JP2010241945A - Lipopolysaccharide, rice fermentation extract, and rice fermentation extract composition - Google Patents

Lipopolysaccharide, rice fermentation extract, and rice fermentation extract composition Download PDF

Info

Publication number
JP2010241945A
JP2010241945A JP2009091637A JP2009091637A JP2010241945A JP 2010241945 A JP2010241945 A JP 2010241945A JP 2009091637 A JP2009091637 A JP 2009091637A JP 2009091637 A JP2009091637 A JP 2009091637A JP 2010241945 A JP2010241945 A JP 2010241945A
Authority
JP
Japan
Prior art keywords
lipopolysaccharide
rice
different
extract
pantoea agglomerans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009091637A
Other languages
Japanese (ja)
Other versions
JP5449834B2 (en
Inventor
Hiroyuki Inagawa
裕之 稲川
Chie Kawachi
千恵 河内
Genichiro Soma
源一郎 杣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO MEDICAL RES GROUP KK
Macrophi Inc
Bio Medical Research Group KK
Original Assignee
BIO MEDICAL RES GROUP KK
Macrophi Inc
Bio Medical Research Group KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO MEDICAL RES GROUP KK, Macrophi Inc, Bio Medical Research Group KK filed Critical BIO MEDICAL RES GROUP KK
Priority to JP2009091637A priority Critical patent/JP5449834B2/en
Publication of JP2010241945A publication Critical patent/JP2010241945A/en
Application granted granted Critical
Publication of JP5449834B2 publication Critical patent/JP5449834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Fertilizers (AREA)
  • Fodder In General (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent lipopolysaccharide having a property different from that of the conventional lipopolysaccharide of Pantoea agglomerans of wheat, to provide an extract containing the lipopolysaccharide, and to provide the application product thereof. <P>SOLUTION: The lipopolysaccharide is obtained from a Gram-negative bacterium living together with a rice plant. The lipopolysaccharide has high Limulus activity, low molecular weight of a subband, a different saccharide chain structure, different lipid A structure, different protain content, saccharide content, nucleic acid content and Limulus active substance content as compared with the conventional lipopolysaccharide of Pantoea agglomerans of wheat and has high preventive effect. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、イネに共生するパントエア近縁菌のリポ多糖、該リポ多糖を含むイネ発酵エキス及びイネ発酵エキス配合物に関する。   [Technical Field] The present invention relates to a lipopolysaccharide of pantoea-related bacteria symbiotic to rice, a rice fermentation extract containing the lipopolysaccharide, and a rice fermentation extract blend.

リポ多糖はグラム陰性菌の細胞壁の外膜に存在する糖脂質であり、これまで知られている物質の中で最も微量で強力な自然免疫賦活作用を有し、適切に用いることができれば有益な生物学的作用を期待できる(たとえば、特許文献1参照)。リポ多糖の基本構造はリピドAと呼ばれる脂質に糖鎖(コア多糖、O抗原多糖等)が結合した物質である。リポ多糖の生物活性は免疫系細胞等の膜表面にあるリポ多糖受容体であるトル様受容体-4と結合し細胞内シグナル伝達機構を介して活性化されたDNA転写因子が核内に移行することで起こる。トル様受容体-4とリポ多糖の結合はリポ多糖を構成するリピドAや糖鎖の構造により異なり、そのため、リポ多糖の生物活性はリポ多糖の構造により異なる。   Lipopolysaccharide is a glycolipid that exists in the outer membrane of the cell wall of Gram-negative bacteria. It has the most trace amount of innate immunity activation effect known so far, and it is beneficial if it can be used properly. Biological action can be expected (see, for example, Patent Document 1). The basic structure of lipopolysaccharide is a substance in which a sugar chain (core polysaccharide, O antigen polysaccharide, etc.) is bound to lipid called lipid A. The biological activity of lipopolysaccharide is bound to toll-like receptor-4, which is a lipopolysaccharide receptor on the membrane surface of immune system cells, etc., and a DNA transcription factor activated through an intracellular signal transduction mechanism is transferred into the nucleus To happen. The binding between Toll-like receptor-4 and lipopolysaccharide differs depending on the structure of lipid A and sugar chains constituting the lipopolysaccharide, and thus the biological activity of lipopolysaccharide differs depending on the structure of lipopolysaccharide.

リポ多糖の構造は由来する微生物により異なることが知られているが、リピドA部分は保存性が高く、糖鎖部分は多様性が高い。すなわち、近縁種間ではリピドAの構造は保存されているが、糖鎖構造は異なる。たとえば、大腸菌のO-157とO-111と表現される菌株は、同一の大腸菌種であるが、その糖鎖構造が異なり、異なる菌株とされている。リピドA部分はトル様受容体-4との結合に主要な役割を担うことからリピドA構造が異なると生物活性は大きく異なると考えられる。   The structure of lipopolysaccharide is known to vary depending on the microorganism from which it is derived, but the lipid A moiety is highly conserved and the sugar chain moiety is highly diverse. That is, the structure of lipid A is conserved among related species, but the sugar chain structure is different. For example, E. coli strains expressed as O-157 and O-111 are the same E. coli species, but have different sugar chain structures and are different strains. Since the lipid A moiety plays a major role in binding to Toll-like receptor-4, biological activity is considered to be greatly different if the lipid A structure is different.

