JP2022159729A - Magnetic force connection panel toy with spherical magnet embedded to corner of regular polygon and electrification thereof - Google Patents

Magnetic force connection panel toy with spherical magnet embedded to corner of regular polygon and electrification thereof Download PDF

Info

Publication number
JP2022159729A
JP2022159729A JP2021064103A JP2021064103A JP2022159729A JP 2022159729 A JP2022159729 A JP 2022159729A JP 2021064103 A JP2021064103 A JP 2021064103A JP 2021064103 A JP2021064103 A JP 2021064103A JP 2022159729 A JP2022159729 A JP 2022159729A
Authority
JP
Japan
Prior art keywords
magnets
spherical
panel
magnetic
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021064103A
Other languages
Japanese (ja)
Inventor
諒 宇都宮
Ryo Utsunomiya
侯武 宇都宮
Kimitake Utsunomiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021064103A priority Critical patent/JP2022159729A/en
Publication of JP2022159729A publication Critical patent/JP2022159729A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a great change for dramatically enhancing strength of a three-dimensional shape as a group by accurately guiding and adsorbing a face total to the three-dimensional shape to solve a problem that concentration of an infant to idea for the three-dimensional shape is spoiled due to constant correction of deviation of position of connection of sides, in a toy for constituting a three-dimensional shape with magnets embedded in a regular polygon panel.SOLUTION: By only point contacts of partial spherical surfaces obtained by embedding spherical magnets to corners of a regular polygon, it is guided by magnetic force accurately and mechanically to a fitting position, and finally with magnetic lock the problem is solved.SELECTED DRAWING: Figure 62

Description

本発明は等価的な辺の長さが揃った、正三角形・正方形・正五角形・正六角形などのパネルを使い、基本となる正四面体・立方体・正八面体・正十二面体・二十面体・複合三十二面体などの多面体の立体構造(本出願では以後多面立体と呼ぶ)と、更にそれを自由な発想で発展させた立体造形物を、磁力接続で構築する幼児玩具のパネルセットに関するものである。また組み立てたそれらの構造体に埋め込まれた磁石を回転子の一部とし、その周りに配した固定子コイルに駆動電流を流して自立的な運動をさせる電動化に関するものである。
The present invention uses panels of regular triangles, squares, regular pentagons, regular hexagons, etc., with equivalent side lengths, and uses regular tetrahedrons, cubes, regular octahedrons, regular dodecahedrons, and icosahedrons.・Regarding a panel set for children's toys that constructs a three-dimensional structure of a polyhedron such as a compound tridodecahedron (hereafter referred to as a polyhedral solid in this application) and a three-dimensional object that is further developed with free ideas by magnetic connection. It is a thing. The present invention also relates to motorization in which the magnets embedded in the assembled structures are used as part of the rotor, and a driving current is applied to the stator coils arranged around the rotor to allow autonomous movement.

磁気的な吸着力でパネルを組み立てる従来の磁力接続玩具は、長さが揃った正多角形パネルの各辺の中央部に、例として直径5mm、高さ10mm程の、直径方向に着磁した円筒形の磁石(以後円柱磁石と呼ぶ)を自由に回転出来る隙間を持たせて埋め込み、先ず2つの正多角形の辺と辺を近づけるとN極とS極が磁化軸を向き合わせる同軸対向姿勢に自立配向した磁力で吸着し、次に吸着したまま辺の接触線を軸にして適切な角度にパネルを折り曲げ、第三の正多角形パネルを開いている2辺と接続することで立体構成が始まるものである。これを繰り返して、既に組み立てたことがある造形に順序良く行き着く行程で立体的認識の記憶を辿るか、パネルを吸着させて行く過程で新しい造形物を発想しながらこれまでとは異なった形に行き着くかの記憶力と発想力を磨き、また幼児自ら立体構成の規則性を見出して行く訓練を母親と楽しむ。
この行程で完成間近の立体が崩れてしまうことがあり、また辺と辺を接合する時のずれの修正ばかりに気を取られると、自由に発想することには集中できない問題点を持っており、パネルの吸着を現在のものより穏やかな力で、且つ高い位置精度で嵌合するようなものに代える一方、出来上がった立体造形の剛性は数倍に強化されることが望ましい。また幼児に知育玩具を買い与えるのに、磁力接続玩具の製造原価の2/3程を占める円柱磁石の材料費を下げたいという課題がある。理想的には、正多角形の辺と辺を先ず磁力接続するという必然とは言えない段取りを経ず、面全体が直接立体造形の正確な位置に機構的に嵌り込んで行くか、或いは磁力で正確な位置に導かれるかの方法を取り入れ、正多角形パネルを立体から取り外す場合も辺での吸着を引き剥して行くのではなく、面を穏やかに取り外せて残りの立体はその形が安全に保たれて崩れず、完成させた立体造形物も辺ではなく面で支えられてその剛性が保たれ、同時に力を加えて歪ませても元の形に復元する柔軟性を残していることが望ましい。これらの本質的な問題点について、磁力接続パネルという技術分野では、立体造形が崩れるメカニズムが十分に整理されて理解されるには至っていないまま市場に玩具として出回っている状態が長年続いており、そのメカニズムの理解を基礎から立ち上げることが求められていると言える。
A conventional magnetic connection toy, in which panels are assembled by magnetic attraction force, is a regular polygonal panel with a uniform length, and magnetized in the center of each side, for example, with a diameter of 5 mm and a height of 10 mm, in the diameter direction. A cylindrical magnet (hereinafter referred to as a cylindrical magnet) is embedded with a gap that allows it to rotate freely. First, when the sides of two regular polygons are brought close to each other, the north and south poles are coaxially opposed with their magnetization axes facing each other. Then, while being attracted, the panel is bent at an appropriate angle around the contact line of the side, and the third regular polygonal panel is connected to the two open sides to form a three-dimensional structure. is what begins. By repeating this process, you can trace the memory of three-dimensional recognition in the process of arriving at a model that has already been assembled in order, or create a new shape while conceiving a new model in the process of adsorbing the panel. Refining the memory and imagination of how to get there, and enjoying the training of discovering the regularity of the three-dimensional structure by themselves with their mothers.
In this process, the three-dimensional figure that is nearing completion may collapse, and if you only focus on correcting the misalignment when connecting sides, you will not be able to concentrate on thinking freely. It is desirable to replace the adsorption of the panel with one that engages with a gentler force and with higher positional accuracy than the current one, while enhancing the rigidity of the finished three-dimensional model several times. In addition, there is a problem of wanting to reduce the material cost of the cylindrical magnet, which occupies about two-thirds of the manufacturing cost of the magnetic connection toy, in order to purchase an educational toy for an infant. Ideally, without going through the un-necessary setup of connecting the sides of the regular polygon with magnetic force first, the entire surface will either mechanically fit directly into the correct position of the three-dimensional modeling, or magnetic force will be applied. When removing a regular polygonal panel from a three-dimensional object, instead of peeling off the adsorption at the side, the surface can be gently removed and the remaining three-dimensional shape is safe. The finished three-dimensional object is supported not by its sides but by its surfaces, maintaining its rigidity. is desirable. Regarding these essential problems, in the technical field of magnetic connection panels, the mechanism of three-dimensional modeling collapse has not been sufficiently organized and understood, and it has been on the market as a toy for many years. It can be said that it is required to start up the understanding of the mechanism from the foundation.

幼児は立体造形物を繰り返して組み立てるだけでは何れ新しい発想が尽きて飽きてしまい、些細な装飾に凝るようになれば、本来の知育が期待できなくなるので、完成した造形物の価値を更に高めるべく、自動車を模した車輪をつけた台の上に乗せ、手で動かして遊べるようにするか、或いは観覧車を構成して手で回して遊ぶかをするためのパーツが玩具セットに含まれるのが一般的である。しかし車輪がついて実物の自動車をそのまま縮小した手で動かせる玩具は、極めて安価で購入できるのでそれに任せ、パネルの接続にも電動化にも磁石が使われることに着目し、幼児の根源的な潜在能力を引き出す科学的要素を加えた本来の知育の役割を、発展的な価値関心として与える融合化が考えられる。 Children will eventually run out of new ideas and get tired of simply assembling three-dimensional objects. The toy set includes parts for placing it on a stand with wheels that imitate a car so that you can play by moving it by hand, or by constructing a Ferris wheel and playing by turning it by hand. is common. However, a toy that is a miniature version of a real car with wheels and can be moved by hand is extremely inexpensive, so I decided to leave it to that. It is conceivable to integrate the original role of intellectual education with the addition of scientific elements that draw out abilities as a developmental value and interest.

磁力接続パネルの主な手段は原理的に(図1)に示すような4つ程が考えられる。考案された事例として最も古いものは、正多角形パネルの辺の中央に回転できる円柱磁石を埋め込む形式で、現在供給されている磁力接続知育玩具の大半を占めている。この形式はパネルの接続が不正確になり、正多角形パネルがずれたままの形が辺の吸着力で生まれる最大静止摩擦力で保たれ、その上に次のパネルが更にずれを累積して貼り付いて行き、幼児は終始ずれの修正を続けて形を整えなければならず、そうやって組み立てた立体造形は手で持っただけで潰れてしまう問題がある。パネルの辺と辺を接続することから、本出願ではこの方式を以後<MagEdge>形式と呼ぶ。
これに対して後発の案は、正多角形パネルの各辺に回転する事が出来ない角型磁石を、XY矩形断面の+Y方向に着磁し、正多角形の辺の端面にはパネルの厚み方向にNS両磁極が現れるようにし、同じ辺の端面に-Y方向に着磁しSN磁極が現れるように埋め込んだもう1つの角型磁石と相補的なペアとしたものを各辺に配し、正M角形なら2M個の磁石が必要な角型固定磁石形式である。この形式は各辺に2個の磁石を使い、また角型磁石の側面と側面が面接触するので磁力が大きく、飽和磁束密度がネオジウム磁石の~1/3程の異方性フェライト磁石に置き換えて、相補的な2本が必要でも材料費が上がらないようにすることができる。この形式を、磁石のNS磁極を突き合わせるのではなく横向きにして使う事から、本出願では以後<MagSide>形式と呼ぶ。
磁石が向きによって引き合い反発し合うことが頭に入っている幼児は、<MagSide>形式が、角型磁石が回転しないのに、パネルを隣り合わせても、重ね合わせても、裏返してもくっつくことに、探究心を深めて行く面白さがある。ただ、辺と辺をくっつけると、他の形式のように辺を丸められないので、パネルを折り曲げる角度によって接続する磁石の中心間距離が変動し、磁力が弱まる問題がある。<MagSide>形式は、(図2)に拡大して示したように、6つの正方形パネルで立方体が構成されるときに、埋め込まれた48個の角型固定磁石の隣り合う24の磁石対が全て引き合うという巧妙な組み合わせの存在を見つけ出したものである。
別の観点からは、軟鉄球を1つの原子に見立て、原子が結合手を伸ばしてXYZ方向と対角方向に結合し合うという古典的観念で、長手方向に着磁した1本の支柱磁石で軟鉄球を磁化して直接繋いで行く玩具が存在する。建築の枠組み工法の考えと共通する所があるこの方式を、本出願では以後<MagFrame>形式と呼ぶ。この方法は支柱磁石の長さを、原子の種類の数の2乗だけの種類の用意は出来ず、2つの結合手の長さを足した一定の長さに妥協せざると得ないので、原子が分子や格子を構成する実体と合わなくなり、玩具としてだけの面白さしか残らなくなる。また面だけで立体が構成される他の形式と比べて、幼児が組み立てるのに手間が掛かり過ぎ、作業そのものを楽しむことに終わりがちになる問題がある。
これらの在来技法に対して、当たり前であるのにこれまで検討されなかった方法がある。それは正M角形にM個ある辺の中央ではなく、M個ある角に球体磁石を埋め込んで、立体造形を構成し、常に3つ以上の正多角形の角が1点に集まる集団的磁気結合を行う方法である。出荷量として主流の<MagEdge>形式が辺と辺を1:1の関係で接続するのと比較して、組み立て途中や完成した立体造形の剛性が高く、またパネルが引き込まれて貼り付く位置精度も高く、磁石の体積が最少である。本出願では角を集合させるこの方式を以後<MagPole>形式と呼ぶ。この方法が玩具として探究されなかったのは、辺と辺が磁力結合する時は2者関係であって磁石が回転自立配向するか、<MagSide>形式のようにどのような姿勢でも常に引き合う特殊なメカニズムを持っているか、の場合は容易に理解ができるが、正多角形の角に球体磁石が埋め込まれた場合には、立体の頂点には3つ以上の正多角形の角が集まるので、1:1の自立配向の理解、即ち磁力はN極とS極が引き合う作用であるという一般の考えから外れるが故に、これまで手つかずになっていたと言える。

Figure 2022159729000002
これら<MagFrame>、<MagSide>、<MagEdge>、<MagPole>の特質を、前提条件を揃えて(表1)に比較した。パネルや支柱で立方体を構成する時に、<MagPole>が使用する磁石の総体積を1とすると、市場競争で独走状態にある<MagEdge>の総体積は3、<MagSide>と<MagFrame>は共に7.5である。但し前述のように<MagSide>は異方性フェライト磁石を使ってコストを抑えることができる。多くの消費者が初回の購入時のパネル数が少ないので後に買い足していることを考えると、パネルの原価の大半が磁石の材料費であるのを、体積が1/3かそれ以下に減らせることは重要である。特性として、付け加えて行くパネルが緩い力で、且つ高い位置精度で立体造形に引き付けられること、引き剥がす力も穏やであるのに、完成した立体造形は簡単には崩れないようにすること、の両面を卓越して持っている<MagPole>形式の自立配向のメカニズムが、電流と電流の間のローレンツ力である磁気の本質の現れであるが故に、見落とされて来たと言える。
In principle, as shown in FIG. 1, about four main means of the magnetic connection panel are conceivable. The oldest devised example is a form in which a rotatable cylindrical magnet is embedded in the center of the side of a regular polygonal panel, and occupies most of the magnetic connection educational toys currently supplied. In this format, the connection of the panels becomes inaccurate, and the shape of the regular polygonal panel remains misaligned due to the maximum static friction generated by the adsorption force of the sides, and the next panel further accumulates misalignment. It sticks, and the infant has to keep correcting the misalignment all the time to adjust the shape, and there is a problem that the 3D model assembled in that way will be crushed just by holding it in your hand. This scheme is hereinafter referred to as the <MagEdge> format in this application because it connects the edges of the panels.
On the other hand, in a later proposal, square magnets that cannot rotate on each side of the regular polygonal panel are magnetized in the +Y direction of the XY rectangular cross section, and the panel is attached to the end face of the regular polygonal side. Each side is provided with a complementary pair of another prismatic magnet embedded so that both NS magnetic poles appear in the thickness direction, and magnetized in the -Y direction on the end face of the same side so that SN magnetic poles appear. On the other hand, if it is a regular M-square, it is a square fixed magnet type that requires 2M magnets. This type uses two magnets on each side, and since the sides of the rectangular magnet are in surface contact, the magnetic force is large, and the saturation magnetic flux density is about 1/3 that of the neodymium magnet. Replaced with an anisotropic ferrite magnet. Therefore, even if two complementary wires are required, the material cost can be prevented from increasing. This format is referred to hereinafter as the <MagSide> format because it uses the N and S poles of the magnets facing sideways rather than facing each other.
Children who are familiar with the fact that magnets attract and repel each other depending on the direction, the <MagSide> format, even though the square magnet does not rotate, will stick to the panels even if they are placed next to each other, overlapped, or turned over. , there is fun to deepen the inquisitive mind. However, when the sides are joined together, the sides cannot be rounded like other types, so the distance between the centers of the connected magnets changes depending on the angle at which the panel is bent, which causes the problem of weakening the magnetic force. In the <MagSide> format, 24 adjacent magnet pairs of 48 embedded square fixed magnets are arranged when a cube is composed of 6 square panels, as shown enlarged in (Fig. 2). I found the existence of a clever combination that attracts all of them.
From another point of view, the soft iron ball is regarded as one atom, and the atoms extend their bonds and bond in the XYZ and diagonal directions. There are toys that magnetize soft iron balls and connect them directly. In the present application, this method, which has something in common with the idea of the architectural framework construction method, is hereinafter referred to as the <MagFrame> format. In this method, it is not possible to prepare the length of the support magnets as many as the square of the number of types of atoms. Atoms no longer match the entities that make up the molecules and lattices, leaving nothing but the fun of being a toy. In addition, compared to other types of three-dimensional models that consist of only surfaces, it takes too much time and effort for young children to assemble, and there is a problem that they tend to end up enjoying the work itself.
In contrast to these conventional techniques, there is a method that has not been examined so far, although it is commonplace. By embedding spherical magnets in M corners instead of in the center of M sides of a regular M-gon, a three-dimensional model is formed, and three or more regular polygon corners always gather at one point for collective magnetic coupling. is a method of doing Compared to the <MagEdge> format, which is the mainstream in terms of shipping volume, where the sides are connected in a 1:1 relationship, the rigidity of the 3D model during assembly and the finished model is high, and the positional accuracy in which the panel is pulled in and attached. is high and the volume of the magnet is minimal. In this application, this method of gathering corners is hereinafter referred to as the <MagPole> format. The reason why this method was not explored as a toy is that when the sides are magnetically coupled, it is a two-way relationship, and the magnets are oriented in a rotationally self-sustaining manner, or a special magnet that always attracts in any posture, such as the <MagSide> format. If a spherical magnet is embedded in the corners of a regular polygon, three or more corners of regular polygons will gather at the vertices of the solid. , 1:1 self-directed orientation, that is, the general idea that the magnetic force is the action of the attraction of the N and S poles, has remained untouched until now.
Figure 2022159729000002
The characteristics of these <MagFrame>, <MagSide>, <MagEdge>, and <MagPole> were compared (Table 1) with the same preconditions. If the total volume of the magnets used by <MagPole> is 1 when composing a cube with panels and columns, the total volume of <MagEdge>, which is leading the competition in the market, is 3, and both <MagSide> and <MagFrame> 7.5. However, as mentioned above, <MagSide> uses anisotropic ferrite magnets to keep costs down. Considering that many consumers purchase more panels later because the number of panels is small at the time of initial purchase, it is possible to reduce the volume to 1/3 or less, while most of the cost of the panel is the material cost of the magnet. It is important to As a characteristic, the panel to be added is attracted to the three-dimensional model with a loose force and high positional accuracy, and the force to peel off is gentle, but the completed three-dimensional model does not easily collapse. It can be said that the <MagPole> type self-orientation mechanism, which has both sides prominent, has been overlooked because it is a manifestation of the essence of magnetism, which is the Lorentz force between electric currents.

特許第3822062号Patent No. 3822062 US9636600B2US9636600B2

立体組み立てパズルと呼ばれて、(図3)に示すように強磁性体の軟鉄球を長さの揃った細い棒磁石で吸着させて支柱連結構造を作り上げる<MagFrame>形式は、基本的に3角形安定原理に依存するが、必ずしも形が安定せず歪んでしまう場合は、予め用意された多角形の補助パネルを支柱の間に嵌め込んで形を保つ。これを知育として扱うと、正多角形のパネルに磁石を埋め込んで磁力接続するものと比べて立体が発想される以前に、機械的な組み立てに気を奪われ、またジャングルジムのような大きな規模になると内部には手が突っ込めなくなる。それでも親達がこの玩具を幼児に買い与えて見たいと考えるのは、化学の学問体系の結合手という原理に早くから触れさせたいと考えるからである。
<MagFrame>形式に於いて、接続軟鉄球は素粒子世界の体心立方格子構造を模した場合、立方の頂点の鉄原子と体心の鉄原子はスピンの向きが逆であり、その割合は1:1の比なので外部磁場が加わらなければスピンは打ち消されている。しかしスピン軸が+Z/-Zを向いている磁区領域があり、その隣にはスピン軸が+X/-Xや+Y/-Yを向いている領域があれば、その境界の内側が磁区と呼ばれて来た。外部磁場が加わった時に、頂点の鉄原子と、体心の鉄原子のスピン軸が差動的に傾くのが軟磁化であり、体心位置にネオジウム原子が入るか、酸素原子が隙間を詰めるかで回転不自由になるのが硬磁化である。
軟鉄が酸化すると赤錆Fe2O3や黒錆Fe3O4になり、酸素原子が鉄原子のスピンが差動的に傾くのを邪魔して保磁力が生まれる。各原子の軌道電子球の大きさは、原子番号Zに対し、Z0.75に比例して大きくなることが分かっており、<MagFrame>形式はそれを反映するには、2He~92Uに相当する長さの違う支柱磁石を912種だけ取り揃えなければならない。軟鉄球と固定の長さの支柱磁石で原子・分子の構造を模していると母親は思い込み、玩具のパンフレットにもそう書かれているのは、単純化した非現実世界に幼児を導く恐れがある。
<MagFrame>形式の実験では(図4)に画像で示したように、正3角形はNS極性が順送りなら歪がないが、4角形は平行四辺形になるだけでなく、1つの平面では無くなる。また(図5)に示すように、1つの軟鉄連結球に3個以上の支柱磁石が集まると、N極-S極は近づき、N極-N極、S極-S極の同種は遠ざかって軟鉄球を吸着するので対称性が崩れる。また軟鉄球を通して他の棒磁石の磁極が干渉する様々な非対称が現れて造形の精度が損なわれ、パネル接続では起きない多くの問題点がある。現実の素粒子世界の化学的な結合を反映する正統的な教材は本発明の実施に引き続いて正しい形で提供される。
It is called a three-dimensional assembly puzzle, and as shown in Fig. 3, the <MagFrame> format, in which ferromagnetic soft iron balls are attracted by thin bar magnets of uniform length to create a strut connection structure, basically consists of three parts. Although it depends on the square stability principle, if the shape is not always stable and distorted, a polygonal auxiliary panel prepared in advance is fitted between the pillars to maintain the shape. If you treat this as an intellectual education, you will be preoccupied with mechanical assembly before you can conceive of three-dimensional objects compared to a regular polygonal panel with magnets embedded and magnetically connected, and a large scale like a jungle gym. When it becomes, you can't stick your hands inside. Nevertheless, the reason why parents want to buy this toy for their children is that they want to let them come into contact with the principle of the joiner in the scientific system of chemistry from an early stage.
In the <MagFrame> form, when connecting soft iron spheres imitate the body-centered cubic lattice structure of the elementary particle world, the iron atoms at the vertices of the cube and the iron atoms at the body center have opposite spin directions, and the ratio is Since the ratio is 1:1, spins are canceled unless an external magnetic field is applied. However, if there is a magnetic domain region with the spin axis pointing +Z/−Z, and if there is a region next to it with the spin axis pointing +X/−X or +Y/−Y, the inside of the boundary is called the magnetic domain. came When an external magnetic field is applied, the spin axes of the iron atoms at the vertices and the iron atoms at the center of the body are differentially tilted, which is called soft magnetization. It is hard magnetization that makes rotation difficult at a certain angle.
When soft iron is oxidized, it becomes red rust Fe 2 O 3 and black rust Fe 3 O 4 , and oxygen atoms prevent the spins of iron atoms from tilting differentially, creating a coercive force. It is known that the size of the orbital electron sphere of each atom increases in proportion to Z 0.75 with respect to the atomic number Z, and the <MagFrame> format corresponds to 2 He ~ 92 U to reflect this. Only 912 types of pole magnets with different lengths must be available. Soft-iron balls and fixed-length post magnets mimic the structure of atoms and molecules, which mothers believe, and toy brochures say, fear leading infants into a simplistic unreal world. There is
In the <MagFrame> format experiment, as shown in the image (Fig. 4), if the NS polarity is forward, the regular triangle will not be distorted, but the quadrangle will not only become a parallelogram, but will not be a single plane. . Also, as shown in Fig. 5, when three or more strut magnets are gathered in one soft iron connecting ball, the north pole-south pole approaches, and the same kind of north pole-north pole and south pole-south pole moves away. Since the soft iron ball is adsorbed, the symmetry is lost. In addition, there are various asymmetries caused by the magnetic poles of other bar magnets interfering through the soft iron ball, which impairs the precision of the molding, and there are many problems that do not occur with the panel connection. An orthodox teaching material reflecting the chemical bonds of the real world of elementary particles is provided in the correct form following the practice of the present invention.

