JP2022160938A - Fermentation and culture method, lipoprotein polysaccharide, fermentation extract, fermentation extract powder and compound thereof - Google Patents

Fermentation and culture method, lipoprotein polysaccharide, fermentation extract, fermentation extract powder and compound thereof Download PDF

Info

Publication number
JP2022160938A
JP2022160938A JP2021065471A JP2021065471A JP2022160938A JP 2022160938 A JP2022160938 A JP 2022160938A JP 2021065471 A JP2021065471 A JP 2021065471A JP 2021065471 A JP2021065471 A JP 2021065471A JP 2022160938 A JP2022160938 A JP 2022160938A
Authority
JP
Japan
Prior art keywords
lps
lmm
fermentation
culture
hmm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021065471A
Other languages
Japanese (ja)
Inventor
裕之 稲川
Hiroyuki Inagawa
千恵 河内
Chie Kawachi
源一郎 杣
Genichiro Soma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bio Medical Research Group KK
Original Assignee
Bio Medical Research Group KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio Medical Research Group KK filed Critical Bio Medical Research Group KK
Priority to JP2021065471A priority Critical patent/JP2022160938A/en
Publication of JP2022160938A publication Critical patent/JP2022160938A/en
Pending legal-status Critical Current

Links

Images

Abstract

To solve problems for example, as a method for isolating LMM-LPS from the Pantoea bacteria cultured object, there is developed a method for performing gel filtration using deoxycholate, after purifying LPS, then after separating LMM-LPS and HMM-LPS, then removing the deoxycholate, however, the same method is extremely complicated and production cost becomes greater, and marketing thereof as a food ingredient is difficult in an aspect of cost.SOLUTION: There is provided a culture method for, by setting a culture temperature and a pH condition being elements which affect culture of bacteria, a weight ratio of LMM/HMM is enhanced to 1.85-3.07 (in the method, a content of LMM-LPS is almost four times of that of prior arts).SELECTED DRAWING: Figure 1

Description

本発明は、ヒトを含む哺乳動物(具体的には家畜、愛玩動物など)、鳥類(具体的には養鶏、愛玩鳥類など)、両生類、は虫類、魚類(具体的には、水産養殖魚、愛玩魚類など)、無脊椎動物に及ぶ医薬品、動物用医薬品、医薬部外品、化粧品、食品、機能性食品、飼料及び浴用剤などに添加しても安全な免疫賦活物質を得るための発酵及び培養方法、リポ多糖、発酵エキス、発酵エキス末並びにその配合物に関する。 The present invention is applicable to mammals including humans (specifically livestock, pet animals, etc.), birds (specifically, poultry, pet birds, etc.), amphibians, reptiles, fish (specifically, aquaculture fish, pet animals, etc.). fish, etc.), pharmaceuticals for invertebrates, veterinary drugs, quasi-drugs, cosmetics, foods, functional foods, feeds, bath additives, etc. Methods, lipopolysaccharides, fermented extracts, fermented extract powders and their formulations.

ヒトを含む哺乳動物(具体的には家畜、愛玩動物など)、鳥類(具体的には養鶏、愛玩鳥類など)、両生類、は虫類、魚類(具体的には、水産養殖魚、愛玩魚類など)、無脊椎動物に関して、自然免疫は細菌やウイルスの感染を防御、傷の修復、新陳代謝の調節など生体の健康維持に欠かせない働きをしている。自然免疫の中心的な役割を担っている食細胞であるマクロファージは体中の組織に存在しており、感染防御、創傷治癒、代謝調節の機能を高めるなどが知られている。 Mammals including humans (specifically livestock, pet animals, etc.), birds (specifically poultry, pet birds, etc.), amphibians, reptiles, fish (specifically, aquaculture fish, pet fish, etc.), For invertebrates, innate immunity plays an essential role in maintaining the health of living organisms, such as defending against bacterial and viral infections, repairing wounds, and regulating metabolism. Macrophages, which are phagocytic cells that play a central role in innate immunity, exist in tissues throughout the body and are known to enhance functions such as defense against infection, wound healing, and metabolic regulation.

LPSは、グラム陰性細菌の細胞膜に存在し、多糖と脂質が結合した構造をしており、日本語では「糖脂質」あるいは「リポ多糖」と呼ばれ(英語ではLipopolysaccharide)、略してLPSと呼ばれている。LPSは極めて複雑な構造をした分子であるが基本的にはリピドAと呼ばれる脂質部分とそれに結合するコア多糖、さらにコア多糖に結合するO抗原と呼ばれる三つの部分からなる両親媒性物質である(非特許文献1)。LPSはマクロファージを活性化制御し、その効果として自然免疫機能を高める。 LPS exists in the cell membrane of Gram-negative bacteria and has a structure in which polysaccharides and lipids are bound together. is Although LPS is a molecule with an extremely complex structure, it is basically an amphipathic substance consisting of a lipid portion called lipid A, a core polysaccharide that binds to it, and an O-antigen that binds to the core polysaccharide. (Non-Patent Document 1). LPS activates and regulates macrophages, and as a result, enhances innate immune function.

ところで、LPSは注射した場合には全身性の炎症を誘起し、発熱、下痢、血圧低下などの作用から内毒素と呼ばれてきた歴史的経緯がある。一方、我々は、LPSを経口・経皮・経鼻などの経粘膜投与によって、マクロファージを介して細菌やウイルスの防除、傷の修復、アレルギーバランスの維持、糖尿病予防、などに働き、健康維持に有益な働きをすることを見いだしてきた。また、玄米や小麦、蕎麦などの食品中に含まれるLPSの摂取が健康の維持に働くことも明らかにしてきた(非特許文献2)。さらに、食経験のあるパントエア菌やキサントモナス菌、酢酸菌などのグラム陰性細菌のLPSを発酵培養することで食品の機能性成分として開発してきた。 By the way, LPS induces systemic inflammation when injected, and historically has been called endotoxin due to its effects such as fever, diarrhea, and hypotension. On the other hand, we have found that LPS, through transmucosal administration such as oral, transdermal, and nasal administration, works through macrophages to control bacteria and viruses, repair wounds, maintain allergy balance, prevent diabetes, etc., and maintain health. I have found it useful. It has also been clarified that the intake of LPS contained in foods such as brown rice, wheat, and buckwheat works to maintain health (Non-Patent Document 2). In addition, we have developed LPS of Gram-negative bacteria such as Pantoea, Xanthomonas, and Acetic acid bacteria, which have been eaten, as functional ingredients for food by fermenting and culturing them.

我々はパントエア菌から抽出したLPSは低分子型(約5,000Da)と高分子型(約50,000Da)との混合物として存在していることを電気泳動(SDS-PAGE)で見出した(特許文献1、非特許文献3)。低分子型をLMM (low molecular mass)-LPS、高分子型をHMM (high molecular mass)-LPSと名付けて解析したところ、LMM-LPSとHMM-LPSは生物活性が異なり、LMM-LPSは低毒性で高いマクロファージ活性化能を持つことを見出した(特許文献1)。そのことから、LMMが豊富なLPSは生体の健康維持により有用性が高いと考えられ、LMMが豊富なLPS製造方法が求められる。 We found by electrophoresis (SDS-PAGE) that LPS extracted from Pantoea bacteria exists as a mixture of low-molecular-weight (about 5,000 Da) and high-molecular-weight (about 50,000 Da) types (Patent Document 1). , Non-Patent Document 3). We named the low molecular mass (LMM)-LPS and the high molecular mass (HMM)-LPS, and analyzed them. It was found that it is toxic and has a high macrophage activation ability (Patent Document 1). Therefore, LPS rich in LMM is considered to be highly useful for maintaining the health of living bodies, and a method for producing LPS rich in LMM is required.

