位Vssがインダクタ33に加わる。 The step-down circuit 30 is connected to a high potential output terminal 117 of the converter 11 and connected between a transistor 31 that performs a switching operation for stepping down the voltage, and between an output stage of the transistor 31 and a low potential output terminal 118 of the converter 11 to provide a low potential output terminal 118 . It has a diode 32 that allows a current to flow from the potential side to the high potential side, and an inductor 33 that is connected to the output stage of the transistor 31 and outputs a stepped-down DC voltage. A high potential VDC from high potential output terminal 117 of converter 11 is applied to inductor 33 when transistor 31 is on, and a low potential from low potential output terminal 118 of converter 11 is applied through diode 32 when transistor 31 is off. A potential V ss is applied to inductor 33 .

この結果、インダクタ33はトランジスタ31のオンとオフの比に応じた高電位VDCと低電位Vssの間の直流電位Voutを出力する。すなわち、降圧回路30の動作周期Tにおけるトランジスタ31のオン時間をTON、オフ時間をTOFFとすれば(T=TON+TOFF)、Vout≒(TONDC+TOFFss)/(TON+TOFF)と表される。このような降圧回路30によれば、コンバータ11が出力した高電位VDCを、高電位VDC以下かつ低電位Vss以上の任意の直流電位Voutまで降下させることができる。極端な場合として、降圧回路30の動作周期Tでトランジスタ31が常にオンの場合(T=TON)はVout≒VDCとなって高電位VDCは降下せず、降圧回路30の動作周期Tでトランジスタ31が常にオフの場合(T=TOFF)はVout≒Vssとなって高電位VDCは最低電位Vssまで降下する。 As a result, the inductor 33 outputs a DC potential V out between the high potential V DC and the low potential V ss according to the on/off ratio of the transistor 31 . That is, if the ON time of the transistor 31 in the operation period T of the step-down circuit 30 is T ON and the OFF time is T OFF (T=T ON +T OFF ), then V out ≈(T ON V DC +T OFF V ss )/ (T ON +T OFF ). According to such a step-down circuit 30, the high potential VDC output from the converter 11 can be dropped to any DC potential Vout that is lower than the high potential VDC and higher than the low potential Vss . As an extreme case, when the transistor 31 is always on (T=T ON ) in the operation period T of the voltage step-down circuit 30, V out ≈ V DC and the high potential V DC does not drop, and the operation period of the voltage step-down circuit 30 When the transistor 31 is always off at T (T=T OFF ), V out ≈V ss and the high potential V DC drops to the lowest potential V ss .

以上の構成において、コンバータ11、平滑コンデンサ121(および増圧コンデンサ122)、降圧回路30(および平滑コンデンサ130)は、交流電源から入力される交流電圧を直流電圧に変換する本発明の交流直流変換装置を構成する。このような交流直流変換装置を経て、インバータ13の高電位入力端子131と低電位入力端子132の間に入力される直流電圧をVinと表す。高電位入力端子131が接続される高電位入力ラインの電位をVdd、低電位入力端子132が接続される低電位入力ラインの電位をVssとすれば、Vin=Vdd-Vssである。ここで、高電位入力ラインの電位Vddは、インダクタ33が出力する直流電位Voutに等しい。以下、特に断らない限り、Vinは一定(例えば、後述する目標電圧320V)とする。 In the above configuration, the converter 11, the smoothing capacitor 121 (and the step-up capacitor 122), and the step-down circuit 30 (and the smoothing capacitor 130) are the AC-DC converter of the present invention for converting the AC voltage input from the AC power supply to the DC voltage. configure the device; A DC voltage input between the high-potential input terminal 131 and the low-potential input terminal 132 of the inverter 13 through such an AC-DC converter is denoted by Vin . If the potential of the high potential input line to which the high potential input terminal 131 is connected is V dd and the potential of the low potential input line to which the low potential input terminal 132 is connected is V ss , V in =V dd −V ss . be. Here, the potential V dd of the high potential input line is equal to the DC potential V out output by the inductor 33 . Below, unless otherwise specified, Vin is assumed to be constant (for example, a target voltage of 320 V, which will be described later).