近年、小麦に共存しているグラム陰性菌のパントエア・アグロメランスのリポ多糖(IP-PA1(登録商標))は経口、経皮投与で強力な自然免疫賦活作用を示すことが報告されている。マクロファージを用いた腫瘍壊死因子(TNF-α)の産生増強実験で、IP-PA1は大腸菌由来のリポ多糖と比べて3倍強いマクロファージ活性化作用を示し、動物実験では、皮内又は経口投与によりアトピー性皮膚炎、胃潰瘍、ウイルス感染、急性疼痛、トキソプラズマ感染症、高脂血症、糖尿病、コカイン・モルヒネ中毒、腫瘍に予防ないし治療効果があることが示され、臨床効果としても腫瘍、ヘルペス、疼痛、アトピー性皮膚炎といった、複数の疾病の治療に有効であることが明らかにされている。   In recent years, it has been reported that the gram-negative bacterium Pantoea agglomerans lipopolysaccharide (IP-PA1 (registered trademark)) coexisting with wheat exhibits a potent innate immune stimulating effect by oral and transdermal administration. In an experiment to enhance the production of tumor necrosis factor (TNF-α) using macrophages, IP-PA1 has a 3-fold stronger macrophage activation effect than lipopolysaccharide derived from E. coli. Atopic dermatitis, gastric ulcer, viral infection, acute pain, toxoplasma infection, hyperlipidemia, diabetes, cocaine morphine poisoning, tumor has been shown to have preventive or therapeutic effects, and clinical effects include tumors, herpes, It has been shown to be effective in the treatment of multiple diseases such as pain and atopic dermatitis.

国際公開第2005/030938号International Publication No. 2005/0300938

A. Satoh et al., "PhysiologicalProperties and Phylogenetic Affiliations of Anaerobic Bacteria Isolated fromRoots of Rice Plants Cultivated on a Paddy Field", Anaerobe (2002) 8, pp.233-246A. Satoh et al., "PhysiologicalProperties and Phylogenetic Affiliations of Anaerobic Bacteria Isolated from Roots of Rice Plants Cultivated on a Paddy Field", Anaerobe (2002) 8, pp.233-246

以上のことから、ムギのパントエア・アグロメランスのリポ多糖(IP-PA1)とは生物活性が異なる新規のリポ多糖があれば、諸疾患に対する別な予防・治療効果が期待できるものと考えられる。ところで、パントエア・アグロメランスは種々の食用植物(ムギ、イネ、ジャガイモ、シイタケ、ナシ、リンゴなど)に共生しており、人類は長い間これを摂取してきた経験を有する。また、パントエア・アグロメランスは発酵ライ麦パンの乳酸発酵に先立ち多量に増殖することが知られている。すなわち、パントエア・アグロメランスは食経験の長いグラム陰性菌であるといえる。食経験のあることが新規の食品として求められているが、グラム陰性菌の食経験は乳酸菌やパントエア菌など少数であり、大腸菌の食経験は報告がない。そのため、パントエア菌の中から、ムギのパントエア・アグロメランスのリポ多糖と異なる性格を持つパントエア菌を見いだす必要がある。性格を大きく異ならせるためには、リピドAの構造が異なるものが望ましい。しかし、上述したように、リピドAの構造は保存性が高く、同一種のパントエア菌株にリピドAが異なるものが存在するとは考えにくい。   Based on the above, if there is a novel lipopolysaccharide having a biological activity different from that of wheat pantoea agglomerans lipopolysaccharide (IP-PA1), it is considered that another preventive and therapeutic effect on various diseases can be expected. By the way, Pantoea agglomerans is symbiotic with various edible plants (wheat, rice, potato, shiitake, pear, apple, etc.), and human beings have a long experience of ingesting it. Pantoea agglomerans is known to proliferate in large quantities prior to lactic acid fermentation of fermented rye bread. In other words, Pantoea agglomerans is a gram-negative bacterium with a long dietary experience. Although food experience is required as a new food, there are few gram-negative bacteria such as lactic acid bacteria and Pantoea bacteria, and there is no report of E. coli food experience. Therefore, it is necessary to find out among Pantoea bacteria that has a different character from the lipopolysaccharide of wheat Pantoea agglomerans. In order to make the personality greatly different, it is desirable that the structure of lipid A is different. However, as described above, the structure of lipid A is highly conserved, and it is unlikely that the same species of Pantoea strains with different lipid A exist.

しかし、我々は、種々の食用植物から単離されたパントエア・アグロメランスの中からムギのパントエア・アグロメランスのリポ多糖(IP-PA1)と異なる性格を有するリポ多糖を持つパントエア菌を鋭意スクリーニングしたところ、ついに、イネのパントエア・アグロメランスからIP-PA1とは性格の異なるリピドA構造を持つ優れたリポ多糖を見いだすことができた。   However, we have eagerly screened pantoea bacteria having lipopolysaccharides with different characteristics from the lipopolysaccharide (IP-PA1) of wheat pantoea agglomerans among pantoea agglomerans isolated from various edible plants, Finally, an excellent lipopolysaccharide having a lipid A structure different from IP-PA1 was found from rice pantoea agglomerans.

本発明のリポ多糖は、イネに共生するグラム陰性菌から得られることを特徴とする。   The lipopolysaccharide of the present invention is obtained from a gram-negative bacterium that coexists with rice.

また、本発明のイネ発酵エキスは、イネ科植物由来の素材をイネに共生するグラム陰性菌によって発酵させて、同時に該グラム陰性菌を培養することによって得られることを特徴とする。   In addition, the rice fermented extract of the present invention is obtained by fermenting a material derived from a Gramineae plant with a gram-negative bacterium symbiotic to rice and simultaneously culturing the gram-negative bacterium.

また、本発明のイネ発酵エキス末は、上記イネ発酵エキスから得られることを特徴とする。   Moreover, the rice fermented extract powder of the present invention is obtained from the above rice fermented extract.

また、本発明のイネ発酵エキス配合物は、上記イネ発酵エキス又は上記イネ発酵エキス末が配合されていることを特徴とする。   Moreover, the rice fermented extract blend of the present invention is characterized in that the rice fermented extract or the rice fermented extract powder is blended.

また、本発明のイネ発酵エキス配合物は、医薬品、食品、化粧品、雑貨、飼料、肥料、又は日用品であることを特徴とする。   Moreover, the rice fermented extract blend of the present invention is a pharmaceutical product, food, cosmetics, miscellaneous goods, feed, fertilizer, or daily necessities.

