JP2022156381A - Support member, substrate holding member, and manufacturing method thereof - Google Patents

Support member, substrate holding member, and manufacturing method thereof Download PDF

Info

Publication number
JP2022156381A
JP2022156381A JP2021060036A JP2021060036A JP2022156381A JP 2022156381 A JP2022156381 A JP 2022156381A JP 2021060036 A JP2021060036 A JP 2021060036A JP 2021060036 A JP2021060036 A JP 2021060036A JP 2022156381 A JP2022156381 A JP 2022156381A
Authority
JP
Japan
Prior art keywords
electrode
ceramic
support member
embedded
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021060036A
Other languages
Japanese (ja)
Inventor
誠 檜野
Makoto Hino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2021060036A priority Critical patent/JP2022156381A/en
Publication of JP2022156381A publication Critical patent/JP2022156381A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Ceramic Products (AREA)

Abstract

To provide a support member, a substrate holding member, and a manufacturing method thereof which do not cause stress problems after bonding and can adjust the symmetry of the temperature distribution of a substrate by adjusting the heat insulating properties of the support member.SOLUTION: A support member 100 is formed in a cylindrical shape from a ceramic sintered body containing AlN as a main component, and the support member 100 is composed of a first region 101 and a second region 102, the thermal conductivity of the first region 101 at 25°C is 100 W/mK or more, and the thermal conductivity of the second region 102 at 25°C is 80 W/mK or less.SELECTED DRAWING: Figure 1

Description

本発明は、支持部材、基板保持部材、およびその製造方法に関する。 The present invention relates to a support member, a substrate holding member, and a manufacturing method thereof.

半導体製造装置用部材として、発熱抵抗体が埋設されたヒータープレート(基板保持部材)が用いられてきた。ヒータープレートは、載置した基板を加熱することができる。 A heater plate (substrate holding member) in which a heating resistor is embedded has been used as a member for a semiconductor manufacturing apparatus. The heater plate can heat the placed substrate.

特許文献1は、加熱面を有し、内部に発熱体を有する基体と、内部に前記発熱体に電流を導入するリード線を有し、前記加熱面の裏面に接続された円筒部材とを備え、前記基体の熱伝導率が前記円筒部材の熱伝導率の1.0~2.0倍であること、前記基体の熱伝導率は、60~220W/m・Kであり、前記円筒部材の熱伝導率は、60~200W/m・Kであること、前記基体及び前記円筒部材は、窒化アルミニウムを主成分とすることを特徴とする加熱装置が開示されている。プレートとシャフトは、ダイレクトボンド法により、焼成炉内で接合される。特許文献1記載の技術によると、プレート面上の温度が均一となり、温度差と熱膨張率差による割れが発生しない加熱装置を提供することができると記載されている。 Patent document 1 includes a base body having a heating surface and a heating element inside, and a cylindrical member having a lead wire for introducing a current to the heating element inside and connected to the back surface of the heating surface. , the thermal conductivity of the substrate is 1.0 to 2.0 times the thermal conductivity of the cylindrical member, the thermal conductivity of the substrate is 60 to 220 W/m·K, and the thermal conductivity of the cylindrical member is The heating device is disclosed to have a thermal conductivity of 60 to 200 W/m·K, and to have aluminum nitride as a main component of the substrate and the cylindrical member. The plate and shaft are bonded in a firing furnace by a direct bonding method. According to the technique described in Patent Document 1, it is described that it is possible to provide a heating device in which the temperature on the plate surface becomes uniform and cracks do not occur due to temperature difference and thermal expansion coefficient difference.

特許文献2は、セラミックス焼結体中に電気回路を埋設したウエハ保持体を筒状支持部材で支持する支持構造であって、ウエハ保持体にネジ山が形成されたフランジ部品が取り付けられており、該フランジ部品のネジ山に筒状支持部材に設けたネジ山が螺合されていることを特徴とするウエハ保持体の支持構造が開示され、ウエハ保持体、フランジ部品、筒状支持部材のそれぞれの熱膨張係数差が2.0×10-6/K以下であること、ウエハ保持体の材質が窒化アルミニウムであること、フランジ部品及び筒状支持部材の材質が、窒化アルミニウム、ムライト-アルミナ複合体、炭化ケイ素、窒化ケイ素、アルミナのいずれかでよいことが記載されている。これにより、パーティクルの発生を低減することができ、加熱時に、ウエハ保持体、フランジ部品、若しくは筒状支持部材が破損することを防いでいると記載されている。 Patent Document 2 discloses a support structure in which a wafer holder having an electric circuit embedded in a ceramic sintered body is supported by a cylindrical support member, and a flange component having a screw thread is attached to the wafer holder. , a support structure for a wafer holder characterized in that a screw thread provided on a cylindrical support member is screwed into a screw thread of the flange component, and a wafer holder, a flange component, and a cylindrical support member. The difference in thermal expansion coefficient between them is 2.0×10 −6 /K or less. The material of the wafer holder is aluminum nitride. The material of the flange part and the cylindrical support member is aluminum nitride, mullite-alumina. It is stated that any one of composites, silicon carbide, silicon nitride, and alumina may be used. It is described that this can reduce the generation of particles and prevent the wafer holder, the flange part, or the cylindrical support member from being damaged during heating.