インバータ13は、高電位入力端子131と低電位入力端子132の間で入力される直流電圧Vinを3相の交流電圧に変換する。具体的には、直流電圧Vinに基づいてU相の交流電圧を生成するU相インバータ13Uと、直流電圧Vinに基づいてV相の交流電圧を生成するV相インバータ13Vと、直流電圧Vinに基づいてW相の交流電圧を生成するW相インバータ13Wが並列に設けられる。各相のインバータ13U、13V、13Wの構成は共通であるため、以下では適宜インバータ13と総称してまとめて説明する。 The inverter 13 converts the DC voltage Vin input between the high potential input terminal 131 and the low potential input terminal 132 into a three-phase AC voltage. Specifically, a U-phase inverter 13U that generates a U-phase AC voltage based on the DC voltage Vin , a V-phase inverter 13V that generates a V-phase AC voltage based on the DC voltage Vin, and a DC voltage V A W-phase inverter 13W for generating a W-phase AC voltage based on in is provided in parallel. Since the configurations of the inverters 13U, 13V, and 13W for each phase are common, they will be collectively referred to as the inverter 13 as appropriate below.

インバータ13は、高い直流電源電位Vddが入力される高電位入力端子131と、低い直流電源電位Vssが入力される低電位入力端子132と、高電位入力端子131と低電位入力端子132の間に設けられてVddとVssの間で変動する交流電圧を出力する出力端子133を備える。高電位入力端子131と出力端子133の間には高電位トランジスタ134Hが接続され、低電位入力端子132と出力端子133の間には低電位トランジスタ134Lが接続される。高電位トランジスタ134Hは、その制御電極に接続された高電位ドライバ135Hからの制御信号に応じて導通状態が切り替えられる。低電位トランジスタ134Lは、その制御電極に接続された低電位ドライバ135Lからの制御信号に応じて導通状態が切り替えられる。 The inverter 13 has a high potential input terminal 131 to which a high DC power supply potential Vdd is input, a low potential input terminal 132 to which a low DC power supply potential Vss is input, and a high potential input terminal 131 and a low potential input terminal 132 . An output terminal 133 is provided therebetween for outputting an alternating voltage that varies between Vdd and Vss . A high potential transistor 134 H is connected between the high potential input terminal 131 and the output terminal 133 , and a low potential transistor 134 L is connected between the low potential input terminal 132 and the output terminal 133 . The high potential transistor 134H is switched between conductive states in response to a control signal from a high potential driver 135H connected to its control electrode. The low potential transistor 134L is switched between conductive states according to a control signal from a low potential driver 135L connected to its control electrode.

具体的には、高電位ドライバ135Hおよび低電位ドライバ135Lからなるドライバ対135は、高電位トランジスタ134Hおよび低電位トランジスタ134Lからなるトランジスタ対134の導通状態を相補的に切り替えるスイッチング制御を行うことで直流電圧を交流電圧に変換する。ここで「相補的に切り替える」とは、各トランジスタ134H、134Lのオンとオフの状態が互いに逆となるように制御することを意味する。すなわち、トランジスタ134Hがオンの時はトランジスタ134Lをオフとし、トランジスタ134Lがオンの時はトランジスタ134Hをオフとする。これによって、高電位トランジスタ134Hがオンの時は出力端子133に高電位Vddが現われ、低電位トランジスタ134Lがオンの時は出力端子133に低電位Vssが現われる。このようなスイッチング制御を周期的に繰り返すことで、出力端子133には高電位Vddと低電位Vssが交互に現われるため交流電圧が生成される。 Specifically, a driver pair 135 consisting of a high potential driver 135H and a low potential driver 135L performs switching control to complementarily switch the conduction state of a transistor pair 134 consisting of a high potential transistor 134H and a low potential transistor 134L, thereby driving direct current. Converts voltage to alternating voltage. Here, "complementary switching" means controlling the on and off states of the transistors 134H and 134L to be opposite to each other. That is, when the transistor 134H is on, the transistor 134L is turned off, and when the transistor 134L is on, the transistor 134H is turned off. As a result, a high potential Vdd appears at the output terminal 133 when the high potential transistor 134H is on, and a low potential Vss appears at the output terminal 133 when the low potential transistor 134L is on. By periodically repeating such switching control, a high potential Vdd and a low potential Vss alternately appear at the output terminal 133, thereby generating an AC voltage.

