JP2022159820A - Roof material placement method for long horizontal roofing module roof material - Google Patents

Roof material placement method for long horizontal roofing module roof material Download PDF

Info

Publication number
JP2022159820A
JP2022159820A JP2021064244A JP2021064244A JP2022159820A JP 2022159820 A JP2022159820 A JP 2022159820A JP 2021064244 A JP2021064244 A JP 2021064244A JP 2021064244 A JP2021064244 A JP 2021064244A JP 2022159820 A JP2022159820 A JP 2022159820A
Authority
JP
Japan
Prior art keywords
roof
standardized
dimension
roof material
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021064244A
Other languages
Japanese (ja)
Other versions
JP7144015B1 (en
Inventor
和彦 小栗
Kazuhiko Oguri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iraka Engineering Ltd
Original Assignee
Iraka Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iraka Engineering Ltd filed Critical Iraka Engineering Ltd
Priority to JP2021064244A priority Critical patent/JP7144015B1/en
Application granted granted Critical
Publication of JP7144015B1 publication Critical patent/JP7144015B1/en
Publication of JP2022159820A publication Critical patent/JP2022159820A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

To solve the problem that in the conventional roof material placement method for long horizontal roofing materials, allocation of roofing materials to a roof surface differs from site to site, making it difficult to allocate, and construction involving the processing of roofing materials at ends of a roof requires the skill and effort of craftsmen.SOLUTION: In the roof material placement method for long horizontal roofing module roof materials of the present invention, in a roof of a building with a pitch, where the roof has a corner ridge or valley, the horizontal projected dimension of the working length of the roof material is an integer fraction of the design unit dimension of the building. The working width dimension of the roof material is an integral multiple of two or more times the horizontal projected dimension of the working length. When arranging the roof material for each level, the integral multiple of the horizontal projected dimension of the working length of the roof material is shifted, so that a standardized shape roof material for the roof edge standardized by the central slope of the standardized slope range is arranged on all the roof edges.SELECTED DRAWING: Figure 1

Description

本発明は、長尺横葺きモジュール屋根材の屋根材配置方法であり、勾配を有する屋根を備える建物の屋根であって、前記屋根は隅棟又は谷を有し、屋根材を桁方向に複数枚並べ、前記屋根材を段方向に複数段並べる屋根において、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の整数分の一であり、前記屋根材の働き幅寸法が前記働き長さの水平投影寸法の二倍以上の整数倍であり、前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法の整数倍をずらして配置し、前記屋根面における桁方向の寸法調整に用いる調整屋根材の働き幅寸法は、前記屋根材の働き長さの水平投影寸法の整数倍であり、前記調整屋根材を前記屋根材の代わりに配置することで働き幅寸法の差分により前記桁方向の寸法調整を行い、流れ方向と桁方向の両方の寸法条件で位置決めする三又部、寄棟棟違い部、陸棟曲がり部などの全ての屋根端部及び流れ方向又は桁方向のどちらか一方の寸法条件で位置決めする陸棟部、壁際部、隅棟部、谷部などの全ての屋根端部に、所定の規格化勾配範囲の中央勾配で規格化した屋根端部規格化形状屋根材を配置し、前記屋根端部規格化形状屋根材と隅棟とは調整隙間幅だけ離隔し、前記調整隙間幅は勾配形状調整範囲幅より幅広とすることで、屋根材1の施工現場における生産性を向上させる技術に関する。 The present invention relates to a method for arranging long horizontal modular roofing materials, and a roof of a building having a sloped roof, the roof having a corner ridge or a valley, and a plurality of roofing materials arranged in the girder direction. In a roof in which the roof materials are arranged in multiple stages in a row direction, the horizontal projection dimension of the working length of the roof material is an integer fraction of the design unit dimension of the building, and the working width dimension of the roof material is It is an integral multiple of two or more times the horizontal projection dimension of the working length, and when the roof material is arranged in each stage in the flow direction from the eaves toward the land ridge, the roof material is the girder of the roof surface to be arranged Adjusting roof material used to adjust the dimension of the roof surface in the girder direction, which is shifted from one end to the other end by an integral multiple of the horizontal projection dimension of the working length of the roof material. is an integral multiple of the horizontal projection dimension of the working length of the roof material, and by arranging the adjustment roof material instead of the roof material, the difference in the working width dimension is used to adjust the dimension in the girder direction. All roof ends such as three-forked parts, hipped ridges, land ridge bends, etc., and dimensional conditions in either the stream direction or the girder direction A roof edge standardized shape roof material standardized by a central gradient within a predetermined standardized gradient range is placed on all roof edges such as land ridges, wall edges, corner ridges, and valleys positioned in the roof The edge standardized shape roof material and the corner ridge are separated by an adjustment gap width, and the adjustment gap width is wider than the slope shape adjustment range width, thereby improving the productivity at the construction site of the roof material 1. .

従来技術として以下の三つの特許文献がある。
特許文献1は、特開平8-86050号の屋根葺構造瓦がある。
特許文献2は、特開2005-256514号の平板瓦及び該平板瓦の葺設工法がある。
特許文献3は、特開平8-109708号の瓦及び瓦葺き方法がある。
There are the following three patent documents as prior art.
Patent Document 1 includes a roofing structure tile disclosed in Japanese Patent Application Laid-Open No. 8-86050.
Patent document 2 includes a flat roof tile and a roofing construction method for the flat roof tile disclosed in Japanese Patent Application Laid-Open No. 2005-256514.
Patent document 3 includes a tile and a tile roofing method disclosed in Japanese Patent Application Laid-Open No. 8-109708.

特開平8-86050号公報JP-A-8-86050 特開2005-256514号公報JP 2005-256514 A 特開平8-109708号公報JP-A-8-109708

特許文献1では、この特許文献では、屋根の降り棟部又は谷部における瓦の調整工程を簡単化した屋根葺構造を提供することにある。屋根の降り棟部又は谷部における瓦の調整工程を簡単化するために、一定の傾斜角度を持つ屋根に、例えば千鳥格子状に本体瓦1が敷設された屋根葺構造であって、この施設された本体瓦1の水平面上に投影したときの働き幅の縦方向に対する横方向の寸法の比(X′:Y)を、整数倍(例えば1:2)となるように設定するという提案がされている。
一定の傾斜角度を持つ屋根の流れ方向に沿って多段に瓦が敷設されるとともに、この敷設された瓦が水平面上に投影されたときの働き幅の縦方向の寸法に対する横方向の寸法の比が、2以上の整数倍となるように設定されている。そして、この水平面上に投影されたときの働き幅の縦方向の寸法分だけ上段あるいは下段の瓦より側方にずらせて敷設されている。
屋根の隣合う傾斜面の傾斜角度が同じである場合、水平面上に投影したときの降り棟部又は谷部の傾斜角度は、軒先のラインに対して45度の角度となる。そのため、水平面上に投影したときの瓦の働き幅の縦方向に対する横方向の寸法比を、2以上の整数倍(例えば、縦:横が1:2、1:3、1:4等)となるように設定することにより、一方の降り棟部又は谷部に隣接して敷設される瓦(隅瓦)の形状は、各段について同一形状となる。
縦及び横の寸法比を1:2とした場合には、施工時に2種類の隅瓦のみを切断するだけで足り、縦及び横の寸法比を1:3とした場合には、施工時に3種類の隅瓦を切断するだけで足り、縦及び横の寸法比を1:4とした場合には、施工時に4種類の隅瓦を切断するだけで足りることになる。
すなわち、従来の瓦を用いて施工する場合のように、全ての段について隅瓦を切断する必要はないので、その分、施工作業の簡単化が図られているという効果を発揮する。
In Patent Document 1, the object of this patent document is to provide a roofing structure that simplifies the process of adjusting the tiles in the ridge or valley of the roof. A roofing structure in which main tiles 1 are laid in, for example, a houndstooth pattern on a roof having a certain inclination angle in order to simplify the process of adjusting the tiles in the ridge or valley of the roof. Proposal to set the ratio (X':Y) of the lateral dimension to the longitudinal direction of the working width when projected onto the horizontal plane of the installed main tile 1 so as to be an integral multiple (eg 1:2). is done.
The ratio of the working width to the vertical dimension of the working width when tiles are laid in multiple stages along the flow direction of a roof with a certain inclination angle and the laid tiles are projected on a horizontal plane. is set to be an integral multiple of 2 or more. The roof tiles are laid laterally shifted from the upper or lower roof tiles by the vertical dimension of the working width when projected onto the horizontal plane.
If the slope angles of the adjacent slopes of the roof are the same, the slope angle of the ridge or valley when projected onto the horizontal plane is an angle of 45 degrees with respect to the eaves line. Therefore, the ratio of the working width of the roof tile in the horizontal direction to the vertical direction when projected onto the horizontal plane should be an integral multiple of 2 or more (for example, length:width is 1:2, 1:3, 1:4, etc.). By setting so as to be such that the shape of the roof tiles (corner roof tiles) laid adjacent to one of the descending ridges or valleys is the same for each step.
If the ratio of vertical and horizontal dimensions is 1:2, it is sufficient to cut only two types of corner tiles during construction. It suffices to cut the corner tiles of different types, and if the ratio of vertical and horizontal dimensions is 1:4, it is sufficient to cut four types of corner tiles during construction.
That is, since it is not necessary to cut the corner tiles for all stages as in the case of construction using conventional roof tiles, the construction work can be simplified accordingly.

しかし、特許文献1の屋根材は隅棟部の隅瓦と谷部の谷瓦の切断形状の種類を少なくし、切断作業を軽減することは出来るが、現場の屋根形状に合わせて切断加工するという作業は行う必要があった。
また、葺き始めの隅棟と葺き仕舞いの隅棟では隅瓦の形状が異なり、現場の屋根形状に合わせて現場で隅瓦の加工を行う必要があった。
さらに、流れ方向においては施工作業の簡単化は図られていないので、現場の屋根形状に合わせて屋根材を加工しなければならず、陸棟際での屋根材の施工に手間が掛かるという課題は依然残ったままだった。
However, the roof material of Patent Document 1 can reduce the number of types of cutting shapes for the corner tiles of the corner ridge and the valley tiles of the valley, and can reduce the cutting work, but it is necessary to cut according to the roof shape at the site. It was necessary to do the work.
In addition, the shape of the corner tile is different between the corner ridge at the beginning of roofing and the corner ridge at the end of roofing, so it was necessary to process the corner tiles on site according to the shape of the roof at the site.
Furthermore, since the construction work in the flow direction has not been simplified, the roof material must be processed according to the shape of the roof at the site, and the problem that it takes time to construct the roof material at the landside remains. remained.

特許文献2では、千鳥葺きする屋根の隅棟瓦の形状が全体に亘ってほぼ同形になるように定形化した屋根において、利き足の水平投影寸法が利き幅の5/6となる様に屋根勾配により重ね寸法を調節可能にし、一般的に使用する平板瓦と寸法が大きく異ならない瓦を使用できるようにしている。
軒先寸法L1 における両端の役瓦3、3aを除く寸法を、平板瓦1、1a…の利き幅Wの1/3の幅の倍数とすると共に、葺設状態の平板瓦1、1a…の利き足B1の水平投影寸法Bを利き幅Wの5/6として千鳥葺きし、両側の役瓦3、3aと、各列の両端の平板瓦1、1a…の間に形成される、平板瓦1、1a…の利き幅Wの1/3の幅又は2/3の幅の隙間に、平板瓦1、1a…の利き幅Wの1/3又は2/3の利き幅w、2wの調節瓦2、2aを葺設する。よって、上記平板瓦1、1a…は正方形に近くなって、一般的な平板瓦の形状の近似形することが可能になり、而も平板瓦1、1a…を三角形状に分割して形成する瓦を使用せずに瓦屋根が構築可能になるという効果を発揮する。
In Patent Document 2, the roof is stylized so that the shape of the corner ridge tiles of the zigzag roof is almost the same over the entire roof, and the roof slope is adjusted so that the horizontal projection dimension of the dominant foot is 5/6 of the dominant width. By making it possible to adjust the overlapping dimensions, it is possible to use roof tiles that do not differ greatly in size from commonly used flat roof tiles.
The dimension of the eaves edge L1 excluding the side tiles 3, 3a at both ends is a multiple of 1/3 of the width W of the flat tiles 1, 1a, and the width of the flat roof tiles 1, 1a, ... in the roofing state. The flat tiles 1 are formed between the side tiles 3, 3a on both sides and the flat tiles 1, 1a, . . . , 1a . 2, 2a will be roofed. Therefore, the flat tiles 1, 1a, . The effect is that a tiled roof can be constructed without using tiles.

しかし、特許文献2の屋根材は、正方形に近似した平板瓦であり、桁方向に施工枚数が多くなるため、施工に手間が掛かるという課題があった。
また、特許文献2は桁方向で隅棟部において三角形状に分割して形成する瓦を使用せずに役瓦を使用することで施工を簡略化する技術であり、流れ方向においては役瓦の設定は考慮されていない。そのため隅棟の施工は役瓦を用いることで簡略化できるが、隅棟以外の屋根端部においては従来の現場における屋根材の加工にて施工をすることになるため、施工に手間が掛かるという課題は依然残ったままだった。
さらに寄棟屋根では隅棟と陸棟だけの単純な寄棟屋根以外にも谷が入った屋根形状は多く、陸棟と隅棟と谷が交差する寄棟棟違い部や2本の陸棟と隅棟と谷が交差する陸棟曲がり部などの納まりは、桁方向と流れ方向の組み合わせによるため、割付パターンが無数にあるため、現場で加工形状を合わせ、現場で屋根材を加工することにより施工している。適切な雨仕舞い性能を担保した屋根材の現場加工は職人の高い技能が必要であり、かつ屋根材の加工には手間が掛かるという課題があった。
However, the roof material of Patent Document 2 is a flat plate tile that approximates a square, and the number of roof tiles to be installed increases in the direction of the girder.
In addition, Patent Document 2 is a technique that simplifies construction by using side tiles instead of using tiles that are divided into triangles at corner ridges in the girder direction. settings are not taken into account. Therefore, the construction of the corner ridge can be simplified by using tiles. The problem still remained.
Furthermore, in hipped roofs, there are many roof shapes with valleys other than simple hipped roofs with only a corner ridge and a land ridge, such as a hipped roof where a land ridge, a corner ridge and a valley intersect, or two land ridges. Since there are countless allocation patterns due to the combination of the girder direction and the flow direction, it is necessary to match the processing shape on site and process the roofing materials on site. It is constructed by On-site processing of roofing materials that ensure proper rain protection performance requires a high level of craftsmanship, and the processing of roofing materials is time-consuming.

特許文献3では瓦本体部(はたらき面)は葺いたときの水平面への投影形状が建物の単位寸法の整数分の一(モジュール)にほぼ等しい長さを1辺とする正方形であるから、この瓦本体部を整数個並べて葺くと建物の単位寸法にほぼ合致する。そして、建物の柱は単位寸法に合わせて設けられ、谷や隅棟はこの柱を通過し、水平面への投影形状が壁面から45°傾斜した傾斜線に沿って設けられるから、瓦を隅棟と隅棟との間に葺く場合には、最初の瓦が瓦本体部であれば最後の瓦が瓦本体部になり、最初の瓦が半瓦本体部であれば最後の瓦が半瓦本体部となる。又、隅棟と谷との間に葺く場合には、谷部分に半瓦本体部の長さだけ開ける必要があるから、最初の瓦が瓦本体部(または半瓦本体部)であれば最後の瓦が半瓦本体部(または瓦本体部)となる。又、谷と谷との間に葺く場合には、両方の谷部分に半瓦本体部の長さだけ開けるから、最初の瓦が瓦本体部であれば最後の瓦が瓦本体部となり、最初の瓦が半瓦本体部であれば最後の瓦が半瓦本体部となる。このように、瓦の割り付けが極めて簡単に出来るという効果を発揮する。 In Patent Document 3, the tile main body (working surface) is a square whose length is approximately equal to an integer fraction (module) of the unit dimension of the building when projected onto the horizontal plane. If an integral number of tile bodies are laid out side by side, the unit size of the building will almost match. The pillars of the building are set according to the unit size, and the ridges and corner ridges pass through these pillars. If the first tile is the tile body, the last tile will be the tile body, and if the first tile is the half tile body, the last tile will be the half tile. Becomes the main body. Also, when roofing between the corner ridge and the valley, it is necessary to open the valley by the length of the half tile body, so if the first tile is the tile body (or the half tile body) The last tile becomes the half tile body (or tile body). Also, when roofing between valleys, the length of the half tile body is opened in both valleys, so if the first tile is the tile body, the last tile will be the tile body. If the first tile is the half tile body, the last tile will be the half tile body. In this way, the effect is exhibited that the tiles can be laid out very easily.

