JP6860944B1 - How to arrange the roofing material of the long horizontal roofing module roofing material - Google Patents

How to arrange the roofing material of the long horizontal roofing module roofing material Download PDF

Info

Publication number
JP6860944B1
JP6860944B1 JP2020067958A JP2020067958A JP6860944B1 JP 6860944 B1 JP6860944 B1 JP 6860944B1 JP 2020067958 A JP2020067958 A JP 2020067958A JP 2020067958 A JP2020067958 A JP 2020067958A JP 6860944 B1 JP6860944 B1 JP 6860944B1
Authority
JP
Japan
Prior art keywords
roofing material
dimension
roofing
roof
horizontal projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020067958A
Other languages
Japanese (ja)
Other versions
JP2021161851A (en
Inventor
小栗 和彦
和彦 小栗
Original Assignee
甍エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 甍エンジニアリング株式会社 filed Critical 甍エンジニアリング株式会社
Priority to JP2020067958A priority Critical patent/JP6860944B1/en
Application granted granted Critical
Publication of JP6860944B1 publication Critical patent/JP6860944B1/en
Publication of JP2021161851A publication Critical patent/JP2021161851A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

【課題】本発明は長尺横葺き屋根材の配置方法における技術であり、従来の長尺横葺き屋根材の配置方法は、屋根面に屋根材を割り付けるルールが現場ごとに異なるため分かりにくいという課題があった。また、現場での屋根材の施工に手間が掛かるという課題があった。【解決手段】本発明の長尺横葺きモジュール屋根材の配置方法は、勾配を有する建物の屋根であって、屋根は隅棟又は谷を有する屋根において、屋根材の働き長さの水平投影寸法が建物の設計単位寸法の整数分の一であり、屋根材の働き幅寸法が働き長さの水平投影寸法の二倍以上の整数倍であり、屋根材を一段毎に配置する際に、桁方向に対して一方の端部からもう一方の端部方向に屋根材の働き長さの水平投影寸法の整数倍をずらして配置し、陸棟部、隅棟部、ケラバ部、壁際部、三又部、陸棟曲がり部、谷部などの屋根端部に規格化した形状の屋根材を配置する。【選択図】 図1PROBLEM TO BE SOLVED: To provide a technique for arranging a long horizontal roofing material, and it is difficult to understand the conventional method for arranging a long horizontal roofing material because the rules for allocating the roofing material to the roof surface differ from site to site. There was a challenge. In addition, there is a problem that it takes time and effort to construct the roofing material on site. SOLUTION: The method of arranging a long horizontal roofing module roofing material of the present invention is a roof of a building having a slope, and the roof is a roof having a corner ridge or a valley, and the horizontal projection dimension of the working length of the roofing material. Is an integral fraction of the design unit size of the building, the working width dimension of the roofing material is an integral multiple of more than twice the horizontal projection dimension of the working length, and when arranging the roofing material step by step, the girder Arranged by shifting the horizontal projection dimension of the working length of the roofing material from one end to the other with respect to the direction, and arranging the land ridge, corner ridge, keraba, wall edge, and three-pronged part. , Place standardized roofing materials at the roof edges such as the bends and valleys of the land building. [Selection diagram] Fig. 1

Description

本発明は、長尺横葺き屋根材の屋根への配置方法であり、勾配を有する屋根を備える建物の屋根であって、前記屋根は隅棟又は谷を有し、屋根材を桁方向に複数枚並べ、前記屋根材を段方向に複数段並べる屋根において、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の整数分の一であり、前記屋根材の働き幅寸法が前記働き長さの水平投影寸法の二倍以上の整数倍であり、前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法の整数倍をずらして配置し、陸棟部、隅棟部、ケラバ部、壁際部、三又部、陸棟曲がり部、谷部などの屋根端部に規格化した形状の屋根材を配置する。 The present invention is a method of arranging a long horizontal roofing material on a roof, which is a roof of a building having a sloped roof, the roof having a corner ridge or a valley, and a plurality of roofing materials in the girder direction. In a roof in which the roofing materials are arranged in a plurality of stages in the step direction, the horizontal projection dimension of the working length of the roofing material is an integral fraction of the design unit size of the building, and the working width dimension of the roofing material is It is an integral multiple of twice or more the horizontal projection dimension of the working length, and when the roofing material is arranged step by step in the flow direction from the eaves to the land building, the roofing material is placed on the roof girder. Arranged with an integral multiple of the horizontal projection dimension of the working length of the roofing material shifted from one end to the other with respect to the direction, the land ridge, the corner ridge, the keraba, the wall edge, and the three forks. Place standardized roofing materials on roof edges such as sections, bends of land buildings, and valleys.

従来技術の特許文献1には、特開平8−109708号の瓦及び瓦葺き方法がある。この特許文献では、専門の職人でなくとも簡単に葺くことのできる瓦及び瓦葺き方法を提供すること。又、葺くときや修理するときに瓦の上を歩き易く、雨水が漏れ難いし、美麗な瓦及び瓦葺き方法を提供する。モジュール長さを1辺とする正方形の瓦本体部と、この水上側の上方接続部と、一側の側方接続部とからなる桟瓦1と、瓦本体部と上方接続部と側方接続部と隅瓦接続部とからなる両桟瓦3と、瓦本体部の半分の半瓦本体部と上方接続部と側方接続部とからなる半瓦2と、半瓦本体部と上方接続部と側方接続部と隅瓦接続部とからなる両桟半瓦4と、瓦本体部の対角線で切断された谷瓦本体部と隅瓦接続部とからなる谷瓦5と、谷瓦本体部と上方接続部と側方接続部とからなる側方接続部付き谷瓦6と、瓦本体部が対角線で折曲された廻り隅瓦7とからなる瓦及びこの瓦の葺き方法という提案がされている。 Patent Document 1 of the prior art includes a roof tile and a roofing method of Japanese Patent Application Laid-Open No. 8-109708. This patent document provides roof tiles and roofing methods that can be easily roofed by non-professional craftsmen. It also provides a beautiful roof tile and roofing method that makes it easy to walk on the roof tiles when roofing or repairing, and prevents rainwater from leaking. A square roof tile body having a module length as one side, an upper connection part on the water side, a crosspiece 1 consisting of a side connection part on one side, a tile body part, an upper connection part, and a side connection part. Double roof tile 3 consisting of a roof tile main body and a corner tile connection part, a half roof tile 2 consisting of a half roof tile main body part, an upper connection part and a side connection part, and a half roof tile main body part and an upper connection part and a side. Both crosspiece half tiles 4 consisting of a square connection part and a corner tile connection part, a valley tile 5 consisting of a valley tile body part and a corner tile connection part cut diagonally of the roof tile body part, and a valley tile body part and above. A proposal has been made for a roof tile consisting of a valley tile 6 with a side connecting portion consisting of a connecting portion and a side connecting portion, and a peripheral corner tile 7 in which the tile main body is bent diagonally, and a roofing method for this tile. ..

特開特開平8−109708号公報Japanese Unexamined Patent Publication No. 8-109708

特許文献1では瓦本体部(はたらき面)は葺いたときの水平面への投影形状が建物の単位寸法の整数分の一(モジュール)にほぼ等しい長さを1辺とする正方形であるから、この瓦本体部を整数個並べて葺くと建物の単位寸法にほぼ合致する。そして、建物の柱は単位寸法に合わせて設けられ、谷や隅棟はこの柱を通過し、水平面への投影形状が壁面から45°傾斜した傾斜線に沿って設けられるから、瓦を隅棟と隅棟との間に葺く場合には、最初の瓦が瓦本体部であれば最後の瓦が瓦本体部になり、最初の瓦が半瓦本体部であれば最後の瓦が半瓦本体部となる。又、隅棟と谷との間に葺く場合には、谷部分に半瓦本体部の長さだけ開ける必要があるから、最初の瓦が瓦本体部(または半瓦本体部)であれば最後の瓦が半瓦本体部(または瓦本体部)となる。又、谷と谷との間に葺く場合には、両方の谷部分に半瓦本体部の長さだけ開けるから、最初の瓦が瓦本体部であれば最後の瓦が瓦本体部となり、最初の瓦が半瓦本体部であれば最後の瓦が半瓦本体部となる。このように、瓦の割り付けが極めて簡単に出来るという効果を発揮する。 In Patent Document 1, the roof tile main body (working surface) is a square whose one side is a length whose projected shape on the horizontal plane when thatched is approximately equal to an integral fraction (module) of the unit dimension of the building. When an integer number of roof tiles are lined up and thatched, they almost match the unit dimensions of the building. Then, the pillars of the building are provided according to the unit dimensions, the valleys and corner ridges pass through these pillars, and the projected shape on the horizontal plane is provided along the slope line inclined by 45 ° from the wall surface. When roofing between the roof and the corner ridge, if the first tile is the tile body, the last tile will be the tile body, and if the first tile is the half tile body, the last tile will be the half tile. It becomes the main body. Also, when roofing between the corner ridge and the valley, it is necessary to open the valley part by the length of the half-tile body, so if the first tile is the tile body (or half-tile body) The last tile becomes the half-tile body (or tile body). Also, when roofing between valleys, only the length of the half-tile body is opened in both valleys, so if the first tile is the tile body, the last tile will be the tile body. If the first tile is the half-tile body, the last tile is the half-tile body. In this way, the effect of allocating roof tiles is extremely easy.

しかし、特許文献1の屋根材は建物の単位寸法の整数分の一(モジュール)にほぼ等しい長さを1辺とする正方形形状であり、屋根面に割り付けるのに多くの屋根材を配置する必要があり、屋根材の施工に手間が掛かるという課題があった。
寄棟屋根の陸棟際の端部は三又部や陸棟曲がり部などの瓦の納まりがあるが、特許文献1では三又部や陸棟曲がり部と言った部位での専用の瓦の設定は無く、現場で職人が加工する必要があり、この部位での瓦の加工は難しく、現場での施工に手間が掛かるという課題があった。
また、瓦の配置方法においては流れ方向にて一段飛ばしで瓦本体と半瓦とを交互に配置するというルールが必要であり、瓦の割り付けにおいてもルールが煩雑で手間が掛かるという課題があった。
さらに、桟瓦だけでなく両桟瓦、半瓦、両桟半瓦、谷瓦、側方接続部付き谷瓦、廻り隅瓦といった多数の専用瓦の設定が必要であり、多品種小ロット生産方式でないと生産が出来ないことによる生産効率が悪いという課題と、多くの品目を在庫管理しなければならないことによる在庫負担の増大などという課題があった。
However, the roofing material of Patent Document 1 has a square shape having a length approximately equal to an integral fraction (module) of the unit size of the building as one side, and it is necessary to arrange many roofing materials to allocate to the roof surface. There was a problem that it took time and effort to construct the roofing material.
At the end of the hipped roof near the land ridge, there are tiles such as the three-pronged part and the bent part of the land ridge, but in Patent Document 1, the setting of the dedicated roof tile at the three-pronged part and the bent part of the land ridge is There was a problem that it was necessary for a craftsman to process the roof tiles on site, and it was difficult to process the roof tiles at this site, and it took time and effort to construct the roof tiles on site.
In addition, in the method of arranging roof tiles, it is necessary to have a rule that the roof tile body and the half roof tile are arranged alternately by skipping one step in the flow direction, and there is a problem that the rule is complicated and time-consuming in allocating the roof tile. ..
Furthermore, it is necessary to set a large number of dedicated roof tiles such as both roof tiles, half roof tiles, half roof tiles, valley roof tiles, valley roof tiles with side connections, and corner tiles in addition to the roof tiles, which is not a high-mix, small-lot production method. There were problems such as poor production efficiency due to the inability to produce and an increase in inventory burden due to the need to manage the inventory of many items.

本発明は、屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の整数分の一であり、前記屋根材の働き幅寸法が前記働き長さの水平投影寸法の二倍以上の整数倍である横長の長尺横葺き屋根材であり、前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法の整数倍をずらして配置し、陸棟部、隅棟部、ケラバ部、壁際部、三又部、陸棟曲がり部、谷部などの屋根端部に規格化した形状の屋根材を配置する配置方法を提供する。 In the present invention, the horizontal projection dimension of the working length of the roofing material is an integral fraction of the design unit size of the building, and the working width dimension of the roofing material is more than twice the horizontal projection dimension of the working length. It is a horizontally long horizontal roofing material that is an integral multiple, and when the roofing material is arranged step by step in the flow direction from the eaves to the land building, the roofing material is arranged with respect to the girder direction of the roof surface to be arranged. Arranged by shifting an integral multiple of the horizontal projection dimension of the working length of the roofing material from one end to the other, land ridge, corner ridge, keraba, wall edge, three-pronged, land. Provided is an arrangement method in which a roofing material having a standardized shape is arranged at a roof edge such as a ridge bend or a valley.

請求項1記載の本発明の長尺横葺きモジュール屋根材の屋根材配置方法は、勾配を有する屋根を備える建物の屋根であって、前記屋根は隅棟又は谷を有し、屋根材を桁方向に複数枚並べ、前記屋根材を段方向に複数段並べる屋根において、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の整数分の一であり、前記屋根材の働き幅寸法が前記働き長さの水平投影寸法の二倍以上の整数倍であり、前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法の整数倍をずらして配置し、陸棟部、隅棟部、ケラバ部、壁際部、三又部、陸棟曲がり部、谷部などの全ての屋根端部に規格化した形状の屋根材を配置することを特徴とする。 The method for arranging the roofing material of the long horizontal roofing module roofing material of the present invention according to claim 1 is a roof of a building having a sloped roof, and the roof has a corner ridge or a valley and the roofing material is girdered. In a roof in which a plurality of roofing materials are arranged in a direction and a plurality of roofing materials are arranged in a step direction, the horizontal projection dimension of the working length of the roofing material is an integral fraction of the design unit size of the building, and the working of the roofing material. The width dimension is an integral multiple of twice or more the horizontal projection dimension of the working length, and when the roofing material is arranged step by step in the flow direction from the eaves to the land building, the roofing material is arranged. Arranged by shifting the horizontal projection dimension of the working length of the roofing material from one end to the other end with respect to the girder direction of the surface, and arranging the land ridge, corner ridge, keraba, and wall edge. It is characterized in that roofing materials having a standardized shape are placed at all roof edges such as the three-pronged part, the curved part of the land ridge, and the valley part.

請求項2記載の本発明は、請求項1に記載の長尺横葺きモジュール屋根材の屋根材配置方法において、前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法をずらして配置することを特徴とする。 According to the second aspect of the present invention, in the method for arranging the roofing material of the long horizontal roofing module roofing material according to the first aspect, when the roofing material is arranged step by step in the flow direction from the eaves to the land ridge. The roofing material is arranged by shifting the horizontal projection dimension of the working length of the roofing material from one end to the other end with respect to the girder direction of the roof surface to be arranged.

請求項3記載の本発明は、請求項1又は請求項2に記載の長尺横葺きモジュール屋根材の屋根材配置方法において、前記屋根面における桁方向の寸法調整に用いる調整屋根材の働き幅寸法は、前記屋根材の働き長さの水平投影寸法の整数倍であり、前記調整屋根材を前記屋根材の代わりに配置することで働き幅寸法との差分により前記桁方向の寸法調整を行うことを特徴とする。 The present invention according to claim 3 is the working width of the adjusting roofing material used for dimensional adjustment in the girder direction on the roof surface in the roofing material arrangement method for the long horizontal roofing module roofing material according to claim 1 or 2. The dimension is an integral multiple of the horizontally projected dimension of the working length of the roofing material, and by arranging the adjusting roofing material in place of the roofing material, the dimension in the girder direction is adjusted by the difference from the working width dimension. It is characterized by that.

請求項4記載の本発明は、請求項1から請求項3までのいずれか記載の長尺横葺きモジュール屋根材の屋根材配置方法において、前記調整屋根材は複数種類の働き幅寸法を設け、異なる種類の働き幅寸法を有する前記調整屋根材を組み合わせて配置することで前記桁方向の寸法調整を行うことを特徴とする。 According to the fourth aspect of the present invention, in the method for arranging the roofing material of the long horizontal roofing module roofing material according to any one of claims 1 to 3, the adjusted roofing material is provided with a plurality of types of working width dimensions. It is characterized in that the dimension adjustment in the girder direction is performed by arranging the adjusting roofing materials having different kinds of working width dimensions in combination.

請求項5記載の本発明は、請求項1から請求項4までのいずれかに記載の長尺横葺きモジュール屋根材の屋根材配置方法において、前記隅棟部に配置する前記規格化した形状の屋根材の働き幅寸法は、前記屋根材の働き幅寸法の二分の一であることを特徴とする。 The present invention according to claim 5 is the method for arranging a roofing material for a long horizontal roofing module roofing material according to any one of claims 1 to 4, wherein the standardized shape is arranged in the corner ridge. The working width dimension of the roofing material is one half of the working width dimension of the roofing material.