インバータ13で生成された3相の交流電圧は、例えばモータ20の駆動に使用される。モータ20は、U相、V相、W相の3相のコイル20U、20V、20Wを持つ3相ブラシレスモータである。U相コイル20UにはU相インバータ13UからのU相電圧が印加されてU相電流が流れ、V相コイル20VにはV相インバータ13VからのV相電圧が印加されてV相電流が流れ、W相コイル20WにはW相インバータ13WからのW相電圧が印加されてW相電流が流れる。各相のインバータ13U、13V、13Wは、モータ20のホール素子H1、H2、H3が検知した回転子の回転位置に基づき、互いに位相が異なる交流電圧を各相のコイル20U、20V、20Wに印加することで回転磁界を発生させる。この回転磁界によって回転する回転子から所望の回転動力が得られる。なお、モータ20は、交流電圧で駆動される他のタイプのモータでもよい。また、モータ20の相の数は3に限られず任意の自然数でよい。同様に、コンバータ11に入力される交流電圧の相の数も3に限られず任意の自然数でよい。 The three-phase AC voltage generated by the inverter 13 is used to drive the motor 20, for example. The motor 20 is a three-phase brushless motor having three-phase coils 20U, 20V, and 20W of U-phase, V-phase, and W-phase. A U-phase voltage from a U-phase inverter 13U is applied to the U-phase coil 20U to flow a U-phase current, and a V-phase voltage is applied to the V-phase coil 20V from a V-phase inverter 13V to flow a V-phase current. A W-phase voltage is applied to the W-phase coil 20W from the W-phase inverter 13W, and a W-phase current flows. Inverters 13U, 13V, and 13W for each phase apply AC voltages of different phases to coils 20U, 20V, and 20W for each phase based on the rotational position of the rotor detected by Hall elements H1, H2, and H3 of motor 20. By doing so, a rotating magnetic field is generated. Desired rotational power is obtained from the rotor rotating by this rotating magnetic field. It should be noted that motor 20 may be another type of motor that is driven by AC voltage. Also, the number of phases of the motor 20 is not limited to 3 and may be any natural number. Similarly, the number of phases of the AC voltage input to converter 11 is not limited to 3 and may be any natural number.

続いて、コンバータ11が出力する直流電圧VDCを増加させるための増圧コンデンサ122について説明する。増圧コンデンサ122は平滑コンデンサ121と等しい容量を持ち、コンバータ11の高電位出力端子117と低電位出力端子118の間に平滑コンデンサ121と直列に接続される。平滑コンデンサ121は高電位側に配置され、増圧コンデンサ122は低電位側に配置される。 Next, boosting capacitor 122 for increasing the DC voltage VDC output from converter 11 will be described. Boosting capacitor 122 has the same capacity as smoothing capacitor 121 and is connected in series with smoothing capacitor 121 between high potential output terminal 117 and low potential output terminal 118 of converter 11 . The smoothing capacitor 121 is arranged on the high potential side, and the boosting capacitor 122 is arranged on the low potential side.

平滑コンデンサ121と増圧コンデンサ122の接続部分123と、交流電源からコンバータ11に入力される3相の交流電圧のうち少なくとも一つの任意の相(図示の例ではW相)の交流電圧の入力端子の間には、第1接点61と第2接点62の間で切替可能なスイッチ60が設けられる。スイッチ60が第1接点61に接続されている時は通常モードでコンバータ11が動作し、スイッチ60が第2接点62に接続されている時は後述する増圧モードでコンバータ11が動作する。 A connecting portion 123 between the smoothing capacitor 121 and the boosting capacitor 122, and an input terminal for at least one arbitrary phase (W phase in the illustrated example) of the three-phase AC voltage input to the converter 11 from the AC power supply. A switch 60 switchable between a first contact 61 and a second contact 62 is provided between them. When the switch 60 is connected to the first contact 61, the converter 11 operates in the normal mode, and when the switch 60 is connected to the second contact 62, the converter 11 operates in the boosting mode described later.