しかし、特許文献3の屋根材は建物の単位寸法の整数分の一(モジュール)にほぼ等しい長さを1辺とする正方形形状であり、屋根面に割り付けるのに多くの屋根材を配置する必要があり、屋根材の施工に手間が掛かるという課題があった。
寄棟屋根の陸棟際の端部は三又部や陸棟曲がり部などの瓦の納まりがあるが、特許文献1では三又部や陸棟曲がり部と言った部位での専用の瓦の設定は無く、現場で職人が加工する必要があり、この部位での瓦の加工は難しく、現場での施工に手間が掛かるという課題があった。
また、瓦の配置方法においては流れ方向にて一段飛ばしで瓦本体と半瓦とを交互に配置するというルールが必要であり、瓦の割り付けにおいてもルールが煩雑で手間が掛かるという課題があった。
さらに、桟瓦だけでなく両桟瓦、半瓦、両桟半瓦、谷瓦、側方接続部付き谷瓦、廻り隅瓦といった多数の専用瓦の設定が必要であり、多品種小ロット生産方式でないと生産が出来ないことによる生産効率が悪いという課題と、多くの品目を在庫管理しなければならないことによる在庫負担の増大などという課題があった。
However, the roof material of Patent Document 3 has a square shape with one side having a length approximately equal to an integer fraction (module) of the unit dimension of the building, and it is necessary to arrange many roof materials in order to allocate it to the roof surface. There was a problem that it took time and effort to construct the roof material.
At the end of the hipped roof near the ridge, tiles such as the three-pronged part and the ridge-curved part are fitted. There was a problem that it was difficult to process the roof tiles in this area, and it took a lot of time and effort to do it on site.
In addition, in the method of arranging tiles, a rule was required to alternately arrange the tile main body and half tiles by skipping one step in the flow direction. .
Furthermore, it is necessary to set not only pantiles but also a large number of dedicated tiles such as double pantiles, half tiles, double pan half tiles, valley tiles, valley tiles with side connections, and surrounding corner tiles, and it is not a multi-kind small lot production system. There were problems such as poor production efficiency due to the inability to produce and an increase in inventory burden due to the need to manage inventory of many items.

本発明は、勾配を有する屋根を備える建物の屋根であって、前記屋根は隅棟又は谷を有し、屋根材を桁方向に複数枚並べ、前記屋根材を段方向に複数段並べる屋根において、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の整数分の一であり、前記屋根材の働き幅寸法が前記働き長さの水平投影寸法の二倍以上の整数倍であり、前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法の整数倍をずらして配置し、前記屋根面における桁方向の寸法調整に用いる調整屋根材の働き幅寸法は、前記屋根材の働き長さの水平投影寸法の整数倍であり、前記調整屋根材を前記屋根材の代わりに配置することで働き幅寸法の差分により前記桁方向の寸法調整を行い、流れ方向と桁方向の両方の寸法条件で位置決めする三又部、寄棟棟違い部、陸棟曲がり部などの全ての屋根端部及び流れ方向又は桁方向のどちらか一方の寸法条件で位置決めする陸棟部、壁際部、隅棟部、谷部などの全ての屋根端部に、所定の規格化勾配範囲の中央勾配で規格化した屋根端部規格化形状屋根材を配置し、前記屋根端部規格化形状屋根材と隅棟とは調整隙間幅だけ離隔し、前記調整隙間幅は勾配形状調整範囲幅より幅広であることを特徴とする長尺横葺きモジュール屋根材の屋根材配置方法を提供する。 The present invention relates to a roof of a building having a sloped roof, the roof having a corner ridge or a valley, a plurality of roof materials arranged in a girder direction, and a plurality of roof materials arranged in a tier direction. , the horizontal projection dimension of the working length of the roof material is an integer fraction of the design unit dimension of the building, and the working width dimension of the roof material is an integral multiple of two or more times the horizontal projection dimension of the working length. When arranging the roof materials step by step in the flow direction from the eaves toward the land ridge, the roof materials are arranged from one end to the other end with respect to the girder direction of the roof surface to be arranged. The working width of the roof material used for adjusting the girder direction on the roof surface is the horizontal distance of the working length of the roof material. It is an integer multiple of the projected dimension, and by placing the adjustment roof material instead of the roof material, the dimension in the girder direction is adjusted according to the difference in the working width dimension, and the positioning is performed under the dimension conditions in both the stream direction and the girder direction. All roof ends such as three-forked parts, hipped ridge parts, land ridge curved parts, land ridge parts, wall edge parts, corner ridge parts, valley parts, etc. that are positioned according to the dimensional conditions in either the stream direction or the girder direction. A roof edge standardized shape roof material standardized with a central slope within a predetermined standardized slope range is placed on all roof edges of the and the adjustment gap width is wider than the gradient shape adjustment range width.

請求項1記載の本発明の長尺横葺きモジュール屋根材の屋根材配置方法は、勾配を有する屋根を備える建物の屋根であって、前記屋根は隅棟又は谷を有し、屋根材を桁方向に複数枚並べ、前記屋根材を段方向に複数段並べる屋根において、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の整数分の一であり、前記屋根材の働き幅寸法が前記働き長さの水平投影寸法の二倍以上の整数倍であり、前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法の整数倍をずらして配置し、前記屋根面における桁方向の寸法調整に用いる調整屋根材の働き幅寸法は、前記屋根材の働き長さの水平投影寸法の整数倍であり、前記調整屋根材を前記屋根材の代わりに配置することで働き幅寸法の差分により前記桁方向の寸法調整を行い、流れ方向と桁方向の両方の寸法条件で位置決めする三又部、寄棟棟違い部、陸棟曲がり部などの全ての屋根端部及び流れ方向又は桁方向のどちらか一方の寸法条件で位置決めする陸棟部、壁際部、隅棟部、谷部などの全ての屋根端部に、所定の規格化勾配範囲の中央勾配で規格化した屋根端部規格化形状屋根材を配置し、前記屋根端部規格化形状屋根材と隅棟とは調整隙間幅だけ離隔し、前記調整隙間幅は勾配形状調整範囲幅より幅広であることを特徴とする。 The method for arranging long horizontal modular roofing materials according to claim 1 of the present invention is a roof of a building having a sloped roof, the roof having a corner ridge or a valley, and the roofing materials being girders. In a roof in which a plurality of roof materials are arranged in a direction and a plurality of roof materials are arranged in a tier direction, the horizontal projection dimension of the working length of the roof material is an integral fraction of the design unit dimension of the building, and the function of the roof material The width dimension is an integral multiple of two or more times the horizontal projection dimension of the working length, and when the roof materials are arranged step by step in the flow direction from the eaves toward the land ridge, the roof materials are arranged on the roof. It is used to adjust the dimension of the roof surface in the girder direction by shifting the integral multiple of the horizontal projection dimension of the working length of the roof material from one end to the other end with respect to the girder direction of the surface. The working width dimension of the adjustable roof material is an integral multiple of the horizontal projection dimension of the working length of the roof material. All roof ends such as three-forked parts, hipped ridges, land ridge bends, etc., and either the stream direction or the girder direction At all roof ends, such as land ridges, wall edges, corner ridges, valleys, etc., which are positioned according to the dimension conditions, standardized shape roof materials for roof ends standardized with a central slope within the specified standardized slope range are placed. , the roof edge standardized shape roof material and the corner ridge are separated by an adjustment gap width, and the adjustment gap width is wider than the gradient shape adjustment range width.

本発明によれば、勾配を有する屋根を備える建物の屋根であって、前記屋根は隅棟又は谷を有し、屋根材を桁方向に複数枚並べ、前記屋根材を段方向に複数段並べる屋根において、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の整数分の一であり、前記屋根材の働き幅寸法が前記働き長さの水平投影寸法の二倍以上の整数倍であり、前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法の整数倍をずらして配置し、前記屋根面における桁方向の寸法調整に用いる調整屋根材の働き幅寸法は、前記屋根材の働き長さの水平投影寸法の整数倍であり、前記調整屋根材を前記屋根材の代わりに配置することで働き幅寸法の差分により前記桁方向の寸法調整を行い、流れ方向と桁方向の両方の寸法条件で位置決めする三又部、寄棟棟違い部、陸棟曲がり部などの全ての屋根端部及び流れ方向又は桁方向のどちらか一方の寸法条件で位置決めする陸棟部、壁際部、隅棟部、谷部などの全ての屋根端部に、所定の規格化勾配範囲の中央勾配で規格化した屋根端部規格化形状屋根材を配置し、前記屋根端部規格化形状屋根材と隅棟とは調整隙間幅だけ離隔し、前記調整隙間幅は勾配形状調整範囲幅より幅広であることで、前記建物の設計単位寸法と連動した屋根材の配置が可能となり、従来技術では現場合わせの現場加工で屋根材加工を行っていた、三又部、寄棟棟違い部、陸棟曲がり部などの全ての屋根端部において規格化した屋根端部規格化形状屋根材を配置することが出来る。
また、陸棟部、隅棟部、ケラバ部、壁際部、谷部などの全ての屋根端部においても規格化した屋根端部規格化形状屋根材を配置することが出来る。
つまり、全ての屋根端部において規格化した屋根端部規格化形状屋根材を配置することが出来る。
その結果、全ての屋根端部において現場で加工形状を合わせ、現場で屋根材を加工する作業が不要になり、屋根材の加工作業に現場合わせが無くなることで全ての屋根端部において施工のマニュアル化が出来るようになり、適切な雨仕舞い性能を担保した施工が技能の高い職人でなくても施工が出来るようになり、建築現場における生産性を格段に向上させることが出来る。
これらの効果によって、建築業界における深刻な問題である職人不足問題を解決することが出来る。
屋根端部規格化形状屋根材は、所定の規格化勾配範囲の中央勾配で規格化するため、勾配毎に屋根端部規格化形状屋根材を設定する必要が無くなる。規格化勾配範囲の中で屋根端部箇所一か所に付き一つの形状で屋根端部規格化形状屋根材を設定するため、複数種類の屋根端部規格化形状屋根材を簡易に品番管理することが出来るようになる。
品番管理により生産管理や在庫管理が可能となり、屋根端部ごとに屋根端部規格化形状屋根材を在庫化することが出来る。部品化した屋根端部規格化形状屋根材を現場に納入し、屋根上に配置するだけで施工が行えるため、屋根工事の工期を短縮することが出来る。
隅棟部及び谷部は、屋根形状を水平投影した際には一方の桁方向を0度に設定した際には必ず45度に設定されるため、屋根材の配置が一段登るごとに屋根材の働き長さの水平投影寸法分だけ桁方向でずれる。このことを利用し、屋根材の働き幅寸法を働き長さの水平投影寸法の二倍以上の整数倍とし、かつ、屋根材の桁方向での配置の際に屋根材の働き長さの水平投影寸法の整数倍だけ各段でずらす配置ルールにすることで、各段における配置ルールも簡単明瞭で分かりやすく、屋根端部における規格化した形状の屋根材の種類を減らすことが出来る。
また、前記屋根材を長尺化することで横方向での施工枚数の減少により施工性を上げることが出来る。
According to the present invention, the roof of a building has a sloped roof, the roof has a corner ridge or a valley, a plurality of roof materials are arranged in a girder direction, and a plurality of roof materials are arranged in a tier direction. In the roof, the horizontal projection dimension of the working length of the roof material is an integer fraction of the design unit dimension of the building, and the working width dimension of the roof material is twice or more the horizontal projection dimension of the working length. It is an integral multiple, and when the roof materials are arranged step by step in the flow direction from the eaves toward the land ridge, the roof materials are arranged from one end to the other end in the girder direction of the roof surface to be arranged. The working width of the adjusting roof material used for adjusting the dimensions in the girder direction on the roof surface is the working length of the roof material. is an integral multiple of the horizontal projection dimension of the roof material, and by arranging the adjustment roof material instead of the roof material, the dimension adjustment in the girder direction is performed by the difference in the working width dimension, and the dimension conditions in both the stream direction and the girder direction All roof ends such as three-forked parts, hipped ridges, and land ridge bends that are positioned with , and land ridges, wall edges, corner ridges, and valleys that are positioned under either the flow direction or the girder direction. A standardized shape roof material standardized at the central slope of a predetermined standardized slope range is placed on all roof ends such as the corners, and the standardized shape roof material and corner ridge are adjusted. It is possible to arrange the roofing materials in conjunction with the design unit size of the building by separating by the gap width and the adjustment gap width being wider than the slope shape adjustment range width. It is possible to arrange the standardized shape roof materials for all the roof ends, such as the three-pronged part, the different hipped part, and the curved part of the flat roof, which have been processed.
In addition, the standardized shape of the roof edge can be arranged at all the roof edge portions such as the land ridge portion, corner ridge portion, verge portion, wall edge portion, valley portion, and the like.
In other words, it is possible to arrange standardized roof-end-shaped roof materials on all roof ends.
As a result, all roof edges are matched on-site, eliminating the need to process roof materials on-site. As a result, it becomes possible to carry out construction work that guarantees appropriate rain protection performance even if it is not a highly skilled craftsman, and the productivity at the construction site can be greatly improved.
These effects can solve the problem of shortage of craftsmen, which is a serious problem in the construction industry.
Since the standardized shape roof material for the roof end is standardized at the central slope of the predetermined standardized slope range, it is not necessary to set the standardized shape roof material for the roof end for each slope. In order to set the standardized shape roof material for the roof end with one shape for one roof end part within the standardized slope range, it is possible to easily manage the product number of multiple types of standardized shape roof materials for the roof end. It will be possible.
Product number management enables production management and inventory management, and it is possible to inventory standardized shape roof materials for each roof edge. Roofing work can be done simply by delivering roofing materials with a standardized shape to the roof ends and placing them on the roof.
When the roof shape is horizontally projected, the corner ridge and valley are always set to 45 degrees when one girder direction is set to 0 degrees. The horizontal projection dimension of the working length of is shifted in the girder direction. Taking advantage of this fact, the working width of the roof material should be an integral multiple of at least two times the horizontal projection of the working length, and when the roof material is arranged in the girder direction, the working length of the roof material should be horizontal. By adopting an arrangement rule in which each stage is shifted by an integer multiple of the projection dimension, the arrangement rule in each stage is also simple, clear, and easy to understand, and the types of standardized roof materials at the roof edge can be reduced.
In addition, by lengthening the roof material, the workability can be improved by reducing the number of roof materials to be installed in the horizontal direction.

本発明の実施例による寄棟棟違い屋根での屋根材割付図Roof material allocation diagram for a hipped roof according to an embodiment of the present invention 本発明の実施例による寄棟切妻混合屋根での屋根材割付図FIG. 2 is a roof material allocation diagram for a mixed hipped gable roof according to an embodiment of the present invention; 本発明の実施例による屋根材の製品図Product drawing of the roofing material according to the embodiment of the present invention 本発明の実施例による規格化勾配範囲での上限勾配及び下限勾配における流れ方向の施工断面図FIG. 11 is a construction cross-sectional view in the flow direction at the upper and lower slopes in the normalized slope range according to the embodiment of the present invention; 本発明の実施例による規格化勾配範囲での勾配形状調整範囲と中央勾配での流れ方向施工断面図FIG. 2 is a cross-sectional view of construction in the flow direction at the gradient shape adjustment range and the central gradient in the standardized gradient range according to the embodiment of the present invention. 本発明の実施例による中央勾配、上限勾配、下限勾配での勾配毎による隅棟ラインと屋根端部規格化形状屋根材との隙間幅の変化を示した図Fig. 3 shows the change in the width of the gap between the corner ridge line and the standardized shape roof material at the edge of the roof according to each gradient at the central gradient, the upper gradient, and the lower gradient according to the embodiment of the present invention. 本発明の実施例による屋根端部規格化形状屋根材及び調整屋根材の形状図FIG. 2 is a diagram showing the shape of a standardized shape roof material and an adjusted roof material according to an embodiment of the present invention; 本発明の実施例による寄棟棟違い屋根における割付条件別の屋根材割付図Roof material allocation diagram for different allocation conditions in a hipped roof according to an embodiment of the present invention 本発明の実施例による下屋の屋根材割付図FIG. 2 is a layout diagram of roof materials for a shed according to an embodiment of the present invention. 本発明の実施例による寄棟屋根面における割付条件別の屋根材割付図FIG. 2 is a roof material allocation diagram according to allocation conditions for a hipped roof surface according to an embodiment of the present invention.