本発明によれば、従来のムギのパントエア・アグロメランスのリポ多糖と異なる性格を有し、優れたリポ多糖、該リポ多糖を含むエキス及びその応用品を提供することができる。   According to the present invention, it is possible to provide an excellent lipopolysaccharide, an extract containing the lipopolysaccharide, and an application product thereof having a different character from the conventional lipopolysaccharide of wheat pantoea agglomerans.

以下、本発明を実施するための形態について詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail.

イネのパントエア・アグロメランス菌体からのリポ多糖の精製
イネより単離されたパントエア・アグロメランス(A46株(非特許文献1参照))のコロニーの一部を掻き取り普通寒天培地に播き、30度の恒温そう内で一晩培養した。コロニー一つを滅菌済みルリアブロス(LB)培地1リットルの入った3リットルの坂口フラスコに入れ、30度にて一晩振盪培養した。培養後、遠心チューブに培養液を移し、7000 回転/分 (rpm)で遠心分離(HITACHI SCR-20B)を行い、A46株の湿菌体を回収した。A46株の湿菌体からのリポ多糖の精製はWestphalらの方法に従って行った。すなわち、湿菌体5.4gに蒸留水を加えて54ml(湿菌体100mg/ml)とした。菌を懸濁してこの液に同容量の90%フェノールを加え、65度から70度で10分間攪拌した。その後、4度まで液を冷却し、10000 rpmで遠心分離を行った。上層の水層を別の容器に回収し、残りのフェノール層と中間層に、回収した水層と同量の蒸留水を加え、再度65度から70度で10分間攪拌しリポ多糖を再抽出した。その後、4度まで液を冷却し、遠心分離を行った。2回目の水層を一回目の水層と合わせ蒸留水で透析しフェノールを除去した。この透析内液をさらにDNA分解酵素(DNase I)(50U/ml)及びRNA分解酵素(RNase A)(20μg/ml)処理し、タンパク分解酵素(プロティナーゼK)(100μg/ml)処理後、フェノール抽出を行い、その後、水層を透析しフェノールを除去した。透析終了後、透析内液を回収し、マイクロコンYM-100(ミリポア)を用いて限外濾過により濃縮した。本濃縮液をA46のイネパントエア・アグロメランスの精製リポ多糖(LPSp46)溶液とした。本溶液を凍結乾燥して乾燥重量を測定した。精製リポ多糖LPSp46の乾燥重量は42mgと測定された。リポ多糖に特異的に反応するリムラス活性測定キットとして生化学工業のエンドスペシーを用いた。標準リポ多糖は生化学工業のリポ多糖標準品を用いた。測定されたリムラス活性値とより、IP-PA1としての換算値を算出した。
Purification of lipopolysaccharide from rice pantoea agglomerans cells A portion of the colony of pantoea agglomerans isolated from rice (strain A46 (see Non-Patent Document 1)) was scraped and plated on a normal agar medium. The cells were cultured overnight in a thermostatic chamber. One colony was placed in a 3 liter Sakaguchi flask containing 1 liter of sterilized Luria Broth (LB) medium and cultured overnight at 30 degrees with shaking. After culturing, the culture solution was transferred to a centrifuge tube and centrifuged (HITACHI SCR-20B) at 7000 rpm (rpm) to recover wet cells of A46 strain. Purification of lipopolysaccharide from wet cells of A46 strain was performed according to the method of Westphal et al. That is, distilled water was added to 5.4 g of wet cells to make 54 ml (wet cells 100 mg / ml). The bacteria were suspended, and the same volume of 90% phenol was added to this solution, followed by stirring at 65 to 70 degrees for 10 minutes. Thereafter, the liquid was cooled to 4 degrees and centrifuged at 10,000 rpm. Collect the upper water layer in a separate container, add the same amount of distilled water as the recovered water layer to the remaining phenol layer and intermediate layer, and stir again at 65 to 70 degrees for 10 minutes to re-extract the lipopolysaccharide. did. Thereafter, the liquid was cooled to 4 degrees and centrifuged. The second aqueous layer was combined with the first aqueous layer and dialyzed against distilled water to remove phenol. This dialysis internal solution was further treated with DNA-degrading enzyme (DNase I) (50 U / ml) and RNA-degrading enzyme (RNase A) (20 μg / ml), followed by proteolytic enzyme (proteinase K) (100 μg / ml) and phenol. Extraction was performed, and then the aqueous layer was dialyzed to remove phenol. After completion of dialysis, the dialyzed solution was collected and concentrated by ultrafiltration using Microcon YM-100 (Millipore). This concentrate was used as a purified lipopolysaccharide (LPSp46) solution of A46 rice pantoea agglomerans. This solution was freeze-dried and the dry weight was measured. The dry weight of purified lipopolysaccharide LPSp46 was determined to be 42 mg. Seiko Chemical's Endspecy was used as a kit for measuring Limulus activity that specifically reacts with lipopolysaccharide. As the standard lipopolysaccharide, a standard lipopolysaccharide from Seikagaku Corporation was used. Based on the measured Limulus activity value, a converted value as IP-PA1 was calculated.

LPSp46とIP-PA1の糖含量と実重量あたりのリムラス活性(LPSによるカブトガニの血液の凝集誘導活性)を表1に示した。リムラス活性によるIP-PA1としての換算値が120mgに対して、乾燥重量が42mgであったので、単位重量当たりのリムラス活性のIP-PA1を基準にした場合の比活性は2.85(120/42)となった。すなわち、リポ多糖LPSp46はIP-PA1より約3倍も高い比活性を有することが明らかとなった。   Table 1 shows the sugar content of LPSp46 and IP-PA1 and the limulus activity per real weight (the activity of inducing aggregation of horseshoe crab blood by LPS). Since the converted value of IP-PA1 based on rimlas activity was 120 mg, the dry weight was 42 mg, so the specific activity based on IP-PA1 of rimlas activity per unit weight was 2.85 (120/42) It became. That is, it was revealed that lipopolysaccharide LPSp46 has a specific activity about 3 times higher than IP-PA1.