請求項6記載の本発明は、請求項1から請求項5までのいずれか記載の長尺横葺きモジュール屋根材の屋根材配置方法において、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の偶数分の一の場合は、前記建物の軒の出寸法はゼロ又は前記働き長さの水平投影寸法の整数倍に所定の寸法を加えた寸法であり、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の奇数分の一の場合は、前記建物の軒の出寸法はゼロ又は前記働き長さの水平投影寸法の二分の一を整数倍した寸法に所定の寸法を加えた寸法であることを特徴とする。 According to the sixth aspect of the present invention, in the method for arranging the roofing material of the long horizontal roofing module roofing material according to any one of claims 1 to 5, the horizontal projection dimension of the working length of the roofing material is the building. In the case of an even fraction of the design unit dimension of, the eaves dimension of the building is zero or an integral multiple of the horizontal projection dimension of the working length plus a predetermined dimension, and the working of the roofing material. If the horizontal projection dimension of the length is an odd half of the design unit dimension of the building, the eaves dimension of the building is zero or half of the horizontal projection dimension of the working length multiplied by an integral multiple. It is characterized in that it is a dimension to which a predetermined dimension is added.

本発明によれば、勾配を有する屋根を備える建物の屋根であって、前記屋根は隅棟又は谷を有し、屋根材を桁方向に複数枚並べ、前記屋根材を段方向に複数段並べる屋根において、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の整数分の一であり、前記屋根材の働き幅寸法が前記働き長さの水平投影寸法の二倍以上の整数倍にすることで、前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法の整数倍をずらして配置し、陸棟部、隅棟部、ケラバ部、壁際部、三又部、陸棟曲がり部、谷部などの屋根端部に規格化した形状の屋根材を配置することで、前記建物の設計単位寸法と連動した屋根材の配置が可能となり、陸棟部、隅棟部、ケラバ部、壁際部、三又部、陸棟曲がり部、谷部など全ての屋根端部において屋根材の配置がルール化出来る。その結果全ての屋根端部において規格化した形状の屋根材を設定し配置することが出来る。
隅棟部及び谷部は、屋根形状を水平投影した際には一方の桁方向を0度に設定した際には必ず45度に設定されるため、屋根材の配置が一段登るごとに屋根材の働き長さの水平投影寸法分だけ桁方向でずれる。このことを利用し、屋根材の働き幅寸法を働き長さの水平投影寸法の二倍以上の整数倍とし、かつ、屋根材の桁方向での配置の際に屋根材の働き長さの水平投影寸法の整数倍だけ各段でずらす配置ルールにすることで、各段における配置ルールも簡単明瞭で分かりやすく、屋根端部における規格化した形状の屋根材の種類を減らすことが出来る。
また、前記屋根材を長尺化することで横方向での施工枚数の減少により施工性を上げることが出来る。
さらに、規格化した形状の屋根材は、前記屋根材をプレカット加工により生産することが可能となり、高い生産性で生産することが出来る。
According to the present invention, a roof of a building having a sloped roof, the roof having a corner ridge or a valley, a plurality of roofing materials are arranged in a girder direction, and a plurality of roofing materials are arranged in a step direction. In the roof, the horizontal projection dimension of the working length of the roofing material is an integral fraction of the design unit size of the building, and the working width dimension of the roofing material is at least twice the horizontal projection dimension of the working length. By multiplying by an integral multiple, when the roofing material is arranged step by step in the flow direction from the eaves to the land building, the roofing material is arranged from one end to the other with respect to the girder direction of the roof surface to be arranged. Arranged by shifting an integral multiple of the horizontal projection dimension of the working length of the roofing material in the direction of the edge of the roof, such as the land ridge, corner ridge, keraba, wall edge, three-pronged, land ridge bend, valley, etc. By arranging the standardized roof material on the roof edge, it is possible to arrange the roof material in conjunction with the design unit dimensions of the building, and the land ridge, corner ridge, keraba, wall edge, three-pronged part, etc. The arrangement of roofing materials can be ruled at all roof edges such as the bends and valleys of the land building. As a result, it is possible to set and arrange a roofing material having a standardized shape at all roof edges.
The corner ridge and valley are always set to 45 degrees when one of the girder directions is set to 0 degrees when the roof shape is horizontally projected, so the roof material is set every time the roof material is placed one step up. It shifts in the girder direction by the horizontal projection dimension of the working length of. Taking advantage of this, the working width dimension of the roofing material is set to an integral multiple of twice or more the horizontal projection dimension of the working length, and the working length of the roofing material is horizontal when the roofing material is arranged in the girder direction. By using an arrangement rule that shifts each stage by an integral multiple of the projected dimension, the arrangement rule at each stage is simple, clear, and easy to understand, and the types of roofing materials with a standardized shape at the roof edge can be reduced.
Further, by lengthening the roofing material, the workability can be improved by reducing the number of works to be carried out in the lateral direction.
Further, the roofing material having a standardized shape can be produced by pre-cutting the roofing material, and can be produced with high productivity.

本発明の実施例による寄棟切妻混合屋根での屋根材割付図Roofing material allocation diagram for a hipped gable mixed roof according to an embodiment of the present invention 本発明の実施例による寄棟屋根の屋根面における屋根材割付図Roofing material allocation diagram on the roof surface of the hipped roof according to the embodiment of the present invention 本発明の実施例による寄棟屋根での軒の出変化による屋根材割付図Roofing material allocation diagram due to changes in eaves on the hipped roof according to the embodiment of the present invention 本発明の実施例による屋根材の製品図Product drawing of roofing material according to the embodiment of the present invention 本発明の実施例による陸棟際の屋根材が真物の場合の流れ方向割付図Flow direction allocation diagram when the roofing material near the land building according to the embodiment of the present invention is genuine 本発明の実施例による陸棟際の屋根材が働き長さの水平投影寸法の場合の流れ方向割付図Flow direction allocation diagram when the roofing material near the land building according to the embodiment of the present invention has the horizontal projection dimension of the working length. 本発明の実施例による規格化形状屋根材の形状図1Shape of standardized shape roofing material according to the embodiment of the present invention Figure 1 本発明の実施例による規格化形状屋根材の形状図2Shape of standardized shape roofing material according to the embodiment of the present invention Figure 2 本発明の実施例による寄棟屋根の屋根面における割付条件別の屋根材割付図Roofing material allocation diagram according to allocation conditions on the roof surface of the hipped roof according to the embodiment of the present invention

本発明の第1の実施の形態における長尺横葺きモジュール屋根材の屋根材配置方法は、勾配を有する屋根を備える建物の屋根であって、前記屋根は隅棟又は谷を有し、屋根材を桁方向に複数枚並べ、前記屋根材を段方向に複数段並べる屋根において、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の整数分の一であり、前記屋根材の働き幅寸法が前記働き長さの水平投影寸法の二倍以上の整数倍であり、前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法の整数倍をずらして配置し、陸棟部、隅棟部、ケラバ部、壁際部、三又部、陸棟曲がり部、谷部などの全ての屋根端部に規格化した形状の屋根材を配置するものである。本実施の形態によれば、前記建物の設計単位寸法と連動した屋根材の配置が可能となり、陸棟部、隅棟部、ケラバ部、壁際部、三又部、陸棟曲がり部、谷部など全ての屋根端部において屋根材の配置がルール化出来る。その結果全ての屋根端部において規格化した形状の屋根材を設定し配置することが出来る。
隅棟部及び谷部は、屋根形状を水平投影した際には一方の桁方向を0度に設定した際には必ず45度に設定されるため、屋根材の配置が一段登るごとに屋根材の働き長さの水平投影寸法分だけ桁方向でずれる。このことを利用し、屋根材の働き幅寸法を働き長さの水平投影寸法の二倍以上の整数倍とし、かつ、屋根材の桁方向での配置の際に屋根材の働き長さの水平投影寸法の整数倍だけ各段でずらす配置ルールにすることで、各段における配置ルールも簡単明瞭で分かりやすく、屋根端部における規格化した形状の屋根材の種類を減らすことが出来る。
また、前記屋根材を長尺化することで横方向での施工枚数の減少により施工性を上げることが出来る。
The method for arranging the roofing material of the long horizontal roofing module roofing material in the first embodiment of the present invention is the roof of a building having a sloped roof, and the roof has a corner ridge or a valley and is a roofing material. In a roof in which a plurality of roofing materials are arranged in a girder direction and a plurality of roofing materials are arranged in a step direction, the horizontal projection dimension of the working length of the roofing material is one integral of the design unit dimension of the building, and the roofing material. The working width dimension of is an integral multiple of twice or more the horizontal projection dimension of the working length, and when the roofing material is arranged step by step in the flow direction from the eaves to the land building, the roofing material is arranged. The roofing material is arranged so as to be offset by an integral multiple of the horizontal projection dimension of the working length of the roofing material from one end to the other with respect to the girder direction of the roof surface. A standardized roofing material is placed at all roof edges such as the wall edge, the three-pronged part, the curved part of the land ridge, and the valley part. According to this embodiment, it is possible to arrange the roofing material in conjunction with the design unit dimensions of the building, and all of the land ridge, corner ridge, keraba, wall edge, three-pronged part, land ridge bend, valley, etc. The arrangement of roofing materials can be ruled at the roof edge of the building. As a result, it is possible to set and arrange a roofing material having a standardized shape at all roof edges.
The corner ridge and valley are always set to 45 degrees when one of the girder directions is set to 0 degrees when the roof shape is horizontally projected, so the roof material is set every time the roof material is placed one step up. It shifts in the girder direction by the horizontal projection dimension of the working length of. Taking advantage of this, the working width dimension of the roofing material is set to an integral multiple of twice or more the horizontal projection dimension of the working length, and the working length of the roofing material is horizontal when the roofing material is arranged in the girder direction. By using an arrangement rule that shifts each stage by an integral multiple of the projected dimension, the arrangement rule at each stage is simple, clear, and easy to understand, and the types of roofing materials with a standardized shape at the roof edge can be reduced.
Further, by lengthening the roofing material, the workability can be improved by reducing the number of works to be carried out in the lateral direction.

本発明の第2の実施の形態は、第1の実施の形態による長尺横葺きモジュール屋根材の屋根材配置方法において、前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法をずらして配置するものである。本実施の形態によれば、屋根材の配置が一段登るごとに屋根材の働き長さの水平投影寸法分だけ桁方向でずれるため、屋根材の働き長さの水平投影寸法分だけずらして配置するルールにすることで各段における配置ルールがさらに簡単明瞭で分かりやすくなり、隅棟における一方の隅棟端部における規格化した形状の屋根材が1種類の形状となり、規格化した形状の屋根材の種類をさらに減らすことが出来る。 The second embodiment of the present invention is the method of arranging the roofing material of the long horizontal roofing module roofing material according to the first embodiment, in which the roofing material is arranged step by step in the flow direction from the eaves to the land ridge. At that time, the roofing material is arranged by shifting the horizontal projection dimension of the working length of the roofing material from one end to the other end with respect to the girder direction of the roof surface to be arranged. According to the present embodiment, the arrangement of the roofing material is shifted in the girder direction by the horizontal projection dimension of the working length of the roofing material each time the roofing material is arranged one step, so that the arrangement is shifted by the horizontal projection dimension of the working length of the roofing material. The layout rule at each stage becomes simpler, clearer, and easier to understand, and the standardized roofing material at the end of one corner of the corner ridge becomes one type of roof. The types of materials can be further reduced.

本発明の第3の実施の形態は、第1又は第2の実施の形態による長尺横葺きモジュール屋根材の屋根材配置方法において、前記屋根面における桁方向の寸法調整に用いる調整屋根材の働き幅寸法は、前記屋根材の働き長さの水平投影寸法の整数倍であり、前記調整屋根材を前記屋根材の代わりに配置することで働き幅寸法の差分により前記桁方向の寸法調整を行うものである。本実施の形態によれば、前記調整屋根材を入れることで桁方向の寸法を調整することが出来、隅棟部、谷部などの斜めカット加工が必要な屋根端部において斜めカット加工した規格化した形状の屋根材の種類を減らすことが出来る。また、前記屋根材の働き幅寸法は前記働き長さの水平投影寸法の整数倍だが、前記整数倍の倍率が大きい場合、屋根端部の規格化した形状の屋根材の種類が増えてしまうが、適切な働き幅寸法の調整屋根材を入れることで屋根端部の規格化した形状の屋根材種類が増えるのを抑えることが出来る。 A third embodiment of the present invention is the method for arranging the roofing material of the long horizontal roofing module roofing material according to the first or second embodiment of the adjusted roofing material used for dimensional adjustment in the girder direction on the roof surface. The working width dimension is an integral multiple of the horizontal projection dimension of the working length of the roofing material, and by arranging the adjusted roofing material in place of the roofing material, the dimension adjustment in the girder direction is performed by the difference in the working width dimension. It is what you do. According to this embodiment, the dimensions in the girder direction can be adjusted by inserting the adjusting roofing material, and the standard is that diagonally cut processing is performed at the roof edge portion that requires diagonal cutting processing such as corner ridges and valleys. It is possible to reduce the types of roofing materials with a modified shape. Further, the working width dimension of the roofing material is an integral multiple of the horizontal projection dimension of the working length, but if the magnification of the integral multiple is large, the types of roofing material having a standardized shape at the roof end will increase. , Adjusting the appropriate working width dimension By inserting the roofing material, it is possible to suppress the increase in the types of roofing material with the standardized shape of the roof edge.

本発明の第4の実施の形態は、第1から第3のいずれか実施の形態による長尺横葺きモジュール屋根材の屋根材配置方法において、前記調整屋根材は複数種類の働き幅寸法を設け、異なる種類の働き幅寸法を有する前記調整屋根材を組み合わせて配置することで前記桁方向の寸法調整を行うものである。本実施の形態によれば、前記調整屋根材の働き幅寸法の種類を減らすことが出来る。 A fourth embodiment of the present invention is a method for arranging a roofing material for a long horizontal roofing module roofing material according to any one of the first to third embodiments, wherein the adjusted roofing material is provided with a plurality of types of working width dimensions. , The dimension adjustment in the girder direction is performed by arranging the adjusting roofing materials having different kinds of working width dimensions in combination. According to this embodiment, it is possible to reduce the types of working width dimensions of the adjusted roofing material.

本発明の第5の実施の形態は、第1から第4のいずれかの実施の形態による長尺横葺きモジュール屋根材の屋根材配置方法において、前記隅棟部に配置する前記規格化した形状の屋根材の働き幅寸法は、前記屋根材の働き幅寸法の二分の一とするものである。本実施の形態によれば、前記隅棟部に配置する前記規格化した形状の屋根材を前記屋根材の半切により効率よく作ることが出来る。 A fifth embodiment of the present invention is the standardized shape to be arranged in the corner ridge portion in the method for arranging the roofing material of the long horizontal roofing module roofing material according to any one of the first to fourth embodiments. The working width dimension of the roofing material is half of the working width dimension of the roofing material. According to the present embodiment, the roofing material having the standardized shape to be arranged in the corner ridge can be efficiently produced by cutting the roofing material in half.

本発明の第6の実施の形態は、第1から第5のいずれかの実施の形態による長尺横葺きモジュール屋根材の屋根材配置方法において、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の偶数分の一の場合は、前記建物の軒の出寸法はゼロ又は前記働き長さの水平投影寸法の整数倍に所定の寸法を加えた寸法であり、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の奇数分の一の場合は、前記建物の軒の出寸法はゼロ又は前記働き長さの水平投影寸法の二分の一を整数倍した寸法に所定の寸法を加えた寸法とするものである。本実施の形態によれば、適切な軒の出寸法をあらかじめ把握することで、前記建物を建てる土地形状に合わせて最適な前記建物の軒の出寸法を選定することが出来る。 In the sixth embodiment of the present invention, in the method of arranging the roofing material of the long horizontal roofing module roofing material according to any one of the first to fifth embodiments, the horizontal projection dimension of the working length of the roofing material is In the case of an even fraction of the design unit dimension of the building, the eaves dimension of the building is zero or an integral multiple of the horizontal projection dimension of the working length plus a predetermined dimension, and the roofing material. When the horizontal projection dimension of the working length of the building is an odd half of the design unit dimension of the building, the eaves dimension of the building is zero or half of the horizontal projection dimension of the working length is multiplied by an integral number. It is a dimension obtained by adding a predetermined dimension to the dimension. According to the present embodiment, by grasping an appropriate eaves eaves dimension in advance, it is possible to select the optimum eaves eaves dimension according to the land shape on which the building is to be built.