正多角形パネルを繋ぎ合わせて多面立体を構成する時、その頂点には多くの場合3つの正多角形の角が集まり、4つ以上の角が集まることもある。円柱磁石か球体磁石を直径方向に飽和着磁した2つを対向させて自由に回転させると、N極とS極が最接近するように自立配向する。(図6)に示すように、等価表面電流密度分布はN/S両磁極ではゼロで、赤道緯で最大であるが、2者の自立配向では最も電流密度が小さい部分が向き合う。この現象を見ると磁石の働きを磁極で考える電磁気学の教育体系になっていても、事実に迫るには電流と電流の間に働くローレンツ力で考えて見て初めて自立配向の過程が正確に理解できる。このように2つの円柱磁石か、3つ以上の球体磁石が集まった場合の自立配向を考えることが出来る電磁気学の体系がこれまで存在せず、一般的に磁極・磁力線で考えることが障碍になって、磁力接続パネルで手つかずの空白地帯が生まれていたと言える。
(表1)で比較した4つの形式に関して事実は明白であり、(図7)に示すように、2個~9個の球体磁石を平らな机の上に置くと瞬時に円環を作り、球体磁石の中心を結ぶ線は同一平面上の正多角形を形成する。また3個~9個の円環自立配向では、(図8)が示すように球体磁石の赤道大円面が円環の中心を向くように配向する。これに対して2個の球体磁石はN極とS極が磁極として向かい合う赤道大円が平行になる従来の電磁気学体系の理解のままであり、これに慣れると3個以上の球体の円環自立配向の等価表面電流の向きの認識には、容易には至り得なかったと言える。
更に3個の球体磁石が1箇所に集まって円環配列する場合、1つの球体磁石は、残りの2つの球体磁石と引き合うので、辺に埋め込まれた円柱磁石は引き合う相手が1個の円柱磁石であるのと比べると、1つの辺の両端の角で吸着するのと合せて4倍有利であると言え、また位置ずれを考えると正多角形の角に埋め込まれた球体磁石を包む部分球面が点と点で接していることは、辺の中央に長い円柱磁石が埋め込まれて接触線を成しているのに比べると位置精度が格段に高くなる。
When regular polygon panels are joined together to form a polyhedral solid, three regular polygon corners are often gathered at the vertex, and sometimes four or more corners are gathered. When two cylindrical magnets or spherical magnets saturated and magnetized in the diametrical direction are opposed to each other and freely rotated, they are self-oriented so that the N pole and the S pole are closest to each other. As shown in FIG. 6, the equivalent surface current density distribution is zero at both the N/S magnetic poles and is maximum at the equatorial latitude, but the portions with the lowest current densities face each other in the self-supporting orientation of the two. Looking at this phenomenon, even if the educational system of electromagnetism considers the function of magnets in terms of magnetic poles, the process of self-sustaining orientation can only be accurately understood by thinking in terms of the Lorentz force acting between currents in order to approach the facts. It can be understood. Thus far, there is no system of electromagnetism that can consider the self-sustaining orientation when two cylindrical magnets or three or more spherical magnets are gathered. It can be said that there was an untouched blank area in the magnetic connection panel.
The fact is clear for the four forms compared in Table 1 that, as shown in Figure 7, 2-9 spherical magnets placed on a flat table instantly form an annulus, The lines connecting the centers of the spherical magnets form coplanar regular polygons. Also, in the self-supporting orientation of 3 to 9 circular rings, as shown in FIG. 8, the equatorial great circle surface of the spherical magnet is oriented so as to face the center of the circular ring. On the other hand, two spherical magnets are based on the conventional understanding of electromagnetism, in which equatorial great circles with north and south poles facing each other as magnetic poles are parallel. It can be said that it was not easy to recognize the direction of the equivalent surface current in the free-standing orientation.
Furthermore, when three spherical magnets are gathered in one place and arranged in a circular ring, one spherical magnet attracts the remaining two spherical magnets, so the cylindrical magnet embedded in the side attracts only one cylindrical magnet. Compared to , it can be said that it is four times more advantageous in combination with attracting at the corners at both ends of one side, and considering the positional deviation, the partial spherical surface The point-to-point contact provides much higher positional accuracy than a long cylindrical magnet embedded in the center of each side forming a contact line.

正多角形の角に埋め込まれる球体磁石に回転する自由を与えて包み込む隔壁の部分球面の直径で角が丸められ、それと連続する丸められた半円柱外形の辺は、その両端の部分球面を結ぶ線より内側に後退させるので、2つの正多角形パネル間で辺が接触することがない<MagPole>形式のパネルでは、正方形パネル4枚を(図9)に示すようにXY平面に置いて敷き詰めると、角の4つの球体磁石は赤道大円面を円環の中心に向けて右回りか左回りの順送りのNS極性で自立配向する。この場合、4つの球体磁石を取り囲む4つのパネルの4つの角の丸みの部分球面は合計4カ所で点接触して最小の静止摩擦を持つ状態にあるが、各パネルの辺には隙間があって接していないのでその分の摩擦力はない。このパネルを敷き詰めたタイルの上に、YZ平面とZX平面に平行な4枚の直交するパネルを立てると、下の4つのパネルの間の窪みの上に乗る4つのパネルの4つの角の部分球面は合計4カ所で点接触しているが、全ての辺の間には隙間ができる。
このように<MagPole>形式のパネルで立体造形を構成すると、正多角形の角の部分球面の点接触だけで機械的に密着して身動きが出来ない状態になっており、その上で磁気ロックが掛けられることが理解できる。<MagPole>形式のパネルの等価的な辺の長さは角の球体磁石の中心間距離のことであり、各正多角形パネル間で揃っているので、1つのパネルの1つの辺の両端の球体磁石は、図の場合それぞれ4つの球体磁石と最少距離で点接触している。(図9)の上下2段結合の例では、1つの角では合計8個の球体磁石が隣り合い、合計16箇所で部分球面が点接触している。円環配向の向きは上下段ともSN極が右回りである。この結合は強固であり、1つの球体磁石は残りの多くの球体磁石と接触結合している。これに対して辺に円柱磁石を埋め込む<MagEdge>形式では、上下段合せて3つの円柱磁石の1つは、残りの2つの円柱磁石と引き合うだけなので磁石の利用効率が極めて低くなるが、それにも増して崩れ易いのは機械的に嵌合することがないので、パネルが相対的にずれたまま塊になっているからである。
一方(図10)に示すように、上段の直交するXZ平面とYZ平面に平行な4枚のタイルが45度回転させた形を作ると、その角の球体磁石は、下段の球体磁石の真上に来て、下段の4枚のタイルの端の間の窪みには入り込まないが、上段の4つの球体磁石の円環配向の向きはNS極が下段と逆回であり、合計12カ所で部分球面が点接触し、結合はやや弱くなる。4つの球体磁石が円環配向して右回りのNS順列になると、4つをバラバラにする以外にSN順列に反転することは出来ない。
(図11)に4個の球体磁石の円環配列を上下に積み重ねた2つの安定様態の画像を示す。各段4個の円環では8個の球体磁石は瞬時にこのどちらかの形を取る。下段の球の間に上段の球が入り込むのは結合が強く、球の真上に球が乗るのは結合がやや弱いが、どちらに落ち着くかは初期条件で決まる。上段と下段を別々に円環配列したものを近づける場合は、NSの順列によって真上に来るか、間に入るかが決まり、それに逆らうと反撥を受けるので、パネルの嵌め込みは1枚ずつ行うのが原則である。集団的結合力は柔軟に自立的に最適に成立し、幼児はそれを左右することはできないが、原子/分子の自立配向は母体に生命が宿って以後全てを幼児が受け入れて原子の力を基に身体も心も成長して来たように、球体磁石の瞬時の円環配向も自然のものとしてありのままに受け入れるであろうことこそ真の知育になると言える。
下段の下側に直交する4個のタイルの角を吸着させると、合計12個の矛盾のない一致団結力となり、多数決主義は成立せず、瞬時に最適化されるので話し合いの迷いはなく、相手の動きを見て自分も瞬時に合せる完全なる調和が成り立っている。これが立体造形の容易に崩れず結び合う特質を与える。概して大きな集団に小さな集団が受け入れられる場合はリスクがあり、集団に個として取り入れられて集団も個も発展するという磁気接続パネルの原則は、幼児に社会の古来のルールを物理層として知らしめる面があると言える。
<MagPole>形式の要点は、パネルの辺の半円柱形の丸みを後退させて決して触れないようにすることであり、幼児が組み立て途中の立体造形の空席枠にパネルを平行に近づけるとそのまま軽い力で正確に嵌り込み、その後は身動きしない。これは原子が構成する材料の破壊が、格子構造の一端が破綻して雪崩現象が発生して起きるのと類似しているのを幼児は悟り、磁力が穏やかでも団結で破れないのと併せて、知育の基礎を体得する。
<MagPole>形式で、4つの球体磁石が多面立体の1つの頂点に集まって円環配向した形は、(図11)に示したように、軟鉄の体心立方構造のスピン軸がZ軸の正負両方向に向いていて、そのベクトル和である磁化がゼロである形と共通性がある。軟鉄の格子単位の、2つの頂点原子と2つの体心原子が軌道電子球の球面電流分布を持つ球体磁石として、矩形の円環配列でスピン配向している。軟鉄の体心立方は3次元的にXYZ全方向に繰り返しているので、<MagPole>形式のように赤道大円面が円環の中心を通ることにはならず、外部磁場が加わるまではLスピン原子とRスピン原子の磁極がZ軸方向で逆向きになっている。X方向に外部磁場が加わると、ローレンツ力で立方体の頂点のLスピン原子が傾き、体心のRスピン原子が差動的に逆の方向に傾くので、Z軸方向の磁化成分は現れず、X軸方向の磁化成分だけが現れる。即ちスピン軸がZ軸の正負両方向を向いた鉄の体心立方格子では、X軸方向の外部磁場をかけた時に、X軸方向に比例的に磁化される。同様にスピン軸がZ軸の正負両方向を向いた鉄の体心立方格子で、Y軸方向の外部磁場をかけた時に、Y軸方向に比例的に磁化される。このように、Z軸の正負両方向のスピン軸の磁区では、Z軸方向には磁化出来ず、X-Y平面に沿った外部磁場成分で、そのベクトルの方向に比例的に磁化される。この明確なメカニズムが磁気理論として共有されて来なかったため、純鉄の体心立方格子が連続する単位である磁区が、XYZ方向に等確率で分散して、加わる外部磁場の方向によって磁区境界が移動し、或いは境界はそのままである光学顕微鏡観察が物語化される解釈の独り歩きがこれまでにあった。
この例のように<MagPole>形式は素粒子世界では最も一般的な形に類似する。球体磁石と軌道電子球のスピン電流の違いは、球体磁石では極の等価表面電流密度が高緯度の小円の半径に比例して小さくなっているが、軌道電子球では単位電荷-qが静電的に球表面に均一分布して、赤道でも極でも同じ光速度Cの回転線速度を保っているので、軌道電子球は極の磁力が赤道緯磁力に卓越するという点で、振舞いの違いを生む。その意味で素粒子世界と完全に相似な形は巨視世界の球体磁石では実現できないが、必要なら球面電磁コイルで電流を緯度θに対して1/cosθに比例するように重みづけた電磁石なら実現できる。
The spherical magnets embedded in the corners of the regular polygon are rounded by the diameter of the partial spherical surface of the partition wall that gives them the freedom to rotate, and the rounded semi-cylindrical outer sides that are continuous with it connect the partial spherical surfaces at both ends. In the case of <MagPole> format panels where the sides of two regular polygonal panels do not touch because they are retracted inside the line, four square panels are placed on the XY plane as shown in (Fig. 9) and spread out. , the four spherical magnets at the corners are self-oriented with the NS polarity clockwise or counterclockwise with the equatorial great circle facing the center of the annulus. In this case, the four corner-rounded partial spheres of the four panels surrounding the four spherical magnets are in point contact at a total of four points with minimal static friction, but there are gaps between the sides of each panel. There is no frictional force due to the fact that they are not in contact with each other. If you put four orthogonal panels parallel to the YZ and ZX planes on top of the tiles on which these panels are spread, the four corners of the four panels on the dents between the lower four panels The spherical surface is in point contact at a total of four locations, but there are gaps between all sides.
In this way, when a 3D model is constructed with <MagPole> format panels, only the point contact of the partial spheres at the corners of the regular polygon mechanically adheres to a state in which movement is impossible, and on top of that, it is magnetically locked. can be understood to be multiplied. The equivalent side lengths of <MagPole> type panels are the center-to-center distances of the corner spherical magnets, which are aligned between each regular polygonal panel, so The spherical magnets are in point contact with each of the four spherical magnets in the figure at a minimum distance. In the example of the upper and lower two-stage coupling shown in FIG. 9, a total of 8 spherical magnets are adjacent to each other at one corner, and the partial spherical surfaces are in point contact at a total of 16 points. As for the direction of the circular ring orientation, the SN poles are clockwise in both the upper and lower stages. The bond is strong and one spherical magnet is in contact bonding with many other spherical magnets. On the other hand, in the <MagEdge> format, in which cylindrical magnets are embedded in the sides, one of the three cylindrical magnets in the upper and lower stages is only attracted to the remaining two cylindrical magnets, so the magnet utilization efficiency is extremely low. The reason why it is more likely to collapse is that there is no mechanical engagement, so the panels remain relatively displaced and form a mass.
On the other hand, as shown in Fig. 10, when four tiles parallel to the upper XZ plane and the YZ plane that are perpendicular to each other form a shape rotated 45 degrees, the spherical magnets at the corners are the true Coming to the top, it does not enter the recess between the edges of the four tiles in the lower row, but the orientation of the circular ring orientation of the four spherical magnets in the upper row is opposite to that in the lower row, and there are a total of 12 locations. The partial spheres make point contact, and the bond is somewhat weak. If the four spherical magnets are oriented in a circular ring, resulting in a clockwise NS permutation, it cannot be reversed to the SN permutation except by breaking the four apart.
(Fig. 11) shows images of two stable states in which an annular array of four spherical magnets is stacked one on top of the other. In each stage of four rings, the eight spherical magnets instantaneously take one of these forms. The coupling is strong when the upper sphere enters between the lower spheres, and slightly weaker when the sphere sits directly above the other spheres. When the upper and lower layers are arranged separately in a circular arrangement and are brought close together, the permutation of NS determines whether the panels are positioned directly above or in the middle. is the principle. The collective bonding force is established flexibly and autonomously and optimally, and infants cannot influence it, but the independent orientation of atoms/molecules is accepted by infants after life is born in the mother body, and the force of atoms is applied. It can be said that true intellectual training is to accept the instantaneous circular orientation of the spherical magnet as it is as it is, just as the body and mind have grown based on it.
When the corners of the four tiles that are orthogonal to each other on the lower side of the lower row are sucked together, a total of 12 consistent unity and unity forces are obtained. There is a perfect harmony between watching the opponent's movement and instantly matching it. This gives the three-dimensional shape the characteristic that it does not collapse easily and joins together. In general, there is a risk when a small group is accepted by a large group, and the principle of the magnetic connection panel that the group develops as an individual is taken into the group. It can be said that there is
The main point of the <MagPole> format is to retract the roundness of the semi-cylindrical shape on the side of the panel so that it never touches. It fits in precisely with force and does not move after that. This is because infants realize that the destruction of the material made up of atoms is similar to the collapse of one end of the lattice structure and the occurrence of an avalanche phenomenon. , to master the basics of intellectual education.
In the form of <MagPole>, four spherical magnets are gathered at one vertex of a polyhedral solid and oriented in an annulus shape. They are oriented in both the positive and negative directions, and have a commonality with the magnetization, which is the sum of their vectors, being zero. Two vertex atoms and two body-center atoms of the soft iron lattice unit are spin-oriented in a rectangular ring array as a spherical magnet with a spherical current distribution of an orbital electron sphere. Since the body-centered cubic of soft iron repeats three-dimensionally in all XYZ directions, the equatorial great circle does not pass through the center of the ring as in the <MagPole> format. The magnetic poles of spin atoms and R spin atoms are opposite in the Z-axis direction. When an external magnetic field is applied in the X direction, the L spin atoms at the vertices of the cube are tilted by the Lorentz force, and the R spin atoms at the center of the body are differentially tilted in the opposite direction. Only the magnetization component in the X-axis direction appears. That is, in a body-centered cubic lattice of iron with spin axes directed in both the positive and negative directions of the Z-axis, when an external magnetic field is applied in the X-axis direction, it is proportionally magnetized in the X-axis direction. Similarly, in a body-centered cubic lattice of iron with spin axes directed in both the positive and negative directions of the Z-axis, it is proportionally magnetized in the Y-axis direction when an external magnetic field is applied in the Y-axis direction. In this way, magnetic domains with spin axes in both the positive and negative directions of the Z axis cannot be magnetized in the Z axis direction, but are magnetized proportionally in the direction of the vector by an external magnetic field component along the XY plane. Since this clear mechanism has not been shared as a magnetic theory, the magnetic domain, which is a unit of continuous body-centered cubic lattice of pure iron, is distributed in the XYZ directions with equal probability, and the magnetic domain boundary is determined by the direction of the applied external magnetic field. So far there has been a monopoly of interpretations in which optical microscopy that moves or the boundaries remain the same is narrated.
Like this example, the <MagPole> form resembles the most common form in the world of elementary particles. The difference between the spin currents of the spherical magnet and the orbital electron sphere is that in the spherical magnet, the equivalent surface current density at the poles decreases in proportion to the radius of the small circle at high latitudes, but in the orbital electron sphere, the unit charge −q is electrostatic. It is uniformly distributed on the surface of the sphere, and both the equator and the poles maintain the same rotational linear velocity of the speed of light C. produce. In that sense, a shape that is completely similar to the world of elementary particles cannot be realized with a spherical magnet in the macroscopic world, but if necessary, it can be realized with an electromagnet that weights the current proportional to latitude θ by 1/cos θ with a spherical electromagnetic coil. can.

(図12)に示す形では、正多角形の辺に円柱磁石を埋め込む<MagEdge>形式はパネルの角を接続することが出来ないが、<MagPole>形式では角が接続され、辺もその両端で接続される。正方形の辺の中央に円柱磁石を埋め込むのは、2つのパネルの辺が吸着する場合に、球体磁石では接触点を中心にパネルが自由に捻じれてしまうのに対して、円柱磁石なら辺に沿った接触で捻じれ難いという願望であるが、実際には簡単に180度回転し、それがきっかけで立体造形が崩れることが多い。また球体磁石1個では吸着力がやや弱いと言う思い込みで、それを補うために磁石の直径を大きくするとパネルの厚みが大きくなってしまう問題があり、直径5mm、高さ10mmの1個の円柱磁石を辺の中央に埋め込むより、(図13)に示すように直径5mmの球体磁石を少し離して2個埋め込む方が接続された2つのパネルは回転し難く、パネルの厚みも大きくならないが、問題は近くで隣り合う2分割された球体磁石が互いに配向して、辺と辺の接続に影響を持つ。そういう意図ならば、2つの球体磁石の距離を十分に離して角まで持って来れば、パネルの回転は起こらず、磁石の数も2倍にならないで済む。
立体造形は、(図14)に示した複合32面体(フラーレン)のような対称的な形であれば、構成パネルが吸着する位置精度が高いことで立体造形の剛性は高くなる。しかし幼児が発展的に興味を示すのは、完全な対称形ではなく、むしろ変化を与えるその部分で完結する応用であろう。従って不完全な形の強度も考慮する必要がある。
(図15)に示すように、正多角形の辺に円柱磁石を埋め込んで組み合わせるのと、角に球体磁石を埋め込むのとでは、剛性を維持する上で結合場所の数が少ない後者の方が有利になる試行錯誤実験の結果の理由が明確に理解できる。
In the form shown in Fig. 12, the <MagEdge> form, in which cylindrical magnets are embedded in the sides of a regular polygon, cannot connect the corners of the panel. connected with The reason why the cylindrical magnet is embedded in the center of the side of the square is that when the sides of the two panels are attracted to each other, the panel is freely twisted around the contact point with the spherical magnet, whereas the cylindrical magnet It is a desire that it is difficult to twist by contacting along, but in reality it easily rotates 180 degrees, which often causes the three-dimensional modeling to collapse. In addition, there is a problem that the thickness of the panel increases if the diameter of the magnet is increased to compensate for the assumption that the attractive force of a single spherical magnet is rather weak. Rather than embedding the magnets in the center of the sides, it is better to embed two spherical magnets with a diameter of 5mm as shown in (Fig. 13) with a little distance between the two panels. The problem is that two halves of the sphere magnets that are adjacent to each other are oriented to each other and have an effect on the side-to-side connections. For that purpose, if the two spherical magnets are placed far enough apart to reach the corner, the panel will not rotate and the number of magnets will not be doubled.
If the three-dimensional modeling is a symmetrical shape such as the compound triicosahedron (fullerene) shown in (Fig. 14), the rigidity of the three-dimensional modeling will be high due to the high positional accuracy with which the constituent panels are attracted. However, what young children are interested in developmentally is not the perfect symmetrical form, but rather the application that completes the part that gives change. Therefore, the strength of the imperfect shape must also be considered.
As shown in Fig. 15, between the combination of embedding cylindrical magnets in the sides of a regular polygon and embedding spherical magnets in the corners, the latter is better because it has fewer joints in terms of maintaining rigidity. The reason for the favorable trial and error results can be clearly understood.

<MagEdge>形式に於いては、(図16)に示すように2つの平行な矩形電流が対向し、中心軸を共有している。電流素 I1 が loop #1 の辺a-b上にあり、loop #2 上の電流素 I2 に作用している。I2 から辺 a-b に法線を下すと点mに来る。点kのI1が 点lのI2 の場所に生じる磁界 H は三角形平面 k-l-m に垂直である。I2と H による電・磁・力は、ベクトルI2とベクトルHの両方に垂直であるので、辺c-eに平行である。2つの矩形は中心軸を共有しており、最終的に求めているものは中心軸方向の磁力なので、loop #1の辺a-bとloop #2の辺c-dの間に生じるローレンツ力は中心軸方向のベクトル成分を持たない。従って矩形電流間の力の計算は、平行な辺どうしの計算をすればよいことが分かる。
積分範囲は対称性から、#1の矩形の全辺と、#2の矩形の四半辺の引力を(数1)のように4重積分したものを4倍すればよい。これが必ずしも正しくは認識されていない場合が多いローレンツ作用の直交性である。
円柱磁石の2者関係の数値計算は(loop #1 の横線+縦線)*(loop #2 の横線+縦線)*(loop #1 の奥行)*(loop #2の奥行)を合わせた4重積分で良い。

Figure 2022159729000003
In the <MagEdge> format, two parallel rectangular currents face each other and share a central axis, as shown in (Fig. 16). Current element I1 is on edge ab of loop # 1 and acts on current element I2 on loop #2. A normal to side ab from I2 comes to point m. The magnetic field H produced by I 1 at point k at the location of I 2 at point l is perpendicular to the triangular plane k-l-m. The electromagnetic force due to I 2 and H is perpendicular to both vector I 2 and vector H, and therefore parallel to side ce. The two rectangles share the central axis, and what we are ultimately looking for is the magnetic force in the direction of the central axis. does not have a vector component of Therefore, it can be seen that the force between the rectangular currents should be calculated between parallel sides.
From the symmetry of the integration range, the attractive forces of all sides of the #1 rectangle and quarter sides of the #2 rectangle should be quadrupled as shown in (Formula 1). This is the orthogonality of the Lorentz action, which is often not recognized correctly.
Numerical calculation of the two-party relationship of the cylindrical magnet is (horizontal line + vertical line of loop #1) * (horizontal line + vertical line of loop #2) * (depth of loop #1) * (depth of loop #2) Quadruple integral is fine.
Figure 2022159729000003

電磁気学では磁界という概念が、ローレンツ力と電流誘導という現象の両方に跨って使われているために混乱と不都合を生じている例が多く見られるが、この2つは別のものである。ファラデーの電磁誘導は、ループを成す金属導体で囲まれた面積を通る磁束の総数の時間変化分が、ループの1箇所を断ち切った場合の開放端子電圧になると表現したが、これは本来電流が周波数ωに無関係に直流から誘導されようとしたのが銅損rで阻止され、周波数ωが高くなるとωLがrに打ち勝って駆動電流I1と誘導電流I2が1:1の周波数応答として、磁気結合係数のような無名数の比例関係になるものであり、銅損rがある故にfC以下の周波数で応答が遮断されるだけである。ループが超伝導であればr=0となり、電流誘導が直流で起きてそのまま流れ続ける。むしろレンツ則が、(図17)に示すように周波数に関係なく、原因が電流で結果も電流である無名数の比の関係で、結果の向きの正負だけを見ている点で、適切な表現であり物事の因果関係を直感的に見分けていたと言える。
こう言った次元が異なるものを関連付けない直感は幼児にも備わっており、幼児期にそれを確立することが本来の知育の基本部分の1つである。必要なものは、レンツ則、ビオ=サバール則、ローレンツ則であって、ファラデー則とフレミングの右手/左手則があるために数値計算の足かせになり、実験の試行錯誤や経験に頼るしかなかったことで、ベストモードの設計への到達が遅れることになっている工業製品の例は多い。有限要素法ではない、数式でのPC計算が成り立つ場合には、実験での試行錯誤の繰り返しとブレークスルーに頼る必要がなく、初めから工業製品はベストモードで設計・出荷されると言える。
(図17)に示したように点 #Aを流れる電流I1は Rだけ離れた点 #Bの導体に電流I1と点 #Bを含む円弧に沿った方向に、1/R2に比例する電流I2を誘導する。ループ状の導体に誘導された電流I2は共通の電流値になるように相互に誘導し合って、直流から平衡する。誘導電流はループのインダクタンスLと銅損rの時定数L/rでHPFの応答になる。Rだけ離れた点 #Aと点 #Bにベクトル電流 IとJが流れている時に、両点を結ぶ線分にIn-LineなベクトルIxとJxの間には力が働かない。これと垂直な Y-Z平面上でIy-JyとIz-Jzがそれぞれ平行に対向しており、その間でローレンツ力を働かせるビオ=サバール磁界でsinθを掛けているのは、In-Line成分を取り除く作業を行っているだけである。立体空間上のI1とI2の電流間力を求めるには両点を結ぶ線分 Rに沿うIn-Line成分を除いた、平行平面上のベクトルの内積に1/R2を掛ければよい。内積とは任意のYZ座標に射影した平行ベクトルの積の2乗和の平方根で、座標の取り方に拘わらず一定になる。これがローレンツ力を計算する時に有効な直交原理であり、このような理解として広く知れ渡っていない。
<MagEdge>、<MagSide>、<MagPole>の3方式のそれぞれの最適設計は、以後記述する数式を用いて、1日でPC計算が完了し、磁石が飽和磁化している限り、試作実験は単なる事実の再確認に過ぎなくなる。これが古来の理論指導実践の意味である。
In electromagnetism, there are many cases where confusion and inconvenience are caused because the concept of magnetic field is used across both phenomena of Lorentz force and current induction, but these two are different things. Faraday's electromagnetic induction expressed that the amount of time change in the total number of magnetic fluxes passing through the area surrounded by the metal conductor forming the loop becomes the open terminal voltage when one point of the loop is cut off, but this is originally the current Attempting to be induced from the direct current regardless of the frequency ω is blocked by the copper loss r. It is proportional to an anonymous number like the magnetic coupling coefficient, and the response is only cut off at frequencies below f C due to the presence of copper loss r. If the loop is superconducting, then r=0 and current induction occurs at DC and continues to flow. Rather, as shown in Fig. 17, Lenz's law looks only at the positive or negative direction of the result in relation to the ratio of anonymous numbers whose cause is current and whose result is current, regardless of frequency. It can be said that it was an expression and intuitively discerned the causal relationship of things.
Infants are also endowed with this kind of intuition that does not relate things of different dimensions, and establishing it in early childhood is one of the fundamental parts of intellectual education. Lenz's law, Biot-Savart law, and Lorentz's law were necessary, and Faraday's law and Fleming's right-hand/left-hand rule hindered numerical calculations. There are many examples of industrial products that are slow to reach the best mode design because of this. It can be said that industrial products are designed and shipped in the best mode from the beginning, without relying on repetition of trial and error and breakthroughs in experiments, when PC calculations with formulas, not the finite element method, are possible.
As shown in (Fig. 17), the current I 1 flowing through point #A is proportional to 1/R 2 in the direction along the arc containing the current I 1 and point #B in the conductor at point #B, which is separated by R. induces a current I2 that The currents I2 induced in the looped conductors are mutually induced to a common current value and are balanced from direct current. The induced current becomes HPF response with time constant L/r of loop inductance L and copper loss r. When vector currents I and J are flowing in points #A and #B separated by R, no force acts between vectors Ix and Jx that are in-line on the line segment connecting the two points. On the YZ plane perpendicular to this, Iy-Jy and Iz-Jz face each other in parallel, and the Biot-Savart magnetic field that exerts the Lorentz force between them is multiplied by sinθ to remove the In-Line component. I am just doing To find the force between the currents of I 1 and I 2 in three-dimensional space, multiply the inner product of the vectors on the parallel plane, excluding the In-Line component along the line segment R connecting the two points, by 1/R 2 . The inner product is the square root of the sum of the squares of the products of parallel vectors projected onto arbitrary YZ coordinates, and is constant regardless of how the coordinates are taken. This is the orthogonal principle that is effective when calculating the Lorentz force, and is not widely known as such an understanding.
For the optimal design of each of the three methods <MagEdge>, <MagSide>, and <MagPole>, using the formulas described below, the PC calculation is completed in one day, and as long as the magnet is saturated magnetized, the prototype experiment is It is nothing more than a reaffirmation of the facts. This is the meaning of ancient theory teaching practice.