Figure 2010241945
Figure 2010241945

イネのパントエア・アグロメランスのリポ多糖LPSp46の分子量の測定
トリシンを用いたドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動(濃度15%のゲル)により、LPSp46(5μg/レーン)とIP-PA1(5μg/レーン)の分子量を解析した。泳動後、リポ多糖の分子を可視化させる目的でシルベストステイン(Cat No30642-41、ナカライテスク、日本)キットにより銀染色を行った。染色された各サンプルのバンドの分子量サイズを分子量マーカー(Prestained Protein Marker, NEW ENGLAND BioLabs)から読み取った。
Measurement of the molecular weight of lipopolysaccharide LPSp46 from rice pantoea agglomerans LPSp46 (5 μg / lane) and IP-PA1 (5 μg / lane) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (15% concentration gel) using tricine The molecular weight of was analyzed. After electrophoresis, silver staining was performed with a sylveststein (Cat No30642-41, Nacalai Tesque, Japan) kit for the purpose of visualizing the molecules of lipopolysaccharide. The molecular weight size of each stained band was read from a molecular weight marker (Prestained Protein Marker, NEW ENGLAND BioLabs).

結果を表2に示した。リポ多糖LPSp46は主に分子量5000であり、IP-PA1と同等であったが、高分子側の副バンドはIP-PA1よりも低分子量であった。   The results are shown in Table 2. Lipopolysaccharide LPSp46 mainly had a molecular weight of 5000 and was equivalent to IP-PA1, but the minor band on the polymer side had a lower molecular weight than IP-PA1.

Figure 2010241945
Figure 2010241945

精製リポ多糖LPSp46のIP-PA1モノクローナル抗体に対する交差反応性の検討
A46株はパントエア属であることからIP-PA1に特異的に反応する抗体に対して交差反応性が認められる可能性がある。そこで、IP-PA1に対して特異的に反応するモノクローナル抗体6種を用いてリポ多糖LPSp46の交差反応性について検討した。96穴イムノプレートにリポ多糖LPSp46、IP-PA1および大腸菌O128 リポ多糖の3種のリポ多糖を10μg/mlの濃度で0.05ml/ウエル入れ、4℃で一晩放置した。その後、リン酸緩衝生理食塩水(PBS)(pH7.3〜7.7、日水製薬製)に0.05%ポリオキシエチレン(20)ソルビタンモノラウレート(和光純薬工業製、Tween20相当品)を添加した溶液(PBS−T)で3回洗浄した後、3%牛血清アルブミンを入れ、室温で1時間放置し、抗体その他のタンパクの非特異的吸着を防止した。その後、PBS−Tで3回洗浄後、ウエルに、6種のIP-PA1に特異的に反応するモノクローナル抗体を含有するハイブリドーマ培養上清液0.05mlを入れ、室温で1時間放置した。次いで、各ウエルをPBS−Tで5回洗浄し、1%牛血清アルブミンで希釈したアルカリフォスファターゼ結合抗マウスIgG、M、A免疫グロブリン抗体(シグマ社製)を0.05ml/ウエルに入れ、室温で1時間放置した。その後、PBS−Tで5回洗浄し、1mg/mlになるようにp−ニトロフェニルリン酸二ナトリウム(和光純薬工業製)を基質緩衝液に溶解した溶液を0.1ml/ウエル入れ、室温で1時間放置した後、2規定の水酸化ナトリウム水溶液 0.05ml/ウエルを入れてプレートミキサーで混和して反応を停止させ、マイクロプレートリーダーにて415nmの吸光度を測定した。その結果を表3に示した。交差反応性が認められない大腸菌O128の精製リポ多糖の場合と同様に発色は認められず、6種のIP-PA1に対するモノクローナル抗体に対してリポ多糖LPSp46の交差反応性は認められなかった。すなわち、リポ多糖LPSp46はIP-PA1と異なる糖鎖構造を有することが明らかとなった。
Examination of cross-reactivity of purified lipopolysaccharide LPSp46 to IP-PA1 monoclonal antibody
Since the A46 strain belongs to the genus Pantoea, there is a possibility that cross-reactivity is observed with an antibody that specifically reacts with IP-PA1. Thus, the cross-reactivity of lipopolysaccharide LPSp46 was examined using six monoclonal antibodies that specifically react with IP-PA1. Three types of lipopolysaccharides, lipopolysaccharide LPSp46, IP-PA1 and E. coli O128 lipopolysaccharide, were added to a 96-well immunoplate at a concentration of 10 μg / ml at 0.05 ml / well and left overnight at 4 ° C. Then, 0.05% polyoxyethylene (20) sorbitan monolaurate (manufactured by Wako Pure Chemical Industries, Tween 20 equivalent) in phosphate buffered saline (PBS) (pH 7.3 to 7.7, manufactured by Nissui Pharmaceutical) ) Was added 3 times with a solution (PBS-T) added, and 3% bovine serum albumin was added and left at room temperature for 1 hour to prevent non-specific adsorption of antibodies and other proteins. Then, after washing 3 times with PBS-T, 0.05 ml of a hybridoma culture supernatant containing monoclonal antibodies specifically reacting with 6 types of IP-PA1 was placed in the well and left at room temperature for 1 hour. Next, each well was washed 5 times with PBS-T, and alkaline phosphatase-conjugated anti-mouse IgG, M, A immunoglobulin antibodies (manufactured by Sigma) diluted with 1% bovine serum albumin were added to 0.05 ml / well at room temperature. And left for 1 hour. Thereafter, the plate was washed 5 times with PBS-T, and a solution of p-nitrophenyl phosphate disodium (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in a substrate buffer so as to be 1 mg / ml was added at 0.1 ml / well, Then, the reaction was stopped by adding 0.05 ml / well of 2N aqueous sodium hydroxide solution and mixing with a plate mixer, and the absorbance at 415 nm was measured with a microplate reader. The results are shown in Table 3. As in the case of the purified lipopolysaccharide of E. coli O128 in which no cross-reactivity was observed, no color development was observed, and no cross-reactivity of lipopolysaccharide LPSp46 was observed against monoclonal antibodies against six types of IP-PA1. That is, it was revealed that lipopolysaccharide LPSp46 has a sugar chain structure different from that of IP-PA1.