以下本発明の実施例による長尺横葺きモジュール屋根材の屋根材配置方法について説明する。
図1は実施例による寄棟切妻混合屋根での屋根材割り付け図である。
図1は勾配を有する屋根2を備える建物の屋根2であって、屋根2は隅棟3と谷4のある寄棟屋根とケラバ部9cを有する切妻屋根とが混在している寄棟切妻混合屋根における屋根材割り付け図である。
図1(a)は、寄棟切妻混合屋根における2階屋根の屋根割り付け図を示し、図1(b)は同じ寄棟切妻混合屋根の1階屋根の屋根割り付け図を示す。
建物の設計単位寸法Pは尺モジュールであり、設計単位寸法Pは910mmである。
屋根材1の働き長さの水平投影寸法Lhは、建物の設計単位寸法Pの二分の一の455mmであり、屋根材1の働き幅寸法Wは、働き長さの水平投影寸法Lhの4倍にあたる1820mmとする。
先ず、図1(a)の下側に記載の台形形状の屋根面における配置方法を説明する。
屋根材1の配置方向は、屋根面の桁方向7に対して右の隅棟部9bから左の隅棟部9bに向かった方向とする。
隅棟部9bには隅棟規格化形状屋根材10bを配置する。
隅棟規格化形状屋根材10bの働き幅寸法は、屋根材1の働き幅寸法Wの二分の一にあたる910mmとする。
右の隅棟規格化形状屋根材10bと左の隅棟規格化形状屋根材10bの働き幅寸法は同じ910mmとする。
右側の隅棟規格化形状屋根材10bを右の隅棟部9bに配置し、その左隣に屋根材1を配置し、順次左側の隅棟部9bに向かって屋根材1を配置する。
図1(a)では、台形面の軒桁寸法は9100mmであり、設計単位寸法であらわすと10Pとなる。
また軒の出寸法12が910mmであることから、軒先1段目の右の隅棟部9bから左の隅棟部9bまでの屋根材先端部での寸法は、12Pにあたる10920mmとなる。
屋根材1の働き幅寸法Wが2Pにあたる1820mmであり、隅棟規格化形状屋根材10bがその半分の1Pなので、左右の隅棟規格化形状屋根材10bの働き幅寸法を合わせると2Pとなる。
屋根材1が5枚で10Pになり、隅棟規格化形状屋根材10bが左右に配置されると2Pとなるため、全て合わせると12Pとなり左右対称で綺麗に配置できる。
Hereinafter, a method of arranging the roofing material of the long horizontal roofing module roofing material according to the embodiment of the present invention will be described.
FIG. 1 is a roof material allocation diagram for a hipped gable mixed roof according to an embodiment.
FIG. 1 shows a roof 2 of a building having a sloped roof 2, and the roof 2 is a hipped gable mixed roof in which a hipped roof having a corner building 3 and a valley 4 and a gable roof having a keraba portion 9c are mixed. It is a roofing material allocation diagram in a roof.
FIG. 1 (a) shows a roof allocation diagram of a second-floor roof in a hipped gable mixed roof, and FIG. 1 (b) shows a roof allocation diagram of a first-floor roof of the same hipped gable mixed roof.
The design unit dimension P of the building is a shaku module, and the design unit dimension P is 910 mm.
The horizontal projection dimension Lh of the working length of the roofing material 1 is 455 mm, which is half of the design unit dimension P of the building, and the working width dimension W of the roofing material 1 is four times the horizontal projection dimension Lh of the working length. It is set to 1820 mm, which corresponds to this.
First, a method of arranging the trapezoidal roof surface shown on the lower side of FIG. 1A will be described.
The arrangement direction of the roofing material 1 is the direction from the right corner ridge portion 9b to the left corner ridge portion 9b with respect to the girder direction 7 of the roof surface.
A corner ridge standardized shape roofing material 10b is arranged in the corner ridge portion 9b.
The working width dimension of the corner ridge standardized shape roofing material 10b is 910 mm, which is half of the working width dimension W of the roofing material 1.
The working width dimension of the right corner ridge standardized shape roofing material 10b and the left corner ridge standardized shape roofing material 10b is the same 910 mm.
The right corner ridge standardized shape roofing material 10b is arranged in the right corner ridge portion 9b, the roofing material 1 is arranged on the left side thereof, and the roofing material 1 is sequentially arranged toward the left corner ridge portion 9b.
In FIG. 1A, the eaves girder size of the trapezoidal surface is 9100 mm, which is 10P in terms of the design unit size.
Further, since the eaves protrusion dimension 12 is 910 mm, the dimension at the tip of the roofing material from the right corner ridge 9b to the left corner ridge 9b of the first stage of the eaves is 10920 mm, which corresponds to 12P.
Since the working width dimension W of the roofing material 1 is 1820 mm, which corresponds to 2P, and the corner ridge standardized shape roofing material 10b is 1P, which is half of that, the working width dimension of the left and right corner ridge standardized shape roofing material 10b is 2P. ..
Five roofing materials 1 make 10P, and when the corner ridge standardized shape roofing materials 10b are arranged on the left and right, it becomes 2P. Therefore, when all of them are combined, it becomes 12P, which can be arranged symmetrically and neatly.

屋根材1を1段目に配置したのち、2段目に屋根材1を配置する。
2段目は1段目同様、右側の隅棟部9bに1段目と同様の形状の隅棟規格化形状屋根材10bを配置し、その左隣りに屋根材1を配置する。
1段目の屋根材1に対して2段目の屋根材1の配置位置は、桁方向7の左側に屋根材1の働き長さの水平投影寸法Lhである455mm分をずらして配置する。
屋根材1を左側の隅棟部9bに向かって順次配置し、左側の隅棟部9bに1段目と同様の形状の隅棟規格化形状屋根材10bを配置する。
2段目は、1段目と比べ屋根材先端部での桁方向7の寸法が右側で455mm、左側で455mm短くなるため、左右合わせて910mmと1P分短くなる。
2段目の桁方向7の寸法は、1段目の寸法の12Pから1P引いた11Pとなり、左右に1Pずつの隅棟規格化形状屋根材10bを配置するので、9Pのスペースに屋根材1を配置することになる。
屋根材1の働き幅寸法Wは2Pなので4.5枚分のスペースとなり、屋根材1の働き幅寸法Wの0.5枚分の働き幅寸法である910mmの調整屋根材11を左側の隅棟規格化形状屋根材10bの右隣りに1枚配置することで11Pの桁方向7の寸法となり2段目を割り付けることが出来る。
After the roofing material 1 is arranged on the first stage, the roofing material 1 is arranged on the second stage.
In the second stage, as in the first stage, the corner ridge standardized shape roofing material 10b having the same shape as the first stage is arranged in the right corner ridge portion 9b, and the roofing material 1 is arranged on the left side thereof.
The position of the second-stage roofing material 1 with respect to the first-stage roofing material 1 is shifted to the left side in the girder direction 7 by 455 mm, which is the horizontal projection dimension Lh of the working length of the roofing material 1.
The roofing material 1 is sequentially arranged toward the left corner ridge portion 9b, and the corner ridge standardized shape roofing material 10b having the same shape as the first stage is arranged on the left corner ridge portion 9b.
In the second stage, the dimension of the girder direction 7 at the tip of the roofing material is 455 mm shorter on the right side and 455 mm shorter on the left side than the first stage, so that the total length of the left and right sides is 910 mm, which is 1 P shorter.
The dimension of the second stage girder direction 7 is 11P, which is obtained by subtracting 1P from the 1st stage dimension of 12P. Since the corner ridge standardized shape roofing material 10b is arranged on each side of the 1P, the roofing material 1 is placed in the space of 9P. Will be placed.
Since the working width dimension W of the roofing material 1 is 2P, the space is equivalent to 4.5 sheets, and the adjusting roofing material 11 of 910 mm, which is the working width dimension of 0.5 sheets of the working width dimension W of the roofing material 1, is placed in the left corner. By arranging one sheet on the right side of the building standardized shape roofing material 10b, the dimension is 7 in the girder direction of 11P, and the second stage can be assigned.

図1(a)の台形面の2段目のように屋根面における桁方向7の寸法調整を行う際には、調整屋根材11を配置する。
屋根面における桁方向7の寸法は、隅棟部9bにおいて片側で屋根材1の働き長さの水平投影寸法Lhの分だけ短くなる。
桁方向7の左右に隅棟3がある場合は、左右で屋根材1の働き長さの水平投影寸法Lhの2倍だけ短くなる。
屋根材1の働き幅寸法Wは1820mmで屋根材1の働き長さの水平投影寸法Lhの4倍の関係なので、1段ごとに桁方向7で屋根材1の働き長さの水平投影寸法Lhの2倍の寸法が短くなるという事は、調整屋根材11の働き幅寸法を屋根材1の働き長さの水平投影寸法Lhの2倍に設定することで調整屋根材11の桁方向7の調整寸法が1段ごとに短くなる桁方向7の寸法と一致する。
調整屋根材11の働き幅寸法を屋根材1の働き長さの水平投影寸法Lhの2倍の910mmに設定することで、屋根材1の働き幅寸法Wが1820mm、調整屋根材11の働き幅寸法が910mmであることから、屋根材1の働き幅寸法Wと調整屋根材11の働き幅寸法の差分である910mmが桁方向7の調整寸法として機能する。
When adjusting the dimensions of the girder direction 7 on the roof surface as in the second step of the trapezoidal surface in FIG. 1A, the adjusting roofing material 11 is arranged.
The dimension of the girder direction 7 on the roof surface is shortened by the horizontal projection dimension Lh of the working length of the roofing material 1 on one side in the corner ridge portion 9b.
When there are corner ridges 3 on the left and right sides of the girder direction 7, the working length of the roofing material 1 is shortened by twice the horizontal projection dimension Lh on the left and right sides.
The working width dimension W of the roofing material 1 is 1820 mm, which is four times the horizontal projection dimension Lh of the working length of the roofing material 1, so the horizontal projection dimension Lh of the working length of the roofing material 1 in the girder direction 7 for each step. The fact that the dimension is twice as short as that of the adjustment roofing material 11 means that the working width dimension of the adjusting roofing material 11 is set to twice the horizontal projection dimension Lh of the working length of the roofing material 1 in the girder direction 7 of the adjusting roofing material 11. The adjustment dimension matches the dimension in the girder direction 7 where the adjustment dimension is shortened step by step.
By setting the working width dimension of the adjusting roofing material 11 to 910 mm, which is twice the horizontal projection dimension Lh of the working length of the roofing material 1, the working width dimension W of the roofing material 1 is 1820 mm, and the working width of the adjusting roofing material 11 Since the dimension is 910 mm, 910 mm, which is the difference between the working width dimension W of the roofing material 1 and the working width dimension of the adjusting roofing material 11, functions as the adjusting dimension in the girder direction 7.

図1(a)の左側の屋根面は、桁方向7からみて右側に隅棟部9bがあり、左側にケラバ部9cがある寄棟切妻混合屋根の屋根面である。
この屋根面では、隅棟3は右側にしかないため、1段目と2段目の桁方向7の寸法差は屋根材1の働き長さの水平投影寸法Lhの1倍となる。
片側にしか隅棟3が存在しない屋根面においては調整屋根材11の働き幅寸法は、屋根材1の働き長さの水平投影寸法Lhの1倍以上の整数倍となる。
片側に隅棟部9bがあり、もう一方にケラバ部9cがあり、屋根材1の働き幅寸法Wが屋根材1の働き長さの水平投影寸法Lhの4倍である図1(a)の屋根面の場合では、調整屋根材11の働き幅寸法は屋根材1の働き長さの水平投影寸法Lhの1倍と2倍と3倍の3種類が必要となる。
しかし、図1(a)では、屋根材1の働き長さの水平投影寸法Lhの1倍の455mmと2倍の910mmの2種類の働き幅寸法を持つ調整屋根材11だけで割り付けを行っている。
具体的には、働き幅寸法が3倍の調整屋根材11が必要な段には1倍の455mmと2倍の910mmを2枚用いて、複数の調整屋根材11を組み合わせることで3倍の1365mmの寸法調整を行っている。
The roof surface on the left side of FIG. 1A is a roof surface of a hipped gable mixed roof having a corner ridge portion 9b on the right side and a keraba portion 9c on the left side when viewed from the girder direction 7.
On this roof surface, since the corner ridge 3 is only on the right side, the dimensional difference between the first and second girder directions 7 is one times the horizontal projection dimension Lh of the working length of the roofing material 1.
On the roof surface where the corner ridge 3 exists only on one side, the working width dimension of the adjusting roofing material 11 is an integral multiple of one or more times the horizontal projection dimension Lh of the working length of the roofing material 1.
In FIG. 1A, there is a corner ridge portion 9b on one side and a keraba portion 9c on the other side, and the working width dimension W of the roofing material 1 is four times the horizontal projection dimension Lh of the working length of the roofing material 1. In the case of the roof surface, the working width dimension of the adjusting roofing material 11 needs to be three types of one, two, and three times the horizontal projection dimension Lh of the working length of the roofing material 1.
However, in FIG. 1A, allocation is performed only by the adjusting roofing material 11 having two types of working width dimensions, 455 mm, which is once the horizontal projection dimension Lh of the working length of the roofing material 1, and 910 mm, which is twice the working length. There is.
Specifically, two sheets of 1x 455mm and 2x 910mm are used for the steps that require the adjusting roofing material 11 with 3 times the working width dimension, and 3 times by combining a plurality of adjusting roofing materials 11. The dimension of 1365 mm is adjusted.

図1(a)の台形面の3段目、4段目における屋根材1と調整屋根材11の配置は1段目、2段目の配置と同様、3段目は調整屋根材11が入らず4段目は調整屋根材11が入る。
3段目は左右の隅棟部9bに隅棟規格化形状屋根材10bが配置され、その間のスペースに屋根材1が4枚配置される。
4段目は左右の隅棟部9bに隅棟規格化形状屋根材10bが配置され、その間のスペースに屋根材1が3枚配置され、さらに屋根材1の0.5枚分のスペースに調整屋根材11が1枚配置される。
The arrangement of the roofing material 1 and the adjusting roofing material 11 on the third and fourth stages of the trapezoidal surface of FIG. 1A is the same as the arrangement of the first and second stages, and the adjusting roofing material 11 is inserted in the third stage. The adjustment roofing material 11 is placed in the fourth stage.
In the third stage, the corner ridge standardized shape roofing material 10b is arranged in the left and right corner ridges 9b, and four roofing materials 1 are arranged in the space between them.
In the fourth stage, the corner ridge standardized shape roofing material 10b is arranged in the left and right corner ridges 9b, three roofing materials 1 are arranged in the space between them, and the space is adjusted to 0.5 sheets of the roofing material 1. One roofing material 11 is arranged.

図1(a)の屋根2は、2本の陸棟6があり、曲がり部9gで直交している。
2本の陸棟6は同じ高さであり、5つの屋根面の流れ長さは全て同じ流れ長さである。
屋根面の流れ長さの水平投影寸法は、陸棟6から軒桁までが5460mmの半分の2730mmであり、軒桁から軒先5までが910mmとなり、軒先5から棟までの流れ長さの水平投影寸法は3640mmとなり、建物の設計単位寸法Pで言えば4Pの寸法となる。
陸棟部9aの屋根材1の働き長さの水平投影寸法Lhは455mmなので、流れ長さの水平投影寸法3640mmを1段分の455mmで割ることで流れ段数が8段であることを算出することが出来る。
The roof 2 of FIG. 1A has two land ridges 6 and is orthogonal to each other at a bent portion of 9 g.
The two land buildings 6 have the same height, and the flow lengths of the five roof surfaces are all the same.
The horizontal projection dimension of the flow length of the roof surface is 2730 mm, which is half of 5460 mm from the land ridge 6 to the eaves girder, 910 mm from the eaves girder to the eaves tip 5, and the horizontal projection of the flow length from the eaves 5 to the ridge. The dimension is 3640 mm, which is 4P in terms of the design unit dimension P of the building.
Since the horizontal projection dimension Lh of the working length of the roofing material 1 of the land building portion 9a is 455 mm, it is possible to calculate that the number of flow steps is 8 by dividing the horizontal projection dimension 3640 mm of the flow length by 455 mm for one step. You can.

図1(a)の台形面の屋根材1と調整屋根材11の配置は、奇数段である1段目、3段目、5段目、7段目が屋根材1のみで割り付けられ、偶数段である2段目、4段目、6段目が屋根材1と調整屋根材11により配置される。
陸棟際で最上段の8段目には、屋根材1及び調整屋根材11を尻側から流れ重なり寸法13分だけ短くカットされた形状の陸棟規格化形状屋根材10aが配置される。
In the arrangement of the roofing material 1 and the adjusting roofing material 11 on the trapezoidal surface of FIG. 1A, the odd-numbered first, third, fifth, and seventh steps are allotted only to the roofing material 1, and are even. The second, fourth, and sixth steps, which are steps, are arranged by the roofing material 1 and the adjusting roofing material 11.
On the 8th stage of the uppermost stage near the land building, a land building standardized shape roofing material 10a having a shape in which the roofing material 1 and the adjusting roofing material 11 flow from the tail side and are cut short by a dimension of 13 minutes is arranged.

図1(a)の台形面の右側に位置する三角面は台形面と基本的には同様な屋根材1の配置になる。
ただし、8段目は台形面と異なり陸棟6が存在しないので三又部9eに三又規格化形状屋根材10eのみが配置される。
The triangular surface located on the right side of the trapezoidal surface in FIG. 1A has basically the same arrangement of the roofing material 1 as the trapezoidal surface.
However, unlike the trapezoidal surface, the land ridge 6 does not exist in the eighth stage, so only the three-pronged standardized roofing material 10e is arranged in the three-pronged portion 9e.

図1(a)の台形面の陸棟6の反対側に位置する平行四辺形面は隅棟3と谷4が平行に位置している。
平行四辺形面の屋根材1と規格化形状屋根材10の配置方法は、隅棟部9bに台形面と同様の隅棟規格化形状屋根材10bを配置し、谷部9fに谷規格化形状屋根材10fを配置し、その間に屋根材1を配置する。
軒先5から陸棟6に向かって1段登るに際に、桁方向7に対して隅棟部9bから谷部9fに向かう方向に屋根材1を屋根材1の働き長さの水平投影寸法Lh分の455mmだけずらして配置する。
In the parallelogram surface of the trapezoidal surface of FIG. 1A located on the opposite side of the land ridge 6, the corner ridge 3 and the valley 4 are located in parallel.
The method of arranging the roofing material 1 and the standardized shape roofing material 10 on the parallelogram surface is to arrange the corner ridge standardized shape roofing material 10b similar to the trapezoidal surface on the corner ridge 9b and the valley standardized shape on the valley 9f. The roofing material 10f is arranged, and the roofing material 1 is arranged between them.
When climbing one step from the eaves 5 to the land ridge 6, the roofing material 1 is projected in the direction from the corner ridge 9b to the valley 9f with respect to the girder direction 7, and the horizontal projection dimension Lh of the working length of the roofing material 1. Arrange them with a shift of 455 mm.