増圧モードでは、W相の交流電圧を平滑コンデンサ121と増圧コンデンサ122の接続部分123に加える充電経路124が形成される。この充電経路124によってW相の交流電圧が正の時に増圧コンデンサ122が充電され、充電された増圧コンデンサ122によってコンバータ11が出力する直流電圧(VDC-Vss)が増加する。 In the voltage boosting mode, a charging path 124 is formed to apply the W-phase AC voltage to the connecting portion 123 between the smoothing capacitor 121 and the boosting capacitor 122 . Boosting capacitor 122 is charged by charging path 124 when the W-phase AC voltage is positive, and DC voltage (V DC −V ss ) output from converter 11 is increased by charged boosting capacitor 122 .

W相の交流電圧が正の時は、W相の交流電圧によって正電位となる接続部分123と、U相またはV相の交流電圧によって負電位となる低電位出力端子118の間に加わるWU相間電圧またはWV相間電圧によって、増圧コンデンサ122がピーク電圧Vまで充電される。また、W相の交流電圧が負の時は、U相またはV相の交流電圧によって正電位となる高電位出力端子117と、W相の交流電圧によって負電位となる接続部分123の間に加わるUW相間電圧またはVW相間電圧によって、平滑コンデンサ121がピーク電圧Vまで充電される。この結果、コンバータ11の出力端子117、118間には、平滑コンデンサ121と増圧コンデンサ122の電圧の和である2Vが現れる。 When the W-phase AC voltage is positive, the WU-phase voltage applied between the connection portion 123, which has a positive potential due to the W-phase AC voltage, and the low potential output terminal 118, which has a negative potential due to the U-phase or V-phase AC voltage. The voltage or WV phase-to-phase voltage charges the boost capacitor 122 to the peak voltage Vp . When the W-phase AC voltage is negative, it is applied between the high-potential output terminal 117, which becomes positive by the U-phase or V-phase AC voltage, and the connection portion 123, which becomes negative by the W-phase AC voltage. The smoothing capacitor 121 is charged to the peak voltage Vp by the UW phase-to-phase voltage or the VW phase-to-phase voltage. As a result, 2Vp , which is the sum of the voltages of the smoothing capacitor 121 and the boosting capacitor 122, appears between the output terminals 117 and 118 of the converter 11. FIG.

以上のような増圧モードに対し、スイッチ60が第1接点61に接続されている通常モードでは、平滑コンデンサ121および増圧コンデンサ122は一つのコンデンサとして機能し、UVW各相間電圧によって全体としてピーク電圧Vまで充電される。この結果、コンバータ11の出力端子117、118間にはピーク電圧Vが現れる。このように、増圧モードにおいてコンバータ11が出力する直流電圧(2V)は、通常モードにおいてコンバータ11が出力する直流電圧(V)の定数倍(2倍)になっている。 In the normal mode in which the switch 60 is connected to the first contact 61, the smoothing capacitor 121 and the boosting capacitor 122 function as one capacitor, and the voltage between the UV and W phases causes a peak voltage as a whole. charged to voltage Vp . As a result, a peak voltage Vp appears across the output terminals 117 and 118 of the converter 11 . Thus, the DC voltage (2V p ) output by the converter 11 in the boost mode is a constant multiple (double) of the DC voltage (V p ) output by the converter 11 in the normal mode.

図示の例は平滑コンデンサ121に一個の増圧コンデンサ122を組み合わせて通常の2倍の出力電圧を得るものだが、二個以上の増圧コンデンサを組み合わせれば通常の3倍以上の出力電圧が得られる。このような回路は、電圧逓倍回路や電圧増倍回路と呼ばれており、多段のコンデンサとダイオードによって構成されたコッククロフト・ウォルトン回路等が知られている。 In the illustrated example, the smoothing capacitor 121 is combined with one step-up capacitor 122 to obtain an output voltage twice as high as normal. be done. Such a circuit is called a voltage multiplier circuit or a voltage multiplier circuit, and a Cockcroft-Walton circuit or the like composed of multi-stage capacitors and diodes is known.