<MagEdge>、<MagSide>、<MagPole>の3方式を定性的に比較した(表1)では、パネルの厚みを決めている磁石の円断面/角断面の大きさを揃えている。<MagEdge>型式では5mmφ、10mm高の円柱のN35等級のネオジウム磁石を正多角形の各辺に1個使うが、これを5mmφの球体のN35等級のネオジウム磁石に置き換えた場合も調べる。
<MagPole>形式では5mmφのN35等級のネオジウム球体磁石を正多角形の各角に1個使い、<MagSide>形式では5mm角、10mm高のN35等級のネオジウム角型磁石を正多角形の各辺に2個使うが、またこれを異方性フェライトに置き換えて磁力を押さえるようにする3様の形式を正確な数値計算で比較する。
先ず(図18)に示すように、円柱磁石や球体磁石を円断面の直径方向に飽和着磁した場合、等価表面電流密度分布は円断面上の極座標表示の角度θでsinθに比例し、2つの円柱磁石や2つの球体磁石では電流密度がゼロの部分が対向接触している。但し円柱磁石の両端面では電流密度分布が一様である。これに対して角型磁石を対向させた場合は側面の全域で電流密度分布が一様であり、そのため吸着力が強い。円柱磁石や球体磁石は最も電流密度が小さい部分が対向接触しているにも拘わらずこの同軸対向姿勢の吸着力が大きい。
3つの球体磁石 #1/#2/#3が逆三角形の位置で円環自立配向している時に、(図19)に示したように、#2を #1の表面を伝いながら #1の真横まで転がして対向させると、極と極が向かい同軸対向となるので、#1と#2の引力は最大の吸着力になる。しかし集団の力はそれに勝り、#2から手を離すと、#1の表面を伝って回転し、#3の真横の定位置に瞬時に戻る。この元に戻った位置では、#2と#3は極と極が向き合う同軸対向姿勢からそれぞれ60度ずれており、むしろ赤道と赤道が接する最弱の姿勢からそれぞれ30度ずれている形である。このように円環自立配向では、あくまでも集団として扱わないと理解はできない。
In the qualitative comparison of <MagEdge>, <MagSide>, and <MagPole> (Table 1), the size of the circular cross-section/angular cross-section of the magnet, which determines the thickness of the panel, is the same. In the <MagEdge> model, one N35 grade neodymium magnet of 5 mmφ and 10 mm height is used for each side of a regular polygon, but the case where this is replaced with a N35 grade neodymium magnet of 5 mmφ sphere is also examined.
In the <MagPole> format, a 5 mmφ N35 grade neodymium spherical magnet is used at each corner of the regular polygon, and in the <MagSide> format, a 5 mm square, 10 mm high N35 grade neodymium square magnet is used on each side of the regular polygon. 2 are used for 1, and 3 types are compared by exact numerical calculations in which they are replaced with anisotropic ferrite to suppress the magnetic force.
First, as shown in Fig. 18, when a cylindrical magnet or a spherical magnet is saturated and magnetized in the diameter direction of a circular cross section, the equivalent surface current density distribution is proportional to sin θ at the angle θ in polar coordinates on the circular cross section, and 2 In two cylindrical magnets or two spherical magnets, the portions where the current density is zero are in contact with each other. However, the current density distribution is uniform on both end faces of the cylindrical magnet. On the other hand, when the rectangular magnet is opposed, the current density distribution is uniform over the entire side surface, and therefore the attracting force is strong. Although the cylindrical magnets and spherical magnets are in contact with each other at the portions where the current density is the lowest, the attracting force of this coaxially facing posture is large.
When three spherical magnets #1/#2/#3 are oriented in an inverted triangular position, #2 moves along the surface of #1 and moves toward #1 as shown in (Fig. 19). If you roll them to the side and face each other, the poles will face each other coaxially, so the attractive force of #1 and #2 will be the maximum adsorption force. However, the power of the group overcomes it, and when #2 is released, it rotates along the surface of #1 and instantly returns to the fixed position right beside #3. In this reverted position, #2 and #3 are 60 degrees each off the coaxial pole-to-pole orientation, or rather 30 degrees off the weakest equator-to-equator orientation. . In this way, the self-supporting orientation of the circular ring cannot be understood unless it is treated as a group.

各形式の磁力の数値計算では(図20)で示すように、<MagSide>形式の角型固定磁石ペアの対向では等価表面電流密度は一様であるが、<MagEdge>形式の円柱磁石の回転配向、参考としての球体磁石の2球体同軸対向、<MagPole>形式の3~者球体磁石の円環配向、では1次元的~2次元的な表面電流密度分布を数値計算に重み付け算入する必要がある。
先ず2つの球体磁石の自立配向の数値計算では、円電流と円電流の間のローレンツ力なので、(図21)と(数2)に示すように、円電流からhの高さだけ離れ、中心軸からbだけ離れた場所の磁界を1重積分で求め、それをX軸方向に2重積分する、合せて3重積分である(数3)の形にできる。得られた結果は(図22)であり、正規化された磁力は、球体磁石の極間距離dが0.5mm+0.5mmでは約2の正規化吸着力である。
本出願の表記では、横軸dは、統一して円柱磁石/球体磁石の半径を1として正規化した、磁石の表面間距離のことであり、d=0.4が、2つの磁石がそれぞれ0.5mmの厚みの隔壁を持っている状態を指す。縦軸は、(数11)に示した変換で、目盛の1が58グラム重を表すように相対値が示されている。

Figure 2022159729000004
Figure 2022159729000005
次に(図23)に示す、5mmφ、10mm高のネオジウム円柱磁石を正多角形の各辺に埋め込んだものをNS極対向させた自立配向では、(数4)と(数5)で数値計算され、距離dに対して(図24)に示す減衰曲線となる。並行して、5mmφ、5mm高の円柱磁石の自立対向も数値計算して、端面電流と側面電流の寄与の割合を調べる。5mm高でも10mm高でも端面電流の寄与は大差がないが、側面電流の寄与は差がある。両者の和を取ると5mm高と10mm高では2倍程の吸着力の違いなので、体積を増す効果がそのまま表れている。磁力は、球体磁石の極間距離dが0.5mm+0.5mmでは4.4程の正規化吸着力である。
Figure 2022159729000006
Figure 2022159729000007
更に、3個の球体磁石が円環状に並ぶ自立配向で引き合う時の磁気引力は(数6)で表され、表面間距離に対して(図25)に示した変化となり、dが0.5mm+0.5mmでは2.7程の正規化吸着力である。
Figure 2022159729000008
従って<MagPole>形式の3個の球体磁石の円環自立配向の吸着力は、<MagEdge>形式の2個の円柱磁石の同軸対向自立配向の吸着力の6割程であり、これは立体全体の剛性が数倍に向上するなら、1枚のパネルが強引に引っ張られる力は弱まるので幼児にとって好ましいことである。
最後に<MagSide>形式では、(図26)に示す5mm角、10mm高のN35等級のネオジウム角型磁石を真横に置いた弱い吸着力の隣り合わせ姿勢の磁力を(数7)で、隅が接したまま一方を180度折り返して正面対向する強い吸着力を(数8)で数値計算するが、最も多用される2つのパネルが直角に接続される吸着力はその中間の大きさなので数値計算を省略する。(図27)に示した計算結果は、隣り合わせの姿勢でも重ね合わせの姿勢でも正規化吸着力はdが0.5mm+0.5mmでは34程度になり明らかに強すぎる。そこで飽和磁束密度がネオジウム磁石のN35等級の1/3程である異方性フェライト磁石に置き換えると、吸着力は1/9ほどになり、<MagEdge>形式と同程度の吸着力であるが、磁石の材料費が下がるか上がるかは一概には言えない。
Figure 2022159729000009
Figure 2022159729000010
In the numerical calculation of the magnetic force of each type, as shown in Fig. 20, the equivalent surface current density is uniform in the <MagSide> type fixed square magnet pair, but the rotation of the <MagEdge> type columnar magnet Orientation, two spheres coaxially facing each other as a reference, and annular orientation of 3-person spherical magnets in <MagPole> format, it is necessary to include one-dimensional and two-dimensional surface current density distributions in numerical calculations. be.
First, in the numerical calculation of the self-orientation of two spherical magnets, the Lorentz force between two circular currents is the Lorentz force. The magnetic field at the location b away from the axis can be obtained by single integration, double integration is performed in the X-axis direction, and the triple integration can be obtained in the form of (Equation 3). The result obtained is (FIG. 22), where the normalized magnetic force is a normalized attraction force of about 2 for a spherical magnet pole-to-pole distance d of 0.5 mm+0.5 mm.
In the notation of this application, the horizontal axis d refers to the distance between the surfaces of the magnets, normalized to the radius of 1 for a uniform cylindrical magnet/spherical magnet, where d = 0.4 indicates that the two magnets are It refers to the state of having partition walls with a thickness of 0.5 mm. The vertical axis is the conversion shown in (Equation 11), with relative values shown such that 1 on the scale represents 58 grams force.
Figure 2022159729000004
Figure 2022159729000005
Next, as shown in FIG. 23, in a self-supporting orientation in which neodymium cylindrical magnets of 5 mmφ and 10 mm high are embedded in each side of a regular polygon and opposed to the N and S poles, numerical calculations are performed using (Equation 4) and (Equation 5). , resulting in the attenuation curve shown in (FIG. 24) with respect to the distance d. At the same time, numerical calculations are also performed for a cylindrical magnet of 5 mm diameter and 5 mm height, and the contribution ratio of the end face current and the side face current is examined. There is not much difference in the contribution of the end surface current between the height of 5 mm and the height of 10 mm, but there is a difference in the contribution of the side surface current. When the sum of both is taken, the difference in adsorption force between the height of 5 mm and the height of 10 mm is about twice, so the effect of increasing the volume is shown as it is. The magnetic force is a normalized attraction force of about 4.4 when the distance d between the poles of the spherical magnet is 0.5 mm+0.5 mm.
Figure 2022159729000006
Figure 2022159729000007
Furthermore, the magnetic attraction force when three spherical magnets are arranged in an annular shape and are attracted to each other in a self-supporting orientation is represented by (Equation 6). At 0.5 mm, the normalized adsorption force is about 2.7.
Figure 2022159729000008
Therefore, the attracting force of the three spherical magnets of the <MagPole> type in the ring self-supporting orientation is about 60% of the attraction force of the two cylindrical magnets in the <MagEdge> form of coaxially facing self-supporting orientation. If the rigidity of the panel is improved several times, the force with which one panel is forcibly pulled is weakened, which is preferable for infants.
Finally, in the <MagSide> format, a 5 mm square, 10 mm high N35 grade neodymium square magnet shown in (Fig. 26) is placed right next to it, and the magnetic force of the weak attraction force is expressed by (Equation 7), and the corners are in contact. The strong attractive force of turning one panel over 180 degrees and facing it face-to-face is numerically calculated using (Equation 8). omitted. According to the calculation results shown in FIG. 27, the normalized attraction force is about 34 when d is 0.5 mm+0.5 mm, which is clearly too strong in both the side-by-side and superimposed orientations. Therefore, if we replace it with an anisotropic ferrite magnet whose saturation magnetic flux density is about 1/3 that of the N35 class of neodymium magnets, the attractive force will be about 1/9, which is about the same as the <MagEdge> type. It cannot be said unconditionally whether the material cost of magnets will decrease or increase.
Figure 2022159729000009
Figure 2022159729000010

<MagPole>形式の磁力の数値計算では、#1の球体磁石に対して、#2と#3の球体磁石が±30度横にずれた中心位置関係になるので、計算が複雑になり、(図28)を使った数式の導出が行なわれなければならず、それによって(数9)が導かれる。この数式が持つ意味は、3つの球体磁石が正三角形の位置関係を保つ前提で球体磁石の表面間距離dを共通に変化させたものであり、実際には球体磁石 #2と#3がその表面間距離を保ったまま #1を縦方向に遠ざける場合の磁力の変化を知りたいのである。しかしそれを求めるのは(図29)に示すように状態が変化するために逐次計算が必要で、膨大な計算日数を必要とする。それを省略することで支障がある訳ではなく、例えば表面間距離dが0.5mm+0.5mmになる位置を選び、その吸着状態から #1の球体磁石を角に埋め込んだパネルを、くっついたままである#2と#3から引き剥がす瞬間のトルクを求めればよいだけなので、状態が変わって逐次計算になってしまうことは必要としていない。即ち、(図30)の正に引き剥がそうとする瞬間の、丸で囲った部分のトルクだけが意味を持つ。

Figure 2022159729000011
(数10)の四角で囲われた係数(sinβsinα)は球体磁石の表面電流密度分布の重み付けであって、球体磁石や円柱磁石ではこの重みづけを正しく付け加えなければならない。
Figure 2022159729000012
In the numerical calculation of the magnetic force in the <MagPole> format, the spherical magnet #2 and #3 have a center positional relationship that is ±30 degrees laterally shifted from the spherical magnet #1, so the calculation becomes complicated. 28) must be performed, which leads to (Equation 9). The meaning of this formula is that the surface-to-surface distance d of the three spherical magnets is changed in common on the premise that the three spherical magnets maintain an equilateral triangular positional relationship. We want to know the change in the magnetic force when moving #1 away in the vertical direction while maintaining the distance between the surfaces. However, obtaining it requires sequential calculations because the state changes as shown in FIG. 29, and requires an enormous number of calculation days. For example, select a position where the distance d between the surfaces is 0.5 mm + 0.5 mm, and from the attracted state, the panel with the spherical magnet #1 embedded in the corner is attached. Since it is only necessary to obtain the torque at the moment of peeling off from certain #2 and #3, it is not necessary that the state changes and the calculation becomes sequential. That is, only the torque in the encircled portion at the moment when it is about to be peeled off in (FIG. 30) is significant.
Figure 2022159729000011
The coefficient (sinβsinα) 2 surrounded by a square in (Equation 10) is the weighting of the surface current density distribution of the spherical magnet, and this weighting must be correctly added to the spherical magnet and the cylindrical magnet.
Figure 2022159729000012

以上の正規化して数値解析を行った磁力は(数11)によってグラム重に変換でき、1目盛は58グラム重である。<MagPole>形式で1個の正方形パネルを引き剥がす力は、正規化単位で2.7であるので、その4倍に58グラム重/目盛を掛けると、凡そ630グラム重が正方形を引き剥がす磁力であり、幼児にとっては少し大き過ぎ、力一杯剥す時に加減が出来ず、立体造形を崩してしまう恐れがある。吸着力の調整は球体磁石の直径を小さくすれば、その割合の2乗に比例して小さくなる。
(図31)に、2円柱対向、2球体対向、3球体円環配向の磁力を比較した。実験による感覚としての比較では明らかに<MagPole>形式が最適だと評価される。鍵を正確に鍵穴に入れるのは幼児には難しいが、鍵穴に自立的に引き込まれる形であり、幼児に求められるのは形が合っているかどうかを見極めることである。また物事が順序良く正確に行われるのに注意することの利点を知れば、自由な発想は大抵向こうからやって来る。

Figure 2022159729000013
The above normalized and numerically analyzed magnetic force can be converted to gram weight by (Equation 11), and one scale is 58 gram weight. The force to peel off one square panel in the <MagPole> format is 2.7 in normalized units, so multiplying by 4 times that by 58 grams force/scale yields approximately 630 grams force of magnetic force pulling a square apart. However, it is a little too big for young children, and there is a risk that they will not be able to adjust when peeling off with all their strength, and the three-dimensional modeling will collapse. If the diameter of the spherical magnet is made smaller, the adjustment of the attractive force becomes smaller in proportion to the square of the ratio.
(Fig. 31) compares the magnetic forces of two cylinders facing each other, two spheres facing each other, and three spheres facing an annular orientation. The <MagPole> form is clearly evaluated as the best in comparison as a sense by experiment. It is difficult for young children to put the key into the keyhole accurately, but the key is pulled into the keyhole independently, and what is required for young children is to determine whether the shape is correct. And once you know the benefits of taking care that things are done in order and correctly, free thinking usually comes from there.
Figure 2022159729000013

<MagEdge>形式のパネルを組み立てた立体造形が簡単に崩れてしまうのは、くっついた正多角形の辺に埋め込まれた円柱磁石がお互いに縦ずれを起こしたまま静止していること、正多角形の辺がお互いに回転してしまうことによる。先ず円柱磁石が縦ずれをしたままになるメカニズムを説明すると、(図32)で示すように、2つの円柱磁石が対向して5の大きさの力で引き合っている時に、1mmだけ縦ずれすると、中点復帰力は(数12)で算出され0.6程の大きさである。更に2mmのずれになっても中点復帰力は飽和して0.6程の大きさから増えない。一方5の力で引き合うために、最大静止摩擦係数が0.2であれば、5*0.2=1の大きさの静止摩擦が働き、0.6の中点復帰力ではこれを越えられず、2つのパネルは縦ずれしたまま静止する。ネオジウム磁石の等級を上げても最大静止摩擦係数はパネルの表面の状態で決まるので、磁力を強くしても問題は解決しない。これが全ての接合部で起きるので、立体造形は全パネルがずれたまま直ぐに崩れてしまい、幼児は全ての磁力接合点を微調整し続けなければならないのが<MagEdge>形式の特徴である。

Figure 2022159729000014
これと比べて球体磁石を辺の中央に埋め込んだパネルを接続した場合の縦ずれは、縦ずれが大きくなると2つの球体磁石が回転して斜め位置で必ず同軸対向するので、6mmのX方向の中心間距離に対して1.2mmの縦ずれを起こした時に、ベクトル計算で最大摩擦係数0.2が縦ずれ解消の障壁になる。即ち最大摩擦係数が0.2なら、球体磁石を辺の中央に埋め込む形式では縦ずれは1.2mm以上にはならないのに対して、円柱磁石を埋め込む形式では縦ずれが大きくなったまま自力では戻らず、幼児はずれる度に修正を繰り返さねばならない。現在の磁力接続玩具の殆どが円柱磁石を用いているのは、2つのパネルの辺を隣り合せてくっつけた時に捻じれて180度回ってくっつくことがあるのを防ぐ目的であるが、しかしこの捻じれ発生は円柱磁石でも無くなる訳ではない。
一方<MagPole>形式では(図33)に示すように、辺の両端に埋め込まれた球体磁石が、立体造形の頂点で3個以上の正多角形の角の球体磁石が円環状に自立配向するので、1:2の関係になり、縦ずれは原理的に小さく、また1つの辺の両端の球体磁石が原点復帰力を受け、両側から押さえられているので、多面立体の頂点で3つの正多角形の角が集まると、合計2個ではなく12個の球体磁石が縦ずれを小さくするのに貢献する。 The reason why the 3D model assembled from <MagEdge> format panels collapses easily is that the cylindrical magnets embedded in the sides of the regular polygons that are attached to each other stand still with a vertical displacement. This is due to the sides of the square being rotated with respect to each other. First, the mechanism by which the columnar magnets remain vertically displaced will be explained. , the center point restoring force is calculated by (Equation 12) and has a magnitude of about 0.6. Even if the deviation is further 2 mm, the center point return force is saturated and does not increase from the magnitude of about 0.6. On the other hand, since they are attracted by a force of 5, if the maximum coefficient of static friction is 0.2, a static friction of 5*0.2=1 will work, and a midpoint return force of 0.6 will exceed this. The two panels stand still while being vertically displaced. Even if the grade of the neodymium magnet is raised, the maximum coefficient of static friction is determined by the state of the surface of the panel, so increasing the magnetic force does not solve the problem. Since this happens at all the joints, the three-dimensional modeling immediately collapses with all the panels misaligned, and the infant must continue to fine-tune all the magnetic joints, which is a characteristic of the <MagEdge> format.
Figure 2022159729000014
In contrast, when connecting panels with spherical magnets embedded in the center of each side, the vertical misalignment increases, and the two spherical magnets rotate and always face each other at an oblique position. When a vertical deviation of 1.2 mm is caused with respect to the center-to-center distance, the maximum coefficient of friction of 0.2 is a barrier to elimination of vertical deviation in vector calculation. That is, if the maximum coefficient of friction is 0.2, the vertical displacement does not exceed 1.2 mm with the type in which the spherical magnet is embedded in the center of the side. It does not return and the correction must be repeated each time the infant deviates. The reason why most of the current magnetic connection toys use cylindrical magnets is to prevent the two panels from twisting and sticking 180 degrees when the sides of the panels are attached side by side. Twisting does not disappear even with cylindrical magnets.
On the other hand, in the <MagPole> format, as shown in Fig. 33, the spherical magnets embedded at both ends of the side are oriented independently in a ring at the vertices of the three-dimensional modeling. Therefore, the relationship is 1:2, the vertical deviation is small in principle, and the spherical magnets at both ends of one side receive the origin return force and are pressed from both sides, so there are three positives at the vertices of the polyhedral solid. When the corners of the polygon come together, a total of 12 spherical magnets, rather than 2, contribute to low longitudinal displacement.

厚み方向に着磁した円板磁石を(図34)に示すように同軸対向させると、強く引き合って密着したまま、薄いフィルムを挟んで摩擦を減らすと比較的容易に直角方向にずれる。これに対して、この円板磁石を隣り合せてNSとSNは並列になる形の弱い磁力で引き合わせると、直角方向に簡単にはずれない。2個の円柱磁石、2個の球体磁石を引き合うように対向させると、引き合う力に対して、円柱磁石は縦ずれを起こし易く、横ずれは起こし難いが、球体磁石は両方向にずれ難い。このように、<MagEdge>形式は縦ずれを起こし易く、<MagPole>形式は縦ずれを起こし難いピンポイントのメカニズムであるのが理解できる。
(図35)に2個の円柱磁石を吸着させて片方を回転させると抵抗はあっても比較的容易に回転し、2個の球体磁石を吸着させて片方を回転させると全く自由に回転する様を示す。しかし<MagPole>形式では辺の両端に球体磁石が埋め込まれているためにパネルは回転せず、無理やり捩じるとパネルが外れる。
(図36)に示すように正多角形の角の球体磁石3個が自立円環配列して集団吸着した状態で、1つのパネルの頂点を持ち、対辺か対角を支点にしてトルクで引き剥がす場合は、その角に埋め込まれた球体磁石は他の2つの球体磁石それぞれと引き合う力のベクトル和である。ずれに関して復帰しようとする力は円柱磁石に比べて球体磁石の円環配列の方が大きい。円柱磁石の体積が球体磁石の3倍であっても、縦ずれの起こり難さは<MagPole>形式の方が優れ、吸着力そのものは緩やかなので、より快適に組み立てることができる。
When disk magnets magnetized in the thickness direction are coaxially opposed to each other as shown in FIG. 34, they are strongly attracted to each other, and if a thin film is sandwiched to reduce friction, they are relatively easily displaced in the perpendicular direction. On the other hand, if the disk magnets are placed next to each other and attracted by a weak magnetic force in which NS and SN are in parallel, they will not easily detach in the perpendicular direction. When two cylindrical magnets and two spherical magnets face each other so as to attract each other, the cylindrical magnets tend to shift vertically and hardly shift laterally, but the spherical magnets are less likely to shift in both directions. Thus, it can be understood that the <MagEdge> format is a pinpoint mechanism that easily causes vertical deviation, and the <MagPole> format is less likely to cause vertical deviation.
If two cylindrical magnets are attracted to (Fig. 35) and one is rotated, it will rotate relatively easily even if there is resistance. If two spherical magnets are attracted and one is rotated, it will rotate completely freely. show like. However, in the <MagPole> format, spherical magnets are embedded at both ends of the sides, so the panel does not rotate, and the panel can be removed by forcibly twisting it.
As shown in Fig. 36, three spherical magnets at the corners of a regular polygon are arranged in a self-supporting circular ring and collectively attracted. In the case of peeling, the spherical magnet embedded in that corner is the vector sum of the attractive forces with each of the other two spherical magnets. The force that tries to restore the displacement is greater in the annular arrangement of the spherical magnets than in the cylindrical magnets. Even though the volume of the cylindrical magnet is three times that of the spherical magnet, the <MagPole> format is superior in that it is less likely to cause longitudinal slippage, and the attractive force itself is gentle, so assembly is more comfortable.