図1(a)の台形面の左側に位置する隅棟3とケラバを有する屋根面は、軒先5から陸棟6に向かって1段登るに際に、桁方向7に対して隅棟部9bからケラバ部9cに向かう方向に屋根材1を屋根材1の働き長さの水平投影寸法Lh分の455mmだけずらして配置する。
1段目は桁方向1に対して右側の隅棟部9bに、台形面と同様の隅棟規格化形状屋根材10bを配置し、隅棟規格化形状屋根材10bの左方向に順次屋根材1を配置する。
ケラバ部9cには働き幅寸法が910mmのケラバ規格化形状屋根材10cを配置する。
2段目も同様に隅棟規格化形状屋根材10b及び屋根材1を配置し、ケラバ部9cには働き幅寸法が455mmのケラバ規格化屋根材10cを配置する。
3段目も同様に隅棟規格化形状屋根材10b及び屋根材1を配置し、ケラバ部9cには働き幅寸法が1820mmのケラバ規格化屋根材10cを配置する。
このケラバ規格化屋根材10cは、屋根材1から横重なり部21が除外された形状である。
4段目も同様に隅棟規格化形状屋根材10b及び屋根材1を配置し、ケラバ部9cの右隣に働き幅寸法が910mmの調整屋根材11を配置し、ケラバ部9cには働き幅寸法が455mmのケラバ規格化屋根材10cを配置する。
5段目以降は1段目から4段目までの配置方法の繰り返しとなる。
The roof surface having the corner ridge 3 and the keraba located on the left side of the trapezoidal surface of FIG. 1 (a) is the corner ridge 9b with respect to the girder direction 7 when climbing one step from the eaves 5 toward the land ridge 6. The roofing material 1 is arranged so as to be offset by 455 mm for the horizontal projection dimension Lh of the working length of the roofing material 1 in the direction from the ridge to the keraba portion 9c.
In the first stage, the corner ridge standardized shape roofing material 10b similar to the trapezoidal surface is arranged in the corner ridge portion 9b on the right side with respect to the girder direction 1, and the roofing material is sequentially placed in the left direction of the corner ridge standardized shape roofing material 10b. Place one.
A keraba standardized roofing material 10c having a working width of 910 mm is arranged in the keraba portion 9c.
Similarly, the corner building standardized shape roofing material 10b and the roofing material 1 are arranged in the second stage, and the keraba standardized roofing material 10c having a working width dimension of 455 mm is arranged in the keraba portion 9c.
Similarly, the corner ridge standardized shape roofing material 10b and the roofing material 1 are arranged in the third stage, and the keraba standardized roofing material 10c having a working width dimension of 1820 mm is arranged in the keraba portion 9c.
The keraba standardized roofing material 10c has a shape in which the laterally overlapping portion 21 is excluded from the roofing material 1.
Similarly, in the fourth stage, the corner building standardized shape roofing material 10b and the roofing material 1 are arranged, and the adjusting roofing material 11 having a working width dimension of 910 mm is arranged to the right of the keraba portion 9c, and the working width is arranged in the keraba portion 9c. A keraba standardized roofing material 10c having a size of 455 mm is placed.
From the 5th stage onward, the arrangement method from the 1st stage to the 4th stage is repeated.

図1(a)の台形面の上側に位置する谷2とケラバを有する屋根面は、軒先5から陸棟6に向かって1段登るに際に、桁方向7に対してケラバ部9cから谷部9fに向かう方向に屋根材1を屋根材1の働き長さの水平投影寸法Lh分の455mmだけずらして配置する。
1段目はケラバ部9cに働き幅寸法が455mmの調整屋根材11を配置し、左隣りに働き幅寸法が910mmの調整屋根材11を配置し、谷部9fに谷規格化形状屋根材10fを配置する。
2段目はケラバ部9cに屋根材1を配置し、谷部9fに谷規格化形状屋根材10fを配置する。
3段目はケラバ部9cに働き幅寸法が455mmの調整屋根材11を配置し、左隣りに屋根材1を配置し、谷部9fに谷規格化形状屋根材10fを配置する。
4段目はケラバ部9cに働き幅寸法が910mmの調整屋根材11を配置し、左隣りに屋根材1を配置し、谷部9fに谷規格化形状屋根材10fを配置する。
5段目以降は1段目から4段目までのケラバ部9cの配置方法の繰り返しとなる。
The roof surface having the valley 2 and the keraba located above the trapezoidal surface of FIG. 1 (a) is a valley from the keraba portion 9c with respect to the girder direction 7 when climbing one step from the eaves 5 toward the land ridge 6. The roofing material 1 is arranged so as to be offset by 455 mm for the horizontal projection dimension Lh of the working length of the roofing material 1 in the direction toward the portion 9f.
In the first stage, the adjusting roofing material 11 having a working width dimension of 455 mm is placed on the keraba portion 9c, the adjusting roofing material 11 having a working width dimension of 910 mm is placed on the left side, and the valley standardized shape roofing material 10f is placed on the valley portion 9f. To place.
In the second stage, the roofing material 1 is arranged in the keraba portion 9c, and the valley standardized shape roofing material 10f is arranged in the valley portion 9f.
In the third stage, the adjusting roofing material 11 having a working width dimension of 455 mm is arranged on the keraba portion 9c, the roofing material 1 is arranged on the left side, and the valley standardized shape roofing material 10f is arranged on the valley portion 9f.
In the fourth stage, the adjusting roofing material 11 having a working width dimension of 910 mm is arranged in the keraba portion 9c, the roofing material 1 is arranged on the left side, and the valley standardized shape roofing material 10f is arranged in the valley portion 9f.
From the 5th stage onward, the method of arranging the keraba portion 9c from the 1st stage to the 4th stage is repeated.

図1(b)は、寄棟切妻混合屋根の1階屋根の屋根割り付け図であり、基本的には図1(a)の割り付けと同じルールにて配置している。
1階屋根における特徴的な納まりは屋根面の頂部が建物の壁と接する壁際部9dである。
壁際部9dにおける屋根材1の配置方法についてだが、桁方向7と平行な壁際部9dについては陸棟部9aと同様の納まりとなり、壁の厚みや納まりにより例外はあるが基本的には陸棟規格化形状屋根材10aが壁際規格化形状屋根材10dとして共用できる。
桁方向7と平行な壁際部9dは平行壁際という名称で呼ばれる。
また、流れ方向8と平行な壁際部9dについてはケラバ部9cと同様の納まりとなり、壁の厚みや納まりにより例外はあるが基本的にはケラバ規格化形状屋根材10aが壁際規格化形状屋根材10dとして共用できる。
流れ方向8と平行な壁際部9dは流れ壁という名称で呼ばれる。
FIG. 1 (b) is a roof allocation diagram of the first-floor roof of the hipped gable mixed roof, and is basically arranged according to the same rules as the allocation of FIG. 1 (a).
The characteristic fit of the first-floor roof is the wall edge 9d where the top of the roof surface is in contact with the wall of the building.
Regarding the method of arranging the roofing material 1 on the wall edge 9d, the wall edge 9d parallel to the girder direction 7 fits in the same way as the land building 9a, and there are exceptions depending on the wall thickness and fit, but basically the land building is standardized. The shape roofing material 10a can be shared as the wall-side standardized shape roofing material 10d.
The wall edge portion 9d parallel to the girder direction 7 is called the parallel wall edge.
Further, the wall edge portion 9d parallel to the flow direction 8 has the same fit as the keraba portion 9c, and although there are exceptions depending on the wall thickness and fit, basically the keraba standardized shape roofing material 10a is the wall side standardized shape roofing material. It can be shared as 10d.
The wall edge portion 9d parallel to the flow direction 8 is called a flow wall.

図2は実施例による寄棟屋根の屋根面における屋根材割付図である。
図2は寄棟屋根において軒と隅棟3で三角形形状に構成される三角形状屋根面をベースにして、屋根材1の配置ルールの違いにより屋根材1の配置がどのように変わるかを表した図である。
それぞれの図において次の条件は共通条件としている。
建物の設計単位寸法Pは尺モジュールであり、設計単位寸法Pは910mmである。
屋根材1の働き長さの水平投影寸法Lhは、建物の設計単位寸法Pの四分の一の227.5mmであり、屋根材1の働き幅寸法Wは、働き長さの水平投影寸法Lhの8倍にあたる1820mmとする。
屋根2の軒の出寸法12は455mmとする。
流れ方向8の屋根頂点から軒桁までの流れ長さの水平投影寸法は4.5Pの4095mmであり、屋根頂点から軒先5までの流れ長さの水平投影寸法は軒の出寸法12の455mmを足して10Pの4550mmとなる。
桁方向7の軒桁間の寸法は9Pの8190mmであり、軒先5の桁寸法は軒の出12の寸法を足すと10Pの9100mmとなる。
FIG. 2 is a roof material allocation diagram on the roof surface of the hipped roof according to the embodiment.
FIG. 2 shows how the arrangement of the roofing material 1 changes depending on the difference in the arrangement rule of the roofing material 1 based on the triangular roof surface formed by the eaves and the corner ridge 3 in the hipped roof. It is a figure that was made.
In each figure, the following conditions are common conditions.
The design unit dimension P of the building is a shaku module, and the design unit dimension P is 910 mm.
The horizontal projection dimension Lh of the working length of the roofing material 1 is 227.5 mm, which is a quarter of the design unit dimension P of the building, and the working width dimension W of the roofing material 1 is the horizontal projection dimension Lh of the working length. The length is 1820 mm, which is eight times that of.
The protruding dimension 12 of the eaves of the roof 2 is 455 mm.
The horizontal projection dimension of the flow length from the roof apex to the eaves girder in the flow direction 8 is 4095 mm of 4.5P, and the horizontal projection dimension of the flow length from the roof apex to the eaves tip 5 is 455 mm of the eaves protrusion dimension 12. Add up to 4550mm of 10P.
The dimension between the eaves girders in the girder direction 7 is 8190 mm of 9P, and the girder dimension of the eaves tip 5 is 9100 mm of 10P when the dimensions of the eaves protrusion 12 are added.

図2(a)の配置方法について説明する。
図2(a)は屋根端部9に、軒桁方向7に対して右側の隅棟部9bに隅棟規格化形状屋根材10bを1種類配置し、左側の隅棟部9bに隅棟規格化形状屋根材10bを4種類配置し、三又部9eに三又規格化形状屋根材10eを4種類配置した配置方法である。
軒先5から1段毎登るに際に、桁方向7に対して右側の隅棟部9bから左側の隅棟部9bに向かう方向で屋根材1を屋根材1の働き長さの水平投影寸法Lh分の227.5mmだけずらして配置する。
この配置方法は、調整屋根材11の配置が無いため配置ルールが分かりやすいというメリットがある。
しかし、屋根端部9の規格化形状屋根材10は9種類と多くなってしまう事がデメリットとしてある。
The arrangement method of FIG. 2A will be described.
In FIG. 2A, one type of corner ridge standardized shape roofing material 10b is arranged on the roof edge 9 on the right corner ridge 9b with respect to the eaves girder direction 7, and the corner ridge standard is placed on the left corner ridge 9b. This is an arrangement method in which four types of shaped roofing materials 10b are arranged and four types of three-pronged standardized roofing materials 10e are arranged on the three-pronged portion 9e.
When climbing step by step from the eaves 5, the roofing material 1 is projected in the direction from the right corner ridge 9b to the left corner ridge 9b with respect to the girder direction 7, and the horizontal projection dimension Lh of the working length of the roofing material 1. Arrange them with a shift of 227.5 mm.
This arrangement method has an advantage that the arrangement rule is easy to understand because the adjustment roofing material 11 is not arranged.
However, there is a demerit that the standardized shape roofing material 10 of the roof end portion 9 is increased to 9 types.

図2(b)の配置方法について説明する。
図2(b)は屋根端部9に、軒桁方向7に対して右側の隅棟部9bに隅棟規格化形状屋根材10bを1種類配置し、左側の隅棟部9bに隅棟規格化形状屋根材10bを2種類配置し、三又部9eに三又規格化形状屋根材10eを4種類配置した配置方法である。
また、桁方向7の寸法調整を行うために、屋根材1の働き長さの水平投影寸法Lhの4倍となる910mmの働き幅寸法を有した調整屋根材11を1種類配置している。
軒先5から1段毎登るに際に、桁方向7に対して右側の隅棟部9bから左側の隅棟部9bに向かう方向で屋根材1を屋根材1の働き長さの水平投影寸法Lh分の227.5mmだけずらして配置する。
この配置方法は、屋根端部9の規格化形状屋根材10の種類を7種類に減らすことが出来るのがメリットである。
調整屋根材11を入れて桁方向7の寸法調整をすることで配置ルールが複雑になることと、調整屋根材11を1種類追加するためそれほど種類が減らないことがデメリットとしてある。
The arrangement method of FIG. 2B will be described.
In FIG. 2B, one type of corner ridge standardized shape roofing material 10b is arranged on the roof edge 9 on the right corner ridge 9b with respect to the eaves girder direction 7, and the corner ridge standard is placed on the left corner ridge 9b. This is an arrangement method in which two types of the shaped roofing material 10b are arranged and four types of the three-pronged standardized roofing material 10e are arranged in the three-pronged portion 9e.
Further, in order to adjust the dimensions in the girder direction 7, one type of adjusting roofing material 11 having a working width dimension of 910 mm, which is four times the horizontal projection dimension Lh of the working length of the roofing material 1, is arranged.
When climbing step by step from the eaves 5, the roofing material 1 is projected in the direction from the right corner ridge 9b to the left corner ridge 9b with respect to the girder direction 7, and the horizontal projection dimension Lh of the working length of the roofing material 1. Arrange them with a shift of 227.5 mm.
This arrangement method has an advantage that the types of the standardized shape roofing material 10 of the roof end portion 9 can be reduced to 7 types.
Disadvantages are that the arrangement rule becomes complicated by inserting the adjusting roofing material 11 and adjusting the dimensions in the girder direction 7, and that the number of types does not decrease so much because one type of adjusting roofing material 11 is added.

図2(c)の配置方法について説明する。
図2(c)は屋根端部9に、軒桁方向7に対して右側の隅棟部9bに隅棟規格化形状屋根材10bを1種類配置し、左側の隅棟部9bに隅棟規格化形状屋根材10bを1種類配置し、三又部9eに三又規格化形状屋根材10eを3種類配置した配置方法である。
また、桁方向7の寸法調整を行うために、屋根材1の働き長さの水平投影寸法Lhの2倍の455mm、4倍の910mm、6倍の1365mmの働き幅寸法を有した複数の調整屋根材11を3種類配置している。
軒先5から1段毎登るに際に、桁方向7に対して右側の隅棟部9bから左側の隅棟部9bに向かう方向で屋根材1を屋根材1の働き長さの水平投影寸法Lh分の227.5mmだけずらして配置する。
隅棟規格化形状屋根材10bの働き幅寸法は、屋根材1の働き幅寸法Wの二分の一にあたる910mmとする。
右の隅棟規格化形状屋根材10bと左の隅棟規格化形状屋根材10bの働き幅寸法は同じ910mmとする。
この配置方法は、屋根端部9の規格化形状屋根材10の種類を5種類に減らすことが出来るのと、隅棟部9bの隅棟規格化形状屋根材10bが1種類になるため隅棟部における配置ルールが分かりやすくなるというのがメリットである。
また、左右の隅棟規格化形状屋根材10bが屋根材1の働き幅寸法Wの二分の一にあたる910mmなので屋根材1から2左右の隅棟規格化形状屋根材10bをプレカットすることが出来るので、隅棟規格化形状屋根材10bの生産効率が高いというメリットもある。
しかし、調整屋根材11が3種類配置されることで配置ルールが複雑になることと、調整屋根材11を3種類追加するためそれほど種類が減らないことがデメリットとしてある。
The arrangement method of FIG. 2C will be described.
In FIG. 2C, one type of corner ridge standardized shape roofing material 10b is arranged on the roof edge 9 on the right corner ridge 9b with respect to the eaves girder direction 7, and the corner ridge standard is placed on the left corner ridge 9b. This is an arrangement method in which one type of the modified shape roofing material 10b is arranged and three types of the three-pronged standardized roofing material 10e are arranged in the three-pronged portion 9e.
Further, in order to adjust the dimensions in the girder direction 7, a plurality of adjustments having a working width dimension of 455 mm, which is twice the horizontal projection dimension Lh of the working length of the roofing material 1, 910 mm, which is four times, and 1365 mm, which is six times. Three types of roofing materials 11 are arranged.
When climbing step by step from the eaves 5, the roofing material 1 is projected in the direction from the right corner ridge 9b to the left corner ridge 9b with respect to the girder direction 7, and the horizontal projection dimension Lh of the working length of the roofing material 1. Arrange them with a shift of 227.5 mm.
The working width dimension of the corner ridge standardized shape roofing material 10b is 910 mm, which is half of the working width dimension W of the roofing material 1.
The working width dimension of the right corner ridge standardized shape roofing material 10b and the left corner ridge standardized shape roofing material 10b is the same 910 mm.
This arrangement method can reduce the types of the standardized shape roofing material 10 of the roof end portion 9 to five types, and the corner ridge standardized shape roofing material 10b of the corner ridge portion 9b becomes one type. The advantage is that the placement rules in the department are easy to understand.
Further, since the left and right corner ridge standardized shape roofing materials 10b are 910 mm, which is half of the working width dimension W of the roofing material 1, the left and right corner ridge standardized shape roofing materials 10b can be precut. There is also an advantage that the production efficiency of the corner ridge standardized shape roofing material 10b is high.
However, there are disadvantages that the arrangement rule becomes complicated by arranging three types of the adjusting roofing material 11 and that the number of types does not decrease so much because three types of the adjusting roofing material 11 are added.