本発明の第1の実施の形態における長尺横葺きモジュール屋根材の屋根材配置方法は、勾配を有する屋根を備える建物の屋根であって、前記屋根は隅棟又は谷を有し、屋根材を桁方向に複数枚並べ、前記屋根材を段方向に複数段並べる屋根において、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の整数分の一であり、前記屋根材の働き幅寸法が前記働き長さの水平投影寸法の二倍以上の整数倍であり、前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法の整数倍をずらして配置し、前記屋根面における桁方向の寸法調整に用いる調整屋根材の働き幅寸法は、前記屋根材の働き長さの水平投影寸法の整数倍であり、前記調整屋根材を前記屋根材の代わりに配置することで働き幅寸法の差分により前記桁方向の寸法調整を行い、流れ方向と桁方向の両方の寸法条件で位置決めする三又部、寄棟棟違い部、陸棟曲がり部などの全ての屋根端部及び流れ方向又は桁方向のどちらか一方の寸法条件で位置決めする陸棟部、壁際部、隅棟部、谷部などの全ての屋根端部に、所定の規格化勾配範囲の中央勾配で規格化した屋根端部規格化形状屋根材を配置し、前記屋根端部規格化形状屋根材と隅棟とは調整隙間幅だけ離隔し、前記調整隙間幅は勾配形状調整範囲幅より幅広であるものである。本実施の形態によれば、前記建物の設計単位寸法と連動した屋根材の配置が可能となり、従来技術では現場合わせの現場加工で屋根材加工を行っていた、三又部、寄棟棟違い部、陸棟曲がり部などの全ての屋根端部において規格化した屋根端部規格化形状屋根材を配置することが出来る。
また、陸棟部、隅棟部、ケラバ部、壁際部、谷部などの全ての屋根端部においても規格化した屋根端部規格化形状屋根材を配置することが出来る。
つまり、全ての屋根端部において規格化した屋根端部規格化形状屋根材を配置することが出来る。
その結果、全ての屋根端部において現場で加工形状を合わせ、現場で屋根材を加工する作業が不要になり、屋根材の加工作業に現場合わせが無くなることで全ての屋根端部において施工のマニュアル化が出来るようになり、適切な雨仕舞い性能を担保した施工が技能の高い職人でなくても施工が出来るようになり、建築現場における生産性を格段に向上させることが出来る。
屋根端部規格化形状屋根材は、所定の規格化勾配範囲の中央勾配で規格化するため、勾配毎に屋根端部規格化形状屋根材を設定する必要が無くなる。規格化勾配範囲の中で屋根端部箇所一か所に付き一つの形状で屋根端部規格化形状屋根材を設定するため、複数種類の屋根端部規格化形状屋根材を簡易に品番管理することが出来るようになる。
品番管理により生産管理や在庫管理が可能となり、屋根端部ごとに屋根端部規格化形状屋根材を在庫化することが出来る。部品化した屋根端部規格化形状屋根材を現場に納入し、屋根上に配置するだけで施工が行えるため、屋根工事の工期を短縮することが出来る。
A method for arranging long horizontal modular roofing materials according to the first embodiment of the present invention is a roof of a building having a sloped roof, the roof having a corner ridge or a valley, and roofing materials are arranged in a girder direction and the roof materials are arranged in a tier direction, wherein the horizontal projection dimension of the working length of the roof material is an integral fraction of the design unit dimension of the building, and the roof material is an integral multiple of two or more times the horizontal projection dimension of the working length, and when the roofing materials are arranged step by step from the eaves toward the land ridge in the flow direction, the roofing materials are arranged It is arranged with an integral multiple of the horizontal projection dimension of the working length of the roof material from one end to the other end with respect to the girder direction of the roof surface, and the dimensions of the girder direction on the roof surface are adjusted. The working width dimension of the adjustable roof material used in is an integral multiple of the horizontal projection dimension of the working length of the roof material, and by arranging the adjustable roof material instead of the roof material, the difference in the working width dimension All roof ends, such as three-forked parts, hipped ridges, and ridge bends, and either the stream direction or the girder direction Roof materials with a standardized shape standardized at the central slope of the specified standardized slope range are applied to all roof edges such as land ridges, wall edges, corner ridges, valleys, etc. that are positioned according to one or the other dimension conditions. The roof edge standardized shape roof material and the corner ridge are separated by an adjustment gap width, and the adjustment gap width is wider than the slope shape adjustment range width. According to this embodiment, it is possible to arrange the roofing materials in conjunction with the design unit dimensions of the building. It is possible to arrange standardized roof edge standardized shape roof materials at all roof edges such as ridges, ridge bends, and so on.
In addition, the standardized shape of the roof edge can be arranged at all the roof edge portions such as the land ridge portion, corner ridge portion, verge portion, wall edge portion, valley portion, and the like.
In other words, it is possible to arrange standardized roof-end-shaped roof materials on all roof ends.
As a result, all roof edges are matched on-site, eliminating the need to process roof materials on-site. As a result, it becomes possible to carry out construction work that guarantees appropriate rain protection performance even if it is not a highly skilled craftsman, and the productivity at the construction site can be greatly improved.
Since the standardized shape roof material for the roof end is standardized at the central slope of the predetermined standardized slope range, it is not necessary to set the standardized shape roof material for the roof end for each slope. In order to set the standardized shape roof material for the roof end with one shape for one roof end part within the standardized slope range, it is possible to easily manage the product number of multiple types of standardized shape roof materials for the roof end. It will be possible.
Product number management enables production management and inventory management, and it is possible to inventory standardized shape roof materials for each roof edge. Roofing work can be done simply by delivering roofing materials with a standardized shape to the roof ends and placing them on the roof.

以下本発明の実施例による長尺横葺きモジュール屋根材の屋根材配置方法について説明する。
図1は実施例による寄棟棟違い屋根での屋根材割付図である。
図1(a)は寄棟棟違い屋根における実際の屋根2を想定した屋根材1の割付図である。
図1(b)は、図1(a)に四角い線で囲み図示した寄棟棟違い部の拡大範囲を拡大した割付図であり、各屋根端部9に配置されるそれぞれの屋根端部規格化形状屋根材10の平面図を割付図に記載した図である。
図1は勾配21を有する屋根2を備える建物の屋根2であって、前記屋根2は隅棟3と谷4を有する寄棟棟違い屋根である。
屋根材1を桁方向7に複数枚並べ、前記屋根材1を段方向に複数段並べる屋根2であり、前記屋根材1の働き長さの水平投影寸法Lhは227.5mmであり、前記建物の設計単位寸法Pは尺モジュールの910mmである。
前記屋根材1の働き長さの水平投影寸法Lhは、前記建物の設計単位寸法Pの四分の一の関係である。
前記屋根材1の働き幅寸法Wは1820mmであり、前記働き長さの水平投影寸法Lhが227.5mmなので八倍の関係である。
前記屋根材1を軒先5から陸棟6にむかって流れ方向8で一段毎に配置する際に、前記屋根材1は配置する屋根面の桁方向7に対して一方の端部からもう一方の端部方向に前記屋根材1の働き長さの水平投影寸法Lhの1倍をずらして配置する。
前記屋根面における桁方向7の寸法調整に用いる調整屋根材11の働き幅寸法は、前記屋根材1の働き長さの水平投影寸法Lhの整数倍であり、図1ではLhの二倍と四倍にあたる455mmと910mmの働き幅寸法を有した二種類の調整屋根材11を用いる。
前記二種類の調整屋根材11を前記屋根材1の代わりに配置することで、屋根材1と調整屋根材11の働き幅寸法の差分により前記桁方向7の寸法調整を行う。
寄棟屋根の両側が隅棟3の三角屋根面又は台形屋根面では、桁方向7の屋根面長さは、1段ごとに片側で屋根材1の働き長さの水平投影寸法Lh、両側で屋根材1の働き長さの水平投影寸法Lhの二倍分だけ桁方向7の長さが短くなるため、図1では、両側を隅棟3とする三角屋根面、台形屋根面では、1段ごとに桁方向7の長さ寸法が455mmずつ短くなる。
そのため、桁方向7の長さは1段ごとに455mmから1820mmまで455mmの倍数で寸法が変化する。
図1(a)の実施例では、桁方向7の調整寸法が455mmの場合は働き幅寸法が455mmの調整屋根材11を配置し、910mmの場合は働き幅寸法が910mmの調整屋根材11を配置し、1365mmの場合は働き幅寸法が455mmの調整屋根材11と910mmの調整屋根材11を配置し、1820mmの場合は働き幅寸法Wが1820mmの屋根材1を配置することで桁方向7の寸法調整を行う。
なお、455mmの調整屋根材11を複数枚配置することで寸法調整をすることも出来る。
この場合、調整屋根材11の施工枚数は増えるが、調整屋根材11の働き幅寸法の種類を減らすが出来る。
Hereinafter, a method of arranging long horizontal modular roofing materials according to an embodiment of the present invention will be described.
FIG. 1 is a roof material allocation diagram for a hipped roof according to an embodiment.
FIG. 1(a) is a layout diagram of roof materials 1 assuming an actual roof 2 in a hipped roof.
FIG. 1(b) is a layout drawing enlarging the enlarged range of the hipped ridge difference portion shown surrounded by a square line in FIG. It is the figure which described the top view of the square-shaped roof material 10 in the layout drawing.
FIG. 1 shows a roof 2 of a building comprising a roof 2 with a slope 21, said roof 2 being a hipped roof with a corner ridge 3 and a valley 4. FIG.
It is a roof 2 in which a plurality of roof materials 1 are arranged in a girder direction 7 and a plurality of roof materials 1 are arranged in a step direction, the horizontal projection dimension Lh of the working length of the roof material 1 is 227.5 mm, The design unit dimension P of the shaku module is 910 mm.
The horizontal projected dimension Lh of the working length of the roof material 1 is a quarter of the design unit dimension P of the building.
The working width dimension W of the roofing material 1 is 1820 mm, and the horizontal projection dimension Lh of the working length is 227.5 mm, so the relationship is eightfold.
When the roof material 1 is arranged step by step in the flow direction 8 from the eaves 5 toward the land ridge 6, the roof material 1 is arranged from one end to the other with respect to the girder direction 7 of the roof surface to be arranged. The working length of the roof material 1 is shifted in the direction of the end portion by one times the horizontal projection dimension Lh.
The working width dimension of the adjustment roof material 11 used for the dimension adjustment in the girder direction 7 on the roof surface is an integral multiple of the horizontal projection dimension Lh of the working length of the roof material 1. In FIG. Two types of adjustable roofing materials 11 having double working widths of 455 mm and 910 mm are used.
By arranging the two types of adjustment roof materials 11 in place of the roof material 1, the dimension in the girder direction 7 is adjusted according to the difference in working width between the roof material 1 and the adjustment roof material 11.
In the case of a triangular or trapezoidal roof surface with corner ridges 3 on both sides of the hipped roof, the length of the roof surface in the girder direction 7 is the horizontal projection dimension Lh of the working length of the roof material 1 on one side of each tier, and on both sides Since the length in the girder direction 7 is shortened by twice the horizontal projection dimension Lh of the working length of the roof material 1, in FIG. Each time, the length dimension in the girder direction 7 is shortened by 455 mm.
Therefore, the length in the girder direction 7 varies from 455 mm to 1820 mm for each stage in multiples of 455 mm.
In the embodiment of FIG. 1(a), when the adjustment dimension in the girder direction 7 is 455 mm, the adjustment roof material 11 with a working width of 455 mm is arranged, and when the adjustment dimension is 910 mm, the adjustment roof material 11 with a working width of 910 mm is arranged. In the case of 1365 mm, the adjustment roof material 11 with a working width dimension of 455 mm and the adjustment roof material 11 with a working width dimension of 910 mm are arranged, and in the case of 1820 mm, the roof material 1 with a working width dimension W of 1820 mm is arranged. Adjust the dimensions of
In addition, it is also possible to adjust the size by arranging a plurality of 455 mm adjusting roof materials 11 .
In this case, although the number of construction roof materials 11 increases, the types of working width dimensions of the adjustment roof materials 11 can be reduced.

図1では、流れ方向8と桁方向7の両方の寸法条件で位置決めする三又部9d、寄棟棟違い部9g、陸棟曲がり部9fなどの屋根端部9には、それぞれの屋根端部規格化形状屋根材10が配置される。
三又部9dには三又規格化形状屋根材10eと隅棟-陸棟端部規格化形状屋根材10dが配置され、寄棟棟違い部9gには寄棟棟違い規格化形状屋根材10hと隅棟規格化形状屋根材10bと谷規格化形状屋根材10fと谷-陸棟端部規格化形状屋根材10gが配置される。
流れ方向8の寸法条件で位置決めする陸棟部9a、壁際部9hなどの屋根端部9や桁方向7の寸法条件で位置決めする隅棟部9b、谷部9eなどの屋根端部9にも屋根端部規格化形状屋根材10は配置される。
前記屋根端部規格化形状屋根材10のうち、三又規格化形状屋根材10e、隅棟-陸棟端部規格化形状屋根材10d、寄棟棟違い規格化形状屋根材10h、隅棟規格化形状屋根材10b、谷規格化形状屋根材10f、谷-陸棟端部規格化形状屋根材10g、隅棟-平行壁際規格化形状屋根材10kなどは、施工する屋根2の勾配21が変わった場合、勾配21毎に勾配伸び率15が異なるため、前記屋根端部規格化形状屋根材10の隅棟3や谷4と隣接する斜めラインの形状は勾配21毎に異なる。
しかし、勾配21毎に屋根端部規格化形状屋根材10を設定するのは屋根端部規格化形状屋根材10の生産性や品番管理、在庫管理の面で望ましくないため、本発明では前記屋根端部規格化形状屋根材10の形状を集約する。
本発明の配置方法を適用する勾配範囲として規格化勾配範囲を設定し、規格化勾配範囲における上限勾配と下限勾配での形状変化量を把握し、上限勾配と下限勾配との形状変化量が中央値となる規格化勾配範囲の中央勾配を設定し、中央勾配での屋根端部規格化形状屋根材10の形状にて規格化することで前記屋根端部規格化形状屋根材10を集約する。
規格化勾配範囲の中央勾配で規格化した形状の前記屋根端部規格化形状屋根材10を各屋根端部9に配置する。
隅棟際の屋根端部9に配置する屋根端部規格化形状屋根材10と隅棟3とは、調整隙間幅CWだけ離隔する。
規格化勾配範囲の中央勾配で規格化した屋根端部規格化形状屋根材10の形状を基準として、規格化勾配範囲の上限勾配と下限勾配での形状変化量より勾配形状調整範囲幅αを設定する。
規格化勾配範囲の上限勾配と下限勾配の場合に、隅棟規格化形状屋根材10bと隅棟3が干渉しないように隅棟規格化形状屋根材10bの隅棟3からの離隔寸法である調整隙間幅CWは勾配形状調整範囲幅αよりも幅広とする。
In FIG. 1, the roof end portions 9 such as the three-forked portion 9d, the hipped ridge portion 9g, and the land ridge curved portion 9f, which are positioned under the dimensional conditions in both the stream direction 8 and the girder direction 7, are provided with respective roof end portions. A standardized shape roofing material 10 is placed.
A three-pronged standardized roof material 10e and a corner ridge-land ridge end standardized shape roofing material 10d are arranged in the three-forked portion 9d, and a standardized-shaped roof material 10h with a different hipped ridge and a corner are arranged in the different hipped portion 9g. A ridge standardized shape roofing material 10b, a valley standardized shape roofing material 10f and a valley-land ridge end standardized shape roofing material 10g are arranged.
Roof ends 9 such as land ridges 9a and wall edge portions 9h that are positioned according to the dimensional conditions in the flow direction 8, and roof ends 9 such as corner ridges 9b and troughs 9e that are positioned according to the dimensional conditions in the girder direction 7. A standardized shape roofing material 10 is placed.
Of the roof edge standardized shape roof materials 10, the three-pronged roof material 10e, the corner ridge-land ridge edge standardized shape roof material 10d, the hipped roof standardized shape roof material 10h, and the corner ridge standardized shape Roofing material 10b, valley standardized shape roofing material 10f, valley-land ridge edge standardized shape roofing material 10g, corner ridge-parallel wall side standardized shape roofing material 10k, etc., when the slope 21 of the roof 2 to be constructed is changed, the slope Since the slope elongation rate 15 differs for each slope 21 , the shape of the diagonal line adjacent to the corner ridge 3 and the valley 4 of the roof material 10 with the standardized roof edge shape differs for each slope 21 .
However, setting the standardized roof material 10 for each slope 21 is not desirable in terms of productivity, product number management, and inventory management of the standardized roof material 10. Therefore, in the present invention, the roof The shape of the edge standardized shape roofing material 10 is summarized.
A normalized gradient range is set as the gradient range to which the arrangement method of the present invention is applied, and the amount of shape change at the upper and lower slopes in the normalized gradient range is grasped. By setting the central slope of the standardized slope range to be a value and standardizing with the shape of the standardized roof materials 10 at the central slope, the standardized roof materials 10 are collected.
The roof end standardized shape roof material 10 having a shape standardized by the central slope of the standardized slope range is arranged at each roof end 9 .
The roof edge standardized shape roof material 10 arranged at the roof edge 9 near the corner ridge and the corner ridge 3 are separated by the adjustment gap width CW.
Roof end standardized shape standardized by the central slope of the standardized slope range Based on the shape of the roof material 10, the slope shape adjustment range width α is set from the shape change amount at the upper slope and the lower slope of the standardized slope range. do.
In the case of the upper limit gradient and the lower limit gradient of the standardized gradient range, the adjustment that is the separation dimension of the corner ridge standardized shape roof material 10b from the corner ridge 3 so that the corner ridge standardized shape roof material 10b and the corner ridge 3 do not interfere The clearance width CW is set wider than the gradient shape adjustment range width α.