特開2005-285355号公報JP 2005-285355 A 特開2008-153413号公報JP 2008-153413 A

AlNセラミック製シャフト付きヒーターはその形状から一体的に(ニアネットシェイプで)製造することが困難で、ヒータープレート部とシャフト部を別々に製造後、接合一体化して製造されている。このときプレートやシャフトはヒーターが使用される温度や環境に応じて同種または異種素材による部材を組み合わせて作製される。一体化する前のヒータープレート部とシャフト部が別素材で構成される場合、接合後に特に線膨張率の差により接合面近傍に応力の不均一が生じやすい。そして応力の不均一は接合後のシャフト付きヒーターの信頼性に影響する。またシャフト付きヒーターの使用時にヒータープレート部の熱はシャフトを伝導するためシャフト部の断熱性により基板載置面の温度分布の対称性に影響する。 Because of the shape of the AlN ceramic heater with a shaft, it is difficult to integrally manufacture it (near net shape), and the heater plate and shaft are manufactured separately and then joined together. At this time, the plate and shaft are manufactured by combining members made of the same or different materials depending on the temperature and environment in which the heater is used. If the heater plate portion and the shaft portion are made of different materials before they are integrated, uneven stress is likely to occur in the vicinity of the joint surface due to a difference in coefficient of linear expansion, in particular, after joining. And the nonuniformity of the stress affects the reliability of the heater with the shaft after bonding. In addition, when a heater with a shaft is used, the heat of the heater plate portion is conducted through the shaft, so the thermal insulation of the shaft portion affects the symmetry of the temperature distribution on the substrate mounting surface.

そのため、ヒータープレート部とシャフト部を接合して製作されるシャフト付きヒーターには、接合後に応力の不具合が生じず、かつシャフト部の断熱性を調整して温度分布の対称性を調整することができることが望まれていた。 Therefore, the heater with a shaft, which is manufactured by joining the heater plate portion and the shaft portion, does not cause problems with stress after joining, and it is possible to adjust the symmetry of the temperature distribution by adjusting the heat insulation of the shaft portion. I was hoping it could be done.

しかしながら、特許文献1および特許文献2は、基板を均一に加熱することは考慮しているものの、シャフト部の断熱性を調整して温度分布の対称性を調整することは考慮していない。 However, although Patent Documents 1 and 2 consider uniformly heating the substrate, they do not consider adjusting the heat insulation of the shaft portion to adjust the symmetry of the temperature distribution.

本発明は、このような事情に鑑みてなされたものであり、接合後に応力の不具合が生じず、かつ支持部材の断熱性を調整して基板の温度分布の対称性を調整することができる支持部材、基板保持部材、およびその製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and provides a support that does not cause problems with stress after bonding and that can adjust the symmetry of the temperature distribution of the substrate by adjusting the heat insulating properties of the support member. An object of the present invention is to provide a member, a substrate holding member, and a method of manufacturing the same.

(1)上記の目的を達成するため、本発明の支持部材は、支持部材であって、前記支持部材は、AlNを主成分とするセラミックス焼結体により円筒状に形成され、前記支持部材は、第1の領域および第2の領域で構成され、前記第1の領域の25℃における熱伝導率は100W/mK以上であり、前記第2の領域の25℃における熱伝導率は80W/mK以下であることを特徴としている。 (1) In order to achieve the above objects, the support member of the present invention is a support member, the support member is formed in a cylindrical shape from a ceramic sintered body containing AlN as a main component, and the support member is , a first region and a second region, wherein the thermal conductivity of the first region at 25 ° C. is 100 W / mK or more, and the thermal conductivity of the second region at 25 ° C. is 80 W / mK It is characterized by the following.

このように、支持部材に熱伝導率の異なる部分を設けることにより、支持部材の断熱性(支持部材を流れる熱流)を調整することができる。その結果、基板保持部材の載置面の温度分布の対称性を調節することができるようになる。 Thus, by providing the support member with portions having different thermal conductivities, it is possible to adjust the heat insulation of the support member (heat flow through the support member). As a result, the symmetry of the temperature distribution on the mounting surface of the substrate holding member can be adjusted.

(2)また、本発明の支持部材において、前記第1の領域に含まれるY成分のY換算濃度は、0.4wt%以上5wt%以下であり、前記第2の領域に含まれるY成分のY換算濃度は、0.1wt%以下であることを特徴としている。 (2) In addition, in the supporting member of the present invention, the concentration of the Y component in terms of Y 2 O 3 contained in the first region is 0.4 wt % or more and 5 wt % or less, and is contained in the second region. The Y 2 O 3 conversion concentration of the Y component is characterized by being 0.1 wt % or less.