図2(d)の配置方法について説明する。
図2(d)は屋根端部9に、軒桁方向7に対して右側の隅棟部9bに隅棟規格化形状屋根材10bを1種類配置し、左側の隅棟部9bに隅棟規格化形状屋根材10bを1種類配置し、三又部9eに三又規格化形状屋根材10eを3種類配置した配置方法である。
また、桁方向7の寸法調整を行うために、屋根材1の働き長さの水平投影寸法Lhの2倍の455mm、4倍の910mmの働き幅寸法を有した複数の調整屋根材11を2種類配置している。
軒先5から1段毎登るに際に、桁方向7に対して右側の隅棟部9bから左側の隅棟部9bに向かう方向で屋根材1を屋根材1の働き長さの水平投影寸法Lh分の227.5mmだけずらして配置する。
隅棟規格化形状屋根材10bの働き幅寸法は、屋根材1の働き幅寸法Wの二分の一にあたる910mmとする。
右の隅棟規格化形状屋根材10bと左の隅棟規格化形状屋根材10bの働き幅寸法は同じ910mmとする。
2種類の調整屋根材を組み合わせることで3種類の桁方向7における寸法調整が出来る。
この配置方法は、屋根端部9の規格化形状屋根材10の種類を5種類に減らすことが出来るのと、調整屋根材11を2種類に減らすこと、隅棟部9bの隅棟規格化形状屋根材10bが1種類になるため隅棟部における配置ルールが分かりやすくなるというのがメリットである。
また、左右の隅棟規格化形状屋根材10bが屋根材1の働き幅寸法Wの二分の一にあたる910mmなので屋根材1から2左右の隅棟規格化形状屋根材10bをプレカットすることが出来るので、隅棟規格化形状屋根材10bの生産効率が高いというメリットもある。
しかし、調整屋根材11が2種類配置され、かつ調整屋根材11を組み合わせることで3種類の寸法調整が出来ることで配置ルールが複雑になることがデメリットとしてある。
The arrangement method of FIG. 2D will be described.
In FIG. 2D, one type of corner ridge standardized shape roofing material 10b is arranged on the roof edge 9 on the right corner ridge 9b with respect to the eaves girder direction 7, and the corner ridge standard is placed on the left corner ridge 9b. This is an arrangement method in which one type of the modified shape roofing material 10b is arranged and three types of the three-pronged standardized roofing material 10e are arranged in the three-pronged portion 9e.
Further, in order to adjust the dimensions in the girder direction 7, a plurality of adjusting roofing materials 11 having a working width dimension of 455 mm, which is twice the horizontal projection dimension Lh of the working length of the roofing material 1, and 910 mm, which is four times, are used. The types are arranged.
When climbing step by step from the eaves 5, the roofing material 1 is projected in the direction from the right corner ridge 9b to the left corner ridge 9b with respect to the girder direction 7, and the horizontal projection dimension Lh of the working length of the roofing material 1. Arrange them with a shift of 227.5 mm.
The working width dimension of the corner ridge standardized shape roofing material 10b is 910 mm, which is half of the working width dimension W of the roofing material 1.
The working width dimension of the right corner ridge standardized shape roofing material 10b and the left corner ridge standardized shape roofing material 10b is the same 910 mm.
By combining two types of adjustment roofing materials, it is possible to adjust the dimensions in three types of girder directions 7.
This arrangement method can reduce the types of the standardized shape roof material 10 of the roof end portion 9 to 5 types, reduce the adjustment roof material 11 to 2 types, and standardize the corner ridge portion 9b. Since there is only one type of roofing material 10b, there is an advantage that the arrangement rules in the corner ridges can be easily understood.
Further, since the left and right corner ridge standardized shape roofing materials 10b are 910 mm, which is half of the working width dimension W of the roofing material 1, the left and right corner ridge standardized shape roofing materials 10b can be precut. There is also an advantage that the production efficiency of the corner ridge standardized shape roofing material 10b is high.
However, there is a demerit that two types of adjusting roofing materials 11 are arranged and three types of dimensional adjustments can be made by combining the adjusting roofing materials 11, which complicates the arrangement rules.

図3は実施例による寄棟屋根での軒の出変化による屋根材割付図である。
図3は寄棟屋根において軒と隅棟3で三角形形状に構成される三角形状屋根面をベースにして、屋根材1の働き長さの水平投影寸法Lhが建物の設計単位寸法Pの奇数分の一の場合における屋根材1の軒の出変化による配置方法の違いを表した図である。
それぞれの図において次の条件は共通条件としている。
建物の設計単位寸法Pは尺モジュールであり、設計単位寸法Pは910mmである。
屋根材1の働き長さの水平投影寸法Lhは、建物の設計単位寸法Pの三分の一の303.33mmであり、屋根材1の働き幅寸法Wは、働き長さの水平投影寸法Lhの4倍にあたる1213.32mmとする。
屋根材1の働き長さの水平投影寸法Lhが建物の設計単位寸法Pの三分の一なので奇数分の一の場合に該当する。
流れ方向8の屋根頂点から軒桁までの流れ長さの水平投影寸法は4Pの3640mmである。
桁方向7の軒桁間の寸法は8Pの7280mmである。
FIG. 3 is a roofing material allocation diagram due to changes in the appearance of the eaves on the hipped roof according to the embodiment.
FIG. 3 shows that the horizontal projection dimension Lh of the working length of the roofing material 1 is an odd portion of the design unit dimension P of the building based on the triangular roof surface formed by the eaves and the corner ridge 3 in the hipped roof. It is a figure which showed the difference of the arrangement method by the eaves change of the roofing material 1 in the case of 1.
In each figure, the following conditions are common conditions.
The design unit dimension P of the building is a shaku module, and the design unit dimension P is 910 mm.
The horizontal projection dimension Lh of the working length of the roofing material 1 is 303.33 mm, which is one-third of the design unit dimension P of the building, and the working width dimension W of the roofing material 1 is the horizontal projection dimension Lh of the working length. It is set to 1213.32 mm, which is four times the size of.
Since the horizontal projection dimension Lh of the working length of the roofing material 1 is one-third of the design unit dimension P of the building, it corresponds to the case of an odd-numbered one.
The horizontal projection dimension of the flow length from the roof apex to the eaves girder in the flow direction 8 is 3640 mm of 4P.
The dimension between the eaves girders in the girder direction 7 is 7280 mm of 8P.

図3(a)の配置方法について説明する。
屋根2の軒の出寸法12は、910mmである。
軒の出寸法12の910mmは屋根材1の働き長さの水平投影寸法Lhの二分の一にあたる151.67mmの6倍となる。
流れ方向8の屋根頂点から軒桁までの流れ長さの水平投影寸法は4Pの3640mmなので屋根頂点から軒先5までの流れ長さの水平投影寸法は軒の出寸法12の910mmを足して5Pの4550mmとなる。
桁方向7の軒桁間の寸法は8Pの7280mmであり、軒先5の桁寸法は軒の出12の寸法を足して10Pの9100mmとなる。
図3(a)は屋根端部9に、軒桁方向7に対して右側の隅棟部9bに隅棟規格化形状屋根材10bを1種類配置し、左側の隅棟部9bに隅棟規格化形状屋根材10bを1種類配置し、三又部9eに三又規格化形状屋根材10eを1種類配置した配置方法である。
軒先5から1段毎登るに際に、桁方向7に対して右側の隅棟部9bから左側の隅棟部9bに向かう方向で屋根材1を屋根材1の働き長さの水平投影寸法Lh分の303.33mmだけずらして配置する。
隅棟規格化形状屋根材10bの働き幅寸法は、屋根材1の働き幅寸法Wの二分の一にあたる606.67mmとする。
右の隅棟規格化形状屋根材10bと左の隅棟規格化形状屋根材10bの働き幅寸法は同じ606.67mmとする。
桁方向7の寸法調整に調整屋根材11を用いる。調整屋根材11の働き幅寸法は、屋根材1の働き長さの水平投影寸法Lhの2倍にあたる606.67とする。
1段目の右側の隅棟部9bに隅棟規格化形状屋根材10bを配置し、左隣りから順次屋根材1を配置する。
軒先5の桁寸法は10Pの9100mmを屋根材1の働き幅寸法Wが1213.32mmで割ると7.5枚となる。
左右の隅棟部9bに隅棟規格化形状屋根材10bを配置し、屋根材1を6枚配置すると屋根材1の0.5枚分のスペースが空き、そのスペースに働き幅寸法606.67mmの調整屋根材11を配置する。
2段目は右側の隅棟部9bで屋根材1の働き長さの水平投影寸法Lh分の303.33mm、左側の隅棟部9bで屋根材1の働き長さの水平投影寸法Lh分の303.33mmが桁方向7で短くなる。つまり、1段ごとに桁方向7の寸法が606.67mmだけ短くなる。
606.67mmは屋根材1の働き幅寸法Wの0.5枚分の寸法になる。
2段目の桁方向7の寸法は、1段目の桁方向7の寸法の7.5枚から0.5枚短くなるので屋根材1の6枚分の寸法となる。
そのため、2段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを配置し、屋根材1を5枚配置となる。
3段目は桁方向7の寸法が2段目より0.5枚短い6.5枚となるので、1段目と同様の左右の隅棟部9bに隅棟規格化形状屋根材10bを配置し、屋根材1を配置し、働き幅寸法606.67mmの調整屋根材11を配置する。
3段目、4段目以降は、1段目、2段目と同様の配置を繰り返すことになる。
13段目は、隅棟規格化形状屋根材10bと調整屋根材11のみの配置となり、14段目は隅棟規格化形状屋根材10bのみの配置となり、15段目は三又規格化形状屋根材10eの配置となる。
15段目の頂点部の三又規格化形状屋根材10eは、働き長さの水平投影寸法が303.33mmとなる。
The arrangement method of FIG. 3A will be described.
The protruding dimension 12 of the eaves of the roof 2 is 910 mm.
The eaves protrusion dimension 12 of 910 mm is six times as large as 151.67 mm, which is half of the horizontal projection dimension Lh of the working length of the roofing material 1.
Since the horizontal projection dimension of the flow length from the roof apex to the eaves girder in the flow direction 8 is 3640 mm of 4P, the horizontal projection dimension of the flow length from the roof apex to the eaves tip 5 is 5P by adding 910 mm of the eaves protrusion dimension 12. It becomes 4550 mm.
The dimension between the eaves girders in the girder direction 7 is 7280 mm of 8P, and the girder dimension of the eaves tip 5 is 9100 mm of 10P by adding the dimensions of the eaves protrusion 12.
In FIG. 3A, one type of corner ridge standardized shape roofing material 10b is arranged on the roof edge 9 on the right corner ridge 9b with respect to the eaves girder direction 7, and the corner ridge standard is placed on the left corner ridge 9b. This is an arrangement method in which one type of the modified shape roofing material 10b is arranged and one type of the three-pronged standardized roofing material 10e is arranged in the three-pronged portion 9e.
When climbing step by step from the eaves 5, the roofing material 1 is projected in the direction from the right corner ridge 9b to the left corner ridge 9b with respect to the girder direction 7, and the horizontal projection dimension Lh of the working length of the roofing material 1. Arrange them with a shift of 303.33 mm.
The working width dimension of the corner ridge standardized shape roofing material 10b is 606.67 mm, which is half of the working width dimension W of the roofing material 1.
The working width dimension of the right corner ridge standardized shape roofing material 10b and the left corner ridge standardized shape roofing material 10b is the same 606.67 mm.
The adjusting roofing material 11 is used for adjusting the dimensions in the girder direction 7. The working width dimension of the adjusting roofing material 11 is 606.67, which is twice the horizontal projection dimension Lh of the working length of the roofing material 1.
The corner ridge standardized shape roofing material 10b is arranged in the corner ridge portion 9b on the right side of the first stage, and the roofing material 1 is arranged sequentially from the left side.
The girder size of the eaves 5 is 7.5 pieces when 9100 mm of 10P is divided by the working width size W of the roofing material 1 by 1213.32 mm.
When the corner ridge standardized shape roofing material 10b is placed on the left and right corner ridges 9b and six roofing materials 1 are placed, a space equivalent to 0.5 of the roofing material 1 is vacant, and the working width dimension is 606.67 mm in that space. The adjustment roofing material 11 of the above is arranged.
In the second stage, the right corner ridge 9b has a horizontal projection dimension of 303.33 mm for the working length of the roofing material 1, and the left corner ridge 9b has a horizontal projection dimension of the working length of the roofing material 1 for Lh. 303.33 mm becomes shorter in the girder direction 7. That is, the dimension of the girder direction 7 is shortened by 606.67 mm for each step.
606.67 mm is the size of 0.5 sheets of the working width dimension W of the roofing material 1.
The dimension of the second stage girder direction 7 is 0.5 sheets shorter than the dimension of the first stage girder direction 7 by 0.5 sheets, so that it is the size of 6 sheets of the roofing material 1.
Therefore, in the second stage, the corner ridge standardized shape roofing material 10b is arranged on the left and right corner ridges 9b, and five roofing materials 1 are arranged.
Since the dimension of the girder direction 7 in the third stage is 6.5 sheets, which is 0.5 sheets shorter than that in the second stage, the corner ridge standardized shape roofing material 10b is placed in the left and right corner ridges 9b similar to the first stage. Then, the roofing material 1 is arranged, and the adjusting roofing material 11 having a working width dimension of 606.67 mm is arranged.
After the 3rd and 4th stages, the same arrangement as in the 1st and 2nd stages is repeated.
The 13th tier has only the corner ridge standardized shape roofing material 10b and the adjustment roofing material 11, the 14th tier has only the corner ridge standardized shape roofing material 10b, and the 15th tier has the three-pronged standardized roofing material. The material 10e is arranged.
The horizontal projection dimension of the working length of the three-pronged standardized roofing material 10e at the apex of the 15th step is 303.33 mm.