特許第4043533号公報Japanese Patent No. 4043533 特開平08-245702号公報JP-A-08-245702

Wikipedia「リポ多糖」,[online],[令和 3年 3月15日検索],インターネットWikipedia "lipopolysaccharide", [online], [searched on March 15, 2021], Internet C. Kohchi et al., “Applications of lipopolysaccharide derived from Pantoea agglomerans (IP-PA1) for health care based on macrophage network theory”, Journal of Bioscience and Bioengineering, 2006.12, 102(6), p.485-496C. Kohsaccharidechi et al., "Applications of lipopoly derived from Pantoea agglomerans (IP-PA1) for health care based on macrophage network theory", Journal of Bioscience and Bioengineering, 2006.12, 102(6), p.485-496 T. Kadowaki et al., “Induction of nitric oxide production in RAW264.7 cells under serum-free conditions by O-antigen polysaccharide of lipopolysaccharide”, ANTICANCER RESEARCH, 2013.07, 33(7), p.2875-9T. Kadowaki et al., “Induction of nitric oxide production in RAW264.7 cells under serum-free conditions by O-antigen polysaccharide of lipopolysaccharide”, ANTICANCER RESEARCH, 2013.07, 33(7), p.2875-9 H. Nagano et al., “p53-inducible DPYSL4 associates with mitochondrial supercomplexes and regulates energy metabolism in adipocytes and cancer cells”, Proceedings of the National Academy of Sciences, 2018.08, 115(33), p.8370-8375H. Nagano et al., “p53-inducible DPYSL4 associates with mitochondrial supercomplexes and regulates energy metabolism in adipocytes and cancer cells”, Proceedings of the National Academy of Sciences, 2018.08, 115(33), p.8370-8375 Y. Lee et al., “Increased expression of glial cell line-derived neurotrophic factor (GDNF) in the brains of scrapie-infected mice”, Neuroscience Letters, 2006.12, 410(3), p.178-182Y. Lee et al., “Increased expression of glial cell line-derived neurotrophic factor (GDNF) in the brains of scrapie-infected mice”, Neuroscience Letters, 2006.12, 410(3), p.178-182 M. D. Wood et al., “Fibrin gels containing GDNF microspheres increase axonal regeneration after delayed peripheral nerve repair”, REGENERATIVE MEDICINE, 2013.01, 8(1), p.27-37M. D. Wood et al., “Fibrin gels containing GDNF microspheres increase axonal regeneration after delayed peripheral nerve repair”, REGENERATIVE MEDICINE, 2013.01, 8(1), p.27-37 E. Joo et al., “Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice”, Diabetes, 2017.04, 66(4), p.868-879E. Joo et al., “Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice”, Diabetes, 2017.04, 66(4), p.868-879 T. Tanaka et al., “IL-6 in Inflammation, Immunity, and Disease”, Cold Spring Harbor Perspectives in Biology, 2014.09, 6(10), a016295T. Tanaka et al., "IL-6 in Inflammation, Immunity, and Disease", Cold Spring Harbor Perspectives in Biology, 2014.09, 6(10), a016295 T. Tanaka et al., “Regulation of IL-6 in Immunity and Diseases”, Advances in Experimental Medicine and Biology, 2016, 941, p.79-88T. Tanaka et al., "Regulation of IL-6 in Immunity and Diseases", Advances in Experimental Medicine and Biology, 2016, 941, p.79-88 Q. Liu et al., “IL-10 targets Th1/Th2 balance in vascular dementia”, European Review for Medical and Pharmacological Sciences, 2018.09, 22(17), p5614-5619Q. Liu et al., "IL-10 targets Th1/Th2 balance in vascular dementia", European Review for Medical and Pharmacological Sciences, 2018.09, 22(17), p5614-5619 H. Mollazadeh et al., “Immune modulation by curcumin: The role of interleukin-10”, Critical Reviews in Food Science and Nutrition, 2019, 59(1), p.89-101H. Mollazadeh et al., “Immune modulation by curcumin: The role of interleukin-10”, Critical Reviews in Food Science and Nutrition, 2019, 59(1), p.89-101 S. Sharba et al., “Formyl peptide receptor 2 orchestrates mucosal protection against Citrobacter rodentium infection”, Virulence, 2019.12, 10(1), p.610-624S. Sharba et al., “Formyl peptide receptor 2 orchestrates mucosal protection against Citrobacter rodentium infection”, Virulence, 2019.12, 10(1), p.610-624 T. Nishizawa et al., “Homeostasis as Regulated by Activated Macrophage. I. Lipopolysaccharide (LPS) from Wheat Flour: Isolation, Purification and Some Biological Activities”, Chemical and Pharmaceutical Bulletin, 1992, 40(2), p.479-483T. Nishizawa et al., "Homeostasis as Regulated by Activated Macrophage. I. Lipopolysaccharide (LPS) from Wheat Flour: Isolation, Purification and Some Biological Activities", Chemical and Pharmaceutical Bulletin, 1992, 40(2), p.479- 483

低分子LMM-LPS製造技術
パントエア菌培養物からLMM-LPSを単離する方法として、LPSを精製した後に、デオキシコール酸を用いたゲルろ過を行って、LMM-LPSとHMM-LPSを分離した後に、デオキシコール酸を除去する方法が開発された(特許文献1)。ところが、この方法は、極めて煩雑な精製方法であり、製造費が膨大になり、食品成分としての市場化はコスト的に困難であった。また、C4カラムを用いてHPLC(高性能液体クロマトグラフィー)で精製する方法が知られているが、大量精製には手間とコストがかかることが問題である。
Low-molecular-weight LMM-LPS production technology As a method for isolating LMM-LPS from Pantoea culture, LPS was purified and then gel filtration using deoxycholic acid was performed to separate LMM-LPS and HMM-LPS. Later, a method for removing deoxycholic acid was developed (Patent Document 1). However, this method is an extremely complicated refining method, and the manufacturing cost is enormous, making it difficult to market it as a food ingredient. A method of purifying by HPLC (high performance liquid chromatography) using a C4 column is also known, but the problem is that large-scale purification requires time and effort and costs.

一方、これまで、パントエア菌の培養段階においては、LMM-LPSとHMM-LPSの混合比は制御されず、含有量も未知のままであった。そこで、通常条件で培養したパントエア菌のLMM-LPSとHMM-LPSの重量比を調べたところ、LMM-LPS含量とHMM-LPS含量の比(LMM/HMM重量比)は0.72であった。 On the other hand, until now, the mixing ratio of LMM-LPS and HMM-LPS was not controlled during the culture stage of Pantoea, and the content was unknown. Therefore, when the weight ratio of LMM-LPS and HMM-LPS in Pantoea bacteria cultured under normal conditions was examined, the ratio of LMM-LPS content to HMM-LPS content (LMM/HMM weight ratio) was 0.72.

以上のことから、低分子LPSを高含有にするためには従来の物理化学的手法では、産業的規模での製品提供は困難であるので、我々は生物学的に高LMM-LPSを含有する細菌の培養条件を見出し、最適化することで、産業的規模にも対応しうる高LMM-LPS含有LPS製品の製造技術の確立が可能と創案し、鋭意検討した。 From the above, it is difficult to provide products on an industrial scale by conventional physicochemical methods to increase the content of low-molecular-weight LPS. By discovering and optimizing bacterial culture conditions, we invented the possibility of establishing a production technology for LPS products with a high LMM-LPS content that can be used on an industrial scale.

細菌の培養条件を変えることによって、LMM-LPS含量を変えることはこれまで知られていない。細菌の培養に影響する要素である温度、栄養、酸素濃度、pH、培養時間などの条件がある。そこで、これらの条件を鋭意検討したところ、培養温度とpH条件の設定により、LMM/HMM重量比を1.85~3.07(従来法の約4倍LMM-LPS含量が多い)に高める培養方法を見出し、本発明を完成した。 It has not been known to alter LMM-LPS content by altering bacterial culture conditions. Conditions such as temperature, nutrients, oxygen concentration, pH, and culture time are factors that affect the culture of bacteria. As a result of intensive investigation of these conditions, we found a culture method that increases the LMM/HMM weight ratio to 1.85 to 3.07 (4 times more LMM-LPS content than the conventional method) by setting the culture temperature and pH conditions. We have completed the present invention.