以上のような通常モードと増圧モードを切り替えるためにモード切替部50が設けられる。モード切替部50は、通常モードにおいてコンバータ11が出力する直流電圧が所定の目標電圧より低い場合に増圧モードに切り替える。具体的には、モード切替部50は交流電源からコンバータ11に入力される3相の交流電圧のうち少なくとも一つの相の交流電圧をモニタし、そこから演算されるコンバータ11の出力電圧と目標電圧の比較結果に応じて、スイッチ60を第1接点61と第2接点62の間で切り替えて通常モードと増圧モードを切り替える。 A mode switching unit 50 is provided to switch between the normal mode and the pressure increasing mode as described above. Mode switching unit 50 switches to the boosting mode when the DC voltage output from converter 11 in the normal mode is lower than a predetermined target voltage. Specifically, the mode switching unit 50 monitors at least one of the three-phase AC voltages input to the converter 11 from the AC power supply, and the output voltage and the target voltage of the converter 11 calculated therefrom. The switch 60 is switched between the first contact 61 and the second contact 62 according to the result of the comparison to switch between the normal mode and the boost mode.

図1の表に関して説明したように、「整流後」と示されるコンバータ11の出力電圧は、「AC入力」と示されるコンバータ11の入力電圧の√2倍と演算できる。従って、図示の例では、コンバータ11の入力電圧が180V-220Vであれば、通常モードにおけるコンバータ11の出力電圧が目標電圧である320Vより低くなることが分かる。そこで、モード切替部50は増圧モードに切り替えることで、コンバータ11の出力電圧が目標電圧320Vより高くなるようにする。一方、コンバータ11の入力電圧が230V-265Vであれば、通常モードにおけるコンバータ11の出力電圧が目標電圧である320Vより高くなることが分かる。この場合、モード切替部50はコンバータ11を通常モードで動作させる。 As explained with respect to the table of FIG. 1, the output voltage of converter 11 labeled "rectified" can be calculated as √2 times the input voltage of converter 11 labeled "AC input". Therefore, in the illustrated example, if the input voltage of the converter 11 is 180V-220V, the output voltage of the converter 11 in the normal mode will be lower than the target voltage of 320V. Therefore, the mode switching unit 50 switches to the boosting mode so that the output voltage of the converter 11 becomes higher than the target voltage of 320V. On the other hand, if the input voltage of converter 11 is 230V-265V, it can be seen that the output voltage of converter 11 in the normal mode is higher than the target voltage of 320V. In this case, mode switching unit 50 operates converter 11 in the normal mode.

図3は図1の例に対して本実施形態を適用した例を示す。前述の通り、コンバータ11の入力電圧が180V-220Vの場合、モード切替部50によってコンバータ11が増圧モード(倍電圧整流)で動作する結果、コンバータ11の出力電圧(整流後)が目標電圧320Vより高くなる。一方、コンバータ11の入力電圧が230V-265Vの場合、コンバータ11は通常モード(一般整流)で動作し、増圧モードにしなくても目標電圧320Vより高い直流電圧が出力される。 FIG. 3 shows an example in which this embodiment is applied to the example of FIG. As described above, when the input voltage of the converter 11 is 180V-220V, the mode switching unit 50 causes the converter 11 to operate in the boosting mode (voltage doubler rectification), resulting in the output voltage (after rectification) of the converter 11 reaching the target voltage of 320V get higher. On the other hand, when the input voltage of the converter 11 is 230V-265V, the converter 11 operates in the normal mode (general rectification) and outputs a DC voltage higher than the target voltage of 320V even without the boost mode.

このように、適宜増圧モードを利用することで、コンバータ11の入力電圧によらず、コンバータ11の出力電圧が目標電圧より高くなる。コンバータ11の後段の降圧回路30は、コンバータ11の出力電圧を降圧することで目標電圧(320V)を生成できる。図1のようにコンバータ11の後段に昇圧回路40を設ける必要がなくなるため、構成を簡素化できコストを低減できる。 In this way, by appropriately using the boosting mode, the output voltage of converter 11 becomes higher than the target voltage regardless of the input voltage of converter 11 . A step-down circuit 30 in the latter stage of the converter 11 can generate a target voltage (320V) by stepping down the output voltage of the converter 11 . Since there is no need to provide the step-up circuit 40 after the converter 11 as shown in FIG. 1, the configuration can be simplified and the cost can be reduced.

以上、本発明を実施形態に基づいて説明した。実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. It should be understood by those skilled in the art that the embodiments are examples, and that various modifications can be made to combinations of each component and each treatment process, and such modifications are also within the scope of the present invention.