図3(b)の配置方法について説明する。
屋根2の軒の出寸法12は、455mmである。
軒の出寸法12の455mmは屋根材1の働き長さの水平投影寸法Lhの二分の一にあたる151.67mmの3倍となる。
流れ方向8の屋根頂点から軒桁までの流れ長さの水平投影寸法は4Pの3640mmなので屋根頂点から軒先5までの流れ長さの水平投影寸法は軒の出寸法12の455mmを足して4.5Pの4095mmとなる。
桁方向7の軒桁間の寸法は8Pの7280mmであり、軒先5の桁寸法は軒の出12の寸法を足して9Pの8190mmとなる。
図3(b)は屋根端部9に、軒桁方向7に対して右側の隅棟部9bに隅棟規格化形状屋根材10bを2種類配置し、左側の隅棟部9bに隅棟規格化形状屋根材10bを1種類配置し、三又部9eに三又規格化形状屋根材10eを2種類配置した配置方法である。
軒先5から1段毎登るに際に、桁方向7に対して右側の隅棟部9bから左側の隅棟部9bに向かう方向で屋根材1を屋根材1の働き長さの水平投影寸法Lh分の303.33mmだけずらして配置する。
隅棟規格化形状屋根材10bの働き幅寸法は、屋根材1の働き幅寸法Wの二分の一にあたる606.67mmとする。
右の隅棟規格化形状屋根材10bと左の隅棟規格化形状屋根材10bの働き幅寸法は同じ606.67mmとする。
桁方向7の寸法調整に調整屋根材11を用いる。調整屋根材11の働き幅寸法は、屋根材1の働き長さの水平投影寸法Lhの2倍にあたる606.67と3倍にあたる910mmの2種類の調整屋根材11とする。
1段目の右側の隅棟部9bに隅棟規格化形状屋根材10bを配置し、左隣りから順次屋根材1を配置する。
軒先5の桁寸法は9Pの8190mmを屋根材1の働き幅寸法Wが1213.32mmで割ると6.75枚となる。
左右の隅棟部9bに隅棟規格化形状屋根材10bを配置し、屋根材1を5枚配置すると屋根材1の0.75枚分のスペースが空き、そのスペースに0.75枚に相当する働き幅寸法910mmの調整屋根材11を配置する。
2段目は右側の隅棟部9bで屋根材1の働き長さの水平投影寸法Lh分の303.33mm、左側の隅棟部9bで屋根材1の働き長さの水平投影寸法Lh分の303.33mmが桁方向7で短くなる。つまり、1段ごとに桁方向7の寸法が606.67mmだけ短くなる。
606.67mmは屋根材1の働き幅寸法Wの0.5枚分の寸法になる。
2段目の桁方向7の寸法は、1段目の桁方向7の寸法の6.75枚から0.5枚短くなるので屋根材1の6.25枚分の寸法となる。
そのため、2段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを配置し、屋根材1を4枚配置し、働き幅寸法が606.67mmの調整屋根材11と910mmの調整屋根材11を1枚ずつ配置する。
3段目は桁方向7の寸法が2段目より0.5枚短い5.75枚となるので、1段目と同様の左右の隅棟部9bに隅棟規格化形状屋根材10bを配置し、屋根材1を配置し、働き幅寸法910mmの調整屋根材11を配置する。
3段目、4段目以降は、1段目、2段目と同様の配置を繰り返すことになる。
10段目は、隅棟規格化形状屋根材10bと働き幅寸法が606.67mmの調整屋根材11と910mmの調整屋根材11のみの配置となり、11段目は、隅棟規格化形状屋根材10bと働き幅寸法が910mmの調整屋根材11のみの配置となり、12段目は働き幅寸法が910mmと606.67mmの隅棟規格化形状屋根材10bの配置となり、13段目と14段目は三又規格化形状屋根材10eの配置となる。
14段目の頂点部の三又規格化形状屋根材10eは、働き長さの水平投影寸法が屋根材1の働き長さの水平投影寸法Lhの303.33mmの半分の151.67mmとなる。
The arrangement method of FIG. 3B will be described.
The protruding dimension 12 of the eaves of the roof 2 is 455 mm.
The eaves protrusion dimension 12 of 455 mm is three times as large as 151.67 mm, which is half of the horizontal projection dimension Lh of the working length of the roofing material 1.
Since the horizontal projection dimension of the flow length from the roof apex to the eaves girder in the flow direction 8 is 3640 mm of 4P, the horizontal projection dimension of the flow length from the roof apex to the eaves tip 5 is the addition of 455 mm of the eaves protrusion dimension 12. It becomes 4095 mm of 5P.
The dimension between the eaves girders in the girder direction 7 is 7280 mm of 8P, and the girder dimension of the eaves tip 5 is 8190 mm of 9P by adding the dimensions of the eaves protrusion 12.
In FIG. 3B, two types of corner ridge standardized shape roofing materials 10b are arranged on the roof edge 9 on the right corner ridge 9b with respect to the eaves girder direction 7, and the corner ridge standard is placed on the left corner ridge 9b. This is an arrangement method in which one type of modified roofing material 10b is arranged and two types of three-pronged standardized roofing material 10e are arranged on the three-pronged portion 9e.
When climbing step by step from the eaves 5, the roofing material 1 is projected in the direction from the right corner ridge 9b to the left corner ridge 9b with respect to the girder direction 7, and the horizontal projection dimension Lh of the working length of the roofing material 1. Arrange them with a shift of 303.33 mm.
The working width dimension of the corner ridge standardized shape roofing material 10b is 606.67 mm, which is half of the working width dimension W of the roofing material 1.
The working width dimension of the right corner ridge standardized shape roofing material 10b and the left corner ridge standardized shape roofing material 10b is the same 606.67 mm.
The adjusting roofing material 11 is used for adjusting the dimensions in the girder direction 7. The working width dimension of the adjusting roofing material 11 is 606.67, which is twice the horizontal projection dimension Lh of the working length of the roofing material 1, and 910 mm, which is three times the horizontal projection dimension Lh.
The corner ridge standardized shape roofing material 10b is arranged in the corner ridge portion 9b on the right side of the first stage, and the roofing material 1 is arranged sequentially from the left side.
The girder size of the eaves 5 is 6.75 when the working width size W of the roofing material 1 is divided by 1213.32 mm, which is 8190 mm of 9P.
If the corner ridge standardized shape roofing material 10b is placed in the left and right corner ridges 9b and five roofing materials 1 are placed, a space equivalent to 0.75 pieces of the roofing material 1 is vacant, which is equivalent to 0.75 pieces. The adjusting roofing material 11 having a working width dimension of 910 mm is arranged.
In the second stage, the right corner ridge 9b has a horizontal projection dimension of 303.33 mm for the working length of the roofing material 1, and the left corner ridge 9b has a horizontal projection dimension of the working length of the roofing material 1 for Lh. 303.33 mm becomes shorter in the girder direction 7. That is, the dimension of the girder direction 7 is shortened by 606.67 mm for each step.
606.67 mm is the size of 0.5 sheets of the working width dimension W of the roofing material 1.
The dimension of the second stage girder direction 7 is 0.5 sheets shorter than the dimension of the first stage girder direction 7 by 0.5 sheets, so that it is the size of 6.25 sheets of the roofing material 1.
Therefore, in the second stage, the corner ridge standardized shape roofing material 10b is arranged on the left and right corner ridges 9b, four roofing materials 1 are arranged, and the adjusting roofing material 11 and 910 mm having a working width dimension of 606.67 mm are adjusted. The roofing materials 11 are arranged one by one.
Since the dimension of the girder direction 7 in the third stage is 5.75 sheets, which is 0.5 sheets shorter than that in the second stage, the corner ridge standardized shape roofing material 10b is placed in the left and right corner ridges 9b similar to the first stage. Then, the roofing material 1 is arranged, and the adjusting roofing material 11 having a working width dimension of 910 mm is arranged.
After the 3rd and 4th stages, the same arrangement as in the 1st and 2nd stages is repeated.
In the 10th stage, only the corner ridge standardized shape roofing material 10b, the adjusted roofing material 11 having a working width dimension of 606.67 mm and the adjusted roofing material 11 having a working width of 910 mm are arranged, and the 11th stage is the corner ridge standardized shape roofing material. Only the adjusted roofing material 11 with a working width dimension of 910 mm and 10b is arranged, and the 12th step is the arrangement of the corner ridge standardized shape roofing material 10b with working width dimensions of 910 mm and 606.67 mm, and the 13th and 14th steps. Is the arrangement of the three-pronged standardized shape roofing material 10e.
In the three-pronged standardized shape roofing material 10e at the apex of the 14th step, the horizontal projection dimension of the working length is 151.67 mm, which is half of the horizontal projection dimension Lh of 303.33 mm of the working length of the roofing material 1.

図4は実施例による屋根材の製品図である。
図4に記載の屋根材1は次の設計寸法要素で構成されている。
建物の設計単位寸法Pは尺モジュールであり、設計単位寸法Pは910mmに対応する製品である。
屋根材1の働き長さ寸法Lは490mmである。
屋根勾配が4寸勾配の時に働き長さの水平投影寸法Lhが455mmとなり、建物の設計単位寸法Pの二分の一となる。
4寸勾配の勾配伸び率は1.077であり、屋根材1の働き長さの水平投影寸法Lhが455mmになる屋根材1の働き長さ寸法Lを求めたいときには、455mmに対応する屋根勾配の勾配伸び率を掛けることで屋根材1の働き長さ寸法Lを求めることができる。
屋根材1の働き幅寸法Wは、働き長さの水平投影寸法Lhの4倍にあたる1820mmである。
屋根材の流れ重なり寸法13は50mmであり、屋根材1の全長さ寸法は540mmである。
屋根材の横重なり寸法14は80mmであり屋根材1の全幅寸法は1900mmである。
FIG. 4 is a product diagram of a roofing material according to an embodiment.
The roofing material 1 shown in FIG. 4 is composed of the following design dimensional elements.
The design unit dimension P of the building is a shaku module, and the design unit dimension P is a product corresponding to 910 mm.
The working length dimension L of the roofing material 1 is 490 mm.
When the roof slope is 4 inch slope, the horizontal projection dimension Lh of the working length is 455 mm, which is half of the design unit dimension P of the building.
The gradient elongation rate of the 4-inch gradient is 1.077, and when it is desired to obtain the working length dimension L of the roofing material 1 such that the horizontal projection dimension Lh of the working length of the roofing material 1 is 455 mm, the roof gradient corresponding to 455 mm. The working length dimension L of the roofing material 1 can be obtained by multiplying the gradient elongation rate of.
The working width dimension W of the roofing material 1 is 1820 mm, which is four times the horizontal projection dimension Lh of the working length.
The flow overlapping dimension 13 of the roofing material is 50 mm, and the total length dimension of the roofing material 1 is 540 mm.
The horizontal overlapping dimension 14 of the roofing material is 80 mm, and the overall width dimension of the roofing material 1 is 1900 mm.

図4(a)は屋根材1の製品図の平面図と右側面図である。
図4(b)は図4(a)を3倍に拡大した拡大図である。
図4(c)は図4(b)の右側面図の尻側を更に拡大した図である。
平面図の中央には省略線にて幅寸法を省略して記載している。平面図に表されているのが製品の上面部16である。
右側面図から、上面部16の下端から下面部方向へ垂直に伸びた頭見附部17が形成され、頭見附部17の端部から尻側方向へ垂直に伸びた頭側係合部18が形成されている。
上面部16の尻端部には上面側にV字形状に折り返して形成する尻端部折り返し20と尻側係合部19が形成されている。
尻端部折り返し20と尻側係合部19は横重なり部21の箇所で途切れていて、横重なりの際に横重ねする屋根材1と干渉しないような構成としている。
横重なり部21の幅寸法は80mmで横重なり部21の上に左隣りに設置する屋根材1が重なる。
尻端部折り返し20に差し込むような形で上面側に尻側係合部19を設けている。
屋根材1は厚さ0.4mm程度の薄板金属素材で形成されているが、尻側係合部19は厚さ1.5mmの金属素材で形成している。
実施例では1.5mmの厚みにしているが、例えば0.6mmの2重折りで同様の形状に形成しても良い。
実施例では4寸勾配対応の屋根材1の働き長さ寸法Lとしているが、尻側係合部19の長さを変えることで屋根材1の働き長さ寸法Lを変え、他の勾配にも対応することが出来る。
また、尻側係合部19の長さを変えずに尻側係合部19の屋根材1への固定位置を変更することでも屋根材1の働き長さ寸法Lを変えることが出来る。
3寸勾配の勾配伸び率は1.044なので、3寸勾配の屋根で屋根材1の働き長さの水平投影寸法Lhが455mmになる屋根材1の働き長さ寸法Lを求めたいときには、455mmに対応する屋根勾配の勾配伸び率である1.044を掛けることで屋根材1の働き長さ寸法Lが475mmとして求められる。
尻側係合部19の寸法を15mm伸ばし屋根材1の働き長さ寸法Lを475mmにすることで3寸勾配対応の屋根材1にすることが出来る。
また、尻側係合部19を15mm分だけ頭側にずらして固定することでも、屋根材1の働き長さ寸法Lを475mmにすることが出来る。
尻側係合部19を別パーツにすることで屋根材1の本体形状を変えることなく勾配対応することが可能となる。
実施例では尻側係合部19を別パーツとして勾配対応の対応力を上げているが、同一勾配で大量に使用する場合は本体と一体形状で形成しても良い。
FIG. 4A is a plan view and a right side view of the product drawing of the roofing material 1.
FIG. 4B is an enlarged view of FIG. 4A enlarged three times.
FIG. 4 (c) is a further enlarged view of the buttock side of the right side view of FIG. 4 (b).
In the center of the plan view, the width dimension is omitted by an omitted line. The upper surface portion 16 of the product is shown in the plan view.
From the right side view, a head-side engaging portion 17 extending vertically from the lower end of the upper surface portion 16 toward the lower surface portion is formed, and a head-side engaging portion 18 extending vertically from the end portion of the head-viewing portion 17 toward the buttock side is formed. It is formed.
The butt end portion of the upper surface portion 16 is formed with a butt end portion folded back 20 and a butt side engaging portion 19 formed by folding back into a V shape on the upper surface side.
The butt end folded-back 20 and the butt-side engaging portion 19 are interrupted at the laterally overlapped portion 21, and are configured so as not to interfere with the horizontally overlapped roofing material 1 when laterally overlapped.
The width dimension of the laterally overlapping portion 21 is 80 mm, and the roofing material 1 installed on the left side overlaps the laterally overlapping portion 21.
The buttock side engaging portion 19 is provided on the upper surface side so as to be inserted into the buttock end portion folded back 20.
The roof material 1 is made of a thin metal material having a thickness of about 0.4 mm, and the tail side engaging portion 19 is made of a metal material having a thickness of 1.5 mm.
In the embodiment, the thickness is 1.5 mm, but it may be formed in the same shape by double folding, for example, 0.6 mm.
In the embodiment, the working length dimension L of the roofing material 1 corresponding to a 4-inch gradient is set, but the working length dimension L of the roofing material 1 is changed by changing the length of the tail side engaging portion 19, and the working length dimension L is changed to another gradient. Can also be supported.
Further, the working length dimension L of the roofing material 1 can be changed by changing the fixing position of the buttock-side engaging portion 19 to the roofing material 1 without changing the length of the tail-side engaging portion 19.
Since the gradient elongation rate of the 3-inch gradient is 1.044, when the horizontal projection dimension Lh of the working length of the roofing material 1 is 455 mm on the roof with a 3-dimensional gradient, the working length dimension L of the roofing material 1 is 455 mm. By multiplying 1.044, which is the slope elongation rate of the roof slope corresponding to, the working length dimension L of the roofing material 1 is obtained as 475 mm.
By extending the dimension of the tail side engaging portion 19 by 15 mm and setting the working length dimension L of the roofing material 1 to 475 mm, the roofing material 1 corresponding to a 3 inch gradient can be obtained.
Further, the working length dimension L of the roofing material 1 can be set to 475 mm by fixing the tail side engaging portion 19 by shifting it to the head side by 15 mm.
By making the butt-side engaging portion 19 a separate part, it is possible to handle the gradient without changing the main body shape of the roofing material 1.
In the embodiment, the tail side engaging portion 19 is used as a separate part to increase the ability to cope with the gradient, but when a large amount of the same gradient is used, it may be formed integrally with the main body.

図5は実施例による陸棟際の屋根材が真物の場合の流れ方向割付図である。
図5(a)は軒先5から陸棟6までの流れ方向の割付図を示す。
図5(b)は陸棟部9aの拡大図である。
割付図の屋根2及び割付条件は次の通りとする。
建物の設計単位寸法Pは尺モジュールであり、設計単位寸法Pは910mmである。
屋根材1の働き長さの水平投影寸法Lhは、建物の設計単位寸法Pの二分の一の455mmであり、屋根材1の働き幅寸法Wは、働き長さの水平投影寸法Lhの4倍にあたる1820mmである。
屋根2の屋根勾配は4寸勾配、軒の出寸法12は971mmである。
軒桁から陸棟までの流れ長さの水平投影寸法は3Pの2730mmであり、軒先5から陸棟6までの流れ長さの水平投影寸法は軒の出寸法12の971mmを足して3701mmとなる。
屋根材1の働き長さ寸法Lは490mmであり、屋根材1の働き長さの水平投影寸法Lhは455mmとなる。
屋根材1の施工は、下段の尻側係合部19に上段の頭側係合部18を係合させ、尻側係合部19の箇所で留め付け材22により野地板に留め付ける。
陸棟際の最上段の屋根材1に関しては、尻部係合部19が不要なので尻端部折り返し20付近に留め付け材22で野地板に留め付ける。
屋根材1の働き長さの水平投影寸法Lhが二分の一と偶数分の一なので建物の軒の出寸法12は、屋根材1の働き長さの水平投影寸法Lhの整数倍に所定の寸法を加えた寸法となる。
実施例では、屋根材1の働き長さの水平投影寸法Lhは455mmの2倍に所定の寸法である61mmを足して軒の出寸法12を971mmとしている。
図1から図3までの割り付け図は軒の出寸法12については所定寸法を0とした実施例として記載しているが、図5のように陸棟部9aの陸棟規格化形状屋根材10aを屋根材1のまま加工せずに割り付ける場合は、軒の出寸法12に所定寸法をプラスすることが必要になる。
所定寸法は、屋根材1の流れ重なり寸法14の水平投影寸法と屋根材1の尻端部から陸棟6の棟芯までの端部隙間寸法15を合わせた寸法となる。
実施例では、屋根材1の流れ重なり寸法14の水平投影寸法が50mm、屋根材1の尻端部から陸棟6の棟芯までの端部隙間寸法15が11mmなので合わせた61mmが所定寸法となる。
軒の出寸法12に所定寸法として屋根材1の流れ重なり寸法14の水平投影寸法と屋根材1の尻端部から陸棟6の棟芯までの端部隙間寸法15を足すことで陸棟部9aに配置する屋根材1を加工しなくても納めることが出来る。
しかし、軒先方向に所定寸法分だけ軒の出寸法12が伸びるという事は、屋根材1の先端位置が軒先方向に所定寸法分伸びるという事であり、それに伴い隅棟3と屋根材1との距離が桁方向7で所定寸法分だけ広くなるということである。
そのため、所定寸法を設定した場合には、隅棟規格化形状屋根材10bの働き寸法及び隅棟規格化形状屋根材10bと隅棟6との端部隙間寸法15を所定寸法分考慮した設定にすることが必要となる。
FIG. 5 is a flow direction allocation diagram when the roofing material near the land building according to the embodiment is genuine.
FIG. 5A shows an allocation diagram of the flow direction from the eaves 5 to the land ridge 6.
FIG. 5B is an enlarged view of the land building portion 9a.
The roof 2 and allocation conditions in the allocation diagram are as follows.
The design unit dimension P of the building is a shaku module, and the design unit dimension P is 910 mm.
The horizontal projection dimension Lh of the working length of the roofing material 1 is 455 mm, which is half of the design unit dimension P of the building, and the working width dimension W of the roofing material 1 is four times the horizontal projection dimension Lh of the working length. It is 1820 mm, which corresponds to this.
The roof slope of the roof 2 is 4 inches, and the eaves protrusion size 12 is 971 mm.
The horizontal projection dimension of the flow length from the eaves girder to the land ridge is 2730 mm of 3P, and the horizontal projection dimension of the flow length from the eaves 5 to the land ridge 6 is 3701 mm by adding 971 mm of the eaves protrusion dimension 12. ..
The working length dimension L of the roofing material 1 is 490 mm, and the horizontal projection dimension Lh of the working length of the roofing material 1 is 455 mm.
In the construction of the roofing material 1, the upper head side engaging portion 18 is engaged with the lower tail side engaging portion 19, and the roof material 1 is fastened to the field board by the fastening material 22 at the tail side engaging portion 19.
As for the roofing material 1 on the uppermost stage near the land building, since the buttock engaging portion 19 is unnecessary, the roofing material 22 is fastened to the field board near the butt end folded back 20.
Since the horizontal projection dimension Lh of the working length of the roofing material 1 is one half and one even number, the protruding dimension 12 of the eaves of the building is a predetermined dimension that is an integral multiple of the horizontal projection dimension Lh of the working length of the roofing material 1. Is added.
In the embodiment, the horizontal projection dimension Lh of the working length of the roofing material 1 is twice the 455 mm and 61 mm, which is a predetermined dimension, is added to set the eaves protrusion dimension 12 to 971 mm.
In the allocation diagram of FIGS. 1 to 3, the eaves protrusion dimension 12 is described as an example in which the predetermined dimension is set to 0, but as shown in FIG. 5, the land building standardized shape roofing material 10a of the land building portion 9a is used as a roof. When allocating the material 1 as it is without processing, it is necessary to add a predetermined dimension to the eaves protrusion dimension 12.
The predetermined dimension is a combination of the horizontal projection dimension of the flow overlapping dimension 14 of the roofing material 1 and the end gap dimension 15 from the tail end portion of the roofing material 1 to the ridge core of the land ridge 6.
In the embodiment, the horizontal projection dimension of the flow overlapping dimension 14 of the roofing material 1 is 50 mm, and the end gap dimension 15 from the tail end portion of the roofing material 1 to the ridge core of the land ridge 6 is 11 mm, so a total of 61 mm is the predetermined dimension. Become.
By adding the horizontal projection dimension of the flow overlap dimension 14 of the roofing material 1 and the end gap dimension 15 from the tail end portion of the roofing material 1 to the ridge core of the land ridge 6 as a predetermined dimension to the eaves protrusion dimension 12, the land ridge portion 9a is formed. It can be stored without processing the roofing material 1 to be arranged.
However, the fact that the eaves protruding dimension 12 extends in the eaves direction by a predetermined dimension means that the tip position of the roofing material 1 extends in the eaves direction by a predetermined dimension, and accordingly, the corner ridge 3 and the roofing material 1 extend. This means that the distance increases by a predetermined dimension in the girder direction 7.
Therefore, when the predetermined dimensions are set, the working dimensions of the corner ridge standardized shape roofing material 10b and the end gap dimension 15 between the corner ridge standardized shape roofing material 10b and the corner ridge 6 are set in consideration of the predetermined dimensions. It is necessary to do.