本発明はこれまで評価されていないLMM-LPSとHMM-LPSの重量比を簡便に評価する方法を確立する必要があった。これをすべてのLPSを検出できるリムラス反応とHMMのみを検出するELISAを組み合わせることで確立できた。
基準となる培養条件は30.0℃でpH7.0である。
In the present invention, it was necessary to establish a method for easily evaluating the weight ratio of LMM-LPS and HMM-LPS, which has not been evaluated so far. This was established by combining the Limulus reaction, which can detect all LPS, and the ELISA, which detects only HMM.
Standard culture conditions are 30.0°C and pH 7.0.

これに、栄養、酸素濃度を検討したが、ほとんどLMM/HMM重量比には影響がなかったので、培養温度を検討したところ、所定の温度での培養でLMM/HMM重量比が高くなることを発見した。そこで、次に、温度を37.0℃でpHを変化させたところ、pH8.0以上9.0以下で基準よりも高いLMM/HMM重量比が得られた。 We examined nutrients and oxygen concentration, but found that there was almost no effect on the LMM/HMM weight ratio. discovered. Then, when the temperature was changed to 37.0°C and the pH was changed, a LMM/HMM weight ratio higher than the standard was obtained at pH 8.0 or more and 9.0 or less.

詳細な温度を見出すために、pH8.8で培養温度を30.0℃から40.0℃まで変化させたところ、37.0℃以上38.0℃以下で高いLMM/HMM重量比を示すことが明らかとなった。 In order to find out the detailed temperature, when the culture temperature was changed from 30.0°C to 40.0°C at pH 8.8, it became clear that a high LMM/HMM weight ratio was shown at 37.0°C or higher and 38.0°C or lower.

本発明によれば、従来のLPS精製法においてpH及び/又は温度を変えるだけで高LMM-LPS含有LPSを製造できるため低コスト化が実現できる。さらに、この方法で製造したLPSは、従来法では誘導されなかったDpysl4、GDNF及びGIPRを誘導する作用があったことから(2.55倍から14.42倍)、従来のLPSとは異なる。
・Dpysl4(ジヒドロピリミジナーゼ関連タンパク質4):腫瘍の成長と転移を抑制(非特許文献4)
・GDNF(グリア細胞株由来神経栄養因子):神経細胞の喪失と萎縮に対する保護に関与(非特許文献5)、運動軸索再生を促進(非特許文献6)
・GIPR(胃抑制性ポリペプチド受容体):脂肪組織にエネルギー蓄積を直接誘導(非特許文献7)
According to the present invention, LPS with a high LMM-LPS content can be produced by simply changing the pH and/or temperature in the conventional LPS purification method, so cost reduction can be realized. Furthermore, the LPS produced by this method had the effect of inducing Dpysl4, GDNF and GIPR (2.55-fold to 14.42-fold), which were not induced by the conventional method, and thus differs from conventional LPS.
・Dpysl4 (dihydropyrimidinase-related protein 4): suppresses tumor growth and metastasis (Non-Patent Document 4)
・GDNF (glial cell line-derived neurotrophic factor): involved in protection against neuronal cell loss and atrophy (Non-Patent Document 5), promotes motor axonal regeneration (Non-Patent Document 6)
・ GIPR (gastric inhibitory polypeptide receptor): directly induces energy accumulation in adipose tissue (Non-Patent Document 7)

このことから、新しい培養物は従来にはない機能性を有することが見いだされた。また、この方法で製造したLPS抽出物は従来法での誘導に比べ、IL-6、IL-10及びFPR2が、15.51倍から271.54倍とLMMの増加では説明できない著しく高い効果を有することが見いだされた。
・IL-6(インターロイキン6):造血、免疫反応の刺激を通じて宿主の防御に貢献(非特許文献8)、損傷した組織の回復に貢献(非特許文献9)
・IL-10(インターロイキン10):神経細胞のアポトーシスを抑制(非特許文献10)、抗炎症性および免疫抑制性サイトカイン(非特許文献11)
・FPR2(ホルミルペプチド受容体2):炎症反応の低下(非特許文献12)
From this, it was found that the new culture has unprecedented functionality. In addition, it was found that the LPS extract produced by this method had a remarkably high effect of IL-6, IL-10 and FPR2 from 15.51 to 271.54 times compared to the induction by the conventional method, which cannot be explained by the increase in LMM. was
・IL-6 (interleukin 6): Contributes to host defense through stimulation of hematopoiesis and immune response (Non-Patent Document 8), contributes to recovery of damaged tissues (Non-Patent Document 9)
・ IL-10 (interleukin 10): suppresses neuronal apoptosis (Non-Patent Document 10), anti-inflammatory and immunosuppressive cytokine (Non-Patent Document 11)
・FPR2 (formyl peptide receptor 2): decrease in inflammatory response (Non-Patent Document 12)

以上のことから、高コストで煩雑な手間をかけることなく優れた生物活性を持つ、LMM-LPS高含有品である食品、化粧品、飼料及び薬品等の配合物を提供できる。 From the above, it is possible to provide formulations such as foods, cosmetics, feeds and medicines, which are LMM-LPS-rich products, which have excellent bioactivity without high cost and complicated labor.

各培養pHでの相対比を示す図である。FIG. 4 is a diagram showing relative ratios at each culture pH. 各培養温度での相対比を示す図である。FIG. 4 is a diagram showing relative ratios at each culture temperature.

本発明の「パントエア菌LPS」は、特に記載した場合を除き、特許文献1に記載の手順に従い、小麦に共生するグラム陰性菌のパントエア・アグロメランス(Pantoea agglomerans)を小麦粉で培養し、菌体からリポ多糖を熱水抽出し、固形分を除去したリポ多糖を指す。 Unless otherwise specified, the "Pantoea bacterium LPS" of the present invention is obtained by culturing Pantoea agglomerans, a gram-negative bacterium that lives symbiotically with wheat, in wheat flour according to the procedure described in Patent Document 1. It refers to lipopolysaccharide obtained by extracting lipopolysaccharide with hot water and removing the solid content.

本発明のパントエア菌LPSは、ヒト、ヒト以外の哺乳類(ブタ、ウシ、ヒツジ、ウマ、イヌ及びネコ等の家畜)、鳥類(ニワトリ、シチメンチョウ、アヒル等の家禽)及び魚類(ウナギ、タイ、マグロ、ハマチ等の養殖魚及びニシキゴイ等の観賞魚)等に適用することができる。 The Pantoea bacterium LPS of the present invention can be used in humans, mammals other than humans (livestock such as pigs, cattle, sheep, horses, dogs and cats), birds (poultry such as chickens, turkeys and ducks) and fish (eels, sea bream, tuna). , aquaculture fish such as yellowtail, and ornamental fish such as koi).

本発明の投与経路の例としては、経口投与、経皮投与、口腔投与、皮下注射、皮内注射、腹腔内注射及び筋肉内投与などがある。好ましくは、経口投与、経皮投与及び口腔投与である。剤形の形としては、散剤、顆粒剤、液剤、カプセル、細粒剤、丸剤、シロップ剤及び乳剤等が挙げられる。この医薬組成物は、経口投与が可能であり、かつ有効である。これらの製剤は、パントエア菌LPSに加えて、医薬品として許容可能な種々の添加物、例えば、安定化剤、充填剤、乳化剤、増量剤、賦形剤、結合剤、保湿剤、崩壊剤、界面活性剤、懸濁剤、コーティング剤、着色剤、香料、風味剤、甘味剤、保存剤及び酸化防止剤を含有させることができる。 Examples of routes of administration of the present invention include oral administration, transdermal administration, buccal administration, subcutaneous injection, intradermal injection, intraperitoneal injection and intramuscular administration. Oral administration, transdermal administration and buccal administration are preferred. Dosage forms include powders, granules, liquids, capsules, fine granules, pills, syrups and emulsions. This pharmaceutical composition is orally administrable and effective. These formulations contain, in addition to Pantoea LPS, various pharmaceutically acceptable additives such as stabilizers, fillers, emulsifiers, bulking agents, excipients, binders, humectants, disintegrants, interfacial Active agents, suspending agents, coating agents, coloring agents, flavoring agents, flavoring agents, sweetening agents, preservatives and antioxidants may be included.