Figure 2010241945
Figure 2010241945

精製リポ多糖LPSp46の免疫賦活作用の測定
マウスのマクロファージ系の培養細胞株であるRAW264.7に、リポ多糖を添加した後の、細胞からの一酸化窒素(NO)産生をNO代謝物の亜硝酸の培養液中の濃度を指標として測定した。RAW264.7はATCC (No.TIB-71) より購入した。対照として大腸菌O128のリポ多糖とIP-PA1を用いた。
Measurement of immunostimulatory effect of purified lipopolysaccharide LPSp46 Nitric oxide (NO) production from cells after addition of lipopolysaccharide to RAW264.7, a cultured cell line of mouse macrophages The concentration in the culture solution was measured as an index. RAW264.7 was purchased from ATCC (No.TIB-71). As controls, E. coli O128 lipopolysaccharide and IP-PA1 were used.

RAW264.7細胞は培養フラスコからピペッティングにより回収し、培養液(10%牛胎児血清含有、カナマイシン50μg/ml、アンピシリン60μg/ml含有RPMI1640培地)により細胞濃度を8×105個/mlに調整した。細胞懸濁液100μl(8×104個/100μl)を96穴平底プレートの各穴に移し、細胞がほぼ付着する6時間後に試験に用いた。リポ多糖LPSp46をIP-PA1のリポ多糖濃度に換算して4000ng/mlになるように調整した。さらに10倍ずつ5段階の段階希釈を行った。各希釈液を培養液でさらに2倍希釈したものと、各希釈液を40μg/mlのポリミキシンB含有培養液でさらに2倍希釈したものをそれぞれ調製し、細胞の入ったウェルへの添加用標品とした。同時に、IP-PA1も試験した。各標品を予め細胞を添加してある96穴平底プレートの各穴に100μlずつ添加した。20時間37℃、5%炭酸ガス培養器内で培養し、培養終了後、上清50μlを別の96穴プレートに回収した。常法に従いグリエス試薬を用いて培養液中の一酸化窒素の代謝物である亜硝酸量を測定した。 RAW264.7 cells were collected from the culture flask by pipetting, and the cell concentration was adjusted to 8 × 10 5 cells / ml with the culture solution (RPMI1640 medium containing 10% fetal bovine serum, kanamycin 50 μg / ml, ampicillin 60 μg / ml). did. 100 μl of the cell suspension (8 × 10 4 cells / 100 μl) was transferred to each well of a 96-well flat bottom plate and used for the test 6 hours after the cells were almost attached. Lipopolysaccharide LPSp46 was adjusted to 4000 ng / ml in terms of IP-PA1 lipopolysaccharide concentration. Further, serial dilution in 5 steps was performed 10 times each. Prepare each of the diluted solutions further diluted 2-fold with the culture solution and each diluted solution further diluted 2-fold with 40 μg / ml polymyxin B-containing culture solution. It was a product. At the same time, IP-PA1 was also tested. 100 μl of each sample was added to each well of a 96-well flat bottom plate to which cells had been added in advance. The cells were cultured for 20 hours at 37 ° C. in a 5% carbon dioxide incubator, and after completion of the culture, 50 μl of the supernatant was collected in another 96-well plate. The amount of nitrous acid which is a metabolite of nitric oxide in the culture solution was measured using a Gries reagent according to a conventional method.

表4.に測定結果を示した。リポ多糖LPSp46は1ng/ml(リムラス活性)以上の濃度においてRAW264.7細胞から一酸化窒素を誘導することが示された。リポ多糖LPSp46(リムラス活性に基づいた場合)は、同時に測定したIP-PA1とほぼ同等の用量依存的反応を示すことがわかった。   Table 4 shows the measurement results. Lipopolysaccharide LPSp46 was shown to induce nitric oxide from RAW264.7 cells at concentrations of 1 ng / ml (limulus activity) and higher. Lipopolysaccharide LPSp46 (based on Limulus activity) was found to show a dose-dependent response approximately equivalent to IP-PA1 measured simultaneously.

抗生物質のポリミキシンBは環状のポリペプチドであり、リポ多糖のリピドA部分に親和性が高い。大腸菌やIP-PA1にはよく結合するため、生物活性が強く抑制されることがわかっている。そこで、リポ多糖LPSp46をポリミキシンBにより処理し、一酸化窒素産生能を測定した。   The antibiotic polymyxin B is a cyclic polypeptide and has a high affinity for the lipid A part of lipopolysaccharide. It is known that the bioactivity is strongly suppressed because it binds well to E. coli and IP-PA1. Therefore, lipopolysaccharide LPSp46 was treated with polymyxin B, and nitric oxide production ability was measured.

結果を表4.に示した。IP-PA1では、ポリミキシンBとの前処理によりNO誘導能が約1/1000に低下していることが確認された。これに対して、リポ多糖LPSp46では、ポリミキシンBとの前処理を行った場合に、1/5程度の低下しか認められなかった。以上のことから、リポ多糖LPSp46のリピドA構造はIP-PA1と異なることが明らかとなった。   The results are shown in Table 4. In IP-PA1, it was confirmed that the NO inducing ability was reduced to about 1/1000 by pretreatment with polymyxin B. In contrast, when lipopolysaccharide LPSp46 was pretreated with polymyxin B, only a reduction of about 1/5 was observed. From the above, it was revealed that the lipid A structure of lipopolysaccharide LPSp46 is different from IP-PA1.