広く普及し、正多角形の辺の中央に自由回転する円柱磁石を埋め込む<MagEdge>型式では不正確で脆弱な磁気接続に終わっていたのが、<MagPole>形式では磁石の体積を1/3にしながら正確な立体造形と崩れ難さが得られるのは、磁力線/磁界/磁極を用いるこれまでの電磁気学の考え方のままでは、電動機など磁気的原理の工業製品をベストモードに至らせることが出来ないのではないかという危惧を抱かせる。即ち磁力線/磁界/磁極という考えでは、考察すべきベクトル要素が失われてしまう。大抵の技術者は(図37)に示すように、N極とS極が磁極としてくっつくのが磁石であると教えられている。しかし磁石の磁化軸が一直線になるCo-Axialの結合になる以外に、横並びになるCo-Planeの結合もあり、多くの技術者は後者を最初には考えない。磁石の断面が円形で直径方向に着磁されている場合は、2つの磁石が自立配向すると、必ずCo-Axialの結合を取る。
多くの技術者が棒磁石を縦にしてN極とN極が近づくと反発して片方が宙に浮くのを、磁力線が反発すると説明されて納得するが、それを説明出来る法則はフレミング則だけであり、磁力線どうしは反撥などせず、力を生まない。その仕組みは下側の棒磁石の垂直磁界成分ではなく、水平放散磁界の中で、上の棒磁石の等価周囲電流との間で、フレミングの右手則の電・磁・力が働いて上向きの浮力となるのである。同様に太陽風の磁力線がオーロラオーバルに垂直に降りて来て、上下に発光するカーテンが出来ることはない。電・磁・力は互いに直交しているのである。このように磁気的なメカニズムは、静電的なメカニズムより複雑であるのに、静電気と磁気を同格に考えたいという無理による破綻が今日まで続いている中で、先に生まれたのが<MagEdge>形式であったと言える。
(図38)に示すように、磁石の強さは等価周囲電流密度でしか表せない。磁界プローブで薄い円板磁石の中央で磁界を測定しようと思っても、磁束計で測定される意味の磁界は周縁にしか分布して居らず、中央部の磁界を測定できる磁界センサーは存在しない。円板磁石の中央部で微小電流ループを考えると、そのループの外側のループ電流と相殺するために、磁界なるものは全て薄い円板の側面のループ電流からの作用である。このことから、ループという断面と交叉する磁束数という考えは電磁誘導で開放端子電圧を誘起する意味では正しい結果を与えるが、無意味であり廃絶されなければならない。電流誘導を磁気とは別に考えると、磁気は電流と電流の相互作用であるローレンツ力に一本化できる。磁石に磁力線/磁界/磁極を持ち込むと、必ず何らかの錯誤を招くので、常に電流力だけで考えることが錯誤を回避する唯一の安全策である。
これが磁気の原点であり、電磁気学の基点の1つでもある。(図39)に示すように磁力接続による立体造形は、初めから角でパネルを纏め上げるしかなかったと言えるのである。
The <MagEdge> model, which is widely used and embeds a freely rotating cylindrical magnet in the center of the side of a regular polygon, resulted in an inaccurate and fragile magnetic connection. The reason why it is possible to obtain accurate three-dimensional modeling and not to collapse while doing so is that it is possible to achieve the best mode for industrial products based on magnetic principles such as electric motors, using the conventional approach of electromagnetism, which uses magnetic lines of force, magnetic fields, and magnetic poles. It makes me fear that I can't do it. That is, the line of force/magnetic field/pole concept loses the vector element to be considered. Most engineers are taught that a magnet is the north and south poles that stick together as magnetic poles, as shown in (FIG. 37). However, in addition to the Co-Axial coupling in which the magnetization axes of the magnets are aligned, there is also the Co-Plane coupling in which the magnetization axes are aligned, and many engineers do not consider the latter first. If the magnets have a circular cross-section and are magnetized in the diametrical direction, the two magnets will always take a Co-Axial bond when they are self-oriented.
Many engineers are satisfied with the explanation that the lines of magnetic force repel each other when a bar magnet is placed vertically and the north and north poles repel each other and one floats in the air, but the only law that can explain this is Fleming's law. , and the lines of magnetic force do not repel each other and do not generate force. The mechanism is not the vertical magnetic field component of the lower bar magnet, but in the horizontal dissipation magnetic field, between the equivalent ambient current of the upper bar magnet and the Fleming's right-hand rule of electromagnetism and force, which acts upward. It becomes buoyancy. Similarly, the magnetic field lines of the solar wind do not descend perpendicularly to the aurora oval, creating a luminous curtain above and below. Electricity, magnetism, and force are orthogonal to each other. In this way, although the magnetic mechanism is more complicated than the electrostatic mechanism, the collapse due to the unreasonable desire to treat static electricity and magnetism on the same level continues to this day. > can be said to be of the form
As shown in (FIG. 38), the strength of the magnet can only be expressed in terms of the equivalent ambient current density. Even if you try to measure the magnetic field at the center of a thin disc magnet with a magnetic field probe, the magnetic field measured by the magnetometer is distributed only at the periphery, and there is no magnetic field sensor that can measure the magnetic field at the center. . Considering a small current loop in the center of the disc magnet, any magnetic field is the effect from the loop currents on the sides of the thin disc to cancel out the loop currents on the outside of the loop. For this reason, the idea of the number of magnetic fluxes crossing the section of the loop gives a correct result in the sense of inducing an open terminal voltage by electromagnetic induction, but it is meaningless and should be abolished. Considering current induction separately from magnetism, magnetism can be unified into the Lorentz force, which is the interaction between currents. Bringing magnetic lines of force/magnetic fields/magnetic poles into magnets always leads to some kind of mistake, so always thinking only in terms of current force is the only safety measure to avoid mistakes.
This is the origin of magnetism and one of the starting points of electromagnetism. As shown in FIG. 39, it can be said that three-dimensional modeling by magnetic connection had no choice but to gather the panels together at the corners from the beginning.

<MagPole>形式と<MagEdge>形式はそれぞれ辺の丸みと角の丸みを、(図40)に示したように、ほぼ同じ曲率にすることになる。特に<MagPole>形式では3つの正多角形が多面立体の1つの頂点に集まる時に、角の丸みが先に接して円環配向することが保証され、辺の丸みは触れることなく最接近しているが、<MagEdge>形式にはそのような要件はなく角がぶつからないように隙間が空くだけである。角の丸みに隙間があると正多角パネルは回転し易くなり、また角の丸みに隙間がないと、パネルは上下にずれることが出来ない利点が生まれる。
(図41)に示すように、<MagPole>形式のパネルも<MagEdge>形式のパネルも、辺は半円柱の丸みを持っており、仮想的に円柱パイプを通すと、その中に円柱磁石は収まり、2つの辺の円柱パイプが交差する所に角の球体磁石が収められる。その意味で<MagPole>形式は辺の丸みと角の丸みは出発点の原則としては同じ曲率であり、正多角形が多面立体を構成した場合に辺にも角にも隙間が出来ない。しかし実際には角の部分球面が接し、辺は接しないようにして辺の摩擦を無くすことで、ずれを修正する磁力を手助けしており、これが<MagPole>形式の剛性が高い要因の1つになっている。
The <MagPole> format and the <MagEdge> format make the roundness of the sides and the roundness of the corners substantially the same, as shown in (FIG. 40). Especially in the <MagPole> form, when three regular polygons converge at one vertex of a polyhedral solid, it is guaranteed that the rounded corners will touch first and be oriented in an annular fashion, and the rounded edges will come closest to each other without touching. However, the <MagEdge> format does not have such a requirement and only leaves a gap so that the corners do not collide. If there is a gap in the roundness of the corners, the regular polygonal panel can be easily rotated, and if there is no gap in the roundness of the corners, the panel cannot move up and down.
As shown in Fig. 41, both the <MagPole> format panel and the <MagEdge> format panel have semi-cylindrical rounded sides. It fits, and where the two side cylindrical pipes intersect, the corner sphere magnets fit. In that sense, in the <MagPole> form, the roundness of the sides and the roundness of the corners are basically the same curvature as the starting point, and when regular polygons form a polyhedral solid, there are no gaps in either the sides or the corners. However, in reality, the partial spherical surfaces of the corners are in contact and the sides are not in contact, eliminating the friction of the sides, helping the magnetic force to correct the deviation, and this is one of the reasons for the high rigidity of the <MagPole> format. It has become.

<MagPole>形式のパネルの辺の半円柱形の丸みと、角の球面の丸みが入れ替わる様子は正多角形の角数に依存し、(図42)の太線が角の部分球面である。正方形パネルを例に取ると、2つのパネル#A/#Bが接続する場合は、必ずこの太線の角の丸みが接するので、球体磁石の中心間距離は一定であり、2者関係の球体磁石は自立配向して常にNS極が同軸で対向する。
(図42)は辺の両端の2つの角の球体磁石を上から見た図としてだけではなく、円柱磁石を埋め込んだ<MagEdge>形式の辺の接続を上から見た図と共通する。どちらの場合も、接続様態が定まらないのは、磁石が回転するからである。<MagEdge>形式の場合は、3つ目のパネル#Cが加わっても、#A/#B の接続が不定になる点は変わらない。しかし多面立体の頂点には3つ以上の正多角形の角が集まるので、角に埋め込まれた球体磁石は3者以上の円環配列し、<MagEdge>形式のように#A/#B/#Cの位置関係が不定になることはなく、(図43)に示すような位置関係に一義的に決まる。これが<MagEdge>形式では、円柱磁石の1:1の自立配向であるために、#Cのパネルは容易に捻じれて接続に参加し、最大静止摩擦によって捻じれたまま止っていることになる。
<MagPole>形式では立方体の8つの頂点に集まる正方形の角の3個ずつの8組の球体磁石がそれぞれ完全な正三角形の円環配列をするので、正確で強固な立方体にしかならない。全ての正多面体の構築で完全な円環配列となるのは同様である。立方体を上から見た(図43)で、上面のパネルの4隅に埋め込まれた球体磁石は、側面のパネルの隅の球体磁石より内側に来るので、上面パネルは窪みに嵌り込んで身動きできない状態になった上で、3者配向の磁気ロックが掛かる。一方<MagEdge>形式では直方体になり、立方体になるのは手で修正した場合だけであり、また1つのパネルは捻じれたまま安定し、これも立方体にするには手で修正する必要がある。この修正作業に明け暮れることを知育と呼ぶならば、雪が結晶を作る自然界やDNAが司る生物世界は遥かに全自動化が進んでおり、それを如実に学べることには<MagEdge>は逆行している。素粒子世界は、物理的な寸法や形状に律せられた世界であり、またそれにスピン磁気引力・斥力が加わった流転世界であり、<MagPole>形式は正にこの律に準じている。
(図44)に示すように、<MagPole>形式のパネルでは更に、辺と角の丸みによって生じる、追加パネルが入るべき窓枠が持つ窪みが、高い位置精度で新しいパネルを受け入れる特徴がある。<MagEdge>形式のパネルは辺の磁力接続であるため着目するのは辺の丸みであり、角の丸みは全ての立体造形で角の丸みがぶつからないように大きな曲率で丸められ後退している。従って角の丸みは立体造形の剛性や位置精度には貢献していない。一方<MagPole>形式ではその理念から、角は厳格に同一の丸みの曲率であり、球体磁石の中心間距離が揃った角の点接触で結合が成り立ち、辺の丸みはそれよりやや内側に後退して接触しない。<MagEdge>形式はこれと似ているようでも辺の丸みが接し、角は接触しない。
6つの正方形で構成される立方体を境目にして、4つの正三角形で構成される正四面体は鋭角で面や角が交わり、正五角形以上は鈍角で面や角が交わる。この全てで、貼り付ける正多角形パネルを空いた窓枠に嵌め込む窪みがあり、角数の多い正多角形パネル程嵌り込むパネルの窪みは深くなる。厳密な丸み基準の<MagPole>形式のパネルでは、磁石がなくても既に身動きができなくなっている。磁力は角の丸みで決まる正確な窪みの位置と向きに先ず誘い、最後に磁気ロックを掛け、その後の造作の過程でそれがずれないようにロックを外さない役目である。<MagEdge>形式のパネルでは、辺の丸みとしてこの機械的な浅い窪みはあるが、パネルが追加された窓枠でシーソーのように傾く自由度が残り、明確に嵌り込む位置は存在せず、磁力で中心に引き戻そうとするが、最大静止摩擦に阻まれる。これが<MagPole>形式と、<MagEdge>形式の画然たる剛性の違いになっている。
The semi-cylindrical roundness of the sides of the <MagPole> format panel and the roundness of the spherical corners are interchanged depending on the number of corners of the regular polygon. Taking a square panel as an example, when two panels #A/#B are connected, the rounded corners of this bold line are always in contact, so the distance between the centers of the spherical magnets is constant, and the two-way spherical magnets are self-oriented and the north and south poles are always coaxially opposed to each other.
(FIG. 42) is common not only as a top view of the two corner sphere magnets at the ends of the side, but also as a top view of the <MagEdge> type side connection with embedded cylindrical magnets. In both cases, the connection is uncertain because the magnet rotates. In the case of the <MagEdge> format, even if the third panel #C is added, the connection of #A/#B remains undefined. However, since the corners of three or more regular polygons gather at the vertices of a polyhedral solid, the spherical magnets embedded in the corners are arranged in a circular ring of three or more, forming #A/#B/ like the <MagEdge> format. The positional relationship of #C is not undefined, and is uniquely determined as shown in (FIG. 43). In the <MagEdge> format, due to the 1:1 self-supporting orientation of the cylindrical magnets, the #C panel is easily twisted to participate in the connection, and remains twisted due to maximum static friction. .
In the <MagPole> format, 8 sets of spherical magnets, each consisting of 3 corners of a square that gathers at the 8 vertices of the cube, form a perfect equilateral triangular circular ring arrangement, resulting in an accurate and strong cube. It is the same that the construction of all regular polyhedrons results in a perfect circular ring arrangement. When the cube is viewed from above (Fig. 43), the spherical magnets embedded in the four corners of the top panel are located inside the corners of the side panels, so the top panel is stuck in the depression and cannot move. After the state is reached, the three-way orientation magnetic lock is applied. On the other hand, the <MagEdge> form becomes a cuboid, a cube only when manually modified, and one panel is stable while being twisted, which also needs to be manually modified to become a cube. . If you call this constant correction work intellectual education, the natural world where snow crystals form and the biological world governed by DNA are far more fully automated, and <MagEdge> goes against the idea of being able to truly learn about it. . The world of elementary particles is a world governed by physical dimensions and shapes, and it is a world in flux with the addition of spin magnetic attraction and repulsion, and the <MagPole> format exactly follows this rule.
As shown in FIG. 44, <MagPole> type panels also have the characteristic of receiving the new panel with high positional accuracy in the recess of the window frame into which the additional panel should be placed, caused by the rounded edges and corners. Since the <MagEdge> format panel is a magnetic connection of the sides, the focus is on the roundness of the sides, and the roundness of the corners is rounded and receded with a large curvature so that the corners do not collide with each other in all three-dimensional modeling. . Therefore, the rounded corners do not contribute to the rigidity and positional accuracy of the stereolithography. On the other hand, in the <MagPole> format, the curvature of the corners is strictly the same, and the point contact of the corners where the center-to-center distances of the spherical magnets are aligned establishes a connection, and the roundness of the sides recedes slightly inward. and do not touch. The <MagEdge> form looks similar, but the rounded edges meet and the corners do not.
A regular tetrahedron made up of four equilateral triangles with a cube made up of six squares as a boundary has faces and angles that intersect at acute angles, and a regular pentagon and more has faces and angles that meet at obtuse angles. In all of these, there is a recess for fitting the regular polygonal panel to be pasted into the open window frame, and the more the regular polygonal panel has more corners, the deeper the recess in which the panel fits. The <MagPole> panel, which has strict roundness standards, is already immobile without magnets. The magnetic force first attracts the exact position and direction of the dent determined by the roundness of the corners, and finally magnetically locks it, keeping it in place during the subsequent fabrication process. The <MagEdge> format panel has this mechanical shallow recess as a rounded edge, but the window frame to which the panel is added remains free to tilt like a seesaw, and there is no clear position to fit in. It tries to pull it back to the center with magnetic force, but it is blocked by maximum static friction. This is the clear difference in rigidity between the <MagPole> format and the <MagEdge> format.

(図45)で、辺の丸みと角の丸みの役割分担を考えると、<MagEdge>形式では角の丸みを、パネルの内側に後退させることで、角の丸みは他と接触しないようにデザインされており、磁力によりパネルの辺と辺が磁力で吸着して線接触すると、その最大静止摩擦を磁力の中点復帰力が越えられず、ずれたまま維持される。これに対して<MagPole>形式では辺の丸みが角の丸みより内側に後退しているので、パネルとパネルは両端の角の部分球面で点接触し、辺は離れた状態なので大きな静止摩擦にはならず、球体磁石間の中点復帰力が勝って角の丸みは滑って最終位置まで移動する。その最終位置は、辺の両端の3つずつの角の丸みが円環状に接触して、新しく加わったパネルは窪みに嵌り込む形で機械的に拘束されて身動きが取れない状態で、厳重に磁気ロックされる。
パネルの角の丸みに当たるものが人間の骨格の関節の丸みを帯びた正確なジョイントであり、骨の細長い支柱部分は関節の動作を妨げない。<MagPole>形式はこの骨格の働きと同じ原理で成り立っており、筋肉は関節を折り曲げ、靭帯は反対側に曲がるのを押さえ、またずれを制限して、全身の骨格が強靭な構造になっている。磁力接続パネルは角の丸みによって強度と精度が保たれなければならないのは明らかである。
<MagPole>形式でパネル#A/#B/#Cが立体を構成している所に、(図45)に示すように#Dが参加する場合は、#A/#B/#Cの位置関係は変更がなく、#Dが吸着される位置関係も、立方体が完結する最終的な位置に貼り付く。これは原子世界の結晶成長と同じであり、原子は初めから正確な位置に着き、その後詰め合うことなどは不要である。
Considering the division of roles between rounded sides and rounded corners in (Fig. 45), the <MagEdge> format is designed so that the rounded corners do not come into contact with others by moving the rounded corners back to the inside of the panel. When the sides of the panel are magnetically attracted to each other and come into line contact, the center point return force of the magnetic force cannot exceed the maximum static friction, and the deviation is maintained. On the other hand, in the <MagPole> format, the roundness of the sides recedes inward from the roundness of the corners, so the panels are in point contact on the partial spherical surfaces of the corners at both ends, and the sides are separated, so there is a large amount of static friction. Instead, the center point restoring force between the spherical magnets prevails, and the rounded corners slide and move to the final position. In its final position, the three rounded corners on both ends of each side are in contact with each other in an annular fashion, and the newly added panel is mechanically restrained by fitting into the recess and cannot move. magnetically locked.
The rounded corners of the panel correspond to the rounded precision joints of the joints of the human skeleton, and the elongated struts of the bones do not impede the movement of the joints. The <MagPole> format is based on the same principle as the function of this skeleton, muscles bend the joints, ligaments suppress bending to the opposite side, and limit slippage, making the skeleton of the whole body a strong structure. there is Clearly, the strength and precision of the magnetic connection panel must be maintained by the rounded corners.
Where panels #A/#B/#C form a solid in the <MagPole> format, if #D participates as shown in (Fig. 45), position #A/#B/#C There is no change in the relationship, and the positional relationship where #D is adsorbed sticks to the final position where the cube is completed. This is the same as crystal growth in the atomic world, and the atoms arrive at the correct position from the beginning, and there is no need to pack them afterwards.

(図46)に示すように3つの正三角形パネルA/B/Cで3角錐を形成すると、<MagPole>形式は直ぐに組み立てられ、底板Dを付け加えなくても十分な剛性を持っている。<MagEdge>形式ではA/B/Cで3角錐を作るのに調整しながら形を決める時間が必要で、極めて崩れ易く、底板Dを加えると少し安定するが、底板なしの<MagPole>形式より劣る。崩れる様を観察すると、一言で言うなら、円柱磁石の接続がピンポイントではなく、緩いことに原因がある。
正方形パネル6枚で立方体を構成しても、立体造形の安定度に於いて<MagPole>形式と<MagEdge>形式の差は歴然であり、どんな立体を造っても、如何なる扱いをしても、磁力の強いはずの<MagEdge>形式が、<MagPole>形式の組み立て易さと安定性に追い着く事はないだろうという素性の違いが感じられる。
Forming a triangular pyramid with three equilateral panels A/B/C as shown in (Fig. 46), the <MagPole> format is readily assembled and has sufficient rigidity without the addition of a base plate D. In the <MagEdge> format, it takes time to determine the shape while making adjustments to create a triangular pyramid with A/B/C, and it is extremely prone to crumbling. Inferior. Observing how it collapsed, in a nutshell, the cause was that the connection of the cylindrical magnets was not pinpoint, but rather loose.
Even if a cube is composed of six square panels, there is a clear difference between the <MagPole> and <MagEdge> formats in terms of the stability of the three-dimensional modeling. The <MagEdge> format, which should have a strong magnetic force, will never catch up with the ease of assembly and stability of the <MagPole> format.

磁力接続玩具の主な課題は、強すぎない磁力で正確な目標位置に、パネルが自立的に引き寄せられて貼り付き、幼児は専ら着想に専念することができ、微調整をしても微調整が新たなずれを生み出して決して完全にはならない終わりのない状態を脱することが必要である。それにも増して組み上がった立体造形の剛性と柔軟性が高くて容易に崩れないことが重要である。また同じ値段でパネルの枚数や種類が~2倍程になって追加購入の必要がないことも切実な問題である。同時に、パネルが引き付けられる力が幼児にとって強すぎると、遊び始められる年齢が遅くなる。幼児が磁力接続パネルで遊ぶのを見た母親が等しく持つ評価は、磁力が弱すぎて立体造形が直ぐに崩れるというものが筆頭であるが、厳密に言えば正多角形がずれたまま静止摩擦に遮られてくっついているために全体の形が容易に崩れてしまうのであり、パネルはむしろ穏やかに立体に引き込まれて行くことが求められ、正確な位置に貼り付くことが最優先課題であると言える。 The main problem with magnetic connection toys is that the panels are attracted to the correct target position by themselves with a magnetic force that is not too strong and sticks to them. It is necessary to get out of the never-ending state in which the is creating new gaps and never being complete. More than that, it is important that the assembled three-dimensional model has high rigidity and flexibility so that it does not collapse easily. It is also a serious problem that the number and types of panels are about doubled at the same price and there is no need for additional purchases. At the same time, if the force with which the panel is attracted is too strong for the infant, the age at which play can begin is delayed. Mothers who have seen their children play with the magnetic connection panel have the same evaluation, and the first is that the magnetic force is too weak and the three-dimensional modeling immediately collapses. Because the panels are stuck together, the overall shape easily collapses, and rather, the panel is required to be gently drawn into the three-dimensional structure, and sticking in the correct position is the top priority. I can say

(図47)に<MagPole>形式と<MagEdge>形式を比較したように、多面立体に最後のパネルを追加して完成させるか、1枚のパネルを完成した多面立体から取り外すことを考えると、正確な目標位置の近くから強く引き込まれ、また引き剥がし難いのは<MagPole>形式の方であり、それは残りのパネルが正確な相対位置で組み合わされているからである。
正多角形を枠の形にして、その枠を紐で縛って正多面体の立体構造を維持しようとする場合に、(図48)に示すように、正多面体の各頂点位置を縛ると安定し、多少の力を加えても形は変わらないが、枠を辺で縛ると形は纏まらず、きつく縛って纏め上げても小さな力を加えるだけで直ぐに形が崩れてしまう。幼児はこの原理を元々自然に理解するようになるが、角に球体磁石を埋め込む磁力接続パネルを通してより具体的に認識する。この点から、従来の正多角形の辺の中央をくっつけようとするパネル形式は、角を纏めるものに置き換えなければならないのは自然の成り行きだと言える。辺の中央に円柱磁石を埋め込む従来の形式では、辺の総数の1/2かそれより少し少ない接続点の数である。これに対して角に球体磁石を埋め込む形式では、角の総数の1/3かそれより少ない接続点になる違いがあり、この数が少ない方の立体がより安定するという対応関係であることが分かる。
母親が磁力接続玩具に求めるものは、パネルが立体に引き込まれる磁力を弱くして欲しい、組み立て途中でパネルが直ぐにずれてしまうのを常に修正しなければならない手間を無くして欲しい、出来上がった立体が簡単に崩れてしまうのを改善して欲しい、同じ価格でパネルの数を増やして欲しい、という4つの点で一致している。換言すれば、使う磁石の体積が少なくて、個の磁力が弱くても、正確さで集団としての立体の団結力を強くすれば済むものばかりであり、<MagEdge>形式から<MagPole>形式に切り替えて実現される。
As shown in (Fig. 47) comparing the <MagPole> and <MagEdge> forms, considering adding the last panel to the polyhedron to complete it, or removing one panel from the completed polyhedron: It is the <MagPole> type that is strongly drawn from near the precise target position and is difficult to tear off because the remaining panels are assembled in precise relative positions.
When a regular polygon is formed into a frame and the frame is tied with a string to maintain the three-dimensional structure of the regular polyhedron, as shown in (Fig. 48), each vertex position of the regular polyhedron is bound to stabilize it. , The shape does not change even if a little force is applied, but if the frame is tied at the sides, the shape will not be held together, and even if it is tightly tied and gathered, the shape will immediately collapse with the application of a small amount of force. Toddlers naturally come to understand this principle naturally, but they become more tangible through magnetic connection panels that embed spherical magnets in their corners. From this point of view, it can be said that the conventional panel format, in which the centers of the sides of regular polygons are attached together, should be replaced with one that gathers the corners. The conventional form of embedding a cylindrical magnet in the center of a side has 1/2 the total number of sides or a little less than the number of connection points. On the other hand, in the form of embedding spherical magnets in the corners, there is a difference in the number of connection points that are 1/3 of the total number of corners or less, and the correspondence relationship is that the solid with the smaller number is more stable. I understand.
What mothers want in a magnetically connected toy is to weaken the magnetic force that pulls the panel into the solid, to eliminate the trouble of having to constantly correct the panel that shifts immediately during assembly, and to make the finished solid. We agree on four points: I want you to improve the fact that it collapses easily, and I want you to increase the number of panels at the same price. In other words, even if the volume of the magnets used is small and the magnetic force of each individual is weak, all that can be done is to strengthen the cohesive force of the solid as a group with accuracy. realized by switching.