本発明の食品組成物は、パントエア菌LPSをそのまま使用し、あるいは他の食品又は食品成分と混合する等、食品組成物における常法に従って使用できる。また、その形態についても、特に制限されず、通常用いられる食品の状態、例えば、固体状(粉末、顆粒状等)、ペースト状、液状又は懸濁状のいずれでもよい。本発明の食品組成物は、栄養機能食品、特定保健用食品、機能性表示食品、健康食品、栄養補助食品、ドリンク剤、清涼飲料、アルコール飲料、サプリメント、飼料及び飼料添加物等とすることができる。 The food composition of the present invention can be used according to a conventional method for food compositions, such as using Pantoea LPS as it is or mixing it with other foods or food ingredients. Also, the form thereof is not particularly limited, and it may be in the form of a commonly used food such as solid (powder, granules, etc.), paste, liquid, or suspension. The food composition of the present invention can be a food with nutrient function claims, a food for specified health uses, a food with function claims, a health food, a dietary supplement, a drink, a soft drink, an alcoholic beverage, a supplement, a feed, a feed additive, or the like. can.

本発明のパントエア菌培養方法は、以下に実施例として発明内容を詳述するが、本発明は実施例記載の微生物としてパントエア・アグロメランス、培地として、一般的に細菌培養に用いる培地の他、穀物(穀物に由来する素材である小麦粉、米粉、小麦ふすま粉、米ぬか、又は酒かす等を含む)、海草(海草に由来する素材であるわかめ粉、めかぶ粉、又は昆布粉等を含む)及び豆類(豆類に由来する素材であるおから等を含む)にも適応できる。これらの植物にはタンパク質及び糖類が含まれていることはよく知られており、パントエア・アグロメランスを用いる発酵及び培養に適応できる。また、これらの植物に常在性の細菌、例えばセラチア属、エンテロバクター属が共生していることは広く知られたところであり(非特許文献13)、発酵に用いる微生物もそれら植物に共生する通性嫌気性グラム陰性菌にも適応できるものであることは言うまでもない。 The method for cultivating the Pantoea bacterium of the present invention will be described in detail in the following examples. (Including wheat flour, rice flour, wheat bran flour, rice bran, or sake lees, which are materials derived from cereals), seaweed (including wakame powder, mekabu powder, or kelp powder, which are materials derived from seaweed), and beans (including bean curd refuse, which is a material derived from legumes). These plants are well known to contain proteins and sugars and are adaptable for fermentation and cultivation using Pantoea agglomerans. In addition, it is widely known that these plants have symbiotic bacteria such as the genus Serratia and the genus Enterobacter (Non-Patent Document 13). Needless to say, it can also be applied to anaerobic Gram-negative bacteria.

パントエア菌培養試験評価方法の確立
1.LB(ルリアブロス)培地の調整
市販LB培地粉末(Lennox、ナカライテスク)を蒸留水に2 % (w/v)の濃度で溶解し、オートクレーブ(MLS-3750、三洋電機)で高圧蒸気滅菌した。LB培地は水酸化ナトリウム(富士フイルム和光純薬)でpHを調整(pH7.0, pH8.0, pH8.5, pH8.8, pH8.9, pH9.0)した。
Establishment of Pantoea bacteria culture test evaluation method 1. Preparation of LB (Luria Broth) Medium Commercially available LB medium powder (Lennox, Nacalai Tesque) was dissolved in distilled water at a concentration of 2% (w/v) and autoclaved (MLS-3750, Sanyo Denki) with high-pressure steam sterilization. The pH of the LB medium was adjusted with sodium hydroxide (Fuji Film Wako Pure Chemical Industries, Ltd.) (pH 7.0, pH 8.0, pH 8.5, pH 8.8, pH 8.9, pH 9.0).

2.パントエア菌の培養
パントエア菌(Pantoea agglomerans)のシングルコロニーを5 mLのLB培地に植菌し、浸透培養機(バイオシェイカーBR-21UM、タイテック)で温度37.0℃、振盪速度140 rpmで18時間培養し菌液を得た。培養した菌液2 mLをpH調整LB培地100 mLに植菌し、容量500 mLの坂口フラスコ(AGCテクノグラス)にて浸透培養機(インキュベーターシェイカーRMS-20R、サンキ精機)で温度37.0℃、160 rpmの速度で24時間往復振盪培養し、パントエア菌培養液を得た。パントエア菌培養液の660nmの吸光度(optical density: OD)を吸光光度計(UV mini 1240、島津製作所)で測定しパントエア菌の増殖を確認した。
2. Cultivation of Pantoea agglomerans A single colony of Pantoea agglomerans was inoculated into 5 mL of LB medium and cultured for 18 hours in an infiltration culture machine (Bioshaker BR-21UM, Taitec) at a temperature of 37.0°C and a shaking speed of 140 rpm. A bacterial solution was obtained. 2 mL of the cultured bacterial solution was inoculated into 100 mL of pH-adjusted LB medium, and placed in a 500-mL Sakaguchi flask (AGC Techno Glass) using an infiltration culture machine (incubator shaker RMS-20R, Sanki Seiki) at a temperature of 37.0°C and 160°C. After culturing with reciprocating shaking at a speed of rpm for 24 hours, a pantoea bacterium culture solution was obtained. The optical density (OD) at 660 nm of the Pantoea culture solution was measured with an absorption photometer (UV mini 1240, Shimadzu Corporation) to confirm the growth of Pantoea bacteria.

3.パントエア菌培養液からのリポ多糖(LPS)抽出
パントエア菌培養液1 mLを恒温器(サーモアルミバスALB-101、アサヒテクノグラス)で90.0℃、20分間加温し、超音波洗浄機(UT-305HS、シャープ)で20分間超音波処理後、撹拌機(マイクロチューブミキサーMT-400、トミーメディコ)で2分間激しく撹拌した。その後、遠心機(マイクロ冷却遠心機3740、久保田商事)で830 g、15分間遠心分離した上清を回収し、LPS抽出液とした。
3. Extraction of lipopolysaccharide (LPS) from Pantoea bacteria culture 1 mL of Pantoea bacteria culture was heated at 90.0°C for 20 minutes in a constant temperature vessel (Thermo aluminum bath ALB-101, Asahi Techno Glass), and then washed in an ultrasonic cleaner (UT- 305HS, Sharp) for 20 minutes, followed by vigorous stirring for 2 minutes with a stirrer (Microtube Mixer MT-400, Tommy Medico). After that, the mixture was centrifuged at 830 g for 15 minutes in a centrifuge (Micro Cooling Centrifuge 3740, Kubota Shoji), and the supernatant was collected and used as an LPS extract.

4.LPS抽出液のリムラス反応によるLPS量の測定
リムラステストはリムルスES-IIシングルテストワコー(富士フイルム和光純薬)を用い、トキシノメーター(ET-6000、富士フイルム和光純薬)で比濁法にて行った。蒸留水で希釈したLPS抽出液をキット付属のガラス試験管に200 μL添加し、デジタルボルテックスジェニー2(SI-A286、サイエンティフィックインダストリーズ)で5秒間激しく撹拌し、トキシノメーターで濁度を測定した。リムラス反応によるLPS量は標準物質であるLPS (フナコシ, mac0001)を用いた。
4. Limulus ES-II Single Test Wako (Fujifilm Wako Pure Chemical) was used for the Limulus ES-II Single Test Wako (Fujifilm Wako Pure Chemical), and a turbidity method was used with a toxinometer (ET-6000, Fujifilm Wako Pure Chemical). gone. Add 200 μL of the LPS extract diluted with distilled water to the glass test tube provided with the kit, stir vigorously with a digital vortex Jenny 2 (SI-A286, Scientific Industries) for 5 seconds, and measure the turbidity with a toxinometer. did. LPS (Funakoshi, mac0001), a standard substance, was used for the amount of LPS determined by the Limulus reaction.