図1(a)の下側に記載の三角屋根面では桁方向7の長さは、6Pの5460mmに軒の出寸法12の910mmを両側に足した寸法の7280mmとなる。
隅棟部9bには隅棟規格化形状屋根材10bを配置し、前記隅棟規格化形状屋根材10bの働き幅寸法は、前記屋根材1の働き長さの水平投影寸法Lhの二倍から調整隙間幅CWを引いた寸法とする。
図1(b)の寄棟棟違い部9gの拡大図に示している通り、本実施例では調整隙間幅CWを10mmとして割付を行っている。
そのため、隅棟規格化形状屋根材10bの働き幅寸法は、227.5mm×2-10mmにより算出出来、445mmとなる。
1段目は、隅棟規格化形状屋根材10bを両側の隅棟部9bに配置し、屋根材1を3枚配置すると残りは910mmとなるので、働き幅寸法910mmの調整屋根材11を配置する。
2段目は、227.5mmずらして隅棟規格化形状屋根材10bを両側の隅棟部9bに配置し、屋根材1を3枚配置すると残りは455mmとなるので、働き幅寸法455mmの調整屋根材11を配置する。
3段目は、227.5mmずらして隅棟規格化形状屋根材10bを両側の隅棟部9bに配置し、屋根材1を3枚配置すると残りは0mmとなるので、調整屋根材11を入れずに配置完了となる。
4段目は、227.5mmずらして隅棟規格化形状屋根材10bを両側の隅棟部9bに配置し、屋根材1を2枚配置すると残りは1365mmとなるので、働き幅寸法455mmの調整屋根材11と働き幅寸法910mmの調整屋根材11とを配置する。
5段目以降はその繰り返しで屋根材1を配置する。
In the triangular roof surface shown on the lower side of FIG. 1(a), the length in the girder direction 7 is 7280 mm, which is the sum of 5460 mm for 6P and 910 mm for the overhang dimension 12 on both sides.
A corner ridge standardized shape roof material 10b is arranged in the corner ridge portion 9b, and the working width dimension of the corner ridge standardized shape roof material 10b is from twice the horizontally projected dimension Lh of the working length of the roof material 1. The dimension is obtained by subtracting the adjustment gap width CW.
As shown in the enlarged view of the hipped ridge portion 9g in FIG. 1(b), in this embodiment, the adjustment gap width CW is set to 10 mm.
Therefore, the working width dimension of the corner ridge standardized shape roof material 10b can be calculated from 227.5 mm×2-10 mm, which is 445 mm.
In the first stage, the corner ridge standardized roof materials 10b are arranged on the corner ridges 9b on both sides, and when three roof materials 1 are arranged, the remainder is 910 mm, so the adjustment roof material 11 with a working width of 910 mm is arranged. do.
In the second stage, the corner ridge standardized shape roof materials 10b are placed on the corner ridges 9b on both sides with a 227.5 mm shift, and when three roof materials 1 are placed, the remainder is 455 mm, so the working width dimension is adjusted to 455 mm. A roofing material 11 is arranged.
In the third stage, the corner ridge standardized shape roof materials 10b are placed on the corner ridges 9b on both sides with a 227.5 mm shift. Placement is completed without
In the fourth stage, the corner ridge standardized shape roof materials 10b are placed on the corner ridges 9b on both sides with a 227.5 mm shift, and when two roof materials 1 are placed, the remainder is 1365 mm, so the working width is adjusted to 455 mm. A roofing material 11 and an adjustable roofing material 11 having a working width of 910 mm are arranged.
After the fifth stage, the roofing material 1 is arranged by repeating this process.

図1(b)は、図1(a)の寄棟棟違い部9gの拡大図である。
寄棟棟違い部9gは、陸棟6と谷4と隅棟3が交わる屋根端部9であり、桁方向7と流れ方向8の両方の寸法条件が揃うことで屋根端部規格化形状屋根材10の形状を規格化することが出来る。
桁方向7と流れ方向8の寸法条件は、屋根材1の働き長さの水平投影寸法Lhが前記建物の設計単位寸法Pの整数分の一であり、前記屋根材1の働き幅寸法Wが前記働き長さの水平投影寸法Lhの二倍以上の整数倍であることで寸法条件を満たすことが出来る。
実施例では、屋根材1の働き長さの水平投影寸法Lhは227.5mmであり、前記建物の設計単位寸法Pは尺モジュールの910mmであり、前記屋根材1の働き長さの水平投影寸法Lhは、前記建物の設計単位寸法Pの四分の一の関係である。
前記屋根材1の働き幅寸法Wは1820mmであり、前記働き長さの水平投影寸法Lhが227.5mmなので八倍の関係である。
隅棟3と隅棟規格化形状屋根材10bとは調整隙間幅CWだけ離隔している。
実施例では調整隙間幅CWは10mmとしている。
図1(b)の水平投影図で調整隙間幅CWが平行になっているのは、規格化勾配範囲の中央勾配で屋根端部規格化形状屋根材10を規格化し、中央勾配の屋根伏せ図として割り付けたことを表す。
FIG. 1(b) is an enlarged view of the hipped portion 9g of FIG. 1(a).
The hipped ridge portion 9g is the roof edge portion 9 where the land ridge 6, the valley 4, and the corner ridge 3 intersect. The shape of the material 10 can be standardized.
The dimension conditions in the girder direction 7 and the stream direction 8 are that the horizontal projection dimension Lh of the working length of the roofing material 1 is an integer fraction of the design unit dimension P of the building, and the working width dimension W of the roofing material 1 is The dimension condition can be satisfied by being an integral multiple of two or more times the horizontal projected dimension Lh of the working length.
In the embodiment, the horizontal projected dimension Lh of the working length of the roofing material 1 is 227.5 mm, the design unit dimension P of the building is 910 mm of shaku module, and the horizontal projected dimension of the working length of the roofing material 1 is Lh is a quarter of the design unit dimension P of the building.
The working width dimension W of the roofing material 1 is 1820 mm, and the horizontal projection dimension Lh of the working length is 227.5 mm, so the relationship is eightfold.
The corner ridge 3 and the corner ridge standardized roof material 10b are separated by an adjustment gap width CW.
In the embodiment, the adjustment gap width CW is set to 10 mm.
The reason why the adjustment gap width CW is parallel in the horizontal projection view of FIG. indicates that it has been assigned as

図2は実施例による寄棟切妻混合屋根での屋根材割付図である。
図2(a)は寄棟切妻混合屋根における実際の屋根2を想定した屋根材1の割付図である。
図2(b)は、図2(a)に四角い線で囲み図示した陸棟曲がり部9fの拡大範囲を拡大した割付図であり、各屋根端部9に配置されるそれぞれの屋根端部規格化形状屋根材10の平面図を割付図に記載した図である。
屋根材1の寸法や建物の設計単位寸法P、調整屋根材11の寸法や屋根材1、屋根端部規格化形状屋根材10、調整屋根材11などの配置方法は図1と同様である。
陸棟曲がり部9fは二本の陸棟6が直交し、直交箇所に45度で隅棟3と谷4が交わる屋根形状である。
陸棟曲がり部9fには隅棟規格化形状屋根材10bと隅棟-陸棟端部規格化形状屋根材10dと谷規格化形状屋根材10fと谷-陸棟端部規格化形状屋根材10gが配置される。
隅棟3と隅棟規格化形状屋根材10bとは調整隙間幅CWだけ離隔している。
実施例では調整隙間幅CWは10mmとしている。
図2(b)の水平投影図で調整隙間幅CWが平行になっているのは、規格化勾配範囲の中央勾配で屋根端部規格化形状屋根材10を規格化し、中央勾配の屋根伏せ図として割り付けたことを表す。
FIG. 2 is a roof material allocation diagram for a mixed hipped gable roof according to the embodiment.
FIG. 2(a) is a layout diagram of roof materials 1 assuming an actual roof 2 in a hipped gable mixed roof.
FIG. 2(b) is a layout diagram enlarging the expansion range of the land ridge bending portion 9f shown enclosed by a square line in FIG. It is the figure which described the top view of the square-shaped roof material 10 in the layout drawing.
The dimensions of the roofing material 1, the design unit dimension P of the building, the dimensions of the adjustable roofing material 11, the arrangement method of the roofing material 1, the roof end standardized shape roofing material 10, the adjusting roofing material 11, etc. are the same as in FIG.
A land ridge bending portion 9f has a roof shape in which two land ridges 6 are orthogonal to each other, and a corner ridge 3 and a valley 4 intersect at an orthogonal point at 45 degrees.
A corner ridge standardized shape roofing material 10b, a corner ridge-land ridge end standardized shape roofing material 10d, a valley-standardized shape roofing material 10f, and a valley-land ridge end standardized shape roofing material 10g are arranged in the land bending portion 9f. .
The corner ridge 3 and the corner ridge standardized roof material 10b are separated by an adjustment gap width CW.
In the embodiment, the adjustment gap width CW is set to 10 mm.
The reason why the adjustment gap width CW is parallel in the horizontal projection view of FIG. indicates that it has been assigned as

図3は実施例による屋根材の製品図である。
図3の製品における製品設計モジュールは尺モジュールであり、建物の設計単位寸法Pも尺モジュールであり、1P=910mmである。
図3(a)は屋根材1の製品図面で投影法による6面図である。
図3(b)は図3(a)を拡大して幅方向を省略線で省略した3面図である。
図3(c)は図3(b)を更に拡大して上下段の施工状態をあらわした施工断面図である。
図3(a)の屋根材1は横葺きの金属屋根材であり、本体と連結材20がアセンブリされた状態の図面である。
屋根材1の働き長さの水平投影寸法Lhは建物の設計単位寸法Pである910mmの四分の一であり、227.5mmである。
図3の製品は、勾配21を3.5寸勾配で設定した寸法であり、働き長さ寸法Lは働き長さの水平投影寸法Lhに3.5寸勾配の勾配伸び率を掛けた寸法である。
3.5寸勾配の勾配伸び率である1.05948を227.5mmに掛けると働き長さ寸法Lは241mmとなる。
屋根材1の働き幅寸法Wは1820mmであり、屋根材1の働き長さの水平投影寸法Lhである227.5mmの8倍の関係である。
屋根材1は本体と連結材20で構成され、本体の頭側に頭側見付け部16と頭側係合部18を設け、本体の尻側に連結材20と尻側水返し19を設けた構成になっている。
屋根材1の全長さLAは285mmであり、流れ重なり13は44mmである。
屋根材1の全幅WAは1900mmであり、横重なり14は80mmである。
屋根材1の尻側に本体の一方の側端から他方の側端まで連続して一定高さを有した尻側水返し19を設ける。
実施例では、本体の尻側端部に垂直に立ち上げた尻側水返し19を側端から別の側端まで連続して一定高さで設ける。
製品の裏面には、裏面断熱バックアップ材を設ける。
FIG. 3 is a product drawing of the roofing material according to the embodiment.
The product design module in the product of FIG. 3 is a shaku module, and the design unit dimension P of the building is also a shaku module, and 1P=910 mm.
FIG. 3(a) is a product drawing of the roofing material 1, which is a six-sided view by the projection method.
FIG. 3(b) is a trihedral view in which FIG. 3(a) is enlarged and the width direction is omitted with omitted lines.
FIG. 3(c) is a cross-sectional view of FIG. 3(b) further enlarged to show the state of construction of the upper and lower stages.
The roofing material 1 of FIG. 3(a) is a horizontal roofing metal roofing material, and is a drawing showing a state in which a main body and connecting members 20 are assembled.
The horizontal projected dimension Lh of the working length of the roofing material 1 is 1/4 of 910 mm, which is the design unit dimension P of the building, and is 227.5 mm.
The product in FIG. 3 has a dimension in which the slope 21 is set at a 3.5-inch slope, and the working length dimension L is a dimension obtained by multiplying the horizontal projection dimension Lh of the working length by the slope elongation rate of 3.5-inch slope. be.
Multiplying 227.5 mm by 1.05948, which is the gradient elongation rate of the 3.5-inch gradient, gives the working length dimension L of 241 mm.
The working width dimension W of the roofing material 1 is 1820 mm, which is eight times the horizontal projected dimension Lh of the working length of the roofing material 1 of 227.5 mm.
The roofing material 1 is composed of a main body and a connecting member 20, a head side fitting part 16 and a head side engaging part 18 are provided on the head side of the main body, and a connecting member 20 and a rear side water return 19 are provided on the rear side of the main body. It is configured.
The total length LA of the roofing material 1 is 285 mm and the flow overlap 13 is 44 mm.
The total width WA of the roofing material 1 is 1900 mm, and the lateral overlap 14 is 80 mm.
A tail side water return 19 having a constant height is provided on the tail side of the roof material 1 continuously from one side end to the other side end of the main body.
In the embodiment, a tail-side water baffle 19 vertically raised from the tail-side end of the main body is provided continuously from one side end to another side end at a constant height.
The back side of the product is provided with a backing thermal insulation backing material.

図3(b)は図3(a)を拡大して幅方向を省略線で省略した3面図であり、製品の正面図、平面図、右側面図である。
勾配21が3.5寸勾配の際の戻り勾配は、頭見付け部16の高さ寸法が10mmであり、働き長さ寸法Lが241mmなので、10mm÷241mmで算出し、0.041となる。
よって実施例における3.5寸勾配の際の屋根材1では、戻り勾配が0.41寸勾配となる。
FIG. 3(b) is an enlarged view of FIG. 3(a) and is a three-sided view in which the width direction is omitted with omission lines, and is a front view, a plan view, and a right side view of the product.
The return slope when the slope 21 is 3.5 mm is 0.041, calculated by dividing 10 mm by 241 mm, because the height of the head fitting portion 16 is 10 mm and the working length L is 241 mm.
Therefore, in the case of the roof material 1 having a slope of 3.5 in the example, the slope of the return is 0.41.

図3(c)は図3(b)を更に拡大して上下段の施工状態をあらわした施工断面図であり、段葺きの際に下段の連結材20と上段の頭側係合部18を係合する施工状況をあらわしている。
本体の尻側に設けた前記連結材20は、尻側に設けた尻側水返し19と連結材20の後端部とを合わせた位置に設けた構成となっている。
連結材20は、Z形状の断面形状であり、施工時に上段の頭側係合部18を押さえる。
連結材20は、屋根材1の働き長さ寸法Lを可変させる機能を有し、段葺きの際に上段の頭側係合部18と下段の連結材20を当て止めさせることで、前記連結材20の長さにより前記屋根材1の働き長さ寸法Lを決定する。
前記連結材20は、勾配21ごとに長さを設定する。
勾配21ごとの長さを有した連結材20を勾配21ごとに選択することで前記屋根材1の働き長さ寸法Lを調整することが出来る。
本体の尻側で連結材20と留め付け材22で共打ちすることで野地板23に固定する。
前記連結材20を固定する工程で本体を同時に固定するため施工手間を省くことが出来る。
実施例の本体は、表面に塗装を施した塗装溶融55%アルミニウム-亜鉛合金めっき鋼板の基材厚み寸法で0.35mm~0.6mm程度の薄板鋼板が好ましい。
実施例の連結材20の材質はアルミニウムで厚さ1.5mmの押出成形品としているが、本体と同じ塗装溶融55%アルミニウム-亜鉛合金めっき鋼板の薄板を使用しても良い。
薄板鋼板を用いる場合は、基材の厚みを厚くするとか、二重折りで製作するなどの耐風強度を上げるための工夫が必要となる。
FIG. 3(c) is a cross-sectional view of FIG. 3(b) further enlarged to show the state of construction of the upper and lower stages. Represents an engaging construction situation.
The connecting member 20 provided on the buttocks side of the main body is provided at a position where the rear end portion of the connecting member 20 and the buttocks side water return 19 provided on the buttocks side are aligned.
The connecting member 20 has a Z-shaped cross section, and presses the upper head-side engaging portion 18 during construction.
The connecting member 20 has a function of varying the working length dimension L of the roofing material 1, and when roofing in steps, the upper head-side engaging portion 18 and the lower connecting member 20 are brought into contact with each other to prevent the above-mentioned connection. The length of the material 20 determines the working length dimension L of the roof material 1 .
The length of the connecting member 20 is set for each slope 21 .
By selecting a connecting member 20 having a length corresponding to each slope 21, the working length dimension L of the roof material 1 can be adjusted.
The connecting member 20 and the fastening member 22 are hammered together on the rear side of the main body to fix it to the sheathing board 23. - 特許庁
Since the main body is fixed at the same time as the process of fixing the connecting member 20, it is possible to save labor for construction work.
The main body of the embodiment is preferably a thin steel plate having a substrate thickness of about 0.35 mm to 0.6 mm, which is a coated hot-dip 55% aluminum-zinc alloy coated steel plate.
The material of the connecting member 20 in the embodiment is an aluminum extruded product having a thickness of 1.5 mm, but a thin plate of hot-dip 55% aluminum-zinc alloy plated steel plate, which is the same as the main body, may be used.
When thin steel plates are used, it is necessary to take measures to increase the wind resistance, such as increasing the thickness of the base material or making the product by double folding.