図6は実施例による陸棟際の屋根材が働き長さの場合の流れ方向割付図である。
図6(a)は軒先5から陸棟6までの流れ方向の割付図を示す。
図6(b)は陸棟部9aの拡大図である。
割付図の屋根2及び割付条件は次の通りとする。
建物の設計単位寸法Pは尺モジュールであり、設計単位寸法Pは910mmである。
屋根材1の働き長さの水平投影寸法Lhは、建物の設計単位寸法Pの二分の一の455mmであり、屋根材1の働き幅寸法Wは、働き長さの水平投影寸法Lhの4倍にあたる1820mmである。
屋根2の屋根勾配は4寸勾配、軒の出寸法12は910mmである。
軒桁から陸棟までの流れ長さの水平投影寸法は3Pの2730mmであり、軒先5から陸棟6までの流れ長さの水平投影寸法は軒の出寸法12の910mmを足して3640mmとなる。
屋根材1の働き長さ寸法Lは490mmであり、屋根材1の働き長さの水平投影寸法Lhは455mmとなる。
屋根材1の施工は、下段の尻側係合部19に上段の頭側係合部18を係合させ、尻側係合部19の箇所で留め付け材22により野地板に留め付ける。
陸棟際の最上段の屋根材1は流れ重なり寸法13分を切断した陸棟規格化形状屋根材10aを配置する。
屋根材1の働き長さの水平投影寸法Lhが二分の一と偶数分の一なので建物の軒の出寸法12は、屋根材1の働き長さの水平投影寸法Lhの整数倍に所定の寸法を加えた寸法となる。
実施例では、屋根材1の働き長さの水平投影寸法Lhは455mmの2倍に所定の寸法を0mmとして軒の出寸法12を910mmとしている。
FIG. 6 is a flow direction allocation diagram in the case where the roofing material near the land building has a working length according to the embodiment.
FIG. 6A shows an allocation diagram of the flow direction from the eaves 5 to the land ridge 6.
FIG. 6B is an enlarged view of the land building portion 9a.
The roof 2 and allocation conditions in the allocation diagram are as follows.
The design unit dimension P of the building is a shaku module, and the design unit dimension P is 910 mm.
The horizontal projection dimension Lh of the working length of the roofing material 1 is 455 mm, which is half of the design unit dimension P of the building, and the working width dimension W of the roofing material 1 is four times the horizontal projection dimension Lh of the working length. It is 1820 mm, which corresponds to this.
The roof slope of the roof 2 is 4 inches, and the eaves protrusion size 12 is 910 mm.
The horizontal projection dimension of the flow length from the eaves girder to the land ridge is 2730 mm of 3P, and the horizontal projection dimension of the flow length from the eaves 5 to the land ridge 6 is 3640 mm by adding 910 mm of the eaves protrusion dimension 12. ..
The working length dimension L of the roofing material 1 is 490 mm, and the horizontal projection dimension Lh of the working length of the roofing material 1 is 455 mm.
In the construction of the roofing material 1, the upper head side engaging portion 18 is engaged with the lower tail side engaging portion 19, and the roof material 1 is fastened to the field board by the fastening material 22 at the tail side engaging portion 19.
The roofing material 1 on the uppermost stage near the land ridge is arranged with a roofing material 10a having a standardized shape of the land ridge, which is cut by a flow overlapping dimension of 13 minutes.
Since the horizontal projection dimension Lh of the working length of the roofing material 1 is one half and one even number, the protruding dimension 12 of the eaves of the building is a predetermined dimension that is an integral multiple of the horizontal projection dimension Lh of the working length of the roofing material 1. Is added.
In the embodiment, the horizontal projection dimension Lh of the working length of the roofing material 1 is twice the 455 mm, the predetermined dimension is 0 mm, and the eaves protrusion dimension 12 is 910 mm.

図7は実施例による規格化形状屋根材の形状図1である。
図7は、図1の実施例の調整屋根材11と屋根端部9に配置された規格化形状屋根材10の平面図を示している。
調整屋根材11は屋根材1をベースに働き幅寸法を変更した屋根材であり、規格化形状屋根材10は屋根材1をベースに屋根端部9の形状に合わせて屋根材1の端部形状を変更した屋根材なので、いずれも平面図のみで形状を把握することが出来る。
図7の上から1段目と2段目に記載の屋根材は、調整屋根材11と規格化形状屋根材10である。
910−Uと910−O及び455−Uと455−Oはそれぞれ働き幅が910mmと455mmで同じだが、910−Uと455−Uは横重なり部21を有していて調整屋根材11として使用できる。
910−Uと455−Uは、桁方向7に対して右側にケラバ部9cがあるときのケラバ規格化屋根材10cや桁方向7に対して右側に壁際部9dがあるときの壁際規格化屋根材10dとしても使用できる。
910−Oと455−Oは、桁方向7に対して左側にケラバ部9cがあるときのケラバ規格化屋根材10c及び桁方向7に対して左側に壁際部9dがあるときの壁際規格化屋根材10dとして使用される。
図7の上から3段目に記載の屋根材は、谷部9fに配置する谷規格化形状屋根材10fである。
谷部9fの最上段を除く箇所に使用される。
図7の上から4段目に記載の屋根材は、隅棟部9bに配置する隅棟規格化形状屋根材9bである。
隅棟部9bの最上段を除く箇所に使用される。
FIG. 7 is a shape diagram 1 of a standardized shape roofing material according to an embodiment.
FIG. 7 shows a plan view of the adjusted roofing material 11 and the standardized roofing material 10 arranged at the roof end portion 9 of the embodiment of FIG.
The adjusted roofing material 11 is a roofing material whose working width dimension is changed based on the roofing material 1, and the standardized shape roofing material 10 is based on the roofing material 1 and is the end portion of the roofing material 1 according to the shape of the roof end portion 9. Since the roofing material has a changed shape, the shape can be grasped only from the plan view.
The roofing materials described in the first and second steps from the top of FIG. 7 are the adjusted roofing material 11 and the standardized shape roofing material 10.
The working widths of 910-U and 910-O and 455-U and 455-O are the same at 910 mm and 455 mm, respectively, but 910-U and 455-U have a lateral overlapping portion 21 and are used as the adjusting roofing material 11. it can.
910-U and 455-U are keraba standardized roofing materials when the keraba portion 9c is on the right side with respect to the girder direction 7 and wall standardized roofs when the wall edge portion 9d is on the right side with respect to the girder direction 7. It can also be used as a material 10d.
910-O and 455-O are the keraba standardized roofing material 10c when the keraba portion 9c is on the left side with respect to the girder direction 7, and the wall standardized roof when the wall edge portion 9d is on the left side with respect to the girder direction 7. Used as material 10d.
The roofing material described in the third row from the top of FIG. 7 is a valley standardized roofing material 10f arranged in the valley portion 9f.
It is used in places other than the top of the valley 9f.
The roofing material described in the fourth row from the top of FIG. 7 is a corner ridge standardized shape roofing material 9b arranged in the corner ridge portion 9b.
It is used in places other than the top of the corner ridge 9b.

図8は実施例による規格化形状屋根材の形状図2である。
図8は、図1の実施例の屋根端部9に配置された規格化形状屋根材10の平面図を示している。
図8の上から1段目と2段目に記載の規格化屋根材10のRH−1820−UとRH−910−Uは、陸棟部9aと壁際部10dに配置する陸棟規格化形状屋根材10aと壁際規格化形状屋根材10dである。
桁方向7に対して平行な壁際部9dに使用される。
2段目に記載のMTS−1は三又部9eに配置される三又規格化形状屋根材10eである。
3段目に記載の規格化形状屋根材10は、壁際部9d、三又部9e、曲がり部9gに配置される規格化形状屋根材10である。
隅棟部9bの最上段に使用される規格化形状屋根材10である。
4段目に記載の規格化形状屋根材10は、壁際部9d、曲がり部9gに配置される規格化形状屋根材10である。
谷部9fの最上段に使用される規格化形状屋根材10である。
FIG. 8 is a shape diagram 2 of a standardized shape roofing material according to an embodiment.
FIG. 8 shows a plan view of the standardized roofing material 10 arranged at the roof end portion 9 of the embodiment of FIG.
The RH-1820-U and RH-910-U of the standardized roofing material 10 described in the first and second steps from the top of FIG. 8 are land building standardized roofing materials arranged in the land building portion 9a and the wall edge portion 10d. 10a and wall-side standardized shape roofing material 10d.
It is used for the wall edge portion 9d parallel to the girder direction 7.
The MTS-1 described in the second stage is a three-pronged standardized roofing material 10e arranged in the three-pronged portion 9e.
The standardized roofing material 10 described in the third stage is a standardized roofing material 10 arranged at the wall edge portion 9d, the three-pronged portion 9e, and the bent portion 9g.
It is a standardized shape roofing material 10 used in the uppermost stage of the corner ridge portion 9b.
The standardized roofing material 10 described in the fourth stage is a standardized roofing material 10 arranged at the wall edge portion 9d and the bent portion 9g.
It is a standardized shape roofing material 10 used in the uppermost stage of the valley portion 9f.

図9は実施例による寄棟屋根の屋根面における割付条件別の屋根材割付図である。
図9は寄棟屋根において軒と隅棟3で三角形形状に構成される三角形状屋根面をベースにして、屋根材1を軒先5から陸棟6に向かって流れ方向8で一段毎に配置する際に、屋根材1は配置する屋根面の桁方向7に対して右側の隅棟部9bから左側の隅棟部9b方向に屋根材1の働き長さの水平投影寸法Lhの2倍の寸法をずらして配置した場合の屋根割り付け図である。
実施例の屋根条件は以下の通りとする。
建物の設計単位寸法Pは尺モジュールであり、設計単位寸法Pは910mmである。
屋根材1の働き長さの水平投影寸法Lhは、建物の設計単位寸法Pの二分の一の455mmであり、屋根材1の働き幅寸法Wは、働き長さの水平投影寸法Lhの4倍にあたる1820mmとする。
軒の出寸法12は910mmとする。
流れ方向8の屋根頂点から軒桁までの流れ長さの水平投影寸法は4Pの3640mmであり、軒の出寸法12の910mmを足すと5Pの4550mmとなる。
桁方向7の軒桁間の寸法は8Pの7280mmであり、軒先5の桁寸法は軒の出12の寸法を足して10Pの9100mmとなる。
屋根端部9に配置する規格化形状屋根材10は、隅棟部9bに左右で2種類、三又部9eで1種類の3種類とする。
桁方向7の寸法調整を行う調整屋根材11は働き幅寸法が屋根材1の働き長さの水平投影寸法Lhの2倍である910mmと働き幅寸法が屋根材1の働き長さの水平投影寸法Lhの3倍である1365mmの2種類とする。
桁方向7に対して左右の隅棟部9bに配置される隅棟規格化形状屋根材10bは、屋根材1の働き幅寸法Wの二分の一にあたる910mmの働き幅を有する形状とする。
FIG. 9 is a roof material allocation diagram for each allocation condition on the roof surface of the hipped roof according to the embodiment.
FIG. 9 shows that the roofing material 1 is arranged step by step in the flow direction 8 from the eaves 5 to the land ridge 6 based on the triangular roof surface formed by the eaves and the corner ridges 3 in the hipped roof. At that time, the roofing material 1 has twice the horizontal projection dimension Lh of the working length of the roofing material 1 in the direction from the right corner ridge 9b to the left corner 9b with respect to the girder direction 7 of the roof surface to be arranged. It is a roof allocation diagram when it is arranged in a staggered manner.
The roof conditions of the examples are as follows.
The design unit dimension P of the building is a shaku module, and the design unit dimension P is 910 mm.
The horizontal projection dimension Lh of the working length of the roofing material 1 is 455 mm, which is half of the design unit dimension P of the building, and the working width dimension W of the roofing material 1 is four times the horizontal projection dimension Lh of the working length. It is set to 1820 mm, which corresponds to this.
The eaves protrusion size 12 is 910 mm.
The horizontal projection dimension of the flow length from the roof apex to the eaves girder in the flow direction 8 is 3640 mm of 4P, and when the 910 mm of the eaves protrusion dimension 12 is added, it becomes 4550 mm of 5P.
The dimension between the eaves girders in the girder direction 7 is 7280 mm of 8P, and the girder dimension of the eaves tip 5 is 9100 mm of 10P by adding the dimensions of the eaves protrusion 12.
There are three types of standardized roofing materials 10 arranged at the roof end portion 9, two types on the left and right sides of the corner ridge portion 9b and one type on the three-pronged portion 9e.
The adjustment roofing material 11 that adjusts the dimensions in the girder direction 7 has a working width dimension of 910 mm, which is twice the horizontal projection dimension Lh of the working length of the roofing material 1, and a working width dimension is a horizontal projection of the working length of the roofing material 1. There are two types, 1365 mm, which is three times the dimension Lh.
The corner ridge standardized shape roofing material 10b arranged in the left and right corner ridges 9b with respect to the girder direction 7 has a shape having a working width of 910 mm, which is half of the working width dimension W of the roofing material 1.