5.LPS抽出液の酵素結合免疫吸着測定法(ELISA)によるLPS量の測定
(1) 前処理
パントエア菌検出用のELISAは二種類のパントエア菌LPSを特異的に検出する抗体を用いるサンドイッチELISA法である。リン酸緩衝生理食塩水(PBS(-))(シグマ)で2,000倍希釈したパントエア菌LPSに対する一次抗体(34-G2抗体(自然免疫応用技研))50 μLを96穴(ウェル)プレート(イムノプレートマキソープ、Cat. 442404、サーモフィッシャー)に加え、パラフィルム(PM-996、べミス)で封をし、4.0℃で、1時間以上処理し、一次抗体を固層化した。次に、一次抗体固層化プレートに200 μLの 3 % (w/v) BSA-PBS(-) (BSA(ウシ血清アルブミン画分V(シグマ))をPBS(-)に3 % (w/v)の濃度で溶解した)を添加し、25.0℃で、30分間~2時間ブロッキング処理を行った。その後、これを200 μL の洗浄液(10 mM Tris-HCl pH7.5(トリス(ヒドロキシメチル)アミノメタン(ナカライテスク)を蒸留水に溶解し塩酸(富士フイルム和光純薬)でpH 7.5に調整)、150 mM 塩化ナトリウム(富士フイルム和光純薬)、0.05 % (v/v) ポリオキシエチレンソルビタンモノラウレート(ナカライテスク))で3回洗浄し、ブロッキング済み一次抗体固層化プレートを得た。
5. Determination of LPS content by enzyme-linked immunosorbent assay (ELISA) of LPS extract
(1) Pretreatment ELISA for detecting Pantoea is a sandwich ELISA method using antibodies that specifically detect two types of Pantoea LPS. 50 μL of the primary antibody (34-G2 antibody (Natural Immunology Applied Giken)) against Pantoea bacterium LPS diluted 2,000-fold with phosphate-buffered saline (PBS(-)) (Sigma) is placed in a 96-well (immunoplate) plate (immunoplate). Maxorp, Cat. 442404, Thermo Fisher), sealed with Parafilm (PM-996, Bemis), and treated at 4.0° C. for 1 hour or more to immobilize the primary antibody. Next, add 200 μL of 3% (w/v) BSA-PBS(-) (BSA (bovine serum albumin fraction V (Sigma))) to PBS(-) and add 3% (w/v) to the primary antibody-immobilized plate. v) dissolved at the concentration of v) was added, and blocking treatment was performed at 25.0° C. for 30 minutes to 2 hours. After that, 200 μL of a washing solution (10 mM Tris-HCl pH 7.5 (tris(hydroxymethyl)aminomethane (Nacalai Tesque) was dissolved in distilled water and adjusted to pH 7.5 with hydrochloric acid (Fuji Film Wako Pure Chemical Industries)), The plate was washed three times with 150 mM sodium chloride (Fuji Film Wako Pure Chemical) and 0.05% (v/v) polyoxyethylene sorbitan monolaurate (Nacalai Tesque) to obtain a blocked primary antibody-immobilized plate.

(2) サンプル添加と二次抗体処理
BSA (シグマ)をPBS(-)に1 % (w/v)の濃度で溶解した液(1 % (w/v) BSA-PBS(-))で希釈したLPS抽出液をブロッキング済み一次抗体固層化プレートの各ウェルに50 μL添加し25.0℃で1時間抗体反応させた後、ウェルを200 μL の洗浄液で3回洗浄した。1 % (w/v) BSA-PBS(-)で1,000倍希釈したパントエア菌LPSに対する二次抗体(4-E11抗体(自然免疫応用技研))を各ウェルに50 μL添加し25.0℃で1時間抗体反応させた後、各ウェルを200 μL の洗浄液で3回洗浄した。
(2) Sample addition and secondary antibody treatment
LPS extract diluted with 1% (w/v) BSA (Sigma) in PBS(-) (1% (w/v) BSA-PBS(-)) After adding 50 μL to each well of the stratified plate and reacting with the antibody at 25.0° C. for 1 hour, the wells were washed 3 times with 200 μL of washing solution. Add 50 μL of a secondary antibody (4-E11 antibody (Natural Immunology Applied Giken)) against Pantoea bacterium LPS diluted 1,000 times with 1% (w/v) BSA-PBS(-) to each well and keep at 25.0°C for 1 hour. After antibody reaction, each well was washed 3 times with 200 µL of washing solution.

(3) 発色処理
1 % (w/v) BSA-PBS(-)で1,000倍希釈したアルカリフォスファターゼ標識抗マウスIgG特異的山羊免疫グロブリン(シグマ)を各ウェルに50 μL添加し25.0℃で1時間抗体反応させた後、各ウェルを200 μL の洗浄液で5回洗浄した。発色基質(1 mg/mL p-ニトロフェニルりん酸二ナトリウム六水和物(富士フイルム和光純薬)、1 mM 塩化マグネシウム(ナカライテスク)、50 mM 炭酸ナトリウム(ナカライテスク))を各ウェルに50 μL添加し室温で1時間反応させた後、マイクロプレートリーダー(アイマーク、バイオラッド)で405 nmの吸光度を測定した。パントエアLPS標準品(フナコシ, mac0001)を同時に測定し、検量線を得た。この検量線からサンプル中のLPS量を測定した。
(3) Coloring treatment
Add 50 μL of alkaline phosphatase-labeled anti-mouse IgG-specific goat immunoglobulin (Sigma) diluted 1,000-fold with 1% (w/v) BSA-PBS(-) to each well and react with the antibody at 25.0°C for 1 hour. , each well was washed 5 times with 200 μL of washing solution. A chromogenic substrate (1 mg/mL p-nitrophenyl phosphate disodium hexahydrate (Fujifilm Wako Pure Chemical Industries, Ltd.), 1 mM magnesium chloride (Nacalai Tesque), 50 mM sodium carbonate (Nacalai Tesque)) was added to each well. After μL was added and allowed to react at room temperature for 1 hour, the absorbance at 405 nm was measured with a microplate reader (Imark, Biorad). Pantoair LPS standard (Funakoshi, mac0001) was measured at the same time to obtain a calibration curve. The amount of LPS in the sample was measured from this calibration curve.

[結果]
1.LMM/HMM比を評価するための指標の作成
培養物に含まれるLMM-LPSとHMM-LPSの比を精製することなく、簡易的に評価する方法を作成した。特許文献1記載の方法で精製した純品のLMM-LPSと特許文献2記載の方法で精製した純品のHMM-LPSのリムラス及びELISA値を測定した。リムラス反応はリピドAと結合して反応が起こるため、LMM-LPSとHMM-LPS両方を検出する。一方、今回用いたELISAはO抗原多糖を識別する4-E11抗体を用いているため、O抗原を持たないLMM-LPSは検出されず、HMM-LPSのみを検出する。また、以前の研究でLMM-LPSの分子量は約5,000、HMM-LPSの分子量は約50,000であることをTricine SDS PAGEで確認している。
[result]
1. Preparation of Index for Evaluating LMM/HMM Ratio A simple evaluation method was prepared without purifying the ratio of LMM-LPS and HMM-LPS contained in the culture. Limulus and ELISA values of pure LMM-LPS purified by the method described in Patent Document 1 and pure HMM-LPS purified by the method described in Patent Document 2 were measured. Since the Limulus reaction occurs by binding to lipid A, both LMM-LPS and HMM-LPS are detected. On the other hand, the ELISA used this time uses the 4-E11 antibody that recognizes the O-antigen polysaccharide, so LMM-LPS without O-antigen is not detected, and only HMM-LPS is detected. Also, in a previous study, Tricine SDS PAGE confirmed that the molecular weight of LMM-LPS is approximately 5,000 and that of HMM-LPS is approximately 50,000.

各測定値は下記になった。
[リムラス値]
LMM-LPSで3987±1410 μg/mg (n=9、平均値プラマイナス標準偏差)
HMM-LPSで103±55 μg/mg (n=9、平均値プラマイナス標準偏差)
[ELISA値]
LMM-LPSで検出限界以下(<26 μg/mg) (n=6)
HMM-LPSで917±225 μg/mg (n=6、平均値プラマイナス標準偏差)
なお、純品HMM-LPSのELISA値はほぼ理論上1mg/mgとなった。
Each measured value is as follows.
[Limulus value]
3987±1410 μg/mg for LMM-LPS (n=9, mean plus minus standard deviation)
103±55 μg/mg by HMM-LPS (n=9, mean plus minus standard deviation)
[ELISA value]
Below detection limit (<26 μg/mg) by LMM-LPS (n=6)
917±225 μg/mg by HMM-LPS (n=6, mean plus minus standard deviation)
The ELISA value of pure HMM-LPS was theoretically 1 mg/mg.