Figure 2010241945
a)IP-PA1は重量濃度で示した。リポ多糖LPSp46はリムラス活性より求めたIP-PA1としての換算重量で示した、b)PolyB−:ポリミキシンBとの前処理なし、PolyB+:ポリミキシンBとの前処理あり、c)各測定値は4例の平均±標準偏差
Figure 2010241945
a) IP-PA1 is shown by weight concentration. Lipopolysaccharide LPSp46 was expressed as a converted weight as IP-PA1 determined from Limulus activity, b) PolyB-: no pretreatment with polymyxin B, PolyB +: pretreatment with polymyxin B, c) each measured value was 4 Mean ± standard deviation of examples

イネのパントエア・アグロメランスを用いた米ぬか発酵エキスの製造
米ぬか0.5gに蒸留水5mlを加え懸濁し、上澄みをルリアブロス寒天培地に0.1ml添加し、37℃で一晩培養した。寒天培地上に認められたコロニーを単離し、通常の方法で菌を同定し、イネパントエア・アグロメランスを単離し、これを50%グリセロール溶液に懸濁し、冷凍庫に保存した。このストックの一部をルリアブロス寒天培地にとり、37℃に放置してイネパントエア・アグロメランスの独立コロニーを作成した。
Production of rice bran fermented extract using pantoea agglomerans of rice 5 ml of distilled water was suspended in 0.5 g of rice bran, and 0.1 ml of the supernatant was added to Luria broth agar and cultured at 37 ° C. overnight. Colonies found on the agar medium were isolated, bacteria were identified by a conventional method, rice pantoea agglomerans was isolated, suspended in 50% glycerol solution, and stored in a freezer. A part of this stock was taken up on Luria broth agar medium and allowed to stand at 37 ° C. to produce rice pantoea agglomerans independent colonies.

2リットルの三角フラスコに米ぬか50gをとり、精製水を加え全量1000mlとした。これを同様にオートクレーブした。調整した溶液等をそれぞれ表1に示した量を無菌的に滅菌した3リットルの坂口フラスコに入れ米ぬか培地とした(A)。前もって同じ組成で調製しておいた米ぬか培地10mlに、米ぬかより単離しておいたパントエア・アグロメランスのコロニーを一つ加え37℃で一晩(12〜15時間)緩やかに撹拌し、発酵させて、米ぬか発酵用の種菌を準備した(B)。   50 g of rice bran was placed in a 2 liter Erlenmeyer flask and purified water was added to make a total volume of 1000 ml. This was similarly autoclaved. Each of the prepared solutions and the like was put in a 3 liter Sakaguchi flask aseptically sterilized in the amount shown in Table 1 to prepare a rice bran medium (A). To 10 ml of rice bran medium prepared with the same composition in advance, add one Pantoea agglomerans colony isolated from rice bran and gently stir at 37 ° C. overnight (12-15 hours), fermented, An inoculum for rice bran fermentation was prepared (B).

(A)に(B)を全量加え37℃で撹拌しながら、20〜30時間発酵させた。この米ぬか発酵溶液を遠心分離(日立、高速冷却遠心機 SCR−20B、5000rpm、20分間、4℃)し、沈殿を回収した。この沈殿にリン酸緩衝液を加えて懸濁し、全量100mlとして、33mlずつ50ml遠心管に移し、沸騰水浴中で30分間加熱抽出した。加熱終了後、室温まで冷却し、本液を遠心分離(日立、高速冷却遠心機 SCR−20B、10000rpm、20分間、20℃)した。遠心後、淡黄色の上清82mlをデカントで別の容器に回収した。   The whole amount of (B) was added to (A) and fermented for 20 to 30 hours while stirring at 37 ° C. This rice bran fermentation solution was centrifuged (Hitachi, high-speed cooling centrifuge SCR-20B, 5000 rpm, 20 minutes, 4 ° C.), and the precipitate was collected. The precipitate was suspended by adding a phosphate buffer solution to a total volume of 100 ml, transferred in 33 ml portions to a 50 ml centrifuge tube, and extracted by heating in a boiling water bath for 30 minutes. After completion of the heating, the mixture was cooled to room temperature and centrifuged (Hitachi, high-speed cooling centrifuge SCR-20B, 10000 rpm, 20 minutes, 20 ° C.). After centrifugation, 82 ml of pale yellow supernatant was decanted and collected in another container.

この上清80mlに8.9mlの5モル塩化ナトリウム溶液を加えた。これに178mlのエタノールを加えると白濁を生じた。これを、冷凍庫(−90℃)で一晩放置後、本液を遠心分離(日立、高速冷却遠心機SCR−20B、10000rpm、20分間、4℃)した。上清を除き沈殿を得た。沈殿に冷やした10mlの70%エタノールを加え、懸濁した後、本液を遠心分離(日立、高速冷却遠心機 SCR−20B、10000rpm、20分間、20℃)し、沈殿を洗浄した。沈殿を風乾し、蒸留水に溶解し、11mlの米ぬか発酵エキス溶液を得た。重量は溶液0.3mlを予め秤量した1.5mlプラスチックチューブに移し、凍結乾燥を行い、その重量を測定した。   To 80 ml of this supernatant, 8.9 ml of 5 molar sodium chloride solution was added. When 178 ml of ethanol was added thereto, white turbidity was produced. This was left overnight in a freezer (−90 ° C.), and then the liquid was centrifuged (Hitachi, high-speed cooling centrifuge SCR-20B, 10000 rpm, 20 minutes, 4 ° C.). The supernatant was removed to obtain a precipitate. 10 ml of 70% ethanol cooled to the precipitate was added and suspended, and then the liquid was centrifuged (Hitachi, high-speed cooling centrifuge SCR-20B, 10000 rpm, 20 minutes, 20 ° C.) to wash the precipitate. The precipitate was air-dried and dissolved in distilled water to obtain 11 ml of rice bran fermented extract solution. The weight was transferred to a 1.5 ml plastic tube that weighed 0.3 ml of the solution in advance, freeze-dried, and the weight was measured.