ジョイントは一方のパネルを固定して、ヒンジを介して接続されているもう一方のパネルを折り曲げて角度を変えるメカニズムである。ドアのヒンジは必ず上下に2個付け、1個では回転してしまって直ぐに壊れる。(図49)に示すように磁力接続パネルでは、折り曲げる作業は立体造形の意味づけにはならず、ただ正多角形の辺の中央に円柱磁石を埋め込んだために発生する余分な作業であって、幼児に求められている作業は単にパネルを空いた窓に当てがい吸着させることである。<MagPole>形式で、このジョイント機能が柔軟に対応して、パネルA/Bは平らに繋がるか折り曲がって繋がる、A/B/Cが自在に繋がり、正四面体の頂点でA/B/Cが対称的にまとまるのは、球体磁石が自在に回転して多様な配向姿勢を瞬時に取るからである。 A joint is a mechanism that fixes one panel and bends the other panel connected via a hinge to change the angle. Always attach two hinges on the top and bottom of the door, and if you use one, it will rotate and break immediately. As shown in FIG. 49, in the magnetic connection panel, the bending work does not give meaning to the three-dimensional modeling, but is an extra work caused by embedding the cylindrical magnet in the center of the side of the regular polygon. , the task required of the infant is simply to apply the panel to the open window and make it stick. In the <MagPole> format, this joint function responds flexibly, panels A/B can be connected flat or bent, A/B/C can be freely connected, and A/B/ The reason why C is symmetrical is that the spherical magnet rotates freely and instantaneously assumes various orientations.

磁力接続造形を崩さないようにパネルを安全に1枚ずつ引き剥がすやり方は、面全体を平行に引き剥がすか、1つの辺を引き離すか、角を持って引き離すかの3通りのやり方がある。(図50)に示すように、正四面体のパネルの1つの角を持ち、対辺を支点にして引き剥がすトルクは辺に埋め込まれた2つの円柱磁石を1/2の長さと2個分の力の積のトルクと、角に埋め込まれた1つの球体磁石を1の長さと1個分の積のトルクの比になるので、<MagPole>形式の方が安全に剥し易く、その間他の場所では精度よく剛性が保たれる。
(図51)に示したように、正四面体や立方体で1つのパネルに埋め込まれた3~4個の磁石が囲む図形の面積が大きい方が、パネルを貼り付ける位置精度が向上し、また立体造形は崩れ難い。
一方(図52)で示したように、1つのパネルを平行に引き離す力、辺を持って引き離す力、角を持って引き離す力は、どれも<MagEdge>形式の方が<MagPole>形式より1.7倍程大きいことが幼児への負担になっているのに、立体造形としては崩れ易い。
There are three ways to safely peel off the panels one by one so as not to destroy the magnetic connection molding: peel off the entire surface in parallel, pull off one side, or pull off by holding the corner. As shown in FIG. 50, a tetrahedral panel having one corner and peeling off with the opposite side as a fulcrum has a torque equivalent to 1/2 the length and 2 pieces of the two cylindrical magnets embedded in the side. The ratio of the torque of the product of force and the torque of the product of 1 length and 1 spherical magnet embedded in the corner, so the <MagPole> format is easier to peel off safely, while other places The rigidity is maintained with good accuracy.
As shown in (Fig. 51), the larger the area of the figure surrounded by 3 to 4 magnets embedded in one panel in the form of a regular tetrahedron or cube, the higher the accuracy of the position where the panel is attached. Three-dimensional modeling is hard to collapse.
On the other hand, as shown in Fig. 52, <MagEdge> format is 1 higher than <MagPole> format in terms of the force to pull apart one panel in parallel, the force to pull apart by holding an edge, and the force to pull apart by holding an angle. Although being seven times larger is a burden on young children, it is easy to collapse as a three-dimensional model.

<MagSide>形式の考案の要点は、例として2つの正方形の辺と辺を磁力接続する場合に、全部で4+4ある辺のどの組み合わせも、隣り合わせでも、90度ずつ回転させても、裏返しても必ず引き合うような配列を見つけ出したことである。それには(図53)に示すように1つの辺に2個の角型磁石が必要で、6つのパネルで立方体を造形するには埋め込まれた48個の角型磁石の全てが、(図2)に示したように、等しく吸着に参加して、美しく立方体が出来上がる。
<MagSide>形式のパネルは、<MagEdge>形式や<MagPole>形式のように辺の端面を丸めるのは、隣り合わせで吸着する角型磁石間の距離が遠くなる場合があるので、角張ったままにするのが適切である。
<MagSide>形式を意味づけるのは、5mm角、高さ10mmほどの角型磁石のペアを、XY角断面のY方向に着磁したものを、正多角形パネルの厚み方向にNS極性とSN極性が向く組み合わせを、この順で並ぶように各辺に埋め込んで固定したものをL型パネルファミリーとすると、L型パネルはどの辺も隣り合わせで引き合い、重ね合わせで引き合い、辺と辺がくっついたまま±180度折り曲げることができる。この順序を逆にしたR型パネルファミリーは、ファミリーの内部ではどの向きもくっつき合うが、L型ファミリーとは必ず反発し合って交わらず、その混血が成り立たない。これを幼児は自然に学ぶことが出来るが、従来の科学にはその概念がなく、ただ光学異性体という言葉で処理されて来た側面である。これは宇宙や原子の陰陽(即ち2通りのスピンの向き)の身近な事例であり、宇宙原理の知られざる基礎である。(図54)にその様態を示す。自然界では。水晶の鉱床で、右水晶と左水晶が分かれた株として結晶成長しているが、これが<MagSide>のL/Rファミリーと同一の機構であり、引き合うものが整然と立体を構成し、硬く崩れない。
<MagEdge>形式/<MagPole>形式と<MagSide>形式の磁力の変化の円滑さを比べると、NS極が対向する円柱磁石や円環自立配向する球体磁石の吸着力が円滑に変化するのに対して、角型磁石の吸着力はパネルの相対的な位置/角度によってギクシャク変化して組み立てにくく、またそのために崩れ易くという実験結果が得られている。
ニュートン力学では、作用=反作用の原理に従って、2点間に働く力は2点を結ぶ直線に沿っていて、大きさは同じで、逆向きである。これは点電荷間の静電的なクーロン力でも同様である。しかし磁力では作用≠反作用であることが多く、2つの着磁した磁石の間に働く磁力は方向が変わり、極端な場合は2つの磁石の中心を結ぶ直線と直角な場合もある。従来の円柱磁石の自立配向を利用する形式は、先ず回転配向してN極とS極が対向することで、作用=反作用に近く、向きも両磁石を結ぶ直線に沿っている。ここで生まれる固定観念が球体磁石の円環配向の様態を見落としたと言えるであろう。一方、辺に固定されて角型磁石が埋め込まれる形式では、この自立配向が行なわれず、付け加えるパネルを近づけて引き込まれる経路が変曲する。
The point of devising the <MagSide> format is that, for example, when two square sides are magnetically connected, any combination of 4 + 4 sides in total, even if they are next to each other, even if they are rotated by 90 degrees, even if they are turned inside out, It is that we found an array that always attracts. It requires 2 square magnets per side as shown in (Fig. 53), and to build a cube with 6 panels all 48 embedded square magnets (Fig. 2 ), the cubes are beautifully formed by equally participating in the adsorption.
For <MagSide> type panels, rounding the edges of the sides like <MagEdge> and <MagPole> types may increase the distance between adjacent rectangular magnets, so keep them square. it is appropriate to
The meaning of the <MagSide> format is that a pair of square magnets of 5 mm square and 10 mm high are magnetized in the Y direction of the XY cross section, and the NS and SN polarities are aligned in the thickness direction of the regular polygonal panel. Assuming that the L-shaped panel family consists of polar combinations embedded in each side and fixed in this order, the L-shaped panels attract each other next to each other, attract each other by overlapping, and connect each other. It can be bent ±180 degrees as it is. The R-type panel family in which this order is reversed adheres to each other in any direction within the family, but always repels and does not intersect with the L-type family, and the mixture does not hold. Infants can naturally learn about this, but conventional science does not have this concept, and it is an aspect that has been dealt with simply with the term optical isomers. This is a familiar example of the universe and the yin and yang of atoms (that is, two directions of spin), and is the unknown foundation of the cosmological principle. (Fig. 54) shows the mode. in nature. In the crystal deposit, the crystal grows as a strain with the right crystal and the left crystal separated, but this is the same mechanism as the L/R family of <MagSide>, and the attraction forms an orderly three-dimensional structure that is hard and does not collapse. .
Comparing the smoothness of the change in magnetic force between the <MagEdge>/<MagPole> and <MagSide> types, it can be seen that the attractive force of a cylindrical magnet with opposing north and south poles and a spherical magnet with an annular self-supporting orientation changes smoothly. On the other hand, experimental results have been obtained that the attracting force of the square magnet changes jerkyly depending on the relative position/angle of the panel, making it difficult to assemble and therefore likely to collapse.
In Newtonian mechanics, according to the action-reaction principle, forces acting between two points are equal in magnitude and opposite in direction along the straight line connecting the two points. The same applies to the electrostatic Coulomb force between point charges. However, in many cases, the magnetic force is action ≠ reaction, and the direction of the magnetic force acting between two magnetized magnets changes, and in extreme cases, it may be perpendicular to the straight line connecting the centers of the two magnets. In the case of using the conventional independent orientation of the cylindrical magnet, first, the north pole and the south pole are oriented rotationally so that the north pole and the south pole are opposed to each other. It can be said that the stereotype born here overlooked the aspect of the circular orientation of the spherical magnet. On the other hand, in the format where the square magnets are fixed to the sides and embedded, this self-supporting orientation does not occur, and the path along which the additional panel is brought closer is curved.

球体の着磁の赤道大円面を円環の中心に向けて自立配列する電流結合の様態に気付かなかったために見落としていたと言える<MagPole>形式を新しく加えて、本出願では磁気的な現象は全て電流と電流の直接的な作用として疑義のない厳密な計算を行い、その数値でベストモードを探り当てられる状況にあるが、そこで立体の形が崩れる要因の1つである円柱磁石間の縦ずれだけではなく、中央部の1点を支点に180度捻じれる<MagEdge>形式の不要な自由度も無くさなくてはならない。<MagSide>形式はそのような無駄な回転は起きないが、使う磁石の体積に問題がある。見えて来るのは正多角形の辺の出来るだけ離れた2点で吸着させ、理想的には辺の両端、即ち正多角形の角を押さえることが最適化の1つの要点である。角に球体磁石を埋め込むと、その球体磁石は2つの辺の両端の磁石を1個で兼ねるので、磁石の体積が最も小さい。これらの比較が可能になるのは、電流と電流の間に働くローレンツ力を、補助線的な理解である磁界・磁力線・磁極から離れて全て計算によって定量化できるようになっているからである。その上で、剥し難さや、立体造形の剛性で表すより、むしろ幼児にとっての快適さという指標を設けて、出来る限りの定量化によって評価する方が実用的であると言える。 The <MagPole> form, which can be said to have been overlooked due to the lack of awareness of the mode of current coupling in which the equatorial great circle of magnetization of the sphere is self-aligned toward the center of the ring, is newly added, and in this application, the magnetic phenomenon is Strict calculations are performed without doubt as direct effects of current and current, and we are in a situation where we can find the best mode from the numerical values. Not only that, we also have to eliminate the unnecessary degree of freedom of the <MagEdge> format, which can be twisted 180 degrees with one point in the center as the fulcrum. The <MagSide> format does not cause such useless rotation, but there is a problem with the volume of the magnet used. One of the main points of optimization is to attract two points on the side of a regular polygon that are as far apart as possible, and ideally hold both ends of the side, that is, the corners of the regular polygon. When a spherical magnet is embedded in a corner, the volume of the magnet is the smallest because the spherical magnet serves as a single magnet at both ends of two sides. These comparisons are possible because the Lorentz force acting between electric currents can be quantified by calculation apart from the auxiliary linear understanding of magnetic fields, magnetic lines of force, and magnetic poles. . On top of that, it can be said that it is more practical to set an index of comfort for infants and evaluate it by quantification as much as possible, rather than expressing it by the difficulty of peeling and the rigidity of the three-dimensional model.

<MagPole>形式のパネルで組み上がった立体造形には、3個以上の角の球体磁石が集まり円環配列する頂点があり、別の組み上がった立体造形の角と、円環配列の球体磁石数が同じであれば、2つの頂点はほぼ正しく吸着させてドッキングできる。これを何個か繋げて連鎖させ、(図55)に示すように自重を支えて吊り下げることが出来る。この場合上から見て、NS極が右回りか左回りかで、強い連鎖と弱い連鎖の違いが生まれる。幼児はやがてこの組み合わせの違いを学ぶ。
(図56)に示すように<MagPole>形式の4角形パネルの角と角を繋げて正方形の形か菱形の形で網を構成できる自由さがあるが、<MagEdge>形式は正方形の形でのみ網ができ、多様性に欠ける。
(図57)に示すように、2つのパネルの辺に角型磁石をNS極が対向する向きに埋め込んだパネルの辺を吸着させたまま、片方を180度捩じる過程を通して吸着力は90度に交叉した状態が最も小さくなる。これは長い辺と長い辺、短い辺と短い辺の掛け算の和の方が、長い辺と短い辺の掛け算の和より大きいことから来ている。
(図58)に示した<MagEdge>形式でも同様に90度回転した点の磁力が最少になる。<MagPole>形式の1:1の球面対向では自由に回転し、磁力は一定である。一方上下のずれ易さに関しては、縦ずれの補正力が同じなら、横に引っ張り合う吸着力が小さい方が静止摩擦を越え易い。
(図59)に示すように、<MagEdge>形式で縦長の円柱磁石を使うことは、これらの回転防止に殆ど役立っておらず、幼児は回転しないように常に注意を払わなければならない。
A three-dimensional model assembled with <MagPole> format panels has a vertex where three or more corner spherical magnets gather and are arranged in a circular ring. If the numbers are the same, the two vertices can be almost correctly adsorbed and docked. Several of these can be connected and chained to support their own weight and be suspended as shown in (Fig. 55). In this case, when viewed from above, the difference between a strong chain and a weak chain arises depending on whether the NS poles are clockwise or counterclockwise. Toddlers eventually learn the difference between these combinations.
As shown in Fig. 56, the <MagPole> format has the freedom to connect the corners of the quadrangular panels to form a square or rhombus net, but the <MagEdge> format is square-shaped. Only nets are formed, lacking diversity.
As shown in FIG. 57, the attractive force is 90 through the process of twisting one side of the panel by 180 degrees while keeping the sides of the panel in which square magnets are embedded in the sides of the two panels facing each other. The state that crosses the degree is the smallest. This is because the sum of multiplication of the long side with the long side and the sum of the multiplication of the short side with the short side is greater than the sum of the multiplication of the long side with the short side.
In the <MagEdge> form shown in FIG. 58, the magnetic force at the point rotated by 90 degrees is also minimized. The <MagPole> type 1:1 spherical facet rotates freely and the magnetic force is constant. On the other hand, regarding the susceptibility to vertical deviation, if the correction force for vertical deviation is the same, the static friction is more likely to be overcome when the laterally pulling attraction force is smaller.
As shown in (Fig. 59), the use of tall cylindrical magnets in the <MagEdge> format does little to prevent these rotations, and infants must always be careful not to rotate.

正M角形の辺の数と角の数は共にMである。辺に直径5mm、高さ10mmの円柱磁石を埋め込むのと、角に直径5mmの球体磁石を埋め込むのとでは、磁石の数は同じM個であり、磁石の体積は1/3で済む。その場合どちらも正多角形パネルの厚みは7mm程になる。円柱磁石と球体磁石では、球体磁石の成型工程の方が単純であるので、球体磁石を調達するコストは円柱磁石の1/3より小さい。1枚のパネル全体の製造コストの2/3程を占める円筒形ネオジウム磁石の総体積を1/3にすると、パネル1枚の製造コストは5/9以下になるので、幼児の知育玩具をより多くの購買希望の家庭が手に入れることが可能になる。この新しく生じた余裕を、正多角形パネル数を増やして、後日買い足さなくても済むようにするか、単純に販売価格を5/9にするか、球体磁石であるが故に実現できる電動化に余った4/9の材料費を宛がって、幼児の生まれついての科学的な能力を母親が引き出せるようにするか、という選択肢に振り分けて行使できる。或いは幼児が成長して社会に出ても、宇宙や素粒子の原理を探求し、工業製品を設計する年齢まで使い続けられれば、用途の広さや時間の長さで割る実効的な単価は低減する。 A regular M-gon has M sides and M angles. When a cylindrical magnet with a diameter of 5 mm and a height of 10 mm is embedded in the side and a spherical magnet with a diameter of 5 mm is embedded in the corner, the number of magnets is the same, M, and the magnet volume is reduced to 1/3. In both cases, the thickness of the regular polygon panel is about 7 mm. Since the forming process of the spherical magnet is simpler than that of the cylindrical magnet and the spherical magnet, the cost of procuring the spherical magnet is less than 1/3 of the cylindrical magnet. If the total volume of the cylindrical neodymium magnets, which occupies about 2/3 of the manufacturing cost of one panel as a whole, is reduced to 1/3, the manufacturing cost of one panel will be 5/9 or less, making it possible to make educational toys for children more attractive. It will become available to many families who wish to purchase. This newly created margin can be increased by increasing the number of regular polygon panels so that you do not have to buy more at a later date, or simply reducing the selling price to 5/9, or the electric power that can be realized because it is a spherical magnet. The remaining 4/9 of the material costs can be allocated to the option of enabling mothers to draw out the scientific abilities that infants are born with. Alternatively, even if an infant grows up and goes out into society, if the child continues to explore the principles of the universe and elementary particles and continues to use it until he is old enough to design industrial products, the effective unit price divided by the breadth of uses and the length of time will decrease. do.

幼児が自由な発想で多面立体を組み立てる目的とは違って、磁力接続で長方形のパネルを組み合わせて建築のモデルを構成する有用と言える手段がこれまでなかった。それが提供されれば、新しい建築物の構想の段階から施主の意見や要望を具体的に取り入れることができ、また強度や材料とデザインや快適性が相反する場合の妥協点を探ることができる。そのためには耐震的な構造解析と磁力接続パネルが対応関係にあることが求められる。
Unlike the purpose of children assembling multifaceted solids with free imagination, until now there has been no useful means of constructing an architectural model by combining rectangular panels with magnetic connections. If it is provided, it will be possible to specifically incorporate the client's opinions and requests from the stage of conception of the new building, and it will be possible to find compromises when strength and materials conflict with design and comfort. . For that purpose, it is required that the seismic structural analysis and the magnetic connection panel have a corresponding relationship.

正三角形、正四角形、正五角形、正六角形の基本パネルを各頂点に埋め込まれた直径5mm程の球体磁石で構成する<MagPole>形式の場合、各正多角形の辺の両端の頂点位置の球体磁石の中心間距離を(図60)に示すように、標準的に6cm程に揃えることになる。
直径5mmの球体磁石は(図40)で示したように、直径5.8mmほどの球体空洞に封入され、空洞の周りは厚さ0.6mm程の、衝撃で破壊されて磁石球が飛び出す危険がないだけの厚みと強度のパネル材質で覆われ、パネルの厚さは7mm程になる。各辺は直径7mmの曲率の半円柱として丸められ、各頂点は直径7mmの曲率の部分球面で丸められる。各正多角形の角に埋め込む直径5mmの球体磁石の中心間距離を6cmに揃えた場合、丸みのある辺の最外形線を延長した幾何学的な正多角形の辺の長さは、(表2)にaとして示すように、三角形では6.81cm、六角形では6.2cmと短くなる。この正多角形の角を曲率直径7mm程で丸めると、外見上の辺の長さは角数が多くなっても(図62)のように揃って見え、実際の多面立体を組み立てた時に角が部分球面に丸められているために辺に優先して角の部分球面が点接触し、実際には角の丸みの曲率直径よりやや小さな曲率直径の半円柱として丸められた辺の外形線は正多角形の内側に後退させているので、接触に参加することはない。この関係は、円柱磁石を中央に持つ辺が接する必要がある<MagEdge>形式のパネルの場合は逆になり、角はぶつからないよう邪魔物扱いになり、半円柱形の辺が接して立体が維持され、より大きな静止摩擦力のために生じた縦ずれが修正されないままになる。

Figure 2022159729000015
角に球体磁石を埋め込めない事例の1つで、教会の尖塔を模すような場合は正三角形ではなく頂角の小さな二等辺三角形となり、直径Dの球体磁石を角に埋め込むと球体磁石の中心間距離を一定にする原則を当て嵌めると丸められた角によって尖塔が尖らなくなるので、代わりに(図61)に示すように2つの二等辺の頂点より下がった位置に球体磁石を埋め込んで2者自立配向させ、その吸着力で多角錐を構成できるようにする一方、2等辺が交わる頂点は尖らせて置くことが外見上必要になり、3角形でありながら4つの磁石を埋め込む例外的な形になる。 In the case of the <MagPole> format, which consists of equilateral triangle, regular quadrangle, regular pentagon, and regular hexagonal basic panels with spherical magnets with a diameter of about 5 mm embedded at each vertex, the spheres at the vertices of both sides of each regular polygon. As shown in FIG. 60, the center-to-center distance between the magnets is normally about 6 cm.
As shown in (Fig. 40), a spherical magnet with a diameter of 5 mm is enclosed in a spherical cavity with a diameter of about 5.8 mm, and the cavity is surrounded by a thickness of about 0.6 mm. It is covered with a panel material that is thick and strong enough to withstand the heat, and the thickness of the panel is about 7 mm. Each edge is rounded as a semi-cylinder with a curvature of 7 mm diameter and each vertex is rounded with a partial sphere with a curvature of 7 mm diameter. When the center-to-center distance of spherical magnets with a diameter of 5 mm embedded in the corners of each regular polygon is aligned to 6 cm, the length of the side of the geometric regular polygon extending the outermost line of the rounded side is As indicated by a in Table 2), the triangle is 6.81 cm, and the hexagon is 6.2 cm. If the corners of this regular polygon are rounded with a radius of curvature of about 7 mm, the lengths of the sides appear to be uniform as shown in Fig. 62, even if the number of corners increases. is rounded to a partial sphere, the partial spherical surface of the corner makes point contact with priority over the side, and the outline of the side rounded as a semi-cylinder with a curvature diameter slightly smaller than that of the rounded corner is Since it is retracted inside the regular polygon, it does not participate in contact. This relationship is reversed in the <MagEdge> type panel, where the sides with a cylindrical magnet in the center need to touch. is maintained, leaving uncorrected longitudinal deviations due to the greater static friction forces.
Figure 2022159729000015
One example of a case where a spherical magnet cannot be embedded in a corner is an isosceles triangle with a small apex angle instead of an equilateral triangle when simulating a church steeple. If we apply the principle of constant spacing, the rounded corners will result in a non-pointy spire. While it is possible to form a polygonal pyramid by self-orientation and its attractive force, it is necessary to make the vertices where the two isosceles meet sharpened, which is an exceptional shape that embeds four magnets even though it is triangular. become.

造形途中か、既に組み上がった多面立体の崩れ難さは、剛性が大きいこと、磁石と磁石があるべき位置関係からずれて立体が歪んでも元の形に戻る柔軟性があること、の両面で表すことができ、また形を保ったままパネルを1枚ずつ形が崩れないように剥して途中から立体を組み直せることも重要である。具体的にパネルを貼り付ける時には、中央に開いた窓に指一本を入れて持ち、立体に穏やかに自然に正確に吸着させ、また取り外す。こうやって正確に吸着された<MagPole>形式の立体は高い剛性を持つことが実験で明確に確認される。これを従来の形式と比較した幼児は集団の力の強さを実感することになる。 The difficulty in collapsing a multifaceted solid that is either in the middle of modeling or has already been assembled is due to both its high rigidity and its flexibility to return to its original shape even if the solid is distorted due to the positional relationship between the magnets being displaced. It is also important to be able to remove the panels one by one while maintaining the shape and reassemble the three-dimensional object from the middle. Specifically, when pasting the panel, put one finger into the window that opens in the center and hold it gently, naturally and accurately, and remove it. Experiments clearly confirm that <MagPole>-type solids that are accurately adsorbed in this way have high rigidity. Young children who compare this with the traditional format will realize the strength of the collective power.