[結論]
以上より、混合物のELISA値にはLMM-LPSが寄与せず、HMM-LPS由来と考えて良い。
これより混合物のLMM-LPS、HMM-LPSの各重量濃度はそれぞれ次の式で表される。
LMM-LPS=(Limulus値-ELISA値×0.103)÷3.987×希釈倍率
HMM-LPS=ELISA測定値×希釈倍率
※純品LMM-LPSのリムラス測定値=3.987 mg/mg (3987 μg/mg)
純品HMM-LPSのリムラス値=0.103 mg/mg (103 μg/mg)
[Conclusion]
From the above, it can be considered that LMM-LPS does not contribute to the ELISA value of the mixture and that it is derived from HMM-LPS.
From this, the respective weight concentrations of LMM-LPS and HMM-LPS in the mixture are represented by the following equations.
LMM-LPS = (Limulus value - ELISA value x 0.103) ÷ 3.987 x dilution factor
HMM-LPS = ELISA measurement value x dilution ratio *Limulus measurement value of pure LMM-LPS = 3.987 mg/mg (3987 μg/mg)
Limulus value of pure HMM-LPS = 0.103 mg/mg (103 μg/mg)

パントエア菌培養温度に対するLMM/HMM重量比の予備的評価
培養サンプル中のLMM/HMM重量比について、まず培養温度の予備的評価を行った。通常、パントエア菌を30.0℃、pH7.0で培養している。これを基準として、温度を25.0℃と37.0℃で培養し、LMM/HMM重量比ならびに増殖性を加味した相対比を求めた。
Preliminary Evaluation of LMM/HMM Weight Ratio Against Pantoea Bacteria Culture Temperature Regarding the LMM/HMM weight ratio in the culture sample, the culture temperature was first preliminarily evaluated. Pantoea bacteria are usually cultured at 30.0°C and pH 7.0. Using this as a reference, the cells were cultured at temperatures of 25.0°C and 37.0°C, and the LMM/HMM weight ratio and the relative ratio taking proliferativeness into consideration were determined.

[結果]
実施例1に基づき、LMM/HMM重量比を算出した結果は、表1に示すように、37.0℃, pH7.0の培養によりLMM/HMM重量比が従来法に比べて1.74倍、増殖性を加味したLMM-LPS重量増加の相対比(基準物重量比×増殖指標(OD))も2.22から3.06に改善することがわかった。
[result]
Based on Example 1, the LMM/HMM weight ratio was calculated. It was also found that the relative ratio of LMM-LPS weight increase (reference material weight ratio×proliferation index (OD)) was improved from 2.22 to 3.06.

Figure 2022160938000002
Figure 2022160938000002

[結論]
以上よりLMM/HMM重量比を高めるにはパントエア菌培養時の温度は、25.0℃より30.0℃、30.0℃より37.0℃がよいことが初めて明らかになった。
[Conclusion]
From the above, it became clear for the first time that the temperature during culture of Pantoea bacteria should be 30.0°C rather than 25.0°C and 37.0°C rather than 30.0°C in order to increase the LMM/HMM weight ratio.

高LMM/HMM重量比のパントエア菌培養至適pH評価
培養サンプル中のLMM/HMM重量比について、培養条件の初期pH設定を7~10まで変化させて評価を行った。
実施例2でパントエア菌を37.0℃で培養pHを変化させて培養した。
Evaluation of Optimal pH for Pantoea Bacteria Culture with High LMM/HMM Weight Ratio The LMM/HMM weight ratio in the culture sample was evaluated by changing the initial pH setting of the culture conditions from 7 to 10.
In Example 2, the Pantoea bacterium was cultured at 37.0°C while changing the culture pH.

通常、パントエア菌は30.0℃、pH7.0で培養しているが、これを基準として、温度37.0℃で、培養初期pH設定を7~10に変化させて培養して、LMM/HMM重量比、及び増殖性を加味した相対比を求めた。 Normally, Pantoea is cultured at 30.0°C and pH 7.0, but based on this, it is cultured at a temperature of 37.0°C with the initial pH setting changed from 7 to 10, and the LMM/HMM weight ratio, And the relative ratio was determined taking into consideration the proliferative property.

[結果]
実施例1に基づき、LMM/HMM重量比を算出した結果は、表2に示すように、30.0℃, pH7.0の培養による従来法に比べて、pH8.0から9.0において、基準物重量比で1.90から2.90倍、増殖性を加味したLMM-LPS重量増加の相対比(基準物重量比×増殖指標(OD))も3.53から6.00倍に改善することがわかった。
[result]
As shown in Table 2, the results of calculating the LMM/HMM weight ratio based on Example 1 show that the reference material weight ratio 1.90 to 2.90 times in , and the relative ratio of LMM-LPS weight increase (reference material weight ratio × proliferation index (OD)) was also improved from 3.53 to 6.00 times.

Figure 2022160938000003
Figure 2022160938000003

[結論]
以上よりLMM/HMM重量比を高めるにはパントエア菌培養時のpHは、8.0以上9.0以下がよいことが初めて明らかになった。
[Conclusion]
From the above, it became clear for the first time that the pH during culture of Pantoea bacteria should be 8.0 or more and 9.0 or less in order to increase the LMM/HMM weight ratio.

高LMM/HMM重量比のパントエア菌培養至適pH8.8における至適温度評価
至適pH8.8での至適温度を明らかにするために、pH8.8で温度を30℃~39℃まで変化させて培養した。その結果、37.7℃が最もLMM/HMM重量比が良いことが確認された。
結果を表3に示した。
Optimal temperature evaluation at optimal pH 8.8 for culture of Pantoea bacteria with a high LMM/HMM weight ratio To clarify the optimal temperature at pH 8.8, the temperature was varied from 30°C to 39°C at pH 8.8 and cultivated. As a result, it was confirmed that the LMM/HMM weight ratio was the best at 37.7°C.
Table 3 shows the results.

Figure 2022160938000004
Figure 2022160938000004

[結論]
パントエア菌を37.0℃以上38.0℃以下pH8.8で培養することで、従来の30.0℃ pH7.0培養に比べてLMM/HMM重量比が高い(LMM-LPS含量が多い)パントエア菌培養法とすることができた。特に、37.7℃pH8.8で培養することで、LMM/HMM重量比を4倍以上高くすることができた。
[Conclusion]
By culturing Pantoea bacteria at pH 8.8 between 37.0°C and 38.0°C, the LMM/HMM weight ratio is higher (more LMM-LPS content) than the conventional 30.0°C pH 7.0 culture method. I was able to In particular, by culturing at 37.7°C and pH 8.8, the LMM/HMM weight ratio could be increased by 4 times or more.

パントエア菌培養物生物活性評価試験
(1) LPS刺激
RAW264.7細胞(理科学研究所)を5x105個/mLになるようにDMEM培地(ダルベッコ改変イーグル培地(シグマ), 10 % FBS(ウシ胎児血清(シグマ), 100 U/mL ペニシリン(シグマ), 100 μg/mL ストレプトマイシン(シグマ))で希釈し、24ウェル細胞培養プレート(TPPテクノプラスチックプロダクツ)に1 mLずつ添加した。LMM/HMM比の低いLPSとLMM/HMM比の高いLPSをそれぞれ終濃度1 ng/mLになるように培地で希釈し、細胞の入っているウェルに添加した。細胞の入っている24ウェル細胞培養プレートをCO2インキュベータ(MCO-18AIC、三洋電機)で37.0℃, 5 % CO2(高松帝酸)下で4時間LPS刺激した。
Pantoea bacteria culture biological activity evaluation test
(1) LPS stimulation
DMEM medium (Dulbecco's Modified Eagle's Medium (Sigma), 10% FBS (Fetal Bovine Serum ( Sigma), 100 U/mL Penicillin (Sigma) , 100 μg/mL streptomycin (Sigma)) and added 1 mL each to a 24-well cell culture plate (TPP Techno Plastic Products) LPS with a low LMM/HMM ratio and LPS with a high LMM/HMM ratio were terminated. It was diluted with medium to a concentration of 1 ng/mL and added to the wells containing the cells.The 24-well cell culture plate containing the cells was placed in a CO2 incubator (MCO-18AIC, Sanyo Electric) at 37.0°C for 5 hours. LPS stimulation was performed for 4 hours under % CO2 (Takamatsu Teisan).