図4は実施例による規格化勾配範囲での上限勾配及び下限勾配における流れ方向の施工断面図である。
図4の施工断面図は図3の屋根材1を用いた施工断面図である。
実施例では、規格化勾配範囲を2寸勾配から5.5寸勾配とする。
図4(a)は勾配21が規格化勾配範囲における下限勾配である2寸勾配の際の施工断面図である。
図4(b)は勾配21が規格化勾配範囲における上限勾配である5.5寸勾配の際の施工断面図である。
図4(a)の屋根材1の働き長さの水平投影寸法Lhは227.5mmであり、屋根材1の働き長さ寸法Lは227.5mmに2寸勾配の勾配伸び率1.0198を掛けて算出する。
働き長さ寸法Lは、232mmとなる。
屋根材1の頭見付け部16の高さは10mmであり、働き長さ寸法Lが232mmから、2寸勾配の屋根材1の戻り勾配は10mm÷232mm=0.043となる。
戻り勾配は0.43寸勾配であり、戻り勾配角度は三角関数を用いて2.462度と算出できる。
2寸勾配の角度は11.31度なので、図4(a)の屋根材表面角度θは戻り勾配の角度を引き8.84度となる。
図4(b)の屋根材1の働き長さの水平投影寸法Lhは227.5mmであり、屋根材1の働き長さ寸法Lは227.5mmに5.5寸勾配の勾配伸び率1.14127を掛けて算出する。
働き長さ寸法Lは、260mmとなる。
屋根材1の頭見付け部16の高さは10mmであり、働き長さ寸法Lが260mmから、5.5寸勾配の屋根材1の戻り勾配は10mm÷260mm=0.038となる。
戻り勾配は0.38寸勾配であり、戻り勾配角度は三角関数を用いて2.176度と算出できる。
5.5寸勾配の角度は28.81度なので、図4(b)の屋根材表面角度θは戻り勾配の角度を引いて26.6度となる。
FIG. 4 is a construction cross-sectional view in the flow direction at the upper and lower slopes in the standardized slope range according to the embodiment.
4 is a construction cross-sectional diagram using the roof material 1 of FIG.
In the embodiment, the normalized gradient range is from 2-inch gradient to 5.5-inch gradient.
FIG. 4(a) is a construction cross-sectional view when the slope 21 is a two-dimensional slope, which is the lower limit slope in the standardized slope range.
FIG. 4(b) is a construction sectional view when the slope 21 is 5.5, which is the upper limit slope in the standardized slope range.
The horizontal projected dimension Lh of the working length of the roofing material 1 in FIG. Calculate by multiplying.
The working length dimension L is 232 mm.
The height of the head extension part 16 of the roofing material 1 is 10 mm, and from the working length dimension L of 232 mm, the return slope of the roofing material 1 with a two-inch slope is 10 mm/232 mm=0.043.
The return slope is 0.43 degrees, and the return slope angle can be calculated as 2.462 degrees using a trigonometric function.
Since the angle of the 2-inch slope is 11.31 degrees, the roof material surface angle θ in FIG.
The horizontal projected dimension Lh of the working length of the roofing material 1 in FIG. Calculate by multiplying by 14127.
The working length dimension L is 260 mm.
The height of the head extension part 16 of the roofing material 1 is 10 mm, and from the working length L of 260 mm, the return slope of the roofing material 1 with a slope of 5.5 mm is 10 mm/260 mm=0.038.
The return slope is 0.38 degrees, and the return slope angle can be calculated as 2.176 degrees using a trigonometric function.
Since the angle of the 5.5-inch slope is 28.81 degrees, the roof material surface angle θ in FIG. 4(b) is 26.6 degrees by subtracting the angle of the return slope.

図5は実施例による規格化勾配範囲での勾配形状調整範囲幅αと中央勾配での流れ方向施工断面図である。
図5の規格化勾配範囲及び屋根材1は図4と同じ条件の施工断面図であり、図4での施工断面図をもとに規格化勾配範囲における中央勾配を求める。
図5(a)は、規格化勾配範囲の上限勾配と下限勾配における屋根材1の屋根材表面角度θの勾配伸び率15をもとに勾配範囲での隅棟ライン桁方向変化寸法βを求め、隅棟ライン桁方向の寸法変化が1/2βとなる中央勾配伸び率を求める図である。
図5(b)は規格化勾配範囲の中央勾配で規格化した隅棟規格化形状屋根材10bの図に勾配形状調整範囲幅αを示した図である。
図5(c)は規格化勾配範囲の中央勾配での流れ方向施工断面図である。
FIG. 5 is a flow direction construction cross-sectional view at the gradient shape adjustment range width α and the central gradient in the standardized gradient range according to the embodiment.
The standardized slope range and the roofing material 1 in FIG. 5 are construction cross-sectional views under the same conditions as in FIG.
Fig. 5(a) shows the slope elongation rate 15 of the roof material surface angle θ of the roof material 1 at the upper and lower slopes of the standardized slope range. , is a diagram for determining the central gradient elongation rate at which the dimensional change in the corner ridge line girder direction is 1/2β.
FIG. 5(b) is a view showing the gradient shape adjustment range width α in the diagram of the corner ridge standardized roof material 10b standardized by the central gradient of the standardized gradient range.
FIG. 5(c) is a flow direction construction cross-sectional view at the center gradient of the standardized gradient range.

図5(a)は、図4で求めた規格化勾配範囲における下限勾配の2寸勾配での屋根材表面角度θから求めた勾配伸び率と上限勾配5.5寸勾配の屋根材表面角度θから求めた勾配伸び率を図にプロットする。
下限勾配の2寸勾配での屋根材表面角度θが8.84度から勾配伸び率15を求めると下限勾配での屋根材表面角度θにおける勾配伸び率15は1.012となる。
上限勾配の5.5寸勾配での屋根材表面角度θが26.6度から勾配伸び率15を求めると上限勾配での屋根材表面角度θにおける勾配伸び率15は1.118となる。
前記勾配伸び率15は図面から求めることも出来るが三角関数と三平方の定理を用いても算出することが出来る。
下限勾配での屋根材表面角度θにおける勾配伸び率15の1.012と上限勾配での屋根材表面角度θにおける勾配伸び率15の1.118を縦軸にプロットし、横軸には勾配伸び率15の基準となる寸法1をプロットする。
図5(a)の横軸は屋根面における桁方向7と同様であり、縦軸は屋根面における流れ方向8と同様である。
寄棟屋根面を水平投影した場合、隅棟3は45度の隅棟ラインSLとなるが、実際の屋根面は勾配21が掛かっているので、桁方向7に対して流れ方向8は勾配伸び率15分だけ長くなり隅棟ラインSLの角度は45度より大きくなる。
桁方向7である横軸の1の点と流れ方向8である縦軸にプロットした勾配伸び率15の点を結んだラインがそれぞれの屋根勾配21における隅棟際の隅棟ラインSLとなる。
上限勾配での隅棟ラインSLと下限勾配での隅棟ラインSLをそれぞれ引き、縦軸の下限勾配伸び率の点から横軸方向に桁方向ラインKLを引く。
下限勾配伸び率の隅棟ラインSLと桁方向ラインKLとが交わった点と上限勾配伸び率の隅棟ラインSLと桁方向ラインKLとが交わった点との横軸上の距離が、規格化勾配範囲での隅棟ライン桁方向変化寸法βとなる。
屋根2の勾配21が変わることで勾配伸び率15が変わり、勾配伸び率15が変わることで隅棟規格化形状屋根材10bの隅棟ラインSLが変わり、隅棟規格化形状屋根材10bと隅棟3との桁方向7で勾配21による寸法変化が生じる。
規格化勾配範囲における桁方向7の最大の寸法変化量は上限勾配と下限勾配での寸法変化であり、その寸法変化量が規格化勾配範囲での隅棟ライン桁方向変化寸法βとなる。
規格化勾配範囲における中央勾配を求めるには、規格化勾配範囲での隅棟ライン桁方向変化寸法βを用いる。
桁方向ラインKL上で規格化勾配範囲での隅棟ライン桁方向変化寸法βを2等分し、桁方向ラインKL上で2等分した点と横軸1の点を結ぶことで中央勾配の隅棟ラインSLが引ける。
中央勾配の隅棟ラインSLを縦軸上まで延長した縦軸との交点が中央勾配の勾配伸び率15となる。
実施例での中央勾配の屋根材表面角度θの勾配伸び率15は、1.062となり、勾配伸び率15から中央勾配を逆算すると4.06寸勾配となる。
中央勾配を算出するプロセスは次の通りである。
1)中央勾配の屋根材表面角度θの勾配伸び率15から三平方の定理を用いて屋根材表面角度θの勾配21を算出。
2)屋根材表面角度θの勾配21から三角関数を用いて屋根材表面角度θを算出。
3)屋根材1の戻り勾配から三角関数を用いて屋根材1の戻り勾配の角度を算出。
4)屋根材表面角度θと屋根材1の戻り勾配の角度を足すことで中央勾配の屋根面角度θを算出。
5)屋根面角度θから三角関数を用いて中央勾配を算出。
FIG. 5(a) shows the gradient elongation rate obtained from the roof material surface angle θ at the lower limit gradient of 2 dimensions in the standardized gradient range obtained in FIG. Plot the gradient elongation obtained from
When the slope elongation rate 15 is obtained from the roof material surface angle θ of 8.84 degrees at the lower limit slope of 2 dimensions, the slope elongation rate 15 at the roof material surface angle θ at the lower limit slope is 1.012.
When the slope elongation rate 15 is obtained from the roof material surface angle θ of 26.6 degrees at the upper limit slope of 5.5 degrees, the slope elongation rate 15 at the roof material surface angle θ at the upper limit slope is 1.118.
The gradient elongation rate 15 can be obtained from a drawing, but can also be calculated using a trigonometric function and the Pythagorean theorem.
1.012 of the slope elongation rate 15 at the roofing material surface angle θ at the lower slope and 1.118 of the slope elongation rate 15 at the roofing material surface angle θ at the upper slope are plotted on the vertical axis, and the slope elongation on the horizontal axis Plot dimension 1, which is the basis for a factor of 15.
The horizontal axis of FIG. 5(a) is the same as the girder direction 7 on the roof surface, and the vertical axis is the same as the flow direction 8 on the roof surface.
When the hipped roof surface is horizontally projected, the corner ridge 3 becomes a 45-degree corner ridge line SL, but since the actual roof surface has a slope 21, the stream direction 8 is sloped with respect to the girder direction 7. 15 minutes and the angle of the corner ridge line SL is greater than 45 degrees.
A line connecting the point 1 on the horizontal axis in the girder direction 7 and the point of the slope elongation rate 15 plotted on the vertical axis in the stream direction 8 is the corner ridge line SL near the corner ridge in each roof slope 21 .
A corner ridge line SL at the upper slope and a corner ridge line SL at the lower slope are drawn, respectively, and a girder direction line KL is drawn in the horizontal direction from the point of the lower slope elongation rate on the vertical axis.
The distance on the horizontal axis between the intersection point of the corner ridge line SL of the lower limit slope elongation rate and the girder direction line KL and the intersection point of the corner ridge line SL of the upper limit slope elongation rate and the girder direction line KL is standardized. The change dimension in the direction of the corner ridge line girder in the slope range is β.
As the slope 21 of the roof 2 changes, the slope elongation rate 15 changes. A dimensional change occurs due to the slope 21 in the girder direction 7 with the ridge 3 .
The maximum dimensional change in the girder direction 7 in the normalized gradient range is the dimensional change at the upper and lower gradients, and this dimensional change is the corner ridge line girder direction change dimension β in the normalized gradient range.
To find the central slope in the normalized slope range, the corner ridge line girder direction change dimension β in the standardized slope range is used.
On the girder direction line KL, the corner ridge line girder direction change dimension β in the standardized slope range is bisected, and the halved point on the girder direction line KL and the point on the horizontal axis 1 are connected to obtain the central slope. Corner ridge line SL can be drawn.
The point of intersection with the vertical axis obtained by extending the central slope corner ridge line SL to the vertical axis is the slope elongation rate 15 of the central slope.
The slope elongation rate 15 of the roof material surface angle θ of the central slope in the example is 1.062, and the central slope is calculated backward from the slope elongation rate 15 to give a slope of 4.06.
The process for calculating the median slope is as follows.
1) Calculate the gradient 21 of the roof material surface angle θ using the Pythagorean theorem from the gradient elongation rate 15 of the roof material surface angle θ of the central gradient.
2) Calculate the roofing material surface angle θ using a trigonometric function from the gradient 21 of the roofing material surface angle θ.
3) Calculate the angle of the return slope of the roof material 1 from the return slope of the roof material 1 using a trigonometric function.
4) Calculate the roof surface angle θ of the central slope by adding the roof material surface angle θ and the angle of the return slope of the roof material 1 .
5) Calculate the central slope from the roof surface angle θ using a trigonometric function.

図5(b)は規格化勾配範囲の中央勾配で規格化した隅棟規格化形状屋根材10bの図で、全長さLAの中心線と中央勾配の隅棟ラインSLの交点に上限勾配の隅棟ラインSLと下限勾配の隅棟ラインSLが交わるように点線で記載した図である。
隅棟規格化形状屋根材10bの全長さLAは285mm、隅棟規格化形状屋根材働き幅SWは445mm、横重なり14は80mmである。
中央勾配での隅棟ラインSLと上限勾配での隅棟ラインSLとは桁方向7で頭側が勾配形状調整範囲幅α分だけ長く、尻側では勾配形状調整範囲幅α分だけ短い。
また、中央勾配での隅棟ラインSLと下限勾配での隅棟ラインSLとは桁方向7で頭側が勾配形状調整範囲幅α分だけ短く、尻側では勾配形状調整範囲幅α分だけ長い。
中央勾配で規格化することで上限勾配から下限勾配まで隅棟ラインSLが変わっても桁方向7で勾配形状調整範囲幅αの範囲内の変化に納まる。
FIG. 5(b) is a diagram of a corner ridge standardized shape roof material 10b standardized by the central slope of the standardized slope range. It is a drawing in which the ridge line SL and the corner ridge line SL of the lower slope are drawn by dotted lines so that they intersect.
The total length LA of the standardized corner ridge roof material 10b is 285 mm, the working width SW of the standardized corner ridge roof material is 445 mm, and the lateral overlap 14 is 80 mm.
The corner ridge line SL at the central slope and the corner ridge line SL at the upper slope are longer by the slope shape adjustment range width α on the head side in the girder direction 7 and shorter by the slope shape adjustment range width α on the bottom side.
In addition, the corner ridge line SL at the central slope and the corner ridge line SL at the lower slope are shorter in the girder direction 7 by the slope shape adjustment range width α on the head side and longer by the slope shape adjustment range width α on the bottom side.
By standardizing with the central slope, even if the corner ridge line SL changes from the upper slope to the lower slope, the change in the girder direction 7 is within the slope shape adjustment range width α.

図5(c)は勾配21が規格化勾配範囲における中央勾配である4.06寸勾配の際の施工断面図である。
図5(c)の屋根材1の働き長さの水平投影寸法Lhは227.5mmであり、屋根材1の働き長さ寸法Lは245.5mmであり、働き長さの水平投影寸法Lhの227.5mmに4.06寸勾配の勾配伸び率1.0791を掛けて算出する。
屋根材1の頭見付け部16の高さは10mmであり、働き長さ寸法Lが245.5mmから、4.06寸勾配の屋根材1の戻り勾配は10mm÷245.5mm=0.041となる。
戻り勾配は0.41寸勾配であり、戻り勾配角度は三角関数を用いて2.462度と算出できる。
2寸勾配の角度は11.31度なので、図4(a)の屋根材表面角度θは戻り勾配の角度を引いて8.84度となる。
FIG. 5(c) is a construction cross-sectional view when the slope 21 is a central slope of 4.06 mm, which is the central slope in the standardized slope range.
The horizontal projection dimension Lh of the working length of the roof material 1 in FIG. 5(c) is 227.5 mm, the working length dimension L of the roof material 1 is 245.5 mm, and It is calculated by multiplying 227.5 mm by the gradient elongation rate of 1.0791 for a 4.06 dimension gradient.
The height of the head fitting portion 16 of the roofing material 1 is 10 mm, and the working length dimension L is 245.5 mm. Become.
The return slope is 0.41 degrees, and the return slope angle can be calculated as 2.462 degrees using a trigonometric function.
Since the angle of the 2-inch slope is 11.31 degrees, the roof material surface angle θ in FIG.

図6は実施例による中央勾配、上限勾配、下限勾配での勾配毎による隅棟ラインSLと屋根端部規格化形状屋根材10との隙間幅の変化を示した図である。
図6の規格化勾配範囲及び屋根材1は図5と同じ条件の図であり、図5で求めた勾配形状調整範囲幅αと規格化勾配範囲における中央勾配を用いて勾配21ごとの隅棟ラインSLと屋根端部規格化形状屋根材10との隙間の変化を図示する。
隅棟規格化形状屋根材10bは前記中央勾配で規格化した形状であり、4.06寸勾配のときに隅棟ラインSLと隅棟規格化形状屋根材10bの隅棟側形状が一致する形状である。
隅棟規格化形状屋根材10bの全長さ寸法LAの1/2の箇所で隅棟ラインSLと隅棟規格化形状屋根材10bを調整隙間幅CWだけ離隔するように配置する。
調整隙間幅CWは10mmとする。
図6(a)は、規格化勾配範囲の中央勾配の4.06寸勾配における隅棟部9bの屋根伏せ図と屋根端部規格化形状屋根材10と隅棟ラインSLとの図である。
図6(b)は、規格化勾配範囲の上限勾配の5.5寸勾配における隅棟部9bの屋根伏せ図と屋根端部規格化形状屋根材10と隅棟ラインSLとの図である。
図6(c)は、規格化勾配範囲の上限勾配の2寸勾配における隅棟部9bの屋根伏せ図と屋根端部規格化形状屋根材10と隅棟ラインSLとの図である。
FIG. 6 is a diagram showing changes in the width of the gap between the corner ridge line SL and the roof material 10 with the standardized roof end shape for each gradient at the central gradient, upper gradient, and lower gradient according to the embodiment.
The standardized slope range and the roofing material 1 in FIG. 6 are views under the same conditions as in FIG. The change in the gap between the line SL and the roof edge standardized shape roofing material 10 is illustrated.
The corner ridge standardized shape roof material 10b has a shape standardized by the above-mentioned central slope, and a shape in which the corner ridge line SL and the corner ridge side shape of the corner ridge standardized shape roof material 10b match when the slope is 4.06 inches. is.
The corner ridge line SL and the standardized corner ridge roof material 10b are arranged so as to be separated from each other by the adjustment gap width CW at half the total length dimension LA of the standardized corner ridge shape roof material 10b.
The adjustment gap width CW shall be 10 mm.
FIG. 6(a) is a view of the roof plan of the corner ridge 9b, the standardized shape roof material 10 of the roof end, and the corner ridge line SL at the central slope of the standardized slope range of 4.06 mm.
FIG. 6(b) is a diagram of the roof plan of the corner ridge 9b, the roof end standardized shape roof material 10, and the corner ridge line SL at the 5.5-inch slope, which is the upper limit slope of the standardized slope range.
FIG. 6(c) is a diagram of the roof plan of the corner ridge 9b, the standardized shape roof material 10 of the roof end, and the corner ridge line SL at the 2 inch slope of the upper limit slope of the standardized slope range.