図9の配置方法について説明する。
実施例では、屋根材1の働き幅寸法Wが働き長さの水平投影寸法Lhの4倍にあたる1820mmであり、屋根材1の働き長さの水平投影寸法Lhの2倍の寸法である910mmをずらして配置する配置方法であり、屋根材1の働き幅寸法Wの半分ずれた千鳥葺きの配置となるため、桁方向7に対して左右線対称で屋根材1を配置することが出来る。
1段目の右側の隅棟部9bに隅棟規格化形状屋根材10bを配置し、左隣りに働き幅寸法が910mmの調整屋根材11を配置し、その左隣から順次屋根材1を配置する。
軒先5の桁寸法は10Pの9100mmであり、左右の隅棟規格化形状屋根材10bと調整屋根材11の働き幅寸法の3640mmを引くと5460mmとなり、5460mmを屋根材1の働き幅寸法W1820mmで割ると3枚となる。
よって、1段目は右側と左側の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、それぞれの隅棟規格化形状屋根材10bの内側に働き幅寸法が910mmの調整屋根材11を1枚ずつ配置し、その間のスペースに屋根材1を3枚配置する。
2段目は右側の隅棟部9bで屋根材1の働き長さの水平投影寸法Lh分の455mm、左側の隅棟部9bで屋根材1の働き長さの水平投影寸法Lh分の455mmが桁方向7で短くなる。
2段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、それぞれの隅棟規格化形状屋根材10bの内側に働き幅寸法が1365mmの調整屋根材11を1枚ずつ配置し、その間のスペースに屋根材1を2枚配置する。
3段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、その間のスペースに屋根材1を3枚配置する。
4段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、それぞれの隅棟規格化形状屋根材10bの内側に働き幅寸法が910mmの調整屋根材11を1枚ずつ配置し、さらにその内側に働き幅寸法が1365mmの調整屋根材11を1枚ずつ配置する。
5段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、それぞれの隅棟規格化形状屋根材10bの内側に働き幅寸法が910mmの調整屋根材11を1枚ずつ配置し、その間のスペースに屋根材1を1枚配置する。
6段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、それぞれの隅棟規格化形状屋根材10bの内側に働き幅寸法が1365mmの調整屋根材11を1枚ずつ配置する。
7段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、その間のスペースに屋根材1を1枚配置する。
8段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置し、その間のスペースに働き幅寸法が910mmの調整屋根材11を1枚配置する。
9段目は左右の隅棟部9bに隅棟規格化形状屋根材10bを1枚ずつ配置する。
10段目は三又部9eに三又規格化形状屋根材10eを1枚配置する。
この実施例の配置方法は、屋根面の屋根材1の配置が左右対称となり屋根材1の配置バランスが良く、葺きあがりの見栄えが良いというメリットがある。
しかし、屋根材1の配置ルールは煩雑となり施工が分かりにくいことと、調整屋根材11の種類と使用枚数が増えるというデメリットがある。
The arrangement method of FIG. 9 will be described.
In the embodiment, the working width dimension W of the roofing material 1 is 1820 mm, which is four times the horizontal projected dimension Lh of the working length, and 910 mm, which is twice the horizontal projected dimension Lh of the working length of the roofing material 1. This is a staggered arrangement method in which the roofing material 1 is arranged in a staggered manner with a half deviation of the working width dimension W of the roofing material 1, so that the roofing material 1 can be arranged symmetrically with respect to the girder direction 7.
The corner ridge standardized shape roofing material 10b is placed on the right corner ridge portion 9b on the right side of the first stage, the adjusted roofing material 11 having a working width dimension of 910 mm is placed on the left side, and the roofing material 1 is placed sequentially from the left side. To do.
The girder dimension of the eaves 5 is 9100 mm of 10P, and when the working width dimension of 3640 mm of the left and right corner ridge standardized shape roofing material 10b and the adjusting roofing material 11 is subtracted, it becomes 5460 mm, and 5460 mm is the working width dimension W1820 mm of the roofing material 1. If you divide it, you get 3 sheets.
Therefore, in the first stage, one corner ridge standardized shape roofing material 10b is placed on each of the right and left corner ridges 9b, and the working width dimension is adjusted to 910 mm inside each corner ridge standardized shape roofing material 10b. The roofing materials 11 are arranged one by one, and three roofing materials 1 are arranged in the space between them.
In the second stage, the horizontal projection dimension Lh of the working length of the roofing material 1 is 455 mm at the right corner ridge 9b, and the horizontal projection dimension Lh of the working length of the roofing material 1 is 455 mm at the left corner ridge 9b. It becomes shorter in the girder direction 7.
In the second stage, one corner ridge standardized shape roofing material 10b is placed on each of the left and right corner ridges 9b, and an adjusted roofing material 11 having a working width dimension of 1365 mm is placed inside each corner ridge standardized shape roofing material 10b. Arrange one by one, and arrange two roofing materials 1 in the space between them.
In the third stage, one corner ridge standardized shape roofing material 10b is arranged on each of the left and right corner ridges 9b, and three roofing materials 1 are arranged in the space between them.
In the fourth stage, one corner ridge standardized shape roofing material 10b is placed on each of the left and right corner ridges 9b, and an adjusted roofing material 11 having a working width dimension of 910 mm is placed inside each corner ridge standardized shape roofing material 10b. One by one is arranged, and one by one is arranged inside the adjusting roofing material 11 having a working width dimension of 1365 mm.
In the fifth stage, one corner ridge standardized shape roofing material 10b is placed on each of the left and right corner ridges 9b, and an adjusted roofing material 11 having a working width dimension of 910 mm is placed inside each corner ridge standardized shape roofing material 10b. One roofing material 1 is placed in the space between them.
In the sixth stage, one corner ridge standardized shape roofing material 10b is placed on each of the left and right corner ridges 9b, and an adjusted roofing material 11 having a working width dimension of 1365 mm is placed inside each corner ridge standardized shape roofing material 10b. Place one by one.
In the seventh stage, one corner ridge standardized shape roofing material 10b is arranged on each of the left and right corner ridges 9b, and one roofing material 1 is arranged in the space between them.
In the eighth stage, one corner ridge standardized shape roofing material 10b is arranged on each of the left and right corner ridges 9b, and one adjusting roofing material 11 having a working width dimension of 910 mm is arranged in the space between them.
In the ninth stage, one corner ridge standardized shape roofing material 10b is arranged on each of the left and right corner ridges 9b.
In the 10th stage, one three-pronged standardized roofing material 10e is arranged on the three-pronged portion 9e.
The arrangement method of this embodiment has an advantage that the arrangement of the roofing material 1 on the roof surface is symmetrical, the arrangement balance of the roofing material 1 is good, and the appearance of the roofing is good.
However, the arrangement rule of the roofing material 1 is complicated and the construction is difficult to understand, and there are disadvantages that the types of the adjusting roofing material 11 and the number of sheets used increase.

本発明は、実施例においては金属製の長尺横葺き屋根材として記載したが屋根材の素材を限定するものではなく、長尺の横葺き屋根材であればセメント、セラミックス、アスファルト系素材、樹脂系素材などの屋根材に広く適用することが出来る。
また、建物の設計単位寸法Pは実施例では尺モジュールだけの記載だが、建物の設計単位寸法Pはメーターモジュールでもインチモジュールでも利用できる。
Although the present invention has been described as a long horizontal roofing material made of metal in the examples, the material of the roofing material is not limited, and if it is a long horizontal roofing material, cement, ceramics, asphalt-based material, etc. It can be widely applied to roofing materials such as resin materials.
Further, although the design unit dimension P of the building is described only for the scale module in the embodiment, the design unit dimension P of the building can be used for both the meter module and the inch module.

1 屋根材
2 屋根
3 隅棟
4 谷
5 軒先
6 陸棟
7 桁方向
8 流れ方向
9 屋根端部
9a 陸棟部
9b 隅棟部
9c ケラバ部
9d 壁際部
9e 三又部
9f 谷部
9g 曲がり部
10 規格化形状屋根材
10a 陸棟規格化形状屋根材
10b 隅棟規格化形状屋根材
10c ケラバ規格化形状屋根材
10d 壁際規格化形状屋根材
10e 三又規格化形状屋根材
10f 谷規格化形状屋根材
10g 曲がり規格化形状屋根材
11 調整屋根材
12 軒の出寸法
13 流れ重なり寸法
14 横重なり寸法
15 端部隙間寸法
16 上面部
17 頭見附部
18 頭側係合部
19 尻側係合部
20 尻端部折り返し
21 横重なり部
22 留め付け材
Lh 屋根材の働き長さの水平投影寸法
L 屋根材の働き長さ寸法
W 屋根材の働き幅寸法
WA 屋根材の全幅寸法
P 建物の設計単位寸法
1 Roof material 2 Roof 3 Corner ridge 4 Valley 5 Eaves 6 Land ridge 7 Girder direction 8 Flow direction 9 Roof edge 9a Land ridge 9b Corner ridge 9c Keraba 9d Wall edge 9e Three-pronged 9f Valley 9g Bend 10 Standardization Shape Roofing material 10a Land building standardized shape Roofing material 10b Corner building standardized shape Roofing material 10c Keraba standardized shape Roofing material 10d Wall standardized shape Roofing material 10e Three-pronged standardized shape Roofing material 10f Valley standardized shape Roofing material 10g Bending Standardized shape Roofing material 11 Adjusting roofing material 12 Outer dimensions 13 Flow overlapping dimensions 14 Horizontal overlapping dimensions 15 End gap dimensions 16 Top surface 17 Heading part 18 Head side engaging part 19 Bottom side engaging part 20 Bottom end part Folded 21 Horizontal overlapping part 22 Fastening material Lh Horizontal projection dimension of the working length of the roofing material L Working length dimension of the roofing material W Working width dimension of the roofing material WA Overall width dimension of the roofing material P Design unit size of the building

Claims (6)

勾配を有する屋根を備える建物の屋根であって、前記屋根は隅棟又は谷を有し、屋根材を桁方向に複数枚並べ、前記屋根材を段方向に複数段並べる屋根において、
前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の整数分の一であり、
前記屋根材の働き幅寸法が前記働き長さの水平投影寸法の二倍以上の整数倍であり、
前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法の整数倍をずらして配置し、
陸棟部、隅棟部、ケラバ部、壁際部、三又部、陸棟曲がり部、谷部などの全ての屋根端部に規格化した形状の屋根材を配置することを特徴とする長尺横葺きモジュール屋根材の屋根材配置方法。
In a roof of a building having a sloped roof, the roof having a corner ridge or a valley, a plurality of roofing materials are arranged in a girder direction, and a plurality of roofing materials are arranged in a step direction.
The horizontal projection dimension of the working length of the roofing material is an integral fraction of the design unit dimension of the building.
The working width dimension of the roofing material is an integral multiple of twice or more the horizontal projection dimension of the working length.
When the roofing material is arranged step by step in the flow direction from the eaves to the land ridge, the roofing material is arranged from one end to the other end with respect to the girder direction of the roof surface to be arranged. Arrange by shifting the integral multiple of the horizontal projection dimension of the working length of the material,
Long horizontal roofing characterized by arranging standardized roofing materials on all roof edges such as land ridges, corner ridges, keraba parts, wall edges, three-pronged parts, land ridge bends, and valleys. How to arrange the roofing material of the module roofing material.
前記屋根材を軒先から陸棟にむかって流れ方向で一段毎に配置する際に、前記屋根材は配置する屋根面の桁方向に対して一方の端部からもう一方の端部方向に前記屋根材の働き長さの水平投影寸法をずらして配置することを特徴とする請求項1記載の長尺横葺きモジュール屋根材の屋根材配置方法。 When the roofing material is arranged step by step in the flow direction from the eaves to the land ridge, the roofing material is arranged from one end to the other end with respect to the girder direction of the roof surface to be arranged. The method for arranging a roofing material for a long horizontal roofing module roofing material according to claim 1, wherein the horizontal projection dimensions of the working length of the material are staggered. 前記屋根面における桁方向の寸法調整に用いる調整屋根材の働き幅寸法は、前記屋根材の働き長さの水平投影寸法の整数倍であり、前記調整屋根材を前記屋根材の代わりに配置することで働き幅寸法の差分により前記桁方向の寸法調整を行うことを特徴とする請求項1又は請求項2記載の長尺横葺きモジュール屋根材の屋根材配置方法。 The working width dimension of the adjusting roofing material used for dimension adjustment in the girder direction on the roof surface is an integral multiple of the horizontal projection dimension of the working length of the roofing material, and the adjusting roofing material is arranged in place of the roofing material. The method for arranging a roofing material for a long horizontal roofing module roofing material according to claim 1 or 2, wherein the dimensions in the girder direction are adjusted according to the difference in working width dimensions. 前記調整屋根材は複数種類の働き幅寸法を設け、異なる種類の働き幅寸法を有する前記調整屋根材を組み合わせて配置することで前記桁方向の寸法調整を行うことを特徴とする請求項1から請求項3までのいずれか記載の長尺横葺きモジュール屋根材の屋根材配置方法。 The adjustment roofing material is provided with a plurality of types of working width dimensions, and the dimension adjustment in the girder direction is performed by arranging the adjusting roofing materials having different types of working width dimensions in combination, according to claim 1. The method for arranging a roofing material for a long horizontal roofing module roofing material according to any one of claims 3. 前記隅棟部に配置する前記規格化した形状の屋根材の働き幅寸法は、前記屋根材の働き幅寸法の二分の一であることを特徴とする請求項1から請求項4までのいずれか記載の長尺横葺きモジュール屋根材の屋根材配置方法。 Any of claims 1 to 4, wherein the working width dimension of the roofing material having the standardized shape arranged in the corner ridge portion is half of the working width dimension of the roofing material. The method of arranging the roofing material of the long horizontal roofing module roofing material described. 前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の偶数分の一の場合は、前記建物の軒の出寸法はゼロ又は前記働き長さの水平投影寸法の整数倍に所定の寸法を加えた寸法であり、前記屋根材の働き長さの水平投影寸法が前記建物の設計単位寸法の奇数分の一の場合は、前記建物の軒の出寸法はゼロ又は前記働き長さの水平投影寸法の二分の一を整数倍した寸法に所定の寸法を加えた寸法であることを特徴とする請求項1から請求項5までのいずれかに記載の長尺横葺きモジュール屋根材の屋根材配置方法。 When the horizontal projection dimension of the working length of the roofing material is an even fraction of the design unit dimension of the building, the eaves dimension of the building is set to zero or an integral multiple of the horizontal projection dimension of the working length. When the horizontal projection dimension of the working length of the roofing material is an odd fraction of the design unit dimension of the building, the eaves dimension of the building is zero or the working length. The long horizontal roofing module roofing material according to any one of claims 1 to 5, wherein the dimension is obtained by multiplying half of the horizontal projection dimension of the above by an integral multiple and adding a predetermined dimension. Roofing material placement method.
JP2020067958A 2020-04-04 2020-04-04 How to arrange the roofing material of the long horizontal roofing module roofing material Active JP6860944B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020067958A JP6860944B1 (en) 2020-04-04 2020-04-04 How to arrange the roofing material of the long horizontal roofing module roofing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020067958A JP6860944B1 (en) 2020-04-04 2020-04-04 How to arrange the roofing material of the long horizontal roofing module roofing material

Publications (2)

Publication Number Publication Date
JP6860944B1 true JP6860944B1 (en) 2021-04-21
JP2021161851A JP2021161851A (en) 2021-10-11

Family

ID=75520866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020067958A Active JP6860944B1 (en) 2020-04-04 2020-04-04 How to arrange the roofing material of the long horizontal roofing module roofing material

Country Status (1)

Country Link
JP (1) JP6860944B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886050A (en) * 1994-09-19 1996-04-02 Sekisui Chem Co Ltd Roof covering structure
JPH11172852A (en) * 1997-12-15 1999-06-29 Natl House Ind Co Ltd Tile member and roofing system
JPH11181960A (en) * 1997-12-24 1999-07-06 Nikken Birukon:Kk Metallic molding tile roof structure
JP2001227103A (en) * 2000-02-14 2001-08-24 Porasu Kurashi Kagaku Kenkyusho:Kk Roof surface distribution method and roof surface distributing member
JP2005256514A (en) * 2004-03-15 2005-09-22 Hekinan Tokushu Kikai Kk Flat plate tile and roofing method thereof
JP2017089101A (en) * 2015-11-02 2017-05-25 甍エンジニアリング株式会社 Tile roof structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886050A (en) * 1994-09-19 1996-04-02 Sekisui Chem Co Ltd Roof covering structure
JPH11172852A (en) * 1997-12-15 1999-06-29 Natl House Ind Co Ltd Tile member and roofing system
JPH11181960A (en) * 1997-12-24 1999-07-06 Nikken Birukon:Kk Metallic molding tile roof structure
JP2001227103A (en) * 2000-02-14 2001-08-24 Porasu Kurashi Kagaku Kenkyusho:Kk Roof surface distribution method and roof surface distributing member
JP2005256514A (en) * 2004-03-15 2005-09-22 Hekinan Tokushu Kikai Kk Flat plate tile and roofing method thereof
JP2017089101A (en) * 2015-11-02 2017-05-25 甍エンジニアリング株式会社 Tile roof structure

Also Published As

Publication number Publication date
JP2021161851A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
USRE38210E1 (en) Metal shingle with gutter and interlocking edges
US2702663A (en) Nested carton blank
JP6860944B1 (en) How to arrange the roofing material of the long horizontal roofing module roofing material
US2882840A (en) Shingle construction
US7647737B2 (en) Building panel and building structure
JP2013133609A (en) Fitting type roof material and connection structure and connection method using the same
JP6894618B1 (en) How to arrange the roofing material of the long horizontal roofing module roofing material for remodeling
JP7144015B1 (en) Roof material placement method for long horizontal roofing module roof materials
US20230392376A1 (en) Modular building construction
JP2006299534A (en) Roof truss and roof structure
US1748423A (en) Method of making structural units
JPH07279291A (en) Flat deck plate
JP7038426B2 (en) Roofing material allocation integration system
US1085431A (en) Process for producing sheet-metal forms for floors.
JP2006037643A (en) Installation structure of solar battery module
JP6835374B1 (en) Modular metal roofing material
CN217871282U (en) Prefabricated laminated slab of descending slab
US3101571A (en) Universal nail tab for lock joint shingles
JP2021161666A (en) building
US313853A (en) Roofing for buildings
EP3929370B1 (en) Grate comprising structural element
CN209509294U (en) A kind of fixed device of plaster tablet suspended ceiling lightgage steel joist
JP2001140406A (en) Plain roof tile group and tile-roofing allotment method
JP4084799B2 (en) Horizontal covering material and its connection structure
JP4166192B2 (en) Architectural metal exterior material, manufacturing method thereof, and exterior structure of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200513

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200513

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210122

C12 Written invitation by the commissioner to file intermediate amendments

Free format text: JAPANESE INTERMEDIATE CODE: C12

Effective date: 20210201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210204

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R150 Certificate of patent or registration of utility model

Ref document number: 6860944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150