(2) RNA抽出
RNA抽出はRNeasy Mini kit(キアゲン)を用いた。細胞の入っている24ウェル細胞培養プレート各ウェルの培養上清を除去し、RLTを350 μL加えピペッティングにて細胞を溶解した。細胞溶解液を1.5 mLチューブに回収し、滅菌水で70 %に希釈したエタノール(富士フイルム和光純薬)を350 μL加え、ピペッティングにて混和した後、コレクションチューブ(RNeasy Mini kit付属)にセットしたスピンカラム(RNeasy Mini kit付属)に移し、マイクロ冷却遠心機(3740、久保田商事)で8,000 g, 15 秒間遠心し、ろ液を捨てた。スピンカラムにバッファーRW1を700 μL加え、 マイクロ冷却遠心機で8,000 g, 15秒間遠心し、ろ液を捨てた。スピンカラムにバッファーRPEを500 μL加え、 マイクロ冷却遠心機で8,000 g, 15秒間遠心し、ろ液を捨てた。スピンカラムにバッファーRPEを500 μL加え、 マイクロ冷却遠心機で8,000 g, 2分間遠心し、ろ液を捨てたスピンカラムを新しいコレクションチューブ(RNeasy Mini kit付属)にセットし、スピンカラムにRNAフリー水(RNeasy Mini kit付属)を40 μL加え、 マイクロ冷却遠心機で8,000 g, 1分間遠心し、ろ液を回収した。回収したサンプルの純度と濃度をNanoVue(GEヘルスケア)にて測定した。
(2) RNA extraction
RNeasy Mini kit (Qiagen) was used for RNA extraction. The culture supernatant in each well of the 24-well cell culture plate containing the cells was removed, and 350 µL of RLT was added and the cells were lysed by pipetting. Collect the cell lysate in a 1.5 mL tube, add 350 μL of ethanol (Fujifilm Wako Pure Chemical Industries, Ltd.) diluted to 70% with sterilized water, mix by pipetting, and place in a collection tube (provided with the RNeasy Mini kit). The mixture was transferred to a spin column (attached to the RNeasy Mini kit), centrifuged at 8,000 g for 15 seconds in a micro refrigerated centrifuge (3740, Kubota Shoji), and the filtrate was discarded. 700 μL of buffer RW1 was added to the spin column, centrifuged at 8,000 g for 15 seconds in a micro-refrigerated centrifuge, and the filtrate was discarded. 500 μL of buffer RPE was added to the spin column, centrifuged at 8,000 g for 15 seconds in a micro-refrigerated centrifuge, and the filtrate was discarded. Add 500 μL of buffer RPE to the spin column, centrifuge at 8,000 g for 2 minutes in a micro refrigerated centrifuge, discard the filtrate, set the spin column in a new collection tube (provided with the RNeasy Mini kit), and add RNA-free water to the spin column. (attached to the RNeasy Mini kit) was added, centrifuged at 8,000 g for 1 minute in a micro refrigerated centrifuge, and the filtrate was collected. The purity and concentration of the collected samples were measured with NanoVue (GE Healthcare).

(3) cDNA合成
cDNA合成はReverTra Ace qPCR Master Mix with gDNA Remover(東洋紡)(キット)を用いた。抽出したRNA 500 ngと4x DN Master Mix (キット付属) 1.96 μLとgDNA Remover(キット付属) 0.04 μLとヌクレアーゼフリー水(キット付属)を全量8 μLになるよう調製し、サーマルサイクラー(ジーンアトラスG02(アステック))にて37.0℃で5 分間反応させ、ゲノムDNAを除去した。ゲノムDNAを除去した反応液8 μLと5x RT Master Mix II(キット付属) 2 μLを混和し、サーマルサイクラーで37.0℃, 15分、50.0℃, 5分、98.0℃, 5分の温度条件で反応させた。
(3) cDNA synthesis
ReverTra Ace qPCR Master Mix with gDNA Remover (Toyobo) (kit) was used for cDNA synthesis. Prepare 500 ng of the extracted RNA, 1.96 μL of 4x DN Master Mix (included in the kit), 0.04 μL of gDNA Remover (included in the kit), and nuclease-free water (included in the kit) to make a total volume of 8 μL. Astec)) was allowed to react at 37.0°C for 5 minutes to remove the genomic DNA. Mix 8 μL of the reaction solution from which genomic DNA has been removed and 2 μL of 5x RT Master Mix II (included in the kit), and react in a thermal cycler at 37.0°C for 15 minutes, 50.0°C for 5 minutes, and 98.0°C for 5 minutes. let me

(4) リアルタイムPCR
5 μM フォワードプライマー(ユーロフィンジェノミクス) 2 μL、5 μM リバースプライマー(ユーロフィンジェノミクス) 2 μL、cDNA 5 μL、POWER SYBR(R) Green PCR Master Mix(サーモフィッシャー) 10 μLを混和し、ストラタジーン Mx3005p (アジレントテクノロジー)で95.0℃,10分、(95.0℃, 15秒、60.0℃, 1分)x40、95.0℃, 15秒、60.0℃, 30秒、95.0℃, 15秒の温度条件でPCR反応させた。
(4) Real-time PCR
Mix 2 μL of 5 μM forward primer (Eurofins Genomics), 2 μL of 5 μM reverse primer (Eurofins Genomics), 5 μL of cDNA, and 10 μL of POWER SYBR (R) Green PCR Master Mix (Thermo Fisher), and add Stratagene Mx3005p. (Agilent Technologies) 95.0°C, 10 minutes, (95.0°C, 15 seconds, 60.0°C, 1 minute) x 40, 95.0°C, 15 seconds, 60.0°C, 30 seconds, 95.0°C, 15 seconds. rice field.

[結果]
LMM/HMM重量比の異なる2つのLPS(LMM-LPS 1 ng/mL分)をマクロファージ様細胞に刺激し、LPSのLMM-LPS含量が高いことによるマクロファージ活性化機能を評価した。その結果、従来法での培養産物のLPS(LMM/HMM重量比0.27)で刺激した場合に比べて開発した方法によるLMM/HMM重量比の高いLPS(LMM/HMM重量比6.5)では刺激した場合のサイトカインの遺伝子発現量が増加した。結果を表4と表5に示した。表4は、従来培養法LPSサンプルでは誘導が見られなかったサイトカイン遺伝子での誘導が開発培養法LPSサンプルで誘導されたことを示す。表5は、従来培養LPSサンプルでの誘導に比べて、開発培養法LPSサンプルで15倍以上の高いサイトカイン誘導されたことを示す。
[result]
Macrophage-like cells were stimulated with two different LMM/HMM weight ratios of LPS (LMM-LPS 1 ng/mL), and the macrophage-activating function of LPS with high LMM-LPS content was evaluated. As a result, when stimulated with LPS (LMM/HMM weight ratio 0.27) of the culture product in the conventional method, when stimulated with LPS with a high LMM/HMM weight ratio (LMM/HMM weight ratio 6.5) by the developed method increased the gene expression levels of cytokines in The results are shown in Tables 4 and 5. Table 4 shows that induction of cytokine genes, which was not observed in conventional culture method LPS samples, was induced in development culture method LPS samples. Table 5 shows that the developed culture method LPS samples induced more than 15-fold higher cytokine induction than the conventionally cultured LPS samples.