従来の磁力接続立体の正多角形パネルの辺の中央部に埋め込む円柱磁石の寸法が直径5mm、高さ10mmを最大として、コストを下げるために、出来上がった立体の剛性を気に掛けながら相似的に小さくしたものが選ばれているが、簡単のためにその最大値と正多角形の角に埋め込む球体磁石の直径を同じ5mmとして具体的に数値比較する。球体磁石の体積が円柱磁石の体積の1/3であるのに対して、引き剥がす力は辺に円柱磁石が埋め込まれる方が1.7倍大きいが、この力はむしろ穏やかな方が好ましく、その代わりにパネルの面全体が正しい位置に正確に吸い寄せられて吸着していること、また組み上がった立体造形が容易に崩れないことを重視すると、総合的な磁力は逆に体積が1/3の球体磁石の方が必要十分であるという実験結果での評価になる。そうなる第一の理由が、パネルの辺と辺の結合は1:1の関係であるが、3個以上の多角形の角が集まって円環状に自立配向する1:2の関係で吸引力が発生する方が集団としてまとまっていることによる。第二の理由が、辺の円柱磁石がくっつき合っても、縦ずれした位置で止まっており、また辺を接した2つのパネルが容易に180度回転してしまい、立体として纏めるのに手間が掛かるが、2つのパネルがそれぞれの辺の両端の球体磁石を囲む部分球面で点接触していることが正確な結合となる場合は、ずれようとしてもより強く引き戻されることによる。第三の理由は、嵌め込むパネルが立体造形から離れた距離から吸引され始め、辺の中点で引かれるより、頂点で引かれる方がより正確に窪みに嵌り込み、強く磁気ロックが掛かることによる。 The maximum dimensions of the cylindrical magnets embedded in the center of the side of the regular polygonal panel of the conventional magnetic connection solid are 5 mm in diameter and 10 mm in height. However, for the sake of simplicity, the maximum value and the diameter of the spherical magnets embedded in the corners of the regular polygon are assumed to be the same 5 mm, and the values are compared concretely. While the volume of the spherical magnet is 1/3 of the volume of the cylindrical magnet, the peeling force is 1.7 times greater when the cylindrical magnet is embedded in the side. Instead, if we focus on the fact that the entire surface of the panel is accurately attracted to the correct position and that the three-dimensional shape that has been assembled does not easily collapse, the overall magnetic force is reduced to 1/3 of the volume. It is an evaluation based on the experimental results that the spherical magnet of is necessary and sufficient. The first reason for this is that the connection between the sides of the panel is in a 1:1 relationship, but the attraction force is due to the 1:2 relationship in which three or more polygonal corners are gathered and oriented independently in an annular shape. It is due to the fact that those who occur are gathered as a group. The second reason is that even if the cylindrical magnets on the sides are attached to each other, they stop at a vertically displaced position, and the two panels that are in contact with the sides can easily rotate 180 degrees, making it difficult to put together as a three-dimensional object. However, if the two panels are in point contact on the partial spheres surrounding the spherical magnets at the ends of each side, this is due to the fact that they will be pulled back more strongly if they try to move. The third reason is that the panel to be fitted begins to be attracted from a distance away from the three-dimensional model, and it fits into the recess more accurately when pulled at the apex than at the midpoint of the side, and the magnetic lock is strongly applied. according to.

多面立体からパネルを引き剥がす時の抗力は、取り付けに於けるパネルが吸引される力の裏返しであるが、球体磁石の回転の応答の遅れによりヒステリシスがある。正四面体から正三角形のパネルを引き剥がす時や、立方体から正方形のパネルを引き剥がす時の力は、面全体を平行に引き剥がす力、1辺を軸にして対辺か対角を引き剥がす力、対辺か対角を支点にして対角を引き剥がす力、の3通りで定義でき、円柱磁石の1:1の接続磁力が、球体磁石の1:2の磁力と同等であると言う前提を与えるなら、引き剥がす力に差は無くなる。
(図43)に示したように、<MagPole>形式は接続する2つのパネルの角の部分球面が点接触して動けない状態で磁気ロックされて立体が強固に支えられ、辺の最外形は僅かに隙間があって長さ方向の接触の摩擦力が発生するのを避け、厳密な幾何学的配慮が守られている。これに対して<MagEdge>形式はパネルの辺の半円柱の丸みが線接触し、磁石の吸着で縦ずれを修正しようとして辺の最大静止摩擦に阻まれて縦ずれを残して止まっているが、それに対して角の丸みは内側に後退させ幼児が辺と辺をくっつける時に角の丸みがぶつからないように配慮している。この角の丸みの後退は、(図62)で示すように、角の丸みと対辺/対角の間の距離bで比較できる。(表2)にbの変化量を示した。<MagEdge>形式は<MagPole>形式と比べて、正多角形パネルの角数が小さい場合に、このbが異様に小さくなっているのが分かる。<MagEdge>形式は不具合を補うため、規則を曲げる経験的工夫で成り立っていると言える。
<MagPole>形式の正三角形パネルの1つの辺の両端の球体磁石の上に、他の正多角形の角の両端の球体磁石を重ね合わせると(図63)ようになり、隣に<MagEdge>形式の辺の円柱磁石を重ねて行った形を示す。各正多面体の底面のパネルを兼ねる共通パネルを想定すると、<MagEdge>形式では15個の円柱磁石が必要で、<MagPole>形式では12個の球体磁石が必要になる。
幼児の立体造形作業は、3つの正多角形を組み合わせることから始まるが、パネルの辺の中央に円柱磁石を埋め込む従来の方式では、形が一義的に決まらず常に調整する必要があり、4番目のパネルを加えると元の3つのパネルの相対位置や角度が変わる。これは磁力が強いか弱いかには依らず、正しい相対位置に合わせようとする修正磁力が、引き合う磁力に比例する最大静止摩擦力以下であれば、修正が全く行われないので、幼児は常に微修正を繰り返すことになる。これに対して吸着力は緩やかでも、常にピンポイントで正確な位置に引き込まれ、それ以降の再修正は必要がない方法があれば理想的である。そのためには埋め込まれる磁石は球体でなければならないと言える。また球体磁石のN極とS極が2者対向すると横にずれることが出来、ピンポイントとは言えない。これに対して3者が円環配向して低緯度が接するとずれが小さくなりピンポイントに近い結合になる。
パネルの辺と辺を先ず吸着させてから折り曲げて立体に嵌め込むことは幼児の造形への集中力を奪う。パネルを面全体として捉えて正しい角度で平行に近づけると、そのまま吸い込まれて正しい位置に自立的に着地するなら理想的である。
磁力接続した多面立体が容易に崩れるのは、あらゆる場所で位置や角度がずれたまま、どうにか形が保たれている場合である。球体磁石の円環状の自立配向ならこの状況は一変し、蟻の一穴から雪崩れることがなくなり、十分に耐えてから一気に崩れる。
The drag when peeling off the panel from the polyhedron is the reverse of the force that attracts the panel when attached, but there is hysteresis due to the delay in response to the rotation of the spherical magnet. The force when peeling off an equilateral triangular panel from a regular tetrahedron or a square panel from a cube is the force to peel off the entire surface in parallel, and the force to peel off the opposite side or diagonal with one side as the axis. , and the force that pulls off the diagonal with the opposite side or diagonal as the fulcrum. If you give it, there will be no difference in the peeling force.
As shown in (Fig. 43), in the <MagPole> format, the partial spherical surfaces at the corners of the two connecting panels are in point contact and are magnetically locked in a state where they cannot move. Strict geometrical considerations are adhered to, avoiding the frictional forces of longitudinal contact with slight clearances. On the other hand, in the <MagEdge> type, the roundness of the semi-cylindrical sides of the panel is in line contact, and an attempt to correct the vertical deviation by magnet attraction is blocked by the maximum static friction of the sides, leaving the vertical deviation and stopping. On the other hand, the rounded corners are set back inwards so that the rounded corners do not hit each other when a child puts the sides together. This retreat of corner roundness can be compared with the distance b between the corner roundness and the opposite side/diagonal angle, as shown in (FIG. 62). (Table 2) shows the amount of change in b. It can be seen that in the <MagEdge> format, this b is abnormally small compared to the <MagPole> format when the number of corners of the regular polygonal panel is small. It can be said that the <MagEdge> format consists of empirical ingenuity that bends the rules in order to compensate for the defects.
When the spherical magnets at both ends of one side of the <MagPole> format equilateral triangular panel are superimposed on the spherical magnets at both ends of the corners of another regular polygon (Fig. 63), <MagEdge> is next to it. It shows a shape in which cylindrical magnets on the sides of the form are superimposed. Assuming a common panel that also serves as the bottom panel of each regular polyhedron, the <MagEdge> format requires 15 cylindrical magnets, and the <MagPole> format requires 12 spherical magnets.
Three-dimensional modeling work for children begins with combining three regular polygons, but with the conventional method of embedding cylindrical magnets in the center of the sides of the panel, the shape is not uniquely determined, and constant adjustment is required. Adding a panel changes the relative positions and angles of the original three panels. This does not depend on whether the magnetic force is strong or weak, and if the corrective magnetic force that tries to match the correct relative position is less than the maximum static friction force proportional to the attractive magnetic force, no correction is made at all. The correction will be repeated. On the other hand, it would be ideal if there was a method that, even if the attracting force was gentle, could always be pinpointed to an accurate position and would not require re-correction thereafter. Therefore, it can be said that the embedded magnet must be a sphere. In addition, when the N pole and S pole of the spherical magnet are opposed to each other, they can be shifted laterally, and it cannot be said to be pinpoint. On the other hand, when the three are circularly oriented and the lower latitudes are in contact with each other, the deviation becomes small and the coupling becomes close to pinpoint.
First, the sides of the panel are attracted to each other, and then the panel is bent and fitted into a three-dimensional object. It would be ideal if the panel were viewed as a whole surface and approached parallel at the correct angle, and then it would be sucked in as it is and land autonomously in the correct position.
A multifaceted solid connected by magnetic force collapses easily when its shape is somehow maintained while the position and angle are shifted everywhere. The freestanding orientation of the spherical magnet in a circular ring changes this situation completely.

定型の多面立体で多用する形では、2つのパネルが成す角度は離散的に決まっているので、<MagEdge>形式では、その角度に合わせて半円柱の包絡面を削って狭い範囲で平面化して置けば、多面立体の剛性が少し向上する。一方<MagPole>形式ではパネルは窪みに正確に嵌り込んで機構的に固定された上で磁気ロックが掛かるメカニズムなので、結合する部分球面に小さな平面部を設ける事より、静止摩擦を避ける円滑な部分球面の点接触が優先される。工場でのパネルの組み立て工程は(図64)に示すように同一の形状の上下金型で射出成型された、上パネルと下パネルの間の球体空間に球体磁石を挟んで、パネルを接着する。接着では部分球面にバリが出ないようにすることが求められる。
(図65)に示すように、辺の半円柱面と角の部分球面が入れ替わる境界は、正三角形から正六角形になるに従って狭くなる。この境界の精度が、<MagPole>形式のパネルで構成された立体造形の高い剛性を生み出している。球体磁石を覆う隔壁の厚みは0.6mmを標準として、射出成型されるパネル材の流動を確保している。
Since the angle formed by the two panels is determined discretely in the form that is frequently used in standard polyhedral solids, in the <MagEdge> format, the enveloping surface of the semi-cylinder is shaved according to the angle and flattened in a narrow range. If placed, the rigidity of the polyhedron will be slightly improved. On the other hand, in the <MagPole> format, the panel is precisely fitted into the recess and mechanically fixed, and then the magnetic lock is applied. Spherical point contact is preferred. As shown in Fig. 64, the assembly process of the panel at the factory is to bond the panels by inserting a spherical magnet in the spherical space between the upper and lower panels, which are injection-molded with upper and lower molds of the same shape. . In bonding, it is required to prevent burrs from appearing on the partial spherical surface.
As shown in FIG. 65, the boundaries where the semi-cylindrical surfaces of the sides and the partial spherical surfaces of the corners are interchanged become narrower as the shape changes from an equilateral triangle to a regular hexagon. The precision of this boundary creates the high rigidity of the 3D model composed of <MagPole> format panels. The standard thickness of the partition wall covering the spherical magnet is 0.6 mm to ensure the flow of the injection-molded panel material.

幼児が、円柱磁石が正多角形パネルの辺に埋め込まれたセットと、球体磁石が正多角形パネルの角に埋め込まれたセットを見比べる機会があり、後者の方が多くの面で快適に扱えることを体験すれば、磁石の量が1/3で済んでいることに気づき、世界に溢れている製品がやり方次第ではもっと簡単で堅牢なものになり、それが持続可能な地球を実現するのに大いに役立つかも知れないと考えることで、地球の運命は、将来勇気ある幼児達が中心となって存続できる方向に大きく舵を切れる可能性を生む。その主眼点がエネルギーの回生であり、本発明の電動化手段はその理解を第一目的としている。 Children have the opportunity to compare a set of cylindrical magnets embedded in the sides of a regular polygonal panel with a set of spherical magnets embedded in the corners of a regular polygonal panel, the latter being more comfortable to handle in many respects. If you experience this, you will realize that the amount of magnets is only 1/3, and depending on how you do it, the products that are overflowing in the world will become simpler and more robust, and that will lead to the realization of a sustainable earth. By thinking that it may be of great help to the future, the fate of the earth will have the potential to steer in a direction where courageous young children can play a central role in the future. The main focus is on energy regeneration, and the motorization means of the present invention is primarily aimed at understanding that.

幼児が組み立てた立体造形を床かテーブルの上に置いたままには出来ず、分解したくもない時に、磁気チャックで立体造形の角を吸着して吊るして置く事が出来る。この磁気チャックの3つの円環状に配列した球体磁石を囲む3つのコイルに交番電流を流せば回転させることができる。多くの3角チャック、少ない4角チャック、数個の5角チャックから構成され、角に埋め込む球体磁石が辺に埋め込む円柱磁石の1/3の体積になることからセットに含まれるパネル数が増えることにも対応する。(図66)に示すように、3角チャックは正4面体/立方体/正12面体を、4角チャックは4角錐/正八面体を、5角チャックは5角錐/上下5角ピラミッド/正20面体、などを吊り下げることができる。
立体造形の頂点側の球体磁石の円環配向も、チャック側の球体磁石の円環配向も既に行われているので、右回りから左回りにSN磁極が反転することはない。その代わりに(図67)に示すように球体の真上に球体が来る弱目の吸着になるか、球体と球体の間に球体が来る強目の吸着になるかの違いのどちらかに、必ず吸着される。
回転チャックは、チャック側の球体磁石の円環配列を取り巻く駆動コイルにパルス電流をUSB5.0Vから共通ICを通して流せば、幼児が初めに手で与えた回転を持続し、また途中で回転方向が、一定の回転総数で反転するようにできる。吊り下げる紐をゴムにすると、回転によって巻き上がったゴムの捻じれで回転が止まり、やがて反転して逆回り回転に駆動される中で、幼児は回転の運動エネルギーとゴムの巻き上げエネルギーの間に交換が行われることを理解し、宇宙でエネルギーが循環していることに思い至る。
また駆動ICを介して、巻き上げるチャックのエネルギーと巻き戻すエネルギーが交換関係にあり、エネルギーに正負が定義できることも幼児はやがて理解する。殆どの立体造形の1つの頂点は3種類のチャックで吊り下げることができ、例えばクリスマスツリーに吊り下げて変幻に回転を変化させ、また回転に合わせてLEDを点滅させることができる。
When a child cannot leave the three-dimensional model assembled on the floor or on the table and does not want to disassemble it, the corners of the three-dimensional model can be attracted and hung with a magnetic chuck. The magnetic chuck can be rotated by supplying an alternating current to three coils surrounding the three annularly arranged spherical magnets. It consists of many triangular chucks, few quadrangular chucks, and several pentagonal chucks, and the volume of the spherical magnets embedded in the corners is 1/3 of the volume of the cylindrical magnets embedded in the sides, so the number of panels included in the set increases. It also corresponds to As shown in FIG. 66, the triangular chuck has a regular tetrahedron/cube/regular dodecahedron, the quadrangular chuck has a quadrangular pyramid/regular octahedron, and the pentagonal chuck has a pentagonal pyramid/upper and lower pentagonal pyramid/regular icosahedron. , etc. can be hung.
Since the annular orientation of the spherical magnet on the vertex side of the stereolithography and the annular orientation of the spherical magnet on the chuck side have already been performed, the S/N magnetic pole will not reverse from clockwise to counterclockwise. Instead, as shown in (Fig. 67), there is a difference between weak adhesion in which the sphere is directly above the sphere, or strong adhesion in which the sphere is between the spheres. definitely absorbed.
When a pulse current from USB 5.0 V is passed through a common IC to the drive coil surrounding the annular array of the spherical magnets on the chuck side, the rotating chuck continues the rotation given by the hand at the beginning, and the rotation direction changes in the middle. , can be reversed at a constant total number of rotations. When the string to be hung is made of rubber, the rotation stops due to the twisting of the rubber wound up by the rotation, and eventually it reverses and is driven to rotate in the opposite direction. Understanding that exchange takes place, we come to realize that energy circulates in the universe.
In addition, through the drive IC, the infant will soon understand that the energy of the chuck to wind up and the energy to unwind are in an exchange relationship, and that energy can be defined as positive or negative. One vertex of most three-dimensional models can be hung with three types of chucks, for example, it can be hung on a Christmas tree to change its rotation and blink an LED according to the rotation.

回転ペンダントの磁気チャックは次のような基本アルゴリズムと基本ルールを持つ。
1. 4つの磁気チャックの駆動コイルがまとめて1つのICから分岐する。
2. ICはUSB5.0Vの電源で駆動される。
3. チャックに磁気接続された造形を手で回すと、その回転方向にその速度で回転が始まりそれを続けられるが、一定時間後に回転の向きが反転する。
4. チャックを吊るしたのがゴム紐で、回転で巻き上げられて抵抗を生じると、負荷増が検知され反転する。
5. 2つのチャック間で、ゴム紐の巻き上げと巻き戻しのエネルギー交換が行われ、幼児はこの相互作用を目で確かめることが出来る。
6. 巻き戻しのエネルギー発生でも他のLEDを点滅させることができる。
The rotating pendant magnetic chuck has the following basic algorithms and basic rules.
1. Drive coils of four magnetic chucks are collectively branched from one IC.
2. The IC is driven by a USB 5.0V power supply.
3. When you manually turn a model that is magnetically connected to a chuck, it starts rotating in that direction at that speed and continues, but the direction of rotation reverses after a certain amount of time.
4. The chuck is suspended by a rubber cord, and when it is wound up by rotation and resistance is generated, an increase in load is detected and the chuck is reversed.
5. An energy exchange occurs between the two chucks to wind up and unwind the rubber cord, and the infant can visually confirm this interaction.
6. The energy generation of rewinding can also cause other LEDs to blink.

これまでの多くの磁力接続パネルセットに車台が付属していたのは、出来上がった立体造形を手で動かせる自動車に見立てて、幼児が組み立てた造形物を少しでも価値づけようとするものであり、必ずしも知育そのものに直接つながるものではない。それに代わって、幼児が生まれながらに持っている科学的素養をそのままの形で引き出せるように、多面体の底に当たる正多角形パネルの代わりに、共通のデッキを用いることができる。即ちデッキに(図68)に示すように正三角形/正四角形/正五角形/正六角形の底板となるべき頂点位置に合計12個の球体磁石を埋め込んだものを、出発点のパネルとして利用し、その上に多面体が組み上がった時に、そのまま車台基板には車輪をついていて、手でも動かせるようになっている。そこまでの役割は<MagEdge>形式のパネルセットに付属している車台でも果たせるが、手で動かした時に組み立てた多面立体が崩れてしまえば、それは造形物に合理性が欠けていたか、或いはそのパネルセットに合理性が欠けていたかのどちらかであるか、乱暴に車台を動かしたか、の何れかであることを幼児は学ぶ。 The reason many magnetic connection panel sets have come with a chassis is that the finished three-dimensional model is likened to a car that can be moved by hand, and the modeled object assembled by a child is valued as much as possible. It is not necessarily directly related to intellectual education itself. Alternatively, a common deck can be used in place of the regular polygonal panels that form the base of the polyhedron so that the infant's natural scientific acumen can be tapped into in its original form. That is, a total of 12 spherical magnets embedded in the vertex positions of equilateral triangles/regular squares/regular pentagons/regular hexagons as shown in FIG. 68 were used as starting panels, When the polyhedron is assembled on top of it, wheels are attached to the chassis board so that it can be moved by hand. The chassis attached to the <MagEdge> format panel set can play that role, but if the assembled multifaceted solid collapses when you move it by hand, it means that the model lacks rationality, or that's what it is. Toddlers learn that either the panel set lacked rationality, or they moved the chassis around violently.

車輪付きのデッキを基板として組み立てられた造形物を、幼児が速い勢いで走らせれば崩れることがあり、ゆっくりと走らせれば崩れないであろう。その手加減を憶える事が発達であると言える。トレーラーを強く押せば遠くまで転がり、弱いと直ぐに停まる。自動車の玩具の多くはフライホイールが内蔵されていて、その慣性で何処まで航続するかが決まることを直ぐに憶える。電池を使わないで済む玩具は理想的であるが、実現できる多様性が限られる。むしろエネルギーを循環させて有効利用することを学ぶために、電池を有効に使って、それを長持ちさせることが地球環境を維持する幼き戦士を育てるであろう。
(図68)に示した4輪の自走トレーラーの駆動前2輪は操舵輪であるが、前輪の左右の車輪に別々に組み込まれたモータの回転数を変える内輪/外輪の回転数差で、タイヤ幅が狭ければ自在に車輪の向きが固定のまま操舵と駆動の両方ができる。後輪の非駆動2輪は方向自由輪で、デッキが回転する方向は前駆動輪の回転数差に従属して向きが変わる。トレーラーには電源スイッチはなく、電池を装着するとスタンバイとなり、幼児がトレーラーに与えた初速を磁気で検出してその回転数を維持する駆動が始まり、見掛け上フライホイール車になる。前進と後退と停止、及び右回転と左回転が可能である。
トレーラーが壁に当たる時、左の駆動輪が当たれば回転後退して車体を右に向け、切り返して右方向にターンして前進する。これを繰り返すと、部屋の中を動き続け、幼児が手で止めるとスタンバイ状態に戻る。
(図69)に示すように、磁気チャックのICとトレーラーのICは同じものが使われる。それぞれの応用において複数の駆動コイル間で通信が行なわれて、全体として調和の取れた動きが可能になるが、ICの中の回路は実質的に4個のオペアンプが入っているに過ぎず、コイルを駆動する電流が、(図70)に示すようにどちらの位相が進んでいるかで回転の正逆が決まり、駆動電流パルスの繰り返し周波数の差で右に回るか、左に回るかが決まる。また幼児が初めに手動で与えた動きが、前進か後退か、遅いか、速いか、右回りか左回りかの検出も行われる。(図71)に共通化ICのブロック図を示すが、極めて簡単な論理回路によって多様で能動的な動きができるのは昆虫の単純であるが合理的なシステムと類似である。
A model assembled using a deck with wheels as a substrate may collapse if a child runs it quickly, but if it runs slowly, it will not collapse. It can be said that it is development that learns to take it easy. If you push the trailer hard, it will roll far, and if you push it weakly, it will stop immediately. It's easy to remember that many toy cars have built-in flywheels whose inertia determines how far they can travel. Toys that do not require batteries would be ideal, but the versatility that can be achieved is limited. Rather, in order to learn how to circulate and use energy effectively, using batteries effectively and making them last longer will grow young warriors who will maintain the global environment.
The two front driving wheels of the four-wheel self-propelled trailer shown in (Fig. 68) are steered wheels. If the tire width is narrow, both steering and driving can be performed freely while the direction of the wheels is fixed. The two non-driven rear wheels are directional wheels, and the direction in which the deck rotates changes depending on the rotational speed difference between the front driven wheels. The trailer does not have a power switch, and when a battery is installed, it becomes standby, and magnetically detects the initial speed given to the trailer by an infant and starts driving to maintain that rotation speed, making it appear to be a flywheel vehicle. It can move forward, backward, stop, and turn right and left.
When the trailer hits the wall, if the left drive wheel hits it, it will rotate backward, turn the vehicle to the right, and then turn to the right to move forward. When this is repeated, it continues to move around the room, and when the infant stops it, it returns to the standby state.
As shown in FIG. 69, the IC of the magnetic chuck and the IC of the trailer are the same. Each application communicates between multiple drive coils to allow for coordinated movement as a whole, but the circuitry within the IC is effectively only four operational amplifiers, As shown in FIG. 70, the current that drives the coil is forward or reversed depending on which phase leads, and the difference in the repetition frequency of the drive current pulse determines whether the coil rotates to the right or to the left. . It also detects whether the movement initially given manually by the infant is forward or backward, slow or fast, clockwise or counterclockwise. A block diagram of a common IC is shown in FIG. 71. It is similar to the simple but rational system of insects in that it can perform various active movements with an extremely simple logic circuit.

自走トレーラーは次のような基本アルゴリズムと基本ルールを持つ。そこに合理性があれば、多様性は自然に備わり、電源スイッチやコントローラが無くても、磁石の入った棒を振れば協奏曲が奏でられる。
1. 電池を入れると、Power-on-ResetでStand-by状態になり、磁気検出コイルだけが作動する。
2. トレーラーを前方に動かすと、回転子磁石の回転で駆動コイルに速度に応じた周波数で電流が流れる。
3. ICに内蔵されたマルチバイブレータがこの周波数に同期して、固定子駆動コイルに駆動電流を流すので、モータはフライホイールの動作をする。
4. 回転子の周波数を左右の前輪別々に検出し駆動するので、初めに与えた右回転か左回転の動きをそのまま継続したターンをする。
5. 後退は遅い速度で行う。
6. 真っ直ぐ壁にぶつかると、駆動輪の回転を止めてから後退する。
7. 左前輪が壁にぶつかって後退するときは、車体を右に向ける。
8. 続いて、右に舵を切って前進する。
9. これを続けて部屋の中を壁にぶつかりながら回遊する。
10. 手で止めると、モータの負荷が重くなったのを検出してStand-byに戻る。
11. 縦に棒磁石を埋め込んだポールを何本か立てて最初の回転を与えると、スラローム走行をし、手で止めるとStand-byに戻る。
12. 棒磁石を縦に入れたアイテムを立てて部屋に置くと、走行するトレーラーは舵を切って避けるか、正面にアイテムがいる場合は停止する。
13. アイテムを取り去ると再び走行を初め、トレーラーを手で止めるとStand-byに戻る。
14. 棒磁石を縦に入れたアイテムをトレーラーの前面に近づけて認識させた後、紐を付けて引くと、トレーラーはそれを磁気検出する限り舵を切りながら速度を合せて追従する。
15. 電動トレーラーには電源スイッチやモード切り替スイッチはなく、幼児が手で与えた初動を検出するか、アイテムの中の棒磁石の動きを検出してモードが選ばれる。
(表3)に自走トレーラーのモード判定項目と駆動コイルによる電流検出内容を示す。

Figure 2022159729000016
最近は小学校からプログラミングを習うが、それはPC/CPUやネットワークが既に確立している前提があり、そのまま知育に役立つとは考えられない。プログラミングとは、指先の動きや口笛を符牒として、動物や機械に望んだ動作を行わせることが原点であり、この原点を外しては幼児の知育には至らない。自走トレーラーに望んだ動作をさせるのは、正に1個の棒磁石の動きであって、その動きを検知して一時記憶させる共通ICチップの中の回路は規模として数円にも相当しないが、これこそがプログラミングの原点であり、その素朴さが幼児を大きく育てることになるであろう。 The self-propelled trailer has the following basic algorithms and basic rules. If there is rationality there, diversity will come naturally, and even if there is no power switch or controller, a concerto can be played by swinging a stick containing a magnet.
1. When the battery is inserted, it will be in Stand-by state with Power-on-Reset, and only the magnetic detection coil will operate.
2. When the trailer is moved forward, the rotation of the rotor magnet causes current to flow through the drive coil at a frequency that corresponds to the vehicle's speed.
3. A multivibrator incorporated in the IC synchronizes with this frequency and supplies a drive current to the stator drive coil, so the motor operates as a flywheel.
4. Since the frequency of the rotor is detected separately for the left and right front wheels and driven, the left and right rotation motions given at the beginning are continued as they are.
5. Retreat at a slow speed.
6. If it hits a wall straight on, it stops rotating the drive wheels and then rolls back.
7. When the front left wheel hits the wall and you are backing up, turn the vehicle to the right.
8. Next, turn the rudder to the right and move forward.
9. Continuing this, it roams around the room while bumping into walls.
10. When stopped by hand, it detects that the load on the motor has become heavy and returns to Stand-by.
11. When several poles with bar magnets embedded vertically are set up and the first rotation is given, it will run in slalom, and when stopped by hand, it will return to Stand-by.
12. If an item with a vertical bar magnet is placed in a room, the moving trailer will steer to avoid it, or stop if there is an item in front of it.
13. If you remove the item, it will start running again, and if you stop the trailer by hand, it will return to Stand-by.
14. After recognizing an item with a vertical bar magnet near the front of the trailer, if you pull it with a string, the trailer will steer and match the speed as long as it detects it magnetically.
15. The electric trailer does not have a power switch or mode switch, and the mode is selected by detecting the initial movement given by the hand of the child or by detecting the movement of the bar magnet inside the item.
Table 3 shows the mode judgment items of the self-propelled trailer and the details of the current detected by the drive coil.
Figure 2022159729000016
Recently, we learn programming from elementary school, but it is premised that PC/CPU and network have already been established, and it is not considered to be useful for intellectual education as it is. The origin of programming is to make animals and machines perform desired actions using the movements of fingertips and whistles as symbols. It is precisely the movement of a bar magnet that makes the self-propelled trailer perform the desired movement, and the circuit in the common IC chip that detects the movement and temporarily stores it does not even correspond to a few yen in scale. However, this is the starting point of programming, and its naivety will help children grow up.