なお、実施形態で説明した各装置の機能構成はハードウェア資源またはソフトウェア資源により、あるいはハードウェア資源とソフトウェア資源の協働により実現できる。ハードウェア資源としてプロセッサ、ROM、RAM、その他のLSIを利用できる。ソフトウェア資源としてオペレーティングシステム、アプリケーション等のプログラムを利用できる。 Note that the functional configuration of each device described in the embodiments can be realized by hardware resources, software resources, or cooperation between hardware resources and software resources. Processors, ROMs, RAMs, and other LSIs can be used as hardware resources. Programs such as operating systems and applications can be used as software resources.

10 インバータ装置、11 コンバータ、13 インバータ、20 モータ、30 降圧回路、50 モード切替部、60 スイッチ、121 平滑コンデンサ、122 増圧コンデンサ、123 接続部分、124 充電経路。 10 inverter device, 11 converter, 13 inverter, 20 motor, 30 step-down circuit, 50 mode switching unit, 60 switch, 121 smoothing capacitor, 122 step-up capacitor, 123 connecting part, 124 charging path.

Claims (6)

入力される交流電圧を直流電圧に整流する整流部と、
整流された直流電圧を平滑する平滑コンデンサと、
前記平滑コンデンサと直列に接続される増圧コンデンサと、
入力される交流電圧によって前記増圧コンデンサを充電する充電経路が形成され、充電された前記増圧コンデンサによって前記整流部が出力する直流電圧を増加させる増圧モードと、前記充電経路が形成されない通常モードを切替可能なモード切替部と、
を備える交流直流変換装置。
a rectifying unit that rectifies an input AC voltage to a DC voltage;
a smoothing capacitor for smoothing the rectified DC voltage;
a boosting capacitor connected in series with the smoothing capacitor;
A boosting mode in which a charging path for charging the step-up capacitor is formed by the input AC voltage and the DC voltage output from the rectifying section is increased by the charged step-up capacitor, and a normal mode in which the charging path is not formed. a mode switching unit capable of switching modes;
AC to DC converter.
前記整流部には互いに位相が異なる多相の交流電圧が入力され、
前記充電経路は前記多相の交流電圧のうち少なくとも一つの相の交流電圧を前記平滑コンデンサおよび前記増圧コンデンサの接続部分に加える経路である、
請求項1に記載の交流直流変換装置。
Multiphase AC voltages having different phases are input to the rectifying unit,
The charging path is a path for applying at least one phase AC voltage among the multiphase AC voltages to a connection portion between the smoothing capacitor and the step-up capacitor.
The AC/DC converter according to claim 1.
前記増圧モードにおいて前記整流部が出力する直流電圧は、前記通常モードにおいて前記整流部が出力する直流電圧の定数倍である請求項1または2に記載の交流直流変換装置。 3. The AC/DC converter according to claim 1, wherein the DC voltage output by said rectifier in said boost mode is a constant multiple of the DC voltage output by said rectifier in said normal mode. 前記整流部によって整流された直流電圧を降圧する降圧部を更に備える請求項1から3のいずれかに記載の交流直流変換装置。 4. The AC/DC converter according to claim 1, further comprising a step-down section for stepping down the DC voltage rectified by said rectification section. 前記降圧部は前記整流部によって整流された直流電圧を所定の目標電圧まで降圧し、
前記モード切替部は前記通常モードにおいて前記整流部が出力する直流電圧が前記目標電圧より低い場合に前記増圧モードに切り替える、
請求項4に記載の交流直流変換装置。
The step-down unit steps down the DC voltage rectified by the rectifying unit to a predetermined target voltage,
The mode switching unit switches to the boosting mode when the DC voltage output by the rectifying unit is lower than the target voltage in the normal mode.
The AC/DC converter according to claim 4.
入力される交流電圧を直流電圧に整流する整流部と、
整流された直流電圧を平滑する平滑コンデンサと、
前記平滑コンデンサと直列に接続される増圧コンデンサと、
入力される交流電圧によって前記増圧コンデンサを充電する充電経路が形成され、充電された前記増圧コンデンサによって前記整流部が出力する直流電圧を増加させる増圧モードと、前記充電経路が形成されない通常モードを切替可能なモード切替部と、
前記整流部によって整流された直流電圧を降圧する降圧部と、
前記降圧部によって降圧された直流電圧を交流電圧に変換する直流交流変換部と、
を備える交流変換装置。
a rectifying unit that rectifies an input AC voltage to a DC voltage;
a smoothing capacitor for smoothing the rectified DC voltage;
a boosting capacitor connected in series with the smoothing capacitor;
A boosting mode in which a charging path for charging the step-up capacitor is formed by the input AC voltage and the DC voltage output from the rectifying section is increased by the charged step-up capacitor, and a normal mode in which the charging path is not formed. a mode switching unit capable of switching modes;
a step-down unit for stepping down the DC voltage rectified by the rectifying unit;
a DC/AC converter that converts the DC voltage stepped down by the step-down unit into an AC voltage;
An AC converter comprising:
JP2021067547A 2021-04-13 2021-04-13 Ac-dc conversion device, and ac conversion device Pending JP2022162648A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021067547A JP2022162648A (en) 2021-04-13 2021-04-13 Ac-dc conversion device, and ac conversion device
TW111107888A TWI815333B (en) 2021-04-13 2022-03-04 AC to DC conversion device, AC conversion device
KR1020220028063A KR20220141738A (en) 2021-04-13 2022-03-04 Ac/dc converter, ac converter
CN202210227314.XA CN115208185A (en) 2021-04-13 2022-03-08 AC/DC converter and AC/DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021067547A JP2022162648A (en) 2021-04-13 2021-04-13 Ac-dc conversion device, and ac conversion device