図6(a)の左側の図は、規格化勾配範囲の中央勾配における隅棟部9bの屋根伏図である。
全長さ寸法LAの1/2の位置に一点鎖線で全長さ寸法LAの1/2の中央線を図示している。
規格化勾配範囲の中央勾配で隅棟規格化形状屋根材10bの形状を決めているので隅棟ラインSLと隅棟規格化形状屋根材10bとは平行の位置関係となる。
隅棟ラインSLと隅棟規格化形状屋根材10bは調整隙間幅CWが平行に離隔する。
隅棟規格化形状屋根材10bの全長さ寸法LAの1/2の箇所で隅棟ラインSLと隅棟規格化形状屋根材10bを調整隙間幅CWだけ離隔するように配置する。
調整隙間幅CWは10mmであり、平行の位置関係なので頭側も中央も尻側も隅棟ラインSLと隅棟規格化形状屋根材10bの隙間は10mmとなる。
中央勾配での隅棟ラインSLと隅棟規格化形状屋根材10bは最も理想的な納まりと言える。
図6(a)の右側の図は、桁方向7から見て右側に配置される隅棟規格化形状屋根材10bの平面図である。
実施例における隅棟規格化形状屋根材10bの働き幅SWは445mmであり、建物の設計単位寸法Pの1/2である455mmから調整隙間幅CWの10mmを引いた寸法である。
横重なり14は80mm、全長さ寸法LAは285mm、尻側の幅寸法は256.8mmである。尻側には連結材20を設ける。
全長さ寸法LAの1/2の位置に一点鎖線で全長さ寸法LAの1/2の中央線を図示している。
隅棟規格化形状屋根材10bの隅棟側と中央線の交点に中央勾配での隅棟ラインSLを点線で図示する。
しかし、隅棟規格化形状屋根材10bは前記中央勾配で規格化した形状であり、4.06寸勾配のときに隅棟ラインSLと隅棟規格化形状屋根材10bの隅棟側形状が一致する形状なので、隅棟規格化形状屋根材10bの外周形状の実線で点線は隠れて見えない。
The figure on the left side of FIG. 6(a) is a roof plan of the corner ridge 9b at the center slope of the standardized slope range.
A center line of 1/2 of the total length LA is illustrated by a dashed line at a position of 1/2 of the total length LA.
Since the central slope of the standardized slope range determines the shape of the corner ridge standardized shape roofing material 10b, the corner ridge line SL and the corner ridge standardized shape roofing material 10b have a parallel positional relationship.
The corner ridge line SL and the corner ridge standardized shape roof material 10b are separated in parallel by the adjustment gap width CW.
The corner ridge line SL and the standardized corner ridge roof material 10b are arranged so as to be separated from each other by the adjustment gap width CW at half the total length dimension LA of the standardized corner ridge shape roof material 10b.
The adjustment gap width CW is 10 mm, and because of the parallel positional relationship, the gap between the corner ridge line SL and the corner ridge standardized shape roof material 10b is 10 mm on the head side, the center, and the rear side.
The corner ridge line SL at the central slope and the corner ridge standardized shape roof material 10b can be said to be the most ideal fit.
The figure on the right side of FIG. 6( a ) is a plan view of the corner ridge standardized shape roof material 10 b arranged on the right side when viewed from the girder direction 7 .
The working width SW of the corner ridge standardized shape roof material 10b in the embodiment is 445 mm, which is obtained by subtracting the adjustment gap width CW of 10 mm from 455 mm, which is 1/2 of the design unit dimension P of the building.
The lateral overlap 14 is 80 mm, the total length dimension LA is 285 mm, and the width dimension on the rear side is 256.8 mm. A connecting member 20 is provided on the buttocks side.
A center line of 1/2 of the total length LA is illustrated by a dashed line at a position of 1/2 of the total length LA.
A corner ridge line SL with a central slope is illustrated by a dotted line at the intersection of the corner ridge side of the corner ridge standardized shape roof material 10b and the center line.
However, the corner ridge standardized shape roof material 10b has a shape standardized by the above-mentioned central slope, and the corner ridge line SL and the corner ridge side shape of the corner ridge standardized shape roof material 10b match when the slope is 4.06 inches. The dotted line is hidden by the solid line of the outer peripheral shape of the corner ridge standardized roof material 10b and cannot be seen.

図6(b)の左側の図は、規格化勾配範囲の上限勾配における隅棟部9bの屋根伏図である。
全長さ寸法LAの1/2の位置に一点鎖線で全長さ寸法LAの1/2の中央線を図示している。
規格化勾配範囲の中央勾配で隅棟規格化形状屋根材10bの形状を決めているので上限勾配の隅棟ラインSLと隅棟規格化形状屋根材10bとは角度が異なる。
上限勾配である5.5寸勾配の隅棟ラインSLは中央勾配よりも勾配伸び率15が大きいため中央勾配である4.06寸勾配の隅棟規格化形状屋根材10bよりも隅棟ラインSLの角度はきつくなる。
隅棟規格化形状屋根材10bの全長さ寸法LAの1/2の箇所で隅棟ラインSLと隅棟規格化形状屋根材10bを調整隙間幅CWだけ離隔するように配置する。
調整隙間幅CWは10mmであり、隅棟ラインSLは隅棟規格化形状屋根材10bよりも角度がきついため、隅棟ラインSLと隅棟規格化形状屋根材10bの頭側における隙間は勾配形状調整範囲幅αの6.7mm分だけ狭くなる。
頭側の隅棟ラインSLと隅棟規格化形状屋根材10bの隙間は、調整隙間幅CWの10mmから勾配形状調整範囲幅αの6.7mmを引いた3.3mmとなる。
また、図示はしていないが尻側の隅棟ラインSLと隅棟規格化形状屋根材10bの隙間は、調整隙間幅CWの10mmに勾配形状調整範囲幅αの6.7mmを足した16.7mmとなる。
規格化勾配範囲の上限勾配において、調整隙間幅CWを勾配形状調整範囲幅αより幅広にすることで、隅棟ラインSLと隅棟規格化形状屋根材10bの間に隙間を設けることが出来る。
図6(b)の右側の図は、桁方向7から見て右側に配置される隅棟規格化形状屋根材10bの平面図である。
実施例における隅棟規格化形状屋根材10bの働き幅SWは445mmであり、建物の設計単位寸法Pの1/2である455mmから調整隙間幅CWの10mmを引いた寸法である。
横重なり14は80mm、全長さ寸法LAは285mm、尻側の幅寸法は256.8mmである。尻側には連結材20を設ける。
全長さ寸法LAの1/2の位置に一点鎖線で全長さ寸法LAの1/2の中央線を図示している。
隅棟規格化形状屋根材10bの隅棟側と中央線の交点に上限勾配である5.5勾配での隅棟ラインSLを点線で図示する。
規格化勾配範囲の中央勾配で隅棟規格化形状屋根材10bの形状を決めているので上限勾配の隅棟ラインSLと隅棟規格化形状屋根材10bとは角度が異なる。
上限勾配である5.5寸勾配の隅棟ラインSLは中央勾配よりも勾配伸び率15が大きいため中央勾配である4.06寸勾配の隅棟規格化形状屋根材10bよりも隅棟ラインSLの角度はきつくなり、頭側において隅棟ラインSLが隅棟規格化形状屋根材10bよりも勾配形状調整範囲幅αの6.7mm分だけ内側に入る位置関係となる。
また、尻側において隅棟ラインSLが隅棟規格化形状屋根材10bよりも勾配形状調整範囲幅αの6.7mm分だけ外側に出る位置関係となる。
The figure on the left side of FIG. 6(b) is a roof plan of the corner ridge 9b at the upper limit slope of the standardized slope range.
A center line of 1/2 of the total length LA is illustrated by a dashed line at a position of 1/2 of the total length LA.
Since the central slope of the standardized slope range determines the shape of the corner ridge standardized shape roof material 10b, the corner ridge line SL of the upper limit slope and the corner ridge standardized shape roof material 10b have different angles.
Since the corner ridge line SL with a 5.5-inch slope, which is the upper limit slope, has a larger slope elongation rate 15 than the central slope, the corner ridge line SL is higher than the corner ridge line SL with a standardized shape roof material 10b with a central slope of 4.06-inch slope. angle becomes tighter.
The corner ridge line SL and the standardized corner ridge roof material 10b are arranged so as to be separated from each other by the adjustment gap width CW at half the total length dimension LA of the standardized corner ridge shape roof material 10b.
The adjustment gap width CW is 10 mm, and the angle of the corner ridge line SL is steeper than that of the standardized corner ridge roof material 10b. It is narrowed by 6.7 mm of the adjustment range width α.
The gap between the corner ridge line SL on the head side and the standardized corner ridge roof material 10b is 3.3 mm, which is obtained by subtracting the gradient shape adjustment range width α of 6.7 mm from the adjustment gap width CW of 10 mm.
Although not shown, the gap between the corner ridge line SL on the bottom side and the standardized corner ridge roof material 10b is 16.7 mm, which is the adjusted gap width CW of 10 mm plus the gradient shape adjustment range width α of 6.7 mm. 7 mm.
By making the adjustment gap width CW wider than the slope shape adjustment range width α at the upper limit slope of the standardized slope range, a gap can be provided between the corner ridge line SL and the corner ridge standardized shape roof material 10b.
The figure on the right side of FIG. 6(b) is a plan view of the corner ridge standardized shape roof material 10b arranged on the right side when viewed from the girder direction 7. As shown in FIG.
The working width SW of the corner ridge standardized shape roof material 10b in the embodiment is 445 mm, which is obtained by subtracting the adjustment gap width CW of 10 mm from 455 mm, which is 1/2 of the design unit dimension P of the building.
The lateral overlap 14 is 80 mm, the total length dimension LA is 285 mm, and the width dimension on the rear side is 256.8 mm. A connecting member 20 is provided on the buttocks side.
A center line of 1/2 of the total length LA is illustrated by a dashed line at a position of 1/2 of the total length LA.
A corner ridge line SL with a slope of 5.5, which is the upper limit slope, is illustrated by a dotted line at the intersection of the corner ridge side of the standardized roof material 10b and the center line.
Since the central slope of the standardized slope range determines the shape of the corner ridge standardized shape roof material 10b, the corner ridge line SL of the upper limit slope and the corner ridge standardized shape roof material 10b have different angles.
Since the corner ridge line SL with a 5.5-inch slope, which is the upper limit slope, has a larger slope elongation rate 15 than the central slope, the corner ridge line SL is higher than the corner ridge line SL with a standardized shape roof material 10b with a central slope of 4.06-inch slope. becomes tighter, and the corner ridge line SL on the head side is located inside the standardized corner ridge roof material 10b by 6.7 mm, which is the gradient shape adjustment range width α.
Also, on the buttock side, the corner ridge line SL is located outside the corner ridge standardized shape roof material 10b by 6.7 mm of the gradient shape adjustment range width α.

図6(c)の左側の図は、規格化勾配範囲の下限勾配における隅棟部9bの屋根伏図である。
全長さ寸法LAの1/2の位置に一点鎖線で全長さ寸法LAの1/2の中央線を図示している。
規格化勾配範囲の中央勾配で隅棟規格化形状屋根材10bの形状を決めているので下限勾配の隅棟ラインSLと隅棟規格化形状屋根材10bとは角度が異なる。
下限勾配である2寸勾配の隅棟ラインSLは中央勾配よりも勾配伸び率が小さいため中央勾配である4.06寸勾配の隅棟規格化形状屋根材10bよりも隅棟ラインSLの角度はゆるくなる。
隅棟規格化形状屋根材10bの全長さ寸法LAの1/2の箇所で隅棟ラインSLと隅棟規格化形状屋根材10bを調整隙間幅CWだけ離隔するように配置する。
調整隙間幅CWは10mmであり、隅棟ラインSLは隅棟規格化形状屋根材10bよりも角度がゆるいため、隅棟ラインSLと隅棟規格化形状屋根材10bの頭側における隙間は勾配形状調整範囲幅αの6.7mm分だけ広くなる。
頭側の隅棟ラインSLと隅棟規格化形状屋根材10bの隙間は、調整隙間幅CWの10mmから勾配形状調整範囲幅αの6.7mmを足した16.7mmとなる。
また、図示はしていないが尻側の隅棟ラインSLと隅棟規格化形状屋根材10bの隙間は、調整隙間幅CWの10mmに勾配形状調整範囲幅αの6.7mmを引いた3.3mmとなる。
規格化勾配範囲の下限勾配において、調整隙間幅CWを勾配形状調整範囲幅αより幅広にすることで、隅棟ラインSLと隅棟規格化形状屋根材10bの間に隙間を設けることが出来る。
図6(c)の右側の図は、桁方向7から見て右側に配置される隅棟規格化形状屋根材10bの平面図である。
実施例における隅棟規格化形状屋根材10bの働き幅SWは445mmであり、建物の設計単位寸法Pの1/2である455mmから調整隙間幅CWの10mmを引いた寸法である。
横重なり14は80mm、全長さ寸法LAは285mm、尻側の幅寸法は256.8mmである。尻側には連結材20を設ける。
全長さ寸法LAの1/2の位置に一点鎖線で全長さ寸法LAの1/2の中央線を図示している。
隅棟規格化形状屋根材10bの隅棟側と中央線の交点に下限勾配である2勾配での隅棟ラインSLを点線で図示する。
規格化勾配範囲の中央勾配で隅棟規格化形状屋根材10bの形状を決めているので下限勾配の隅棟ラインSLと隅棟規格化形状屋根材10bとは角度が異なる。
下限勾配である2寸勾配の隅棟ラインSLは中央勾配よりも勾配伸び率が小さいため中央勾配である4.06寸勾配の隅棟規格化形状屋根材10bよりも隅棟ラインSLの角度はゆるくなり、頭側において隅棟ラインSLが隅棟規格化形状屋根材10bよりも勾配形状調整範囲幅αの6.7mm分だけ外側に出る位置関係となる。
また、尻側において隅棟ラインSLが隅棟規格化形状屋根材10bよりも勾配形状調整範囲幅αの6.7mm分だけ内側に入る位置関係となる。
The figure on the left side of FIG. 6(c) is a roof plan of the corner ridge 9b at the lower limit slope of the standardized slope range.
A center line of 1/2 of the total length LA is illustrated by a dashed line at a position of 1/2 of the total length LA.
Since the central slope of the standardized slope range determines the shape of the corner ridge standardized shape roof material 10b, the corner ridge line SL of the lower limit slope and the corner ridge standardized shape roof material 10b have different angles.
Since the corner ridge line SL with a 2-inch gradient, which is the lower limit gradient, has a smaller gradient elongation rate than the central gradient, the angle of the corner ridge line SL is greater than that of the corner ridge standardized shape roof material 10b with a central gradient of 4.06-inch gradient. Loosen up.
The corner ridge line SL and the standardized corner ridge roof material 10b are arranged so as to be separated from each other by the adjustment gap width CW at half the total length dimension LA of the standardized corner ridge shape roof material 10b.
The adjustment gap width CW is 10 mm, and since the angle of the corner ridge line SL is looser than that of the standardized corner ridge roof material 10b, the gap between the corner ridge line SL and the standardized corner ridge roof material 10b on the head side has a slope shape. It is widened by 6.7 mm of the adjustment range width α.
The gap between the corner ridge line SL on the head side and the standardized corner ridge roof material 10b is 16.7 mm, which is obtained by adding the slope shape adjustment range width α of 6.7 mm to the adjustment gap width CW of 10 mm.
Although not shown, the gap between the corner ridge line SL on the butt side and the corner ridge standardized shape roof material 10b is obtained by subtracting the slope shape adjustment range width α of 6.7 mm from the adjustment gap width CW of 10 mm. 3 mm.
By making the adjustment gap width CW wider than the slope shape adjustment range width α at the lower limit slope of the standardized slope range, a gap can be provided between the corner ridge line SL and the corner ridge standardized shape roof material 10b.
The figure on the right side of FIG. 6(c) is a plan view of the corner ridge standardized shape roof material 10b arranged on the right side when viewed from the girder direction 7. As shown in FIG.
The working width SW of the corner ridge standardized shape roof material 10b in the embodiment is 445 mm, which is obtained by subtracting the adjustment gap width CW of 10 mm from 455 mm, which is 1/2 of the design unit dimension P of the building.
The lateral overlap 14 is 80 mm, the total length dimension LA is 285 mm, and the width dimension on the rear side is 256.8 mm. A connecting member 20 is provided on the buttocks side.
A center line of 1/2 of the total length LA is illustrated by a dashed line at a position of 1/2 of the total length LA.
A corner ridge line SL with two slopes, which is the lower limit slope, is illustrated by a dotted line at the intersection of the corner ridge side of the standardized roof material 10b and the center line.
Since the central slope of the standardized slope range determines the shape of the corner ridge standardized shape roof material 10b, the corner ridge line SL of the lower limit slope and the corner ridge standardized shape roof material 10b have different angles.
Since the corner ridge line SL with a 2-inch gradient, which is the lower limit gradient, has a smaller gradient elongation rate than the central gradient, the angle of the corner ridge line SL is greater than that of the corner ridge standardized shape roof material 10b with a central gradient of 4.06-inch gradient. On the head side, the corner ridge line SL is outside the corner ridge standardized shape roof material 10b by 6.7 mm of the gradient shape adjustment range width α.
Also, on the buttock side, the corner ridge line SL is located inside the corner ridge standardized shape roof material 10b by 6.7 mm of the gradient shape adjustment range width α.