原動車輪付きのデッキの上で組み上がった立体造形は、部屋の中で壁にぶつかりながら自力で方向を変えて走り続けるが、磁石が入った人形や組み上がった小さな立体造形を置くと、トレーラーはそれを磁気検出して手前で止まり、向きを変えて道を譲る。こうして幼児は2歳から国際的に共通であるべき交通ルールと思いやりの心を、信号機設置以前の問題として学ぶことになる。同時に脆弱な立体造形でもゆっくり運べば崩れないという手加減を憶え、語らずとも優しさの意味を知る。
その手段として人形などのアイテムの中に5mm前後の長さのNS棒磁石を縦置きに入れると、周りに無指向性の磁場を作る。地磁気は40~50μT程の磁界であるが、5mm程の1.2T程の棒磁石は50mm程の距離に~10mT程の磁界を作るので、地磁気に左右されない十分な大きさの磁界がアイテムから検出できる。トレーラーの駆動/操舵の前輪は磁石が回転子で、駆動コイルが固定子であり、回転子と直結した検出コイルは回転子と共に回転するので、駆動コイルの電流を間欠的に止める間に、電動機磁石の誘導を受けずアイテムの静磁界だけを検出できる。これを左右の駆動/操舵輪別々に行うと、アイテムがトレーラーの前にいるか、左側にいるか、右側にいるかが分かる。そこで徐行して舵を切り回避するか、停止してアイテムが取り去られるのを待つかを決めることができる。またNS棒磁石が入ったポールを立てて、その間をトレーラーは積んだ立体造形が倒れない押さえた速度でスラローム走行することができる。また幼児が紐で引っ張るアイテムの跡をトレーラーがついて行くモードに切り替えることができる。これで人間の優しさが溢れる社会の中であるべき交通ルールの基本を幼児は家の外で遊べるようになる前に、言葉を用いず学ぶであろう。
更に自然界の鉱物や生物があらゆるものを利用して、調和の中で成り立っているように、磁気接続パネルセットも幾つかの物理的な拘束を利用して成り立っており、究極の安全な交通手段はAI機能を使った自動運転等ではなく、物理的な拘束と思いやりの心で達成されるものであり、幼児はトレーラーでそれを体験する。また減速するときもエネルギーが回生されることを幼児は自分で見出すであろう。
回転ペンダントにも電動化トレーラーにも電源スイッチはなく、手で与えた初めの動きで回転速度や反転のモードを変えられる。トレーラーに多様な動きをさせられるのは、モータの回転子磁石と固定子コイルと、回転子磁石と同期して回転する検出コイル、及びアイテムの磁石が幼児によって手で動かされることの組み合わせで、各種のモードをICが検出コイルに流れる電流で認識するからであり、これが幼児に究極の知育機会を与える。
The three-dimensional model assembled on the deck with motor wheels keeps running by changing direction by itself while colliding with the wall in the room. magnetically detects it, stops in front of it, turns and gives way. In this way, from the age of two, young children will learn about internationally common traffic rules and a spirit of consideration, before the installation of traffic signals. At the same time, he learns how to handle even fragile three-dimensional models so that they do not collapse if carried slowly, and learns the meaning of kindness without speaking.
As a means of doing so, when an NS bar magnet with a length of about 5 mm is placed vertically inside an item such as a doll, an omnidirectional magnetic field is created around it. Geomagnetism is a magnetic field of about 40 to 50 μT, but a bar magnet of about 5 mm and about 1.2 T creates a magnetic field of about 10 mT at a distance of about 50 mm, so a sufficiently large magnetic field that is not affected by the geomagnetism will be generated from the item. detectable. The magnet is the rotor of the front wheel for driving/steering the trailer, and the drive coil is the stator. It can detect only the static magnetic field of the item without receiving the induction of the magnet. Doing this separately for the left and right drive/steer wheels will tell you if the item is in front of the trailer, on the left, or on the right. You can then decide to slow down and turn around or stop and wait for the items to be removed. In addition, the poles containing the NS bar magnets can be set up, and the trailer can slalom between them at a speed that keeps the three-dimensional model from falling over. You can also switch to a mode where the trailer follows the trail of the item that the toddler pulls with a string. With this, infants will learn without words the basics of traffic rules that should be in a society full of human kindness before they can play outside the house.
Furthermore, just as minerals and organisms in the natural world use everything and are built in harmony, the magnetic connection panel set is also built using several physical restraints, making it the ultimate safe means of transportation. is achieved through physical restraint and compassion, rather than automatic driving using AI functions, and infants experience it in a trailer. Infants will also find for themselves that energy is regenerated when decelerating.
Neither the rotating pendant nor the motorized trailer has a power switch, and the initial hand-given motion changes the rotation speed and reversing mode. The variety of movements that the trailer can make is a combination of the motor's rotor magnets and stator coils, the detection coils that rotate in sync with the rotor magnets, and the item's magnets being manually moved by an infant. This is because the IC recognizes various modes by means of the current flowing through the detection coil, which gives the infant the ultimate educational opportunity.

幼児に磁気接続パネルで多面立体を造形させることと、外観だけではなく強度/耐震性や合理性も判断できる建築モデルを磁気接続で構築することは相反するものではない。幼児の発想を引き出すパネルは正多角形の角や辺が丸められているのに対し、建築モデルの磁気接続パネルは長方形に限られ、また角も辺も直角に角張ったままであり、XYZ全方向から床板/壁板/天井板が最大12枚1つの角に集まる構造では、埋め込まれた12個の球体磁石の団結力で構造が締め上げられ、建物全体の強度を反映できる。これはトーラス構造一本槍の西洋建築か、優れたアーチ構造のアラビア建築と比べて、釘を使わず隅で締め上げる古来の和風様式の特性と共通している。和式家具についても同じことが言える。
幼児が角や辺が丸められた正多角形パネルだけではなく、(図72)に示す角張った角や辺を利用したパネルでも遊び、強度の違いを体験するときに、物事の仕組みの違いの幅広さに対応できる寛容な人格の形成が期待できる。角張ったパネルは(図73)に示すように最大12個の球体磁石の(図74)に示すような自立配向で1つの角が纏まる手法で高層化建築モデルを簡便に製作でき、その概念が実際の建築に使われる訳ではなくても、地震国日本に適した柔構造とは何かを正しく知ることになる。阪神淡路大震災で高速道路が山側に倒れた理由も幼児が納得し、橋げたを太くするのではない正しい方策が呑み込めるようになるであろう。東北陸地~大陸棚にかけた東西幅400Km程の花崗岩板が貞観以来1100年余りかけて西方に40m圧縮されたものが、2011.3.11に東方に~40mほど数十秒かけて一気に伸長移動したことによる東北大地震と、30~45分経って沿岸に到達した津波増水が、大正時代の関東大震災の局所的な斜め断層ずれの衝撃と、この低層/高層のモデルで明確に区別して理解されようになることが期待できる。自然災害の怖さを教え込んで行くよりも、その仕組みを呑み込んでいれば、危機が数十分後に迫った時に何をすべきかを冷静に判断できるようになることが期待できる。現在の大森式地震計は単振動の振幅は測定できるので、関東大震災のような斜め断層ずれの検知には有効であるが、阪神淡路大震災や東北大地震のような一方向への10m~数10mの花崗岩板伸長を定量的に捉えるのには無理があるが、球体磁石埋め込み型の建築モデルは、容易にこれを検知できる超長周期地震計でもある。しかし東北陸地で次にそれが必要になるのは千年後である。
建築モデルの場合は、出来合いの角パネルではなく、木板を実物に相似な長方形にその都度カットした角に球体磁石を埋め込んで磁気配向させれば、最大12枚の板が1点の周りで纏め上げられ、十分な結合強度になって実用的である。剛構造と柔構造の地域毎の使い分けのヒントが、この磁力接続建築モデルで得られると考えられる。
Making a child form a multifaceted solid with magnetic connection panels and constructing an architectural model with magnetic connection that can judge not only the appearance but also the strength/earthquake resistance and rationality are not contradictory. While the panels that draw out the imagination of young children are regular polygons with rounded corners and sides, the magnetic connection panels of architectural models are limited to rectangles, and the corners and sides are still squared, allowing them to be used in all XYZ directions. In a structure where up to 12 floorboards/wallboards/ceiling boards are gathered at one corner, the structure is tightened by the cohesive force of the 12 embedded spherical magnets, and the strength of the entire building can be reflected. This is in common with the characteristics of the ancient Japanese style, which tightens at the corners without using nails, compared to Western architecture with a single torus structure or Arabian architecture with excellent arch structures. The same can be said for Japanese-style furniture.
When children play not only with regular polygonal panels with rounded corners and sides, but also with panels with squared corners and sides (Fig. 72), and experience the difference in strength, they can understand the difference in the mechanism of things. We can expect the formation of a tolerant personality that can respond to a wide range of people. As shown in Fig. 73, the angular panel can easily produce a high-rise architectural model by a method of gathering one corner in a self-supporting orientation as shown in Fig. 74 of a maximum of 12 spherical magnets. Even if it is not used for actual construction, you will know exactly what flexible structures are suitable for earthquake-prone Japan. Young children will understand why the expressway collapsed on the mountain side in the Great Hanshin-Awaji Earthquake, and will be able to understand the correct measures that do not make the bridge girder thicker. A granite plate about 400km wide from east to west extending from the Tohoku land to the continental shelf was compressed 40m westward over 1100 years since the Jogan period. The Great Tohoku Earthquake caused by movement and the flooding of the tsunami that reached the coast 30 to 45 minutes later were clearly distinguished from the impact of the local oblique fault slip of the Great Kanto Earthquake in the Taisho era in this low-rise/high-rise model. It is hoped that they will be understood. Rather than instilling the fear of natural disasters, we can expect to be able to calmly decide what to do when a crisis approaches in tens of minutes if we understand the mechanism. The current Omori-type seismometer can measure the amplitude of simple oscillations, so it is effective for detecting diagonal fault slips such as during the Great Kanto Earthquake. Although it is difficult to quantitatively capture the granite plate elongation of 10 m, the building model with embedded spherical magnets is also an ultra-long-period seismometer that can easily detect this. However, it will be 1,000 years from now when it will be needed again in the Tohoku region.
In the case of an architectural model, instead of using a ready-made corner panel, a maximum of 12 panels can be gathered around one point by embedding spherical magnets in the corners of wooden boards that are cut into rectangles similar to the real thing each time and magnetically oriented. It is raised and sufficient bond strength is obtained for practical use. It is thought that this magnetic connection architectural model provides hints for proper use of rigid and flexible structures in each region.

これまで知育玩具として20年間役割を果たして来た<MagEdge>形式の磁力接続パネルセットが、構造が単純で、噛み合わせの精度が高く、コスト的にパネル数を倍増できる<MagPole>形式に置き換わると、多くの合目的々な電化機能が付け加わり、幼児の理解がこれまでになく深化するか、或いはより小さな年齢で科学的な理解に関わるようになる。(図75)に示すようにこの流れは、宇宙や生物や鉱物を構成する原子や分子/格子が自立的に集合し、整然と自己を複製して行く仕組みが、<MagPole>形式の自立円環配向/配列と共通している面を幼児に気付かせるであろう。そのための教材も、学校にあるのではなく、各家庭にあって2歳頃から触れることができる。その結果世界の全人口、特にこれから成長する幼児が、当たり前のこととして、新材料や新薬の原子の物理的な構造とメカニズムや触媒や合金などの仕組みを、より具体的に理解し、語れるようになるであろう。最初に供給されるパネルセットの様態は(図76)に示すようになる。
The <MagEdge> type magnetic connection panel set, which has played a role as an educational toy for 20 years, will be replaced with the <MagPole> type, which has a simple structure, high accuracy of engagement, and can double the number of panels at a low cost. With the addition of many purposeful electrification functions, infants' understanding has never been deeper, or involved in scientific understanding at a younger age. As shown in (Fig. 75), this flow is a system in which the atoms, molecules, and lattices that make up the universe, living organisms, and minerals gather autonomously and replicate themselves in an orderly fashion. Toddlers will be made aware of the common aspects of orientation/alignment. Teaching materials for that purpose are not available at school, but can be found in each home from around the age of two. As a result, the entire population of the world, especially young children who will grow up in the future, will be able to understand and talk about the physical structure and mechanism of atoms in new materials and new drugs, as well as the mechanisms of catalysts and alloys, as a matter of course. would be The state of the panel set supplied first is as shown in (FIG. 76).

正多角形パネルが、辺の中央部の円柱磁石が隣り合わせに同軸対向することを出発点にし、3つ目のパネルを加えて安定させてから、立体化を進めて行く従来の磁力接続玩具が、個々の接続点の磁力が幼児にはやや強過ぎ、逆に完成した立体造形が剛性を保てず容易に崩れてしまい、幼児が造形だけに集中できない難点があったのは、正多角形パネルの角に球体磁石を埋め込んで磁力接続させることで、3つかそれ以上の正多角形の角が1点に集まって球体磁石が円環状に自立配向して集団で引き合い、穏やかな力でパネルは自立的に引き付けられ、正確な位置に吸着することで幼児が造形に集中できることになり、組み立てた立体造形は卓越して剛性が高く容易に崩れないようになった。
角に埋め込む球体磁石形式により、使用するコストの大半を占める磁石の体積が1/3程になるので、製造原価に生じたコストの余裕でパネルの枚数を増やし、幾つかの電動化機能を付け加えて、立体認識、造形、科学の原理理解、道具のメカニズム習得と、思い付きではない実体にあった工夫の必要性、などを併せて育める準備が整うようになった。
A regular polygonal panel starts with the cylindrical magnets in the center of each side coaxially opposed to each other, and after adding a third panel to stabilize it, the conventional magnetic connection toy progresses to three-dimensionalization. However, the magnetic force at the individual connection points was a little too strong for young children, and on the contrary, the completed 3D model did not maintain its rigidity and easily collapsed, making it difficult for young children to concentrate on modeling. By embedding spherical magnets in the corners of the panel and connecting them with magnetic force, the corners of three or more regular polygons gather at one point, and the spherical magnets self-align in a ring and attract each other, and the panel is pulled by a gentle force. The objects are attracted by themselves, and by sticking to the correct position, the infant can concentrate on modeling, and the assembled three-dimensional model has excellent rigidity and does not collapse easily.
The spherical magnets embedded in the corners reduce the volume of the magnets, which accounts for most of the cost, to about 1/3. As a result, we are now ready to nurture three-dimensional recognition, molding, understanding of scientific principles, mastering the mechanism of tools, and the necessity of ingenuity that suits the actual situation.

は本発明を含む磁力接続パネルの4つの主要な形式とその呼称である。are the four major types and designations of magnetic connection panels that include the present invention. は立方体を形成する角型固定磁石24対の全てが引き合う形である。is a shape in which all pairs of rectangular fixed magnets 24 forming a cube attract each other. は原子の化学結合手を模した支柱磁石と軟鉄球による立体構造模型である。is a three-dimensional structure model with support magnets and soft iron balls imitating atomic chemical bonds. は支柱の棒磁石と軟鉄球による3角形/4角形の構造解析の画像である。is an image of a triangular/quadrangular structural analysis with bar magnets and soft iron balls on the strut. は支柱磁石と軟鉄球の立体接続が対称性を失うメカニズムの図解である。is an illustration of the mechanism by which the three-dimensional connection between the strut magnet and the soft iron ball loses symmetry. は2個の球体磁石が自立的に同軸配向に至るメカニズムである。is the mechanism by which two spherical magnets autonomously reach coaxial orientation. は2~9個の球体磁石が円環状に自立配列し、赤道大円面が円環の中心点を通るように配向する実験画像である。is an experimental image in which 2 to 9 spherical magnets are independently arranged in an annular shape and oriented so that the equatorial great circle plane passes through the center point of the annular ring. は球体磁石が平面上で円環状自立配向する2次元結合の動態である。is the dynamics of the two-dimensional coupling in which the spherical magnet is toroidally orientated on the plane. は角に球体磁石を持つパネルが3次元結合する1つ目の様態である。is the first mode in which the panels with spherical magnets at the corners are three-dimensionally combined. は角に球体磁石を持つパネルが3次元結合する2つ目の様態である。is a second manner in which panels with spherical magnets at the corners are joined in three dimensions. は8球体磁石の上下2段の円環配列の2通りの様態の画像と鉄原子の体心立方格子のスピン軸構成の対比である。is a comparison of images of two modes of the upper and lower two-stage circular ring arrangement of 8-sphere magnets and the spin axis configuration of the body-centered cubic lattice of iron atoms. は辺の円柱磁石と角の球体磁石とで異なる磁力接続の様態図である。FIG. 4 is a diagram of different magnetic connection between side cylindrical magnets and corner spherical magnets; は2個の球体磁石を辺に埋め込むか角に1個を埋め込むかで、磁石の体積は半分で済むが、磁力接続は向上することを示す。shows that embedding two spherical magnets in the sides or one in the corner can reduce the volume of the magnets by half, but improve the magnetic coupling. は完全な正多面体/複合多面体だけではなく、その部分立体が意味を持つ例である。is an example where not only complete regular/composite polyhedrons but also its sub-solids are meaningful. はXY面、YZ面、ZX面の3つの方向のパネルが磁力接続する嵌合状態を示す。indicates a fitting state in which panels in three directions of the XY plane, YZ plane, and ZX plane are magnetically connected. は対向する2つの電流ループの間に働くローレンツ力の直交性原理である。is the orthogonality principle of the Lorentz force acting between two opposing current loops. は駆動ループ電流により金属導体ループに誘導電流が流れる基本原理である。is the basic principle that the drive loop current causes an induced current to flow in the metal conductor loop. は飽和着磁された円柱磁石と球体磁石の等価表面電流密度分布である。is the equivalent surface current density distribution of a saturated cylinder magnet and a spherical magnet. は正多角形の角の球体磁石が3個以上集まって円環配置され、自立配向する様態である。is a mode in which three or more spherical magnets of regular polygonal corners are grouped and arranged in a circular ring, and are oriented independently. は2つの角型固定磁石、回転する2つの円柱磁石か球体磁石、3つの球体磁石が自立配向する時の磁力計算のための様態図である。Fig. 2 is a diagram for magnetic force calculation when two stationary square magnets, two rotating cylindrical magnets or spherical magnets, and three spherical magnets are oriented independently; は球体磁石2個が同軸対向した球体間距離と磁力の数値計算の図説である。is an illustration of the numerical calculation of the distance between spheres in which two spherical magnets face each other on the same axis and the magnetic force. は球体磁石2個の同軸対向時の磁力の数値計算の結果である。is the result of numerical calculation of the magnetic force when two spherical magnets face each other coaxially. は円柱磁石が側面対向した時の球間距離と磁力の数値計算の図説である。is an illustration of the numerical calculation of the distance between the spheres and the magnetic force when the cylindrical magnets face each other. は円柱磁石2個の側面対向時の磁力の数値計算の結果である。is the result of numerical calculation of the magnetic force when two cylindrical magnets face each other. は球体磁石3個の円環配列時の磁力の数値計算の図説と計算結果である。is an illustration and calculation results of the numerical calculation of the magnetic force when three spherical magnets are arranged in a circular ring. は角型磁石2個を対向配列時と、隣り合わせ配列時の磁力の図説である。is an illustration of the magnetic force when two rectangular magnets are arranged facing each other and when arranged side by side. は角型磁石2個の対向配列時と、隣り合わせ配列時の磁力の数値計算と、ネオジウム磁石を異方性フェライト磁石に置き換える磁力低減である。is a numerical calculation of the magnetic force when two square magnets are arranged facing each other and when they are arranged side by side, and the reduction of the magnetic force by replacing the neodymium magnet with an anisotropic ferrite magnet. は球体磁石の円環配向時の複雑な磁力計算式を1つに纏め上げるための変換式である。is a conversion formula for combining into one the complex magnetic force calculation formulas when the spherical magnet is oriented to the circular ring. はパネルの頂点を立体から引き剥がす時に、立体側に残った2つの球体磁石は離れない様態の説明である。is an explanation of the manner in which the two spherical magnets remaining on the side of the solid do not separate when the apex of the panel is peeled off from the solid. は角の3つの球体磁石の1つを引き剥がす時の対称性の状態変化を示す。shows the state change of symmetry when one of the three spherical magnets at the corner is pulled apart. は各形式で正規化した相対的磁力を、グラム重に絶対値変換した図である。is a diagram obtained by converting the relative magnetic force normalized in each form to the absolute value of gram weight. はパネルの辺に埋め込んだ円柱磁石が起こす縦ずれが中点復帰する磁力と、それを最大静止摩擦が阻止するメカニズムの図説と計算結果である。is an illustration and calculation results of the magnetic force that returns the vertical displacement caused by the cylindrical magnets embedded in the sides of the panel to the center point, and the mechanism that the maximum static friction prevents it. はパネルの辺の中央に球体磁石が埋め込まれた時の縦ずれの中点復帰と、角に球体磁石が埋め込まれた時の縦ずれのメカニズムの違いを示す。shows the difference in the mechanism of longitudinal displacement when a spherical magnet is embedded in the center of the side of the panel and the mechanism of longitudinal displacement when a spherical magnet is embedded in the corner. は同軸対向、隣り合わせ結合、円板/円柱/球体磁石、縦ずれ/横ずれの関係を示す。indicates coaxially facing, side-by-side coupling, disk/cylinder/spherical magnet, and longitudinal/lateral displacement relationships. は2つの円柱磁石と2つの球体磁石の対向時の回転の自由度の比較である。is a comparison of degrees of freedom of rotation when two cylindrical magnets and two spherical magnets face each other. は球体磁石形式と円柱磁石形式の、縦ずれの復帰力と横に引っ張る力の関係を示す。shows the relationship between the restoring force of the longitudinal displacement and the lateral pulling force for the spherical magnet type and the cylindrical magnet type. は電磁気学の磁極で済ませる考え方が、やや複雑な磁力を説明する上で障害になっていることの図解説明である。is an illustration explanation that the idea of magnetic poles in electromagnetism is an obstacle in explaining the rather complicated magnetic force. は磁気が電流と電流との作用であり、磁石の作用の全ては外周電流で表されることの説明図である。is an explanatory diagram showing that magnetism is the action of current and current, and that all the action of magnets is represented by circumferential current. は磁極/磁界/磁力線という概念が最適ではない設計に導くことを説明する。explain that the pole/field/field line concept leads to a non-optimal design. は本発明のパネルの角に球体磁石を埋め込む寸法と丸めの曲率を説明する。describes the dimensions and rounding curvatures for embedding the spherical magnets in the corners of the panel of the present invention. は辺/角の丸み、角の球体磁石の中心間距離、従来の円柱磁石形式の辺の長さと丸みの関係を説明する。describes the relationship between side/corner roundness, center-to-center distance of corner spherical magnets, and side length and roundness of conventional cylindrical magnet types. は球体磁石を埋め込んだ2つの角を両端に持つ辺を通して見た時のパネルの角度構成の様態である。is the angular configuration of the panel when viewed through the two angled sides with embedded spherical magnets. は辺の円柱磁石と角の球体磁石とで、パネルの納まり方の正確さが違うことを示す。indicates that the accuracy of panel fitting is different between the cylindrical magnets on the sides and the spherical magnets on the corners. はパネルの角に球体磁石が埋め込まれ、それを包む隔壁の丸めの曲率によって、磁力がない状態でも正確に嵌合するメカニズムの説明である。is an explanation of the mechanism in which spherical magnets are embedded in the corners of the panel, and the rounded curvature of the partition wall enveloping the magnets ensures accurate engagement even in the absence of magnetic force. は縦ずれと位置の正確さに於ける球体磁石と円柱磁石の違いを示す。shows the difference between spherical magnet and cylindrical magnet in longitudinal displacement and positional accuracy. は組み上がった立体の剛性を決める肝腎な要素の1つを説明する。explains one of the key factors that determine the rigidity of the assembled three-dimensional structure. は本発明のパネルの角に球体磁石を埋め込む形式と、辺に円柱磁石を埋め込む従来の形式で、貼り付ける意味と引き剥がす裏表の意味が異なることの説明である。is an explanation of the difference between the method of embedding spherical magnets in the corners of the panel of the present invention and the conventional method of embedding cylindrical magnets in the sides of the panel. は立方体の角8箇所を紐で縛るのと、辺12箇所を紐で縛るのとでは、立方体の形を保つ上で大差を生じることを説明する。explains that tying the 8 corners of a cube with strings and tying the 12 sides with strings make a big difference in keeping the shape of the cube. は本発明のパネルの角に球体磁石を埋め込む形式と、従来の辺の中央に円柱磁石を埋め込む形式の、パネルの外形の共通点と相違点の説明である。4 describes the similarities and differences in the outer shape of the panel between the type in which the spherical magnet is embedded in the corner of the panel of the present invention and the conventional type in which the cylindrical magnet is embedded in the center of the side. は従来の形式と本発明の形式の、正四面体から1つの正三角形パネルを引き剥がす耐力のトルク(=長さ*力)を比較する。compares the yield strength torque (=length*force) to tear off one equilateral triangular panel from a regular tetrahedron of the conventional type and the type of the present invention. は従来の形式と本発明の形式の、正四面体・立方体から1つの正三角形・正方形パネルを捩じって引き剥がす耐力のトルク(=長さ*力)の違いである。is the difference in yield strength torque (=length*force) for twisting and peeling off one equilateral triangular/square panel from a regular tetrahedron/cube between the conventional type and the present type. は従来の形式と本発明の形式の、パネルを様々に引き離す力の違いである。is the difference in the force that pulls the panels apart differently between the conventional type and the type of the present invention. は辺に埋め込まれた固定角型磁石対で、あらゆる向きで2枚のパネルが引き合う巧妙なメカニズムである。is a pair of fixed square magnets embedded in the sides, an ingenious mechanism that attracts the two panels in all directions. は固定角型形式では、L型とR型にファミリー化される原理を示す。shows the principle that the fixed-angle type is familyized into L-type and R-type. は本発明のパネルで構成された立体造形の頂点を繋ぐ連鎖様態である。is a chain mode that connects the vertices of the three-dimensional modeling composed of the panel of the present invention. は本発明のパネルと、従来のパネルを縦/横に繋いで網構造を作る様態の違いである。is the difference between the panel of the present invention and the conventional panel which is vertically/horizontally connected to form a net structure. は円柱・角型の同軸対向磁石をパネルの辺の中央で繋いでも、容易に捻じれ180度回転してしまう時の磁力変化のメカニズムである。is the mechanism of magnetic force change when cylindrical/square coaxial opposed magnets are easily twisted and rotated 180 degrees even if they are connected at the center of the side of the panel. は辺の円柱柱磁石の捻じれ易さと、球体磁石と円柱磁石の縦ずれのし易さ違いである。is the difference in the easiness of twisting of the cylindrical magnets on the side and the easiness of longitudinal displacement between the spherical magnets and the cylindrical magnets. は組み上がった立体の1つのパネルが、円柱磁石では簡単に回転してしまう形を示す。shows a shape in which one panel of an assembled solid can be easily rotated with a cylindrical magnet. は本発明の球体磁石の中心間距離と、幾何学的な辺の長さが正多角形の角数で変化する関係を示す。shows the relationship between the center-to-center distance of the spherical magnet of the present invention and the geometrical length of the side changing with the number of corners of the regular polygon. は教会の尖塔を模す等のために辺に球体磁石を埋め込む例外的手段である。is an exceptional means of embedding spherical magnets in the sides, such as to simulate a church steeple. は辺の円柱磁石形式での正多角形の辺の接触と角の後退、角の球体磁石形式での角の接触と辺の後退、の違いを示す。shows the difference between contacting and receding sides of regular polygons in the form of cylindrical magnets of sides, and contacting and receding sides of regular polygons in the form of spherical magnets of corners. は辺の円柱磁石と角の球体磁石で4種類の正多角形パネルの外形に違いを生じることを示す。shows that side cylinder magnets and corner sphere magnets produce differences in the external shapes of four types of regular polygonal panels. は本発明の磁力接続パネルの射出成型の金型の概要である。1 is an outline of the mold for injection molding of the magnetic connection panel of the present invention. は本発明の磁力接続パネルパネルの辺の丸みから角の丸みへ移り変わる境界を示す。indicates the transition boundary from edge roundness to corner roundness of the magnetic connection panel panel of the present invention. は立体造形の頂点を磁気チャックで吸着して回転させるメカニズムを示す。shows the mechanism that rotates the apex of the three-dimensional model by attracting it with a magnetic chuck. は磁気チャックを回転させる電動化のメカニズムである。is the motorized mechanism that rotates the magnetic chuck. は立体造形の組み立てデッキと電動化したトレーラーの運動方向である。is the direction of movement of the 3D assembly deck and motorized trailer. は回転ペンダントとトレーラー駆動のICの共通化の様態である。is a common mode of rotating pendant and trailer drive ICs. は同期モータの順回転/逆回転の駆動電流波形である。is the drive current waveform for forward/reverse rotation of the synchronous motor. は共通化ICのブロック図である。is a block diagram of a common IC; は建築モデル用磁気接続パネルの結合様態である。is the coupling mode of the magnetic connection panel for building model. は建築モデルのXY/YZ/ZXの3方向の面の壁板と床/天井板が1つの角に集合する様態である。is the mode in which the wall panels and floor/ceiling panels of the three XY/YZ/ZX planes of the architectural model gather at one corner. は東西/南北の壁4枚が、4枚の床板集合の上下に集まり、最大12個の球体磁石が角を締める様態である。The 4 walls on the east, west, north and south are assembled above and below the four floorboards, and up to 12 spherical magnets tighten the corners. は磁気接合から電動メカニズムへの展開の後に、原子の磁気的結合の教材での家庭教育に至る系統的マイルストーンを示す。presents a systematic milestone from the development of magnetic junctions to motorized mechanisms, followed by home education in educational materials on magnetic coupling of atoms. は本発明による大幅なコストダウンで、パネルセットを価値付けする原価構成の最適化の内容を示す。shows the optimization of the cost structure that values the panel set with a significant cost reduction by the present invention.