同一の方法で独立に3回の米ぬか発酵エキスを製造し、それぞれをブラッドフォード法によるタンパク質定量BSAを標準タンパク質として、各サンプルのタンパク質量を測定した。測定結果を表5に示した。米ぬか発酵エキスについての数値は上記で得られるエキスを乾燥して得られた重量の1gあたりの含有量をmgで表示した。糖含量はフェノール硫酸法によりグルコースを標準糖として測定した。核酸含量は500倍希釈したサンプルの210〜340nmの吸光度測定を行い、260nmの吸光度から320nmの吸光度を引いた値と、DNAとしての吸光度1ODあたり、50μgとしての最大含有量を算出した。リムラス活性物質量は生化学工業のトキシカラーシステムを用い、標準リムラス活性物質として、生化学工業CSE-Lを用いた。測定結果を表5に示した。対照としてリポ多糖IP-PA1における各数値を示した。表5から、タンパク質含量、糖含量、核酸含量、及びリムラス活性物質量において、乾燥米ぬか発酵エキスはムギのパントエア・アグロメランスのリポ多糖とは異なることが明らかである。   Three rice bran fermented extracts were produced independently by the same method, and the amount of protein in each sample was measured using protein quantification BSA by Bradford method as a standard protein. The measurement results are shown in Table 5. For the rice bran fermented extract, the content per gram of the weight obtained by drying the extract obtained above was expressed in mg. The sugar content was measured by the phenol-sulfuric acid method using glucose as a standard sugar. The nucleic acid content was determined by measuring absorbance at 210 to 340 nm of a sample diluted 500 times, and calculating the maximum content as 50 μg per absorbance of 1 nm of DNA and the value obtained by subtracting the absorbance of 320 nm from the absorbance of 260 nm. As for the amount of Limulus active substance, Seikagaku Corporation CSE-L was used as a standard Limulus active substance. The measurement results are shown in Table 5. Each value in lipopolysaccharide IP-PA1 was shown as a control. From Table 5, it is clear that the dried rice bran fermented extract is different from the lipopolysaccharide of wheat pantoea agglomerans in terms of protein content, sugar content, nucleic acid content, and amount of limulus active substance.

Figure 2010241945
Figure 2010241945

米ぬか発酵エキスの感染防除効果
米ぬか発酵エキスまたは小麦発酵エキスを水に希釈し、養殖魚用飼料に噴霧し、乾燥させた。対照として水だけを飼料に噴霧した。平均体重20gのニシキゴイ20匹に各飼料を7日間体重の1%になるように毎日与えた。なお、体重kgあたり、リポ多糖LPSp46またはIP-PA1が10マイクログラムになるように調製した。7日間飼料を与えたニシキゴイにエロモナスハイドロフィラを1×107 個の生菌を腹腔内に投与し、感染させた。感染操作後10日間のニシキゴイの生存を観察した。小麦発酵エキス無添加のコイでは、6日目までに全てのコイが死亡した。小麦発酵エキス含有飼料を投与した群では、感染10日目において、生存率30%であった。米ぬか発酵エキスを投与した群では80%の生存率が示された。米ぬか発酵エキスは小麦発酵エキスよりも高い予防効果が認められた。
Infection control effect of rice bran fermented extract Rice bran fermented extract or wheat fermented extract was diluted in water, sprayed on cultured fish feed, and dried. As a control, only water was sprayed on the feed. Each of the 20 diets with an average weight of 20 g was fed daily with 7% of the body weight for 7 days. In addition, it prepared so that lipopolysaccharide LPSp46 or IP-PA1 might be 10 microgram per kg body weight. Erythronas hydrophila was inoculated intraperitoneally with 1 × 10 7 viable bacteria to the tiger moth that had been fed for 7 days. Survival of the swordfish 10 days after the infection operation was observed. In the carp without added fermented wheat extract, all carp died by the 6th day. In the group administered with the fermented wheat extract-containing feed, the survival rate was 30% on the 10th day of infection. The group administered with rice bran fermented extract showed an survival rate of 80%. Rice bran fermented extract was found to have a higher preventive effect than wheat fermented extract.

なお、本発明は上記実施例に限定されるものではない。
In addition, this invention is not limited to the said Example.

Claims (5)

イネに共生するグラム陰性菌から得られることを特徴とするリポ多糖。   A lipopolysaccharide obtained from a gram-negative bacterium symbiotic to rice. イネ科植物由来の素材をイネに共生するグラム陰性菌によって発酵させて、同時に該グラム陰性菌を培養することによって得られることを特徴とするイネ発酵エキス。   A fermented rice extract obtained by fermenting a material derived from a Gramineae plant with a gram-negative bacterium symbiotic to rice and simultaneously culturing the gram-negative bacterium. 請求項2記載のイネ発酵エキスから得られることを特徴とするイネ発酵エキス末。   A rice fermented extract powder obtained from the rice fermented extract according to claim 2. 請求項2記載のイネ発酵エキス又は請求項3記載のイネ発酵エキス末が配合されていることを特徴とするイネ発酵エキス配合物。   A rice fermented extract blend comprising the rice fermented extract according to claim 2 or the rice fermented extract powder according to claim 3. 前記イネ発酵エキス配合物が医薬品、食品、化粧品、雑貨、飼料、肥料、又は日用品であることを特徴とする請求項4記載のイネ発酵エキス配合物。
The rice fermented extract composition according to claim 4, wherein the fermented rice extract composition is a pharmaceutical, food, cosmetics, miscellaneous goods, feed, fertilizer, or daily necessities.
JP2009091637A 2009-04-05 2009-04-05 Lipopolysaccharide, rice fermentation extract and rice fermentation extract blend Active JP5449834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091637A JP5449834B2 (en) 2009-04-05 2009-04-05 Lipopolysaccharide, rice fermentation extract and rice fermentation extract blend

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091637A JP5449834B2 (en) 2009-04-05 2009-04-05 Lipopolysaccharide, rice fermentation extract and rice fermentation extract blend

Publications (2)

Publication Number Publication Date
JP2010241945A true JP2010241945A (en) 2010-10-28
JP5449834B2 JP5449834B2 (en) 2014-03-19