図7は実施例による屋根端部規格化形状屋根材10及び調整屋根材11の形状図であり、図7(a)は屋根端部規格化形状屋根材10の形状図、図7(b)は調整屋根材11の形状図である。
屋根端部規格化形状屋根材10及び調整屋根材11の形状図は、図4、図5、図6の中央勾配である4.06寸勾配により規格化した形状図であり、それぞれの平面図のみとする。
図7の屋根端部規格化形状屋根材10と調整屋根材11は図1及び図2の割付図で使用した全ての屋根端部9における屋根端部規格化形状屋根材10と調整屋根材11である。
屋根端部規格化形状屋根材10として使用する種類は、隅棟規格化形状屋根材10b、谷規格化形状屋根材10f、隅棟-陸棟端部規格化形状屋根材10d、三又規格化形状屋根材10e、谷-陸棟端部規格化形状屋根材10g、調整屋根材11と屋根材1をベースに陸棟部9aの形状に合わせた陸棟規格化形状屋根材10a、寄棟棟違い規格化形状屋根材10hとなる。
調整屋根材11として使用する種類は、働き幅が455mmと910mmの2種類であり、桁方向7の調整寸法が1365mmの際には455mmと910mmの調整屋根材11を用いて調整する。
7A and 7B are diagrams showing the shape of the standardized roof material 10 and the adjusted roof material 11 according to the embodiment, FIG. 7A being a diagram of the shape of the standardized roof material 10, and FIG. 4 is a shape diagram of the adjustable roof material 11. FIG.
The shape diagrams of the standardized shape roof material 10 and the adjusted roof material 11 are diagrams standardized by the 4.06-inch gradient, which is the central gradient in FIGS. 4, 5, and 6. only.
The standardized shape roof materials 10 and the adjusted roof materials 11 shown in FIG. is.
The types used as the roof end standardized shape roof material 10 are the corner ridge standardized shape roof material 10b, the valley standardized shape roof material 10f, the corner ridge-land ridge end standardized shape roof material 10d, and the three-pronged roof. material 10e, valley-land ridge end standardized shape roofing material 10g, land ridge standardized shape roofing material 10a that matches the shape of land ridge part 9a based on adjusted roofing material 11 and roofing material 1, hipped roof different standardized shape roofing material 10 hours.
There are two types of adjustable roof materials 11, 455 mm and 910 mm in working width. When the adjustment dimension in the girder direction 7 is 1365 mm, the adjustable roof materials 11 of 455 mm and 910 mm are used.

図8は実施例による寄棟棟違い屋根における割付条件別の屋根材割付図である。
図8の割付図は、図1の割付図と比べて屋根材1の働き幅寸法Wが異なる割付図である。
図8の実施例は、屋根材1の働き幅寸法W以外の割付条件は図1と同様である。
図1の屋根材1の働き幅寸法Wは1820mmに対して図8の屋根材1の働き幅寸法Wは455mmであり、屋根材1の働き長さの水平投影寸法Lhが227.5mmなので二倍の関係である。
図8(a)は、寄棟棟違い屋根における実際の屋根2を想定した割付図であり、図8(b)は、図8(a)に四角い線で囲み図示した寄棟棟違い部9gの拡大範囲を拡大した割付図である。
また図8(b)は、各屋根端部9に配置されるそれぞれの屋根端部規格化形状屋根材10の平面図を割付図に記載している。
図8の割付条件は、屋根材1の働き長さの水平投影寸法Lhが227.5mm、建物の設計単位寸法Pが910mmであり、屋根材1の働き長さの水平投影寸法Lhが建物の設計単位寸法Pの二分の一であり、屋根材1の働き幅寸法Wが働き長さの水平投影寸法Lhの二倍であり、前記屋根材1を軒先5から陸棟6にむかって流れ方向8で一段毎に配置する際に、前記屋根材1は配置する屋根面の桁方向7に対して一方の端部からもう一方の端部方向に前記屋根材1の働き長さの水平投影寸法Lhの一倍をずらして配置するという条件となる。
この割付条件の場合、桁方向7での寸法調整が不要になり、調整屋根材11が不要になり、配置方法はよりシンプルで簡易となる。
FIG. 8 is a roof material allocation diagram according to allocation conditions in a hipped roof according to the embodiment.
The layout drawing of FIG. 8 is a layout drawing in which the working width dimension W of the roofing material 1 is different from that of the layout drawing of FIG.
The embodiment of FIG. 8 is the same as that of FIG. 1 except for the working width dimension W of the roof material 1 .
The working width dimension W of the roofing material 1 in FIG. 1 is 1820 mm, whereas the working width dimension W of the roofing material 1 in FIG. 8 is 455 mm. It is a double relationship.
FIG. 8(a) is a layout diagram assuming an actual roof 2 in a hipped roof, and FIG. 8(b) is a hipped roof portion 9g surrounded by a square line in FIG. 8(a). It is a layout diagram in which the expansion range of is expanded.
In addition, FIG. 8(b) describes a plan view of each roof edge standardized shape roof material 10 arranged at each roof edge 9 in an allocation drawing.
8, the horizontal projection dimension Lh of the working length of the roofing material 1 is 227.5 mm, the design unit dimension P of the building is 910 mm, and the horizontal projection dimension Lh of the working length of the roofing material 1 is 227.5 mm. The working width dimension W of the roofing material 1 is twice the horizontal projection dimension Lh of the working length, and the roofing material 1 is stretched from the eaves 5 toward the land ridge 6 in the flow direction. 8, the roof material 1 is arranged in a horizontal projection dimension of the working length of the roof material 1 from one end to the other end with respect to the girder direction 7 of the roof surface to be arranged. The condition is that they are arranged with a shift of one times Lh.
In the case of this allocation condition, the size adjustment in the girder direction 7 becomes unnecessary, the adjustment roof material 11 becomes unnecessary, and the arrangement method becomes simpler and easier.

図9は実施例による下屋の屋根材割付図であり、割付条件は次の通りである。
建物の設計単位寸法Pは尺モジュールであり、設計単位寸法Pは910mmである。
屋根材1の働き長さの水平投影寸法Lhは、建物の設計単位寸法Pの二分の一の455mmであり、屋根材1の働き幅寸法Wは、働き長さの水平投影寸法Lhの四倍にあたる1820mmとする。
前記屋根材1を軒先5から陸棟6にむかって流れ方向8で一段毎に配置する際に、前記屋根材1は配置する屋根面の桁方向7に対して一方の端部からもう一方の端部方向に前記屋根材1の働き長さの水平投影寸法Lhの一倍である455mmをずらして配置する。
前記屋根面における桁方向7の寸法調整に用いる調整屋根材11の働き幅寸法は、前記屋根材1の働き長さの水平投影寸法Lhの整数倍であり、一倍の455mm、二倍の910mmの二種類とする。
前記調整屋根材11を前記屋根材1の代わりに配置することで働き幅寸法の差分により前記桁方向7の寸法調整を行うことが出来る。
流れ方向8と桁方向7の両方の寸法条件で位置決めする屋根端部9には、隅棟-平行壁際規格化形状屋根材10kを配置する。
流れ方向8又は桁方向7のどちらか一方の寸法条件で位置決めする屋根端部には、流れ壁際規格化形状屋根材10i、平行壁際規格化形状屋根材10j、隅棟規格化形状屋根材10b、ケラバ規格化形状屋根材10cを配置する。
屋根端部規格化形状屋根材10は、所定の規格化勾配範囲の中央勾配で規格化した屋根端部規格化形状屋根材10とする。
図9のような下屋における特徴的な納まりは、屋根面の流れ方向8の上端部や桁方向7端部が建物の壁と接している納まりであり、屋根端部9の名称は壁際部9hである。
壁際部9hに配置する屋根端部規格化形状屋根材10には、流れ方向8の上端部で壁と接する箇所に配置する平行壁際規格化形状屋根材10jと桁方向7の端部で壁と接する箇所に配置する流れ壁際規格化形状屋根材10iと流れ方向8の上端部でかつ桁方向7の端部で壁と接する箇所に配置する隅棟-平行壁際規格化形状屋根材10kがある。
FIG. 9 is a layout diagram of roof materials for a shed according to the embodiment, and the layout conditions are as follows.
The design unit dimension P of the building is a shaku module, and the design unit dimension P is 910 mm.
The horizontal projection dimension Lh of the working length of the roofing material 1 is 455 mm, which is half the design unit dimension P of the building, and the working width dimension W of the roofing material 1 is four times the horizontal projection dimension Lh of the working length. 1820 mm, which corresponds to
When the roof material 1 is arranged step by step in the flow direction 8 from the eaves 5 toward the land ridge 6, the roof material 1 is arranged from one end to the other with respect to the girder direction 7 of the roof surface to be arranged. 455 mm, which is one time the horizontal projection dimension Lh of the working length of the roofing material 1, is shifted in the direction of the end.
The working width dimension of the adjusting roof material 11 used for the dimension adjustment in the girder direction 7 on the roof surface is an integral multiple of the horizontal projection dimension Lh of the working length of the roof material 1, which is 455 mm when it is one time and 910 mm when it is two times. There are two types of
By arranging the adjustment roof material 11 instead of the roof material 1, it is possible to adjust the dimension in the girder direction 7 according to the difference in working width dimension.
A corner ridge-parallel wall side standardized shape roof material 10k is arranged at the roof edge 9 positioned under both the flow direction 8 and girder direction 7 dimensional conditions.
At the roof edge positioned according to the dimension condition of either the flow direction 8 or the girder direction 7, the standardized shape roof material 10i along the flow wall, the standardized shape roof material 10j along the parallel wall, the corner ridge standardized shape roof material 10b, The verge standardized shape roof material 10c is arranged.
The standardized roof end shape roof material 10 is a standardized roof end shape roof material 10 standardized by a central gradient within a predetermined standardized gradient range.
The characteristic arrangement of the shed as shown in Fig. 9 is that the upper end of the roof surface in the flow direction 8 and the girder direction 7 end are in contact with the wall of the building, and the name of the roof end 9 is the wall edge. 9 h.
The roof edge standardized shape roof material 10 arranged at the wall edge portion 9h includes the parallel wall edge standardized shape roof material 10j arranged at the upper end portion in the flow direction 8 contacting the wall and the wall at the end portion in the girder direction 7. There is a standardized shape roofing material 10i along the flow wall and a standardized shape roofing material 10k along the corner ridge-parallel wall that is arranged at the upper end in the flow direction 8 and at the end in the girder direction 7 in contact with the wall.

図10は実施例による寄棟屋根の屋根面における割付条件別の屋根材割付図である。
図10は寄棟屋根において軒と隅棟3で三角形形状に構成される三角形状屋根面をベースにして、屋根材1を軒先5から陸棟6に向かって流れ方向8で一段毎に配置する際に、屋根材1は配置する屋根面の桁方向7に対して右側の隅棟部9bから左側の隅棟部9b方向に屋根材1の働き長さの水平投影寸法Lhの2倍の寸法をずらして配置した場合の屋根割り付け図である。
実施例の屋根条件は以下の通りとする。
建物の設計単位寸法Pは尺モジュールであり、設計単位寸法Pは910mmである。
屋根材1の働き長さの水平投影寸法Lhは、建物の設計単位寸法Pの二分の一の455mmであり、屋根材1の働き幅寸法Wは、働き長さの水平投影寸法Lhの4倍にあたる1820mmとする。
軒の出寸法12は910mmとする。
流れ方向8の屋根頂点から軒桁までの流れ長さの水平投影寸法は4Pの3640mmであり、軒の出寸法12の910mmを足すと5Pの4550mmとなる。
桁方向7の軒桁間の寸法は8Pの7280mmであり、軒先5の桁寸法は軒の出12の寸法を足して10Pの9100mmとなる。
屋根端部9に配置する規格化形状屋根材10は、隅棟部9bに左右で2種類、三又部9eで1種類の3種類とする。
桁方向7の寸法調整を行う調整屋根材11は働き幅寸法が屋根材1の働き長さの水平投影寸法Lhの2倍である910mmと働き幅寸法が屋根材1の働き長さの水平投影寸法Lhの3倍である1365mmの2種類とする。
桁方向7に対して左右の隅棟部9bに配置される隅棟規格化形状屋根材10bは、屋根材1の働き幅寸法Wの二分の一にあたる910mmの働き幅を有する形状とする。
FIG. 10 is a roof material allocation diagram for each allocation condition on the roof surface of the hipped roof according to the embodiment.
Fig. 10 shows a hipped roof based on a triangular roof surface formed by eaves and corner ridges 3, and roofing materials 1 are arranged from the eaves 5 toward the land ridge 6 in the flow direction 8 for each stage. In this case, the roof material 1 extends from the right corner ridge 9b to the left corner ridge 9b with respect to the girder direction 7 of the roof surface on which it is arranged, and has a dimension that is twice the horizontal projection dimension Lh of the working length of the roof material 1. It is a roof layout diagram in the case of displacing and arranging.
The roof conditions of the example are as follows.
The design unit dimension P of the building is a shaku module, and the design unit dimension P is 910 mm.
The horizontal projection dimension Lh of the working length of the roofing material 1 is 455 mm, which is half the design unit dimension P of the building, and the working width dimension W of the roofing material 1 is four times the horizontal projection dimension Lh of the working length. 1820 mm, which corresponds to
The overhang dimension 12 of the eaves shall be 910 mm.
The horizontal projection dimension of the flow length from the roof top to the eaves girder in the flow direction 8 is 4P of 3640 mm, and the addition of the eaves overhang dimension 12 of 910 mm gives 5P of 4550 mm.
The dimension between the eaves girders in the girder direction 7 is 8P of 7280 mm, and the girder dimension of the eaves edge 5 is 9100 mm of 10P by adding the dimension of the overhang 12 .
There are three types of standardized shape roof materials 10 arranged on the roof edge 9: two types on the left and right sides of the corner ridge 9b and one type on the three-forked section 9e.
The adjustment roof material 11 for adjusting the dimension in the girder direction 7 has a working width of 910 mm, which is twice the horizontally projected dimension Lh of the working length of the roof material 1, and a working width of the horizontal projection of the working length of the roof material 1. There are two types of 1365 mm, which is three times the dimension Lh.
The corner ridge standardized shape roof materials 10b arranged on the left and right corner ridges 9b with respect to the girder direction 7 are shaped to have a working width of 910 mm, which is half the working width dimension W of the roof material 1.