Figure 2022160938000005
Figure 2022160938000005

Figure 2022160938000006
Figure 2022160938000006

[結論]
本発明である、パントエア菌を37.7℃pH8.8で培養した高LMM/HMM重量比のLPS抽出物は、従来培養法で得られたLPSとは異なる生物活性を示すことが明らかになった。
以上より、本特許で新たに開発したLMM/HMM重量比の高いLPS高含有品は、従来培養法に比べて、極めて優れた生物活性を持つものとして製造できた。
[Conclusion]
It was clarified that the LPS extract of the present invention, which has a high LMM/HMM weight ratio obtained by culturing Pantoea at 37.7° C. and pH 8.8, exhibits biological activity different from that of LPS obtained by conventional culture methods.
As described above, the LPS-rich product with a high LMM/HMM weight ratio newly developed in this patent could be produced as a product with extremely superior biological activity compared to the conventional culture method.

Claims (10)

pH8.0以上9.0以下の培地を通性嫌気性グラム陰性菌によって発酵させて、同時に該通性嫌気性グラム陰性菌を培養することを特徴とする発酵及び培養方法。 A fermentation and culture method comprising fermenting a medium having a pH of 8.0 to 9.0 with facultative anaerobic Gram-negative bacteria and simultaneously culturing the facultative anaerobic Gram-negative bacteria. 温度37.0℃以上38.0℃以下の前記培地を前記通性嫌気性グラム陰性菌によって発酵させて、同時に該通性嫌気性グラム陰性菌を培養することを特徴とする請求項1記載の発酵及び培養方法。 2. The medium according to claim 1, wherein said medium having a temperature of 37.0° C. or higher and 38.0° C. or lower is fermented with said facultative anaerobic Gram-negative bacteria, and said facultative anaerobic Gram-negative bacteria are cultured at the same time. Fermentation and culture methods. 前記通性嫌気性グラム陰性菌は、パントエア・アグロメランスであることを特徴とする請求項1又は2記載の発酵及び培養方法。 3. The fermentation and culture method according to claim 1 or 2, wherein the facultative anaerobic Gram-negative bacterium is Pantoea agglomerans. 前記培地は、植物から得られる粉末を含むことを特徴とする請求項1又は2記載の発酵及び培養方法。 3. The fermentation and culture method according to claim 1 or 2, wherein the medium contains powder obtained from plants. 前記粉末は、穀物、海草又は豆類であることを特徴とする請求項4記載の発酵及び培養方法 5. The fermentation and culture method according to claim 4, wherein the powder is grains, seaweeds or legumes. 請求項1、2、4又は5記載の発酵及び培養方法で発酵及び培養された通性嫌気性グラム陰性菌から得られることを特徴とするリポ多糖。 A lipopolysaccharide obtained from a facultative anaerobic Gram-negative bacterium fermented and cultured by the fermentation and culture method according to claim 1, 2, 4 or 5. 請求項1乃至5いずれかに記載の発酵及び培養方法で得られることを特徴とする発酵エキス。 A fermented extract obtained by the fermentation and culture method according to any one of claims 1 to 5. 請求項7記載の発酵エキスから得られることを特徴とする発酵エキス末。 A fermented extract powder obtained from the fermented extract according to claim 7 . 請求項6乃至8記載のリポ多糖、発酵エキス又は発酵エキス末が配合されていることを特徴とする配合物。 A formulation comprising the lipopolysaccharide, the fermented extract, or the fermented extract powder according to any one of claims 6 to 8. 前記配合物が医薬品、動物用医薬品、医薬部外品、化粧品、食品、機能性食品、飼料、浴用剤又は日用品雑貨であることを特徴とする請求項9記載の配合物。
10. The formulation according to claim 9, wherein the formulation is pharmaceuticals, veterinary drugs, quasi-drugs, cosmetics, foods, functional foods, feeds, bath additives or daily necessities.
JP2021065471A 2021-04-07 2021-04-07 Fermentation and culture method, lipoprotein polysaccharide, fermentation extract, fermentation extract powder and compound thereof Pending JP2022160938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021065471A JP2022160938A (en) 2021-04-07 2021-04-07 Fermentation and culture method, lipoprotein polysaccharide, fermentation extract, fermentation extract powder and compound thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021065471A JP2022160938A (en) 2021-04-07 2021-04-07 Fermentation and culture method, lipoprotein polysaccharide, fermentation extract, fermentation extract powder and compound thereof

Publications (1)

Publication Number Publication Date
JP2022160938A true JP2022160938A (en) 2022-10-20

Family

ID=83657933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021065471A Pending JP2022160938A (en) 2021-04-07 2021-04-07 Fermentation and culture method, lipoprotein polysaccharide, fermentation extract, fermentation extract powder and compound thereof

Country Status (1)

Country Link
JP (1) JP2022160938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7414385B1 (en) 2023-04-24 2024-01-16 源一郎 杣 Lipopolysaccharide, lipopolysaccharide production method, and lipopolysaccharide formulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7414385B1 (en) 2023-04-24 2024-01-16 源一郎 杣 Lipopolysaccharide, lipopolysaccharide production method, and lipopolysaccharide formulation

Similar Documents

Publication Publication Date Title
Pirarat et al. Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG
Lokesh et al. Transcriptional regulation of cytokines in the intestine of Atlantic cod fed yeast derived mannan oligosaccharide or β-glucan and challenged with Vibrio anguillarum
Xiu et al. Immunostimulatory activity of exopolysaccharides from probiotic Lactobacillus casei WXD030 strain as a novel adjuvant in vitro and in vivo
Csernus et al. Effect of carotenoids, oligosaccharides and anthocyanins on growth performance, immunological parameters and intestinal morphology in broiler chickens challenged with Escherichia coli lipopolysaccharide
US5413785A (en) Methodology employing lactobacillus GG for reduction of plasma endotoxin levels circulating in-vivo
Sun et al. Distinct immune response induced by peptidoglycan derived from Lactobacillus sp
Xu et al. Oral administration of Lactococcus lactis‐expressed recombinant porcine epidermal growth factor stimulates the development and promotes the health of small intestines in early‐weaned piglets
Qiu et al. Effects of selenylation modification on immune-enhancing activity of garlic polysaccharide
CN1525863A (en) Lipoteichoic acid from lactic acid bacteria and its use to modulate immune responses mediated by gram-negative, potential pathogenic gram-positive bacteria
JP2006519014A (en) Anti-inflammatory activity from lactic acid bacteria
JP2021120383A (en) Use of beta-1,3-glucan for modulating immune function and treating intestinal inflammation
TWI695685B (en) Broth compositions and their use as prebiotics
JPWO2019017389A1 (en) Antibacterial composition against Th1 cell-inducing bacteria
Casterlow et al. An antimicrobial peptide is downregulated in the small intestine of Eimeria maxima-infected chickens
Luo et al. Bitter peptides from enzymatically hydrolyzed protein increase the number of leucocytes and lysozyme activity of large yellow croaker (Larimichthys crocea)
Dong et al. Clostridium perfringens suppressing activity in black soldier fly protein preparations
Sun et al. Peptidoglycan-based immunomodulation
Zhou et al. Effect of β-glucan supplementation on growth performance and intestinal epithelium functions in weaned pigs challenged by enterotoxigenic Escherichia coli
JP2022160938A (en) Fermentation and culture method, lipoprotein polysaccharide, fermentation extract, fermentation extract powder and compound thereof
Song et al. Effects of four different adjuvants separately combined with Aeromonas veronii inactivated vaccine on haematoimmunological state, enzymatic activity, inflammatory response and disease resistance in crucian carp
JP6028962B2 (en) Lactic acid bacteria composition for preventing viral infection and lactic acid fermented food for preventing viral infection
An et al. The immune‐enhancing potential of peptide fractions from fermented Spirulina platensis by mixed probiotics
Obianwuna et al. Recent trends on mitigative effect of probiotics on oxidative-stress-induced gut dysfunction in broilers under necrotic enteritis challenge: a review
Huang et al. Advances in the study of probiotics for immunomodulation and intervention in food allergy
JP2010241945A (en) Lipopolysaccharide, rice fermentation extract, and rice fermentation extract composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240129