Publications (1)

Publication Number Publication Date
JP2022162648A true JP2022162648A (en) 2022-10-25

Family

ID=83575008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021067547A Pending JP2022162648A (en) 2021-04-13 2021-04-13 Ac-dc conversion device, and ac conversion device

Country Status (4)

Country Link
JP (1) JP2022162648A (en)
KR (1) KR20220141738A (en)
CN (1) CN115208185A (en)
TW (1) TWI815333B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149643A (en) 1995-11-22 1997-06-06 Hitachi Ltd Dc power supply apparatus
US6906503B2 (en) * 2002-01-25 2005-06-14 Precor Incorporated Power supply controller for exercise equipment drive motor
WO2009095890A2 (en) * 2008-02-01 2009-08-06 Koninklijke Philips Electronics N.V. Switched-mode power supply
CN104956581B (en) * 2013-01-29 2017-10-24 三菱电机株式会社 Power-converting device
WO2015143612A1 (en) * 2014-03-24 2015-10-01 Redisem Ltd. Power converter circuit and method thereof

Also Published As

Publication number Publication date
TWI815333B (en) 2023-09-11
TW202241034A (en) 2022-10-16
KR20220141738A (en) 2022-10-20
CN115208185A (en) 2022-10-18

Similar Documents

Publication Publication Date Title
EP2506420B1 (en) Power conversion apparatus
JP2006101675A (en) Motor drive
JP2006187140A (en) Converter power supply circuit
US9344029B2 (en) Asynchronous motor unit comprising a frequency converter with electrical isolation in the DC voltage intermediate circuit
JP2008086107A (en) Motor drive controller
CN111213311B (en) AC-AC converter circuit
JP2014197945A (en) Power conversion device and motor drive device having the same
US8183909B2 (en) Method for operating a converter circuit with voltage boosting
Khatua et al. A non-isolated single-stage 48v-to-1v vrm with a light load efficiency improvement technique
JP2000358363A (en) Apparatus and method for multi-phase voltage conversion
JP4575555B2 (en) Power output device
JP6156575B2 (en) Power conditioner and control method thereof
JP2022162648A (en) Ac-dc conversion device, and ac conversion device
JP3399288B2 (en) Thyristor converter
JP6840896B2 (en) Power converter
JP2003061394A (en) 4 element/6 element switching three-phase inverter
JPH10174456A (en) Air-conditioning equipment with inverter
JP7064615B2 (en) AC-DC converter, DC-DC converter and AC-AC converter
JP2020031507A (en) Power conversion device and inverter device using the same
JP3246584B2 (en) AC / DC converter
JP2006042579A (en) Switching control method, rectifier and drive system
JP2002369530A (en) Diode rectifying circuit
KR102069067B1 (en) Power transforming apparatus including rectifier decreasing ripple current and air conditioner including the same
JP3597412B2 (en) Inverter drive circuit
JPH06245541A (en) Feeding method for control power source of inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231115