図10の配置方法について説明する。
実施例では、屋根材1の働き幅寸法Wが働き長さの水平投影寸法Lhの4倍にあたる1820mmであり、屋根材1の働き長さの水平投影寸法Lhの2倍の寸法である910mmをずらして配置する配置方法であり、屋根材1の働き幅寸法Wの半分ずれた千鳥葺きの配置となるため、桁方向7に対して左右線対称で屋根材1を配置することが出来る。
1段目の右側の隅棟部9bに隅棟規格化形状屋根材10bを配置し、左隣りに働き幅寸法が910mmの調整屋根材11を配置し、その左隣から順次屋根材1を配置する。
軒先5の桁寸法は10Pの9100mmであり、左右の隅棟規格化形状屋根材10bと調整屋根材11の働き幅寸法の3640mmを引くと5460mmとなり、5460mmを屋根材1の働き幅寸法W1820mmで割ると3枚となる。
よって、1段目は右側と左側の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、それぞれの隅棟規格化形状屋根材10bの内側に働き幅寸法が910mmの調整屋根材11を1枚ずつ配置し、その間のスペースに屋根材1を3枚配置する。
2段目は右側の隅棟部9bで屋根材1の働き長さの水平投影寸法Lh分の455mm、左側の隅棟部9bで屋根材1の働き長さの水平投影寸法Lh分の455mmが桁方向7で短くなる。
2段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、それぞれの隅棟規格化形状屋根材10bの内側に働き幅寸法が1365mmの調整屋根材11を1枚ずつ配置し、その間のスペースに屋根材1を2枚配置する。
3段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、その間のスペースに屋根材1を3枚配置する。
4段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、それぞれの隅棟規格化形状屋根材10bの内側に働き幅寸法が910mmの調整屋根材11を1枚ずつ配置し、さらにその内側に働き幅寸法が1365mmの調整屋根材11を1枚ずつ配置する。
5段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、それぞれの隅棟規格化形状屋根材10bの内側に働き幅寸法が910mmの調整屋根材11を1枚ずつ配置し、その間のスペースに屋根材1を1枚配置する。
6段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、それぞれの隅棟規格化形状屋根材10bの内側に働き幅寸法が1365mmの調整屋根材11を1枚ずつ配置する。
7段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、その間のスペースに屋根材1を1枚配置する。
8段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、その間のスペースに働き幅寸法が910mmの調整屋根材11を1枚配置する。
9段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置する。
10段目は三又部9eに三又規格化形状屋根材10eを1枚配置する。
この実施例の配置方法は、屋根面の屋根材1の配置が左右対称となり屋根材1の配置バランスが良く、葺きあがりの見栄えが良いというメリットがある。
しかし、屋根材1の配置ルールは煩雑となり施工が分かりにくいことと、調整屋根材11の種類と使用枚数が増えるというデメリットがある。
The arrangement method of FIG. 10 will be described.
In the embodiment, the working width dimension W of the roofing material 1 is 1820 mm, which is four times the horizontal projection dimension Lh of the working length, and 910 mm, which is twice the horizontal projection dimension Lh of the working length of the roofing material 1. This is a staggered arrangement method, and the roofing materials 1 can be arranged symmetrically with respect to the girder direction 7 because the roofing materials 1 are staggered by half the working width dimension W of the roofing materials 1.例文帳に追加
A corner ridge standardized shape roof material 10b is arranged on the right corner ridge part 9b of the first stage, an adjustable roof material 11 with a working width of 910 mm is arranged on the left side, and the roof materials 1 are arranged sequentially from the left side. do.
The girder dimension of the eaves 5 is 9100 mm of 10P, and subtracting the working width dimension of 3640 mm of the standardized shape roof material 10b on the left and right and the adjustment roof material 11 gives 5460 mm. Divide it into 3 pieces.
Therefore, on the first stage, standardized corner ridge roof materials 10b are placed on the right and left corner ridges 9b, respectively, and the work width is adjusted to 910 mm inside each standardized corner ridge roof material 10b. Roof materials 11 are arranged one by one, and three roof materials 1 are arranged in the space between them.
In the second stage, the right corner ridge 9b is 455 mm/455 mm in horizontal projection of the working length of the roof material 1, and the left corner ridge 9b is 455 mm/455 mm in horizontal projection of the working length of the roof material 1. It becomes shorter in the digit direction 7.
In the second stage, standardized corner ridge roof materials 10b are placed on the left and right corner ridges 9b, respectively. They are arranged one by one, and two roof materials 1 are arranged in the space between them.
In the third stage, one corner ridge standardized shape roof material 10b is arranged on each of the left and right corner ridges 9b, and three roof materials 1 are arranged in the space between them.
In the fourth stage, standardized corner ridge roof materials 10b are arranged on the right and left corner ridges 9b, respectively. They are arranged one by one, and further inside thereof, one adjustment roof material 11 having a working width of 1365 mm is arranged one by one.
In the fifth stage, standardized corner ridge roof materials 10b are arranged on the left and right corner ridges 9b, respectively, and an adjusted roof material 11 with a working width of 910 mm is placed inside each of the standardized corner ridge roof materials 10b. They are arranged one by one, and one roof material 1 is arranged in the space between them.
In the sixth stage, standardized corner ridge roof materials 10b are arranged one by one on the right and left corner ridges 9b, and an adjusted roof material 11 with a working width of 1365 mm is placed inside each of the standardized corner ridge roof materials 10b. Place one by one.
In the seventh row, one corner ridge standardized shape roof material 10b is arranged on each of the left and right corner ridges 9b, and one roof material 1 is arranged in the space between them.
In the eighth stage, one corner ridge standardized shape roof material 10b is arranged on each of the left and right corner ridges 9b, and one adjustment roof material 11 having a working width of 910 mm is arranged in the space between them.
In the ninth stage, the corner ridge standardized shape roof materials 10b are arranged one by one on the left and right corner ridges 9b.
In the tenth row, one standardized three-pronged roof material 10e is placed on the three-pronged portion 9e.
The arrangement method of this embodiment has the advantage that the arrangement of the roof materials 1 on the roof surface is left-right symmetrical, the arrangement balance of the roof materials 1 is good, and the appearance of the roof is good.
However, there are demerits in that the arrangement rule of the roofing material 1 is complicated and construction is difficult to understand, and that the types and the number of used roofing materials 11 increase.

本発明は、実施例においては金属製の長尺横葺き屋根材として記載したが屋根材の素材を限定するものではなく、長尺の横葺き屋根材であればセメント、セラミックス、アスファルト系素材、樹脂系素材などの屋根材に広く適用することが出来る。
また、建物の設計単位寸法Pは実施例では尺モジュールだけの記載だが、建物の設計単位寸法Pはメーターモジュールでもインチモジュールでも利用できる。
In the embodiments, the present invention is described as a metal long horizontal roofing material, but the material of the roofing material is not limited. It can be widely applied to roofing materials such as resin materials.
Further, although the design unit dimension P of the building is described only for the shaku module in the embodiment, the design unit dimension P of the building can be used for both the meter module and the inch module.

本発明の実施例では規格化勾配範囲の上限勾配と下限勾配から中央勾配を求めたが、多くの屋根材1では防水性能を担保するために下限勾配だけを設定するケースがある。
その場合、屋根材1の下限勾配と任意の中央勾配から上限勾配を求め、規格化勾配範囲を設定する方法も利用できる。
In the embodiment of the present invention, the central slope is determined from the upper slope and the lower slope of the standardized slope range, but in many roofing materials 1, there are cases where only the lower slope is set in order to ensure waterproof performance.
In that case, a method of obtaining the upper limit slope from the lower limit slope of the roof material 1 and an arbitrary central slope and setting the normalized slope range can also be used.

1 屋根材
2 屋根
3 隅棟
4 谷
5 軒先
6 陸棟
7 桁方向
8 流れ方向
9 屋根端部
9a 陸棟部
9b 隅棟部
9c ケラバ部
9d 三又部
9e 谷部
9f 陸棟曲がり部
9g 寄棟棟違い部
9h 壁際部
10 屋根端部規格化形状屋根材
10a 陸棟規格化形状屋根材
10b 隅棟規格化形状屋根材
10c ケラバ規格化形状屋根材
10d 隅棟-陸棟端部規格化形状屋根材
10e 三又規格化形状屋根材
10f 谷規格化形状屋根材
10g 谷-陸棟端部規格化形状屋根材
10h 寄棟棟違い規格化形状屋根材
10i 流れ壁際規格化形状屋根材
10j 平行壁際規格化形状屋根材
10k 隅棟-平行壁際規格化形状屋根材
11 調整屋根材
12 軒の出寸法
13 流れ重なり
14 横重なり
15 勾配伸び率
16 頭見付け部
17 調整屋根材働き幅寸法
18 頭側係合部
19 尻側水返し
20 連結材
21 勾配
22 留め付け材
23 野地板
Lh 屋根材の働き長さの水平投影寸法
L 屋根材の働き長さ寸法
LA 屋根材の全長さ寸法
W 屋根材の働き幅寸法
WA 屋根材の全幅寸法
SW 隅棟規格化形状屋根材働き幅寸法
CW 調整隙間幅
α 勾配形状調整範囲幅
β 規格化勾配範囲での隅棟ライン桁方向変化寸法
P 建物の設計単位寸法
θ 屋根材表面角度
SL 隅棟ライン
KL 桁方向ライン
1 Roof material 2 Roof 3 Corner ridge 4 Valley 5 Eaves 6 Rough ridge 7 Girder direction 8 Flow direction 9 Roof edge 9a Rough ridge 9b Corner ridge 9c Verge 9d Trifurcate 9e Valley 9f Rough ridge bending 9g Hip ridge Difference part 9h Wall side part 10 Roof end standardized shape roof material 10a Land ridge standardized shape roof material 10b Corner ridge standardized shape roof material 10c Verge standardized shape roof material 10d Corner ridge-land ridge end standardized shape roof material 10e Standardized shape roofing material 10f Valley standardized shape roofing material 10g Valley-land ridge end standardized shape roofing material 10h Different hip roof standardized shape roofing material 10i Flow wall side standardized shape roofing material 10j Parallel wall side standardized shape roofing material 10k Corner ridge-parallel wall standardized shape roof material 11 Adjusted roof material 12 Eaves overhang dimension 13 Flow overlap 14 Lateral overlap 15 Gradient elongation rate 16 Head fitting part 17 Adjusted roof material working width dimension 18 Head side engagement part 19 Bottom side water Backing 20 Connecting material 21 Inclination 22 Fastening material 23 Roofing board Lh Horizontal projection dimension of working length of roof material L Working length dimension of roof material LA Overall length dimension of roof material W Working width dimension of roof material WA Roof material working length dimension Overall width SW Working width of corner ridge standardized shape roof material CW Adjustment gap width α Slope shape adjustment range width β Corner ridge line girder direction change dimension P in standardized slope range Design unit dimension θ Roofing material surface angle SL Corner Building line KL Girder direction line

Claims (1)

勾配を有する屋根を備える建物の屋根であって、前記屋根は隅棟又は谷を有し、屋根材を桁方向に複数枚並べ、前記屋根材を段方向に複数段並べる屋根において、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の整数分の一であり、前記屋根材の働き幅寸法が前記働き長さの水平投影寸法の二倍以上の整数倍であり、前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法の整数倍をずらして配置し、前記屋根面における桁方向の寸法調整に用いる調整屋根材の働き幅寸法は、前記屋根材の働き長さの水平投影寸法の整数倍であり、前記調整屋根材を前記屋根材の代わりに配置することで働き幅寸法の差分により前記桁方向の寸法調整を行い、流れ方向と桁方向の両方の寸法条件で位置決めする三又部、寄棟棟違い部、陸棟曲がり部などの全ての屋根端部及び流れ方向又は桁方向のどちらか一方の寸法条件で位置決めする陸棟部、壁際部、隅棟部、谷部などの全ての屋根端部に、所定の規格化勾配範囲の中央勾配で規格化した屋根端部規格化形状屋根材を配置し、前記屋根端部規格化形状屋根材と隅棟とは調整隙間幅だけ離隔し、前記調整隙間幅は勾配形状調整範囲幅より幅広であることを特徴とする長尺横葺きモジュール屋根材の屋根材配置方法。 A roof of a building having a sloped roof, wherein the roof has a corner ridge or a valley, a plurality of roof materials are arranged in a girder direction, and a plurality of roof materials are arranged in a step direction, wherein: The horizontal projection dimension of the working length of is an integer fraction of the design unit dimension of the building, the working width dimension of the roof material is an integral multiple of two or more times the horizontal projection dimension of the working length, and When arranging the roof materials from the eaves toward the land ridge in each stage in the flow direction, the roof materials are arranged from one end to the other end with respect to the girder direction of the roof surface to be arranged. The working width of the adjustment roof material used for adjusting the girder direction on the roof surface is an integer of the horizontal projection of the working length of the roof material. A three-pronged portion that is doubled in size and uses the adjustment roof material instead of the roof material to adjust the dimension in the girder direction based on the difference in the working width dimension, and to position the three-forked part under the dimensional conditions in both the stream direction and the girder direction. All roof ends such as hipped ridges, hipped ridges, curved ridges, etc., and all roofs such as land ridges, wall edges, corner ridges, valleys, etc. that are positioned according to dimensional conditions in either the stream direction or girder direction. At the end, a standardized roof material with a standardized shape for the roof edge standardized by a central gradient within a predetermined standardized gradient range is arranged, and the standardized roof material for the roof edge and the corner ridge are separated by an adjustment gap width, A method for arranging long horizontal roofing modular roofing materials, wherein the width of the adjustment gap is wider than the width of the gradient shape adjustment range.
JP2021064244A 2021-04-05 2021-04-05 Roof material placement method for long horizontal roofing module roof materials Active JP7144015B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021064244A JP7144015B1 (en) 2021-04-05 2021-04-05 Roof material placement method for long horizontal roofing module roof materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021064244A JP7144015B1 (en) 2021-04-05 2021-04-05 Roof material placement method for long horizontal roofing module roof materials

Publications (2)

Publication Number Publication Date
JP7144015B1 JP7144015B1 (en) 2022-09-29
JP2022159820A true JP2022159820A (en) 2022-10-18

Family

ID=83446930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021064244A Active JP7144015B1 (en) 2021-04-05 2021-04-05 Roof material placement method for long horizontal roofing module roof materials

Country Status (1)

Country Link
JP (1) JP7144015B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022176273A (en) * 2021-03-01 2022-11-25 株式会社三洋物産 game machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886050A (en) * 1994-09-19 1996-04-02 Sekisui Chem Co Ltd Roof covering structure
JPH11350683A (en) * 1998-06-03 1999-12-21 Sekisui Chem Co Ltd Solar cell module and solar cell module mount roof
JP2005256514A (en) * 2004-03-15 2005-09-22 Hekinan Tokushu Kikai Kk Flat plate tile and roofing method thereof
JP2006194070A (en) * 2004-12-17 2006-07-27 Shinsei:Kk Method of laying roof tiles
JP2008127786A (en) * 2006-11-17 2008-06-05 Kinki Ceramics Kk Precut tile
JP2017089101A (en) * 2015-11-02 2017-05-25 甍エンジニアリング株式会社 Tile roof structure
JP6701473B1 (en) * 2019-07-25 2020-05-27 甍エンジニアリング株式会社 Tiles allocation system for pre-cut roof tiles
JP6894618B1 (en) * 2020-07-27 2021-06-30 甍エンジニアリング株式会社 How to arrange the roofing material of the long horizontal roofing module roofing material for remodeling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886050A (en) * 1994-09-19 1996-04-02 Sekisui Chem Co Ltd Roof covering structure
JPH11350683A (en) * 1998-06-03 1999-12-21 Sekisui Chem Co Ltd Solar cell module and solar cell module mount roof
JP2005256514A (en) * 2004-03-15 2005-09-22 Hekinan Tokushu Kikai Kk Flat plate tile and roofing method thereof
JP2006194070A (en) * 2004-12-17 2006-07-27 Shinsei:Kk Method of laying roof tiles
JP2008127786A (en) * 2006-11-17 2008-06-05 Kinki Ceramics Kk Precut tile
JP2017089101A (en) * 2015-11-02 2017-05-25 甍エンジニアリング株式会社 Tile roof structure
JP6701473B1 (en) * 2019-07-25 2020-05-27 甍エンジニアリング株式会社 Tiles allocation system for pre-cut roof tiles
JP6894618B1 (en) * 2020-07-27 2021-06-30 甍エンジニアリング株式会社 How to arrange the roofing material of the long horizontal roofing module roofing material for remodeling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022176273A (en) * 2021-03-01 2022-11-25 株式会社三洋物産 game machine

Also Published As

Publication number Publication date
JP7144015B1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
JP7144015B1 (en) Roof material placement method for long horizontal roofing module roof materials
JP5959128B1 (en) Tiled roof structure
EA008991B1 (en) Roofing plate and roofing method
CA2522163C (en) Composite construction element, in particular for making wall structures for buildings and process for its manufacture
JP6894618B1 (en) How to arrange the roofing material of the long horizontal roofing module roofing material for remodeling
US9342634B2 (en) Dormer calculator
JP6860944B1 (en) How to arrange the roofing material of the long horizontal roofing module roofing material
NL1033859C2 (en) System for laying pipes in a floor and the tile to be used.
CN107514082A (en) A kind of irregular II types large-span concrete hollow sandwich panel ceiling for storied building and preparation method
JP4605897B2 (en) Roof tile construction method and corner tile
JP6835374B1 (en) Modular metal roofing material
JP2543469B2 (en) Flat roof structure
JP2021161666A (en) building
JP4071900B2 (en) Flat roof tile group and tile tile allocation method
CN212153806U (en) Multi-rib densely-distributed wall panel
JP3816212B2 (en) Roof structure
JPH0623633Y2 (en) Roof tile mounting structure
JP5057889B2 (en) Tiling method including valley
GB2186303A (en) Roof-surface boundary tile
US20110047933A1 (en) Profiled steel deck
JP2006037643A (en) Installation structure of solar battery module
JPH0533426A (en) Roofing tile laying method
JP3014380U (en) Industrialized roof of building
JP2021119278A (en) Roof material for repair of existing roof
RU1795029C (en) Sheet metal rolled shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220907

R150 Certificate of patent or registration of utility model

Ref document number: 7144015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150