従来の磁力接続パネルは、辺と辺を接続する時に正多角形パネル間の相対的な位置精度が曖昧になるために組み立てられた立体造形は簡単に崩れてしまう根本的な問題を持っていた。これを解決するために、正多角形パネルの辺ではなく、角に球体磁石を埋め込み、それを包む隔壁球面が他のパネルの隔壁球面と点接触すると静止摩擦は最小になって正多角形は寸分の隙間がない正確さで機械的に嵌合し、既に円環配向している球体磁石で磁気ロックを掛ける形になり、立体造形は容易に崩れない。この時パネルの辺は、その両端の隔壁球面が他のパネルと嵌合している時に、その2つの接触点を結んだ線分より内側に後退しているので、パネル間が辺で接することはなく、辺どうしの静止摩擦を受けない。 The conventional magnetic connection panel has a fundamental problem that the assembled 3D model easily collapses because the relative position accuracy between the regular polygon panels becomes ambiguous when connecting the sides. . In order to solve this problem, spherical magnets are embedded in the corners of a regular polygonal panel instead of on its sides, and when the spherical surface of the partition wall surrounding it makes point contact with the spherical surface of the partition wall of another panel, the static friction is minimized and the regular polygon becomes They are mechanically fitted with precision without dimensional gaps, and magnetic locks are applied by spherical magnets that have already been oriented in a circular ring, so that the three-dimensional modeling does not easily collapse. At this time, when the spherical surfaces of the bulkheads at both ends of the panel are fitted to the other panel, the sides of the panel recede inward from the line connecting the two contact points, so the panels do not touch at the sides. not subject to static friction between edges.

組み立てられた立体造形の1つの頂点には3つ以上の数の正多角形の角が集まって、その数の球体磁石が円環配列しているので、この頂点を、その数だけの球体磁石が円環配列した磁気チャックで吊り下げ、それを鑑賞しながら保存場所を空間的に確保することができるが、磁気チャック側の球体磁石を取り囲む、磁石と同じ数の駆動コイルにパルス電流を流して回転ペンダントとすることで、新たな創作意欲と探究心を幼児に持たせる。 Three or more corners of regular polygons gather at one vertex of the assembled three-dimensional model, and that number of spherical magnets are arranged in a circular ring. is suspended by a circularly arranged magnetic chuck, and a storage space can be secured spatially while appreciating it. By using a rotating pendant, children will have a new creative motivation and inquisitive mind.

従来の磁力接続パネルセットでは車台を付属させ、完成させた立体造形を載せて、幼児が車台を手で動かして遊ぶ事で、知育に役立つと考えていた。正多角形パネルの角に球体磁石を埋め込む形式では、(図68)に示すようなモータが埋め込まれた車台デッキに正三角形~正六角形の角の位置に合計12個の球体磁石を埋め込んで、立体造形の底面パネルとして使い、その上で組み立てた立体造形を運ぶトレーラーとして、多様な自立的走行をさせることで、幼児に科学的な理解力と創造力を芽生えさせることが期待できる。
With the conventional magnetic connection panel set, we thought that it would be useful for intellectual training by attaching a chassis, placing a completed three-dimensional model on it, and having children play by moving the chassis by hand. In the form of embedding spherical magnets in the corners of a regular polygonal panel, a total of 12 spherical magnets are embedded in the positions of the corners of equilateral triangles to regular hexagons in the chassis deck where the motor is embedded as shown in (Fig. 68). By using it as a base panel for 3D modeling and as a trailer for transporting 3D models assembled on top of it, it can be expected that young children will develop scientific understanding and creativity by allowing them to drive independently in various ways.

磁力接続パネル玩具に今すぐ求められている改善点は、貼り付ける正多角形パネルが弱い力で引き込まれるが、修正を繰り返さなくても正確な位置に初めから嵌合し、立体の創造的な構成に集中できること、及び完成した立体造形は容易には崩れないことである。従来は一見相反するこの2つの要求事項を満たすのには、磁石の強弱を加減する手立てしかないと考え、解決出来なかった。(図43)に示すように、正多角形パネルの角に球体磁石を埋め込む形式では、この二律背反は初めから解決している。 The improvement that is now required for the magnetic connection panel toy is that the regular polygonal panel that is attached is pulled in with a weak force, but it can be fitted in the correct position from the beginning without repeated corrections, and the three-dimensional creative I can concentrate on the composition, and the completed three-dimensional model does not collapse easily. In the past, the only way to satisfy these seemingly contradictory requirements was to adjust the strength of the magnet, and the problem could not be solved. As shown in FIG. 43, in the form of embedding spherical magnets in the corners of regular polygonal panels, this tradeoff is resolved from the beginning.

回転ペンダントは(図67)に示すように3角チャック、4角チャック等が用意される。回転は低速~高速の範囲の手で与えた初速がUSB5.0Vで駆動されたICで正逆両方向に維持され、自動的に反転する。 As for the rotary pendant, a triangular chuck, a quadrangular chuck, or the like is prepared as shown in (FIG. 67). Rotation is maintained in both forward and reverse directions by an IC driven by USB 5.0V, and the initial speed given by hand in the range of low to high speed is automatically reversed.

デッキの上で組み立てられた立体造形はそのまま自走トレーラーになり、幼児が手で与えた初動で、(表3)に示したような自立走行を単三電池駆動で続ける。 The three-dimensional model assembled on the deck becomes a self-propelled trailer as it is, and with the initial movement given by the child's hand, it continues to run independently as shown in (Table 3), powered by AA batteries.

建築ブロック用磁気接続パネルは、角も辺も丸められておらず、角を利用して(図74)に示すように、1箇所に最大12個の球体磁石が3重に円環配向して床板と東西/南北の壁板を纏め上げる。これは単純な建築モデルに使われるだけでなく、ゆっくり地震への耐震構造の検討にも有効に活用できる。
The magnetic connection panel for building blocks has no rounded corners or sides, and uses the corners to orient up to 12 spherical magnets in a triple circular ring orientation as shown in Fig. 74. Assemble the floorboards and east-west/north-south wallboards. This is not only used for simple building models, but it can also be used effectively for studying seismic structures against slow earthquakes.

1 精度と剛性が高い立体構造の構築のための磁力接続パネル
2 磁力接続のために埋め込まれた球体磁石を利用した電動化と動き検出
3 磁力接続に於ける自立配向と原子/分子/格子の成り立ちの関連付け教材
4 磁力接続による建築モデルの構築
5 自動運転技術の基本となる自立的な物理層制御への応用
6 展示用の磁気チャック
1 Magnetic connection panels for constructing 3D structures with high accuracy and rigidity 2 Motorization and motion detection using embedded spherical magnets for magnetic connection Teaching materials related to its origin 4 Construction of an architectural model by magnetic connection 5 Application to independent physical layer control that is the basis of automatic driving technology 6 Magnetic chuck for exhibition

1 円柱磁石
2 角型磁石
3 支柱磁石
4 軟鉄球
5 球体磁石
6 球体磁石の自立円環配向
1 Cylindrical magnet 2 Square magnet 3 Post magnet 4 Soft iron ball 5 Spherical magnet 6 Self-supporting annular orientation of spherical magnet

Claims (6)

正多角形のパネルの角を部分球面に丸め、隔壁の厚みを介した内部の球体空洞に、自由に回転できるように隙間を空けて球体磁石を封じ、3つかそれ以上の正多角形の角の部分球面が点接触で円環状に配列して、自立配向によって磁力吸着し、多面立体が構成される形式の磁力接続パネルであって、正多角形の丸められた辺は内側に後退させていてパネル間で接触することはなく、角の部分球面の点接触だけの小さな静止摩擦で、機械的な立体構造の窪みに滑って嵌り込んで身動きが出来ない状態で、円環配列の中心点に向かう磁気求心力で磁気ロックが掛かり、辺の中央に円柱磁石を封じ込んで辺を接する従来の磁力接続の形式に比べて、組み立てられた多面立体の剛性が極めて高くなるが、1つのパネルが吸着される力は逆に和らいで幼児に扱い易くなるようにした磁気接続パネル玩具。また正多角形の角の球体磁石の中心間距離は全て同じになるように統一されていること。使用する磁石の体積は、従来の円柱磁石と比べて1/3~1/2になり、パネルの製造コストの大半を占めるネオジウム磁石の材料費を大幅に低減すること。 The corners of a regular polygonal panel are rounded to a partial spherical surface, and the spherical magnet is sealed in the internal spherical cavity through the thickness of the partition with a gap so that it can rotate freely, and the corners of three or more regular polygons A magnetic connection panel in which the partial spherical surfaces are arranged in a circular ring with point contact and are magnetically attracted by self-supporting orientation to form a multifaceted three-dimensional shape, and the rounded sides of the regular polygon are set back inward. There is no contact between the panels, and the small static friction of only the point contact of the partial spherical surface of the corner slides into the hollow of the mechanical three-dimensional structure and cannot move, and the center point of the annular array The magnetic lock is applied by the magnetic centripetal force directed to the direction, and the rigidity of the assembled multi-faceted solid is extremely high compared to the conventional magnetic connection format in which a cylindrical magnet is enclosed in the center of each side and the sides are in contact with each other. To provide a magnetic connection panel toy which, on the contrary, softens the force of attraction and is easy for a child to handle. Also, the center-to-center distances of the spherical magnets at the corners of the regular polygon should be uniform. The volume of the magnets used is 1/3 to 1/2 that of conventional columnar magnets, greatly reducing the material cost of neodymium magnets, which account for the majority of panel manufacturing costs. 角に埋め込んだ球体磁石の中心間距離が実効的な辺の長さとして揃った正多角形パネルで構成された多面体の頂点が3個~5個の円環状に自立配列して吸着している球体磁石で磁気ソケットが構成されており、同じ3個~5個の球体磁石を円環状に自立配向させた磁気チャックの磁力を利用して吸着させて吊り下げ、磁気チャックの球体磁石配列を取り囲む3~5対の駆動コイルにパルス電流を右回転するか左回転するかのI/Q位相差を与えて流し、多面立体を手で始動させた一方向に回転または往復反転させ、出来上がった造形物の保存場所を作り出すと共に、完成した立体造形の達成感を楽しむものであり、また駆動コイルにLEDを並列接続して点滅させることができる。或いは吊り糸をゴム紐に置き換え、多面体の回転でゴムが巻き上がり、その後反転するのを、手で制止するまで繰り返えすようにすること。またゴム紐をペンダントが巻き上げるものと巻き戻すものの間で、駆動ICを通してエネルギーの授受が行われるモードに切り替えて、幼児がその変化を見てエネルギーの循環原理を認識できるようにすること。 Three to five vertices of a polyhedron composed of regular polygonal panels with the effective side lengths of the spherical magnets embedded in the corners are arranged in a self-supporting circular arrangement and attracted. A magnetic socket is composed of spherical magnets, and the same three to five spherical magnets are attracted and suspended using the magnetic force of a magnetic chuck that is self-oriented in an annular shape, surrounding the array of spherical magnets of the magnetic chuck. A pulse current is applied to 3 to 5 pairs of drive coils with an I/Q phase difference that rotates clockwise or counterclockwise. While creating a place to store things, you can enjoy the sense of accomplishment of completing three-dimensional modeling, and LEDs can be connected in parallel to the driving coil and blinked. Alternatively, replace the hanging string with a rubber cord so that the rotation of the polyhedron causes the rubber to roll up and then reverse, which can be repeated until it is stopped by hand. In addition, switching to a mode in which energy is given and received through a driving IC between what the pendant winds up and unwinds the rubber cord so that the infant can see the change and recognize the energy circulation principle. 正多角形の角に自由に回転配向する球体磁石を埋め込む形式の磁力接続パネルに於いて、正三角形~正六角形の4通りの正多角形を重ねた形の角の位置に、合せて12個程の自由に回転する球体磁石を埋め込んだデッキ板を作り、それを1番目のパネルとして、残りのパネルをその上に継ぎ足して行って立体造形を組み立てられる作業台とすること。 A magnetic connection panel that embeds spherical magnets that can be freely rotated and oriented at the corners of a regular polygon. To create a deck board in which spherical magnets that rotate freely are embedded, use it as the first panel, and add the remaining panels on top of it to create a workbench on which a three-dimensional model can be assembled. 組み立て作業を行ったデッキ板を車台トレーラーとして走らせるが、別々にモータを組み込んだ前部左右輪と、それぞれ縦軸の周りに自由に方向が変わる形で取り付けられた後部左右輪とで、自在な方向に走行できるように前部の固定輪の回転数を左右で変えて右回りと左回りターンができ、幼児が手で直進か右回りか左回りか後退かの初速を与えるとその初速を維持するフライホイール機能を持ち、モータの回転子磁石と一体で回転する検出コイルで、モータの回転と無関係に外部の磁石の存在を検出することで、部屋の中を壁で行き止まりながら方向転換して走行し続けるか、棒磁石を縦に入れたアイテムを回避するか又は一時停止する安全運転をするか、棒磁石を入れたポールを並べてポールの間を縫ってスラローム走行するか、棒磁石を入れたアイテムが紐で引っ張られるのに先導されて大きなトレーラーが跡を追う如く行動させることで、幼児に安全運転と思いやりの心を育ませるようにすること。 The assembled deck board is run as a chassis trailer, and the front left and right wheels with separate motors and the rear left and right wheels attached so that the direction can be freely changed around the vertical axis are used freely. By changing the number of rotations of the fixed wheels on the front so that it can run in any direction, it can turn clockwise and counterclockwise. A detection coil that rotates together with the rotor magnet of the motor detects the presence of an external magnet regardless of the rotation of the motor. or drive safely by avoiding or pausing items with bar magnets in them, or slalom by lining up poles with bar magnets in them and sewing between them, or To make a child act like a large trailer chasing after an item containing the oil is pulled by a string, thereby cultivating a safe driving and caring heart in the child. 従来からある、磁力接続正多角形パネルを横から見た1辺に2つの角型磁石を横向きにして、縦方向にNS磁極とSN磁極が相補的に並ぶようにして埋め込み、それが正多角形の各辺で同順になるようにした、全ての辺が全ての姿勢で必ず引き合う固定角型磁石形式の磁力接続パネルセットに於いて、多数のL型ファミリーと、角型磁石を上下逆にしてSN磁極とNS磁極が並ぶようにしたR型ファミリーのパネルを色分け等で区別できるようにして少数用意すると、R型ファミリーのパネル間ではL型ファミリーと同じように立体を構成するが、L型ファミリーで構成された立体とは交わることができない。この宇宙や素粒子の最も基本的な原理の1つに、地球や生物の主役となる軽原子の炭素/窒素/酸素などのL型とR型の区別を持つ種類では、それが2原子分子や結晶格子の形成を支配することが多いのと同様の仕組みを、幼児の時期から体得できるようにした磁気接続パネルセット。宇宙や社会全体ではL型:R型は同数存在しても、動植物や左右水晶の鉱物などでは、同じものが集まる性質があるのを悟った幼児は真の親和性と異なることは当たり前という真の公平さを自ら育むことが期待できる。 Two rectangular magnets are placed sideways on one side of a conventional magnetically connected regular polygonal panel, and the NS magnetic poles and SN magnetic poles are vertically aligned in a complementary manner, and it is a regular multi-sided magnet. In the magnetic force connection panel set of the fixed square magnet type that all sides are always attracted in all postures so that each side of the square is in the same order, there are many L-shaped families and square magnets are turned upside down. If you prepare a small number of R-type family panels in which SN magnetic poles and NS magnetic poles are arranged side by side so that they can be distinguished by color coding, etc., the panels of the R-type family form a three-dimensional structure similar to the L-type family, but the L It cannot intersect with solids composed of type families. One of the most basic principles of the universe and elementary particles is that in the types that distinguish between L-type and R-type light atoms such as carbon/nitrogen/oxygen, which are the main characters of the earth and living things, it is a diatomic molecule. A magnetic connection panel set that allows children to learn the same mechanism that often governs the formation of crystal lattices and crystal lattices. Even if there are the same number of L-type and R-type in the universe and society as a whole, in animals, plants, and crystal minerals on the left and right, there is a tendency for the same things to gather. can be expected to nurture their own fairness. 長方形の角の尖ったパネル板の4隅に球体磁石を自由に回転する隙間を与えて埋め込み、このパネル板を、最大12枚、即ち4枚の床板、4枚の東西南北のその階の壁板、階下の4枚の東西南北の壁板として、それらの隅を1箇所に集めて強い求心力を生むことで、耐震の構造解析を縮小模型で行えるようにした建築モデルのパネルセットの構成手段。またこの建築モデルを超長周期地震計として使う装置。 Spherical magnets are embedded in the four corners of a rectangular panel plate with sharp corners, giving a gap to freely rotate, and these panel plates are installed in a maximum of 12 pieces, that is, 4 floorboards and 4 walls on the floor in the north, south, east and west. A means of constructing a panel set for an architectural model that enables seismic structural analysis to be performed on a scaled-down model by gathering the four corners of the board and four wall panels in the north, south, east, and west downstairs into one place to create a strong centripetal force. . A device that uses this architectural model as an ultra-long-period seismometer.
JP2021064103A 2021-04-05 2021-04-05 Magnetic force connection panel toy with spherical magnet embedded to corner of regular polygon and electrification thereof Pending JP2022159729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021064103A JP2022159729A (en) 2021-04-05 2021-04-05 Magnetic force connection panel toy with spherical magnet embedded to corner of regular polygon and electrification thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021064103A JP2022159729A (en) 2021-04-05 2021-04-05 Magnetic force connection panel toy with spherical magnet embedded to corner of regular polygon and electrification thereof

Publications (1)

Publication Number Publication Date
JP2022159729A true JP2022159729A (en) 2022-10-18

Family

ID=83641498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021064103A Pending JP2022159729A (en) 2021-04-05 2021-04-05 Magnetic force connection panel toy with spherical magnet embedded to corner of regular polygon and electrification thereof

Country Status (1)

Country Link
JP (1) JP2022159729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023020390A (en) * 2021-07-30 2023-02-09 neten株式会社 Crystal device and crystal accessory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023020390A (en) * 2021-07-30 2023-02-09 neten株式会社 Crystal device and crystal accessory
JP7265796B2 (en) 2021-07-30 2023-04-27 neten株式会社 Crystal equipment and crystal accessories

Similar Documents

Publication Publication Date Title
US11660547B2 (en) Three-dimensional geometric art toy
US4238905A (en) Sculptural objects
US20160199749A1 (en) Magnetic Panel System and Method to Fabricate
US20100120322A1 (en) Set of blocks for construction game
JP2022159729A (en) Magnetic force connection panel toy with spherical magnet embedded to corner of regular polygon and electrification thereof
CN203989881U (en) A kind of magnetic toy
JPH01305983A (en) Set or game for constituting figure, shape or pattern
KR102519226B1 (en) Toy Block Elements
Andrews Early Childhood Corner: Developing Spatial Sense—a Moving Experience!
CN108673531B (en) Magic cube robot rotated by electromagnetic field and magic cube supporting device thereof
CN208468404U (en) Utilize the magic square robot and its magic square support device of electromagnetic field rotation
KR100987575B1 (en) a magnet block toy used child
CN204891228U (en) Metal building blocks that ball -type magnet is connected
JP2002515314A (en) Spherical top
US20080199840A1 (en) Educational apparatus
KR200222293Y1 (en) Tangram game assembly made three-dimensional shape
JPH09155072A (en) Toy for child
WO2019127013A1 (en) All-direction mutually-attracted magnetic structure
CN103055518A (en) Building block plane structure and building block plane combination method
CN202230646U (en) Six-cube combined split
JP3046068U (en) 3D combination building toys
CN202331981U (en) Seven-cube combined splicing block
Popko et al. Putting Spheres to Work
CN201719806U (en) Regular icosahedron modular block
CN203379609U (en) Autonomic contracting toy ball