Family

ID=43095326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091637A Active JP5449834B2 (en) 2009-04-05 2009-04-05 Lipopolysaccharide, rice fermentation extract and rice fermentation extract blend

Country Status (1)

Country Link
JP (1) JP5449834B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240946A (en) * 2011-05-18 2012-12-10 Genichiro Soma Plant fermentation extract composition
JP2015023832A (en) * 2013-07-26 2015-02-05 克史 小早川 Drinking water
CN104825870A (en) * 2015-05-04 2015-08-12 新昌县大成生物科技有限公司 Feed additive for preventing coccidiosis in chickens
JP2018044038A (en) * 2016-09-12 2018-03-22 有限会社バイオメディカルリサーチグループ Lipopolysaccharides, lipopolysaccharide production method and lipopolysaccharide compound
JP2020065490A (en) * 2018-10-24 2020-04-30 株式会社アンチエイジング・プロ Method for producing high lps-containing composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021231869A1 (en) * 2020-05-14 2021-11-18 Zivo Bioscience, Inc. Use of tlr4 modulator in the treatment of coccidiosis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310802A (en) * 1992-03-25 1993-11-22 Kokichi Hanaoka Polysaccharide
WO2005030938A1 (en) * 2003-09-26 2005-04-07 Biomedical Research Group Inc. Fermentation and culture method, fermented plant extract, fermented plant extract powder and composition containing the fermented plant extract

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310802A (en) * 1992-03-25 1993-11-22 Kokichi Hanaoka Polysaccharide
WO2005030938A1 (en) * 2003-09-26 2005-04-07 Biomedical Research Group Inc. Fermentation and culture method, fermented plant extract, fermented plant extract powder and composition containing the fermented plant extract
JP2007202562A (en) * 2003-09-26 2007-08-16 Genichiro Soma Fermentation and culture method, fermented plant extract, fermented plant extract powder and composition containing fermented plant extract
JP2008183011A (en) * 2003-09-26 2008-08-14 Genichiro Soma Method for fermentation and cultivation, fermented plant extract, fermented plant extract powder and composition of fermented plant extract

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013049940; Atsuya Gotoh et al: 'Physiological properties and phylogenetic affiliations of anaerobic bacteria isolated from roots of' Anaerobe 8, 2002, p.233-246 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240946A (en) * 2011-05-18 2012-12-10 Genichiro Soma Plant fermentation extract composition
JP2015023832A (en) * 2013-07-26 2015-02-05 克史 小早川 Drinking water
CN104825870A (en) * 2015-05-04 2015-08-12 新昌县大成生物科技有限公司 Feed additive for preventing coccidiosis in chickens
JP2018044038A (en) * 2016-09-12 2018-03-22 有限会社バイオメディカルリサーチグループ Lipopolysaccharides, lipopolysaccharide production method and lipopolysaccharide compound
JP2020065490A (en) * 2018-10-24 2020-04-30 株式会社アンチエイジング・プロ Method for producing high lps-containing composition

Also Published As

Publication number Publication date
JP5449834B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP6292725B2 (en) Lipopolysaccharide, lipopolysaccharide production method and lipopolysaccharide compound
JP5737646B2 (en) Antiallergic agent
JP5449834B2 (en) Lipopolysaccharide, rice fermentation extract and rice fermentation extract blend
CN102533588B (en) Lactobacillus brevis for producing extracellular exopolysaccharide and application thereof
Ramesh et al. Effect of fenugreek (Trigonella foenum-graecum L.) galactomannan fractions on phagocytosis in rat macrophages and on proliferation and IgM secretion in HB4C5 cells
CN107405369A (en) Composition comprising bacterium and use it for treating and/or prevent enterogastric diseases, the method for metabolic disease and/or Other diseases
CN111961617A (en) Multi-effect bacillus subtilis for high yield of immune polysaccharide and bacteriocin and application thereof
CN103748220A (en) Bacteriocin derived from lactobacillus rhamnosus
JP5192808B2 (en) Polysaccharides produced by microorganisms of the genus Bifidobacterium
CN110627919A (en) Intestinal prebiotics black skin termitomyces albuminosus polysaccharide ORP-1 and preparation method and application thereof
CN108503724B (en) Cordyceps militaris culture medium polysaccharide, and separation and purification method and application thereof
JP6833418B2 (en) Lipopolysaccharide, lipopolysaccharide production method and lipopolysaccharide formulation
Jia et al. Characterization of novel exopolysaccharides from Enterococcus hirae WEHI01 and its immunomodulatory activity
JP4921499B2 (en) Antiallergic composition using new strains Lactobacillus crispatas KT-11, KT-23, and KT-25
Abdullah Thaidi et al. Development of in situ product recovery (ISPR) system using amberlite IRA67 for enhanced biosynthesis of hyaluronic acid by streptococcus zooepidemicus
JP2022160938A (en) Fermentation and culture method, lipoprotein polysaccharide, fermentation extract, fermentation extract powder and compound thereof
US8471001B2 (en) Method for production of limulus-positive glycolipid, the limulus-positive glycolipid, and composition containing the limulus-positive glycolipid
KR20200092951A (en) Composition for type I allergy
EP1331006A1 (en) Dietary supplements comprising growth media
RU2694256C2 (en) Fodder additive for preventing bacterial carry-over of salmonella microorganisms in agricultural poultry and method for use thereof
JP5294659B2 (en) Fermentation and culture method, lotus root ferment extract and fermented extract blend
CN116211886A (en) Application of chondroitin sulfate and salts thereof in targeted regulation of intestinal flora and metabolites
KR20230120948A (en) Composition with anti-inflammatory and anti-allergic activity using lactic acid bacteria-derived extracellular vesicles
JP2004089047A (en) Yeast cell in which cerebroside is accumulated
Al-Saffar et al. Quantitative detection of the partially purified endotoxin extracted from the locally isolated Salmonella typhimurium A3

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5449834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250