このように、AlN製の支持部材にY濃度の異なる部分を設けることにより、熱伝導率が異なる部分を設けることができる。その結果、複合的な熱伝導特性により支持部材の断熱性を調整することができる。 Thus, by providing portions with different Y concentrations in the AlN support member, portions with different thermal conductivities can be provided. As a result, the thermal insulation properties of the support member can be adjusted through multiple heat transfer properties.

(3)また、本発明の支持部材において、前記支持部材の一方の端部は前記第1の領域で構成され、前記支持部材の他方の端部は前記第2の領域で構成されることを特徴としている。 (3) Further, in the support member of the present invention, one end of the support member is configured by the first region, and the other end of the support member is configured by the second region. Characterized by

このように、支持部材の一方の端部と他方の端部の熱伝導率が異なること、すなわち、支持部材の熱伝導特性が異なる部分を支持部材の垂直方向に構成することにより、支持部材を通過する熱流を制御することができる。 In this way, the support member has different thermal conductivities at one end and the other end, that is, by arranging the portions of the support member having different thermal conductivity characteristics in the vertical direction of the support member. Heat flow through can be controlled.

(4)また、本発明の基板保持部材は、基板保持部材であって、AlNを主成分とするセラミックス焼結体からなり、電極が埋設された平板状の電極埋設部材と、AlNを主成分とするセラミックス焼結体からなり、前記電極埋設部材側の端部に設けられた拡径部および前記拡径部より小径の円筒部を有し、前記電極埋設部材を支持する支持部材と、を備え、前記拡径部の端部の熱伝導率は、前記拡径部と対向する側の端部の熱伝導率とは異なることを特徴としている。 (4) Further, the substrate holding member of the present invention is a substrate holding member, which is composed of a ceramic sintered body containing AlN as a main component, a plate-shaped electrode-embedded member in which an electrode is embedded, and a support member made of a ceramic sintered body having an enlarged diameter portion provided at the end on the electrode embedded member side and a cylindrical portion smaller in diameter than the enlarged diameter portion and supporting the electrode embedded member; Further, the heat conductivity of the end portion of the enlarged diameter portion is different from the heat conductivity of the end portion facing the enlarged diameter portion.

このように、拡径部の端部と拡径部と対向する側の端部の熱伝導率が異なること、すなわち、支持部材の熱伝導特性が異なる部分を支持部材の垂直方向に構成することにより、支持部材を通過する熱流を制御することができる。その結果、電極埋設部材と支持部材との伝熱を調整することができ、基板載置面の温度分布の対称性を調節することができるようになる。 Thus, the heat conductivity of the end portion of the enlarged diameter portion and the end portion of the side facing the enlarged diameter portion are different, that is, the portion of the support member having different heat conduction characteristics is configured in the vertical direction of the support member. allows for control of heat flow through the support member. As a result, the heat transfer between the electrode-embedded member and the support member can be adjusted, and the symmetry of the temperature distribution on the substrate mounting surface can be adjusted.

(5)また、本発明の基板保持部材において、前記拡径部の端部に含まれるY成分のY換算濃度は、0.4wt%以上5wt%以下であり、前記拡径部と対向する側の端部に含まれるY成分のY換算濃度は、0.1wt%以下であることを特徴としている。 (5) Further, in the substrate holding member of the present invention, the concentration of the Y component in terms of Y 2 O 3 contained in the end portion of the enlarged diameter portion is 0.4 wt % or more and 5 wt % or less, and the enlarged diameter portion and A Y 2 O 3 conversion concentration of the Y component contained in the end portion on the opposite side is characterized by being 0.1 wt % or less.

このように、AlN製の支持部材の垂直方向にY濃度の異なる部分を設けることにより、垂直方向に熱伝導率が異なる部分を設けることができ、支持部材を通過する熱流が制御された基板保持部材を実際に構成できる。 In this way, by providing portions with different Y concentrations in the vertical direction of the AlN support member, it is possible to provide portions with different thermal conductivities in the vertical direction. You can actually configure the parts.

(6)また、本発明の基板保持部材において、前記電極埋設部材に含まれるY成分のY換算濃度は、前記支持部材の前記拡径部の端部に含まれるY成分のY換算濃度と略同一であることを特徴としている。 (6) Further, in the substrate holding member of the present invention, the Y2O3 - equivalent concentration of the Y component contained in the electrode - embedded member is Y2 It is characterized by being substantially the same as the O3 conversion concentration.

このように、電極埋設部材と支持部材の拡径部の端部のY成分のY換算濃度が略同一であることで、接合面の接合強度が安定し信頼性の高い基板保持部材となる。 In this way, since the concentration of the Y component converted to Y 2 O 3 at the ends of the enlarged diameter portions of the electrode-embedded member and the supporting member is substantially the same, the bonding strength of the bonding surface is stable and the substrate holding member has high reliability. becomes.

(7)また、本発明の基板保持部材の製造方法は、基板保持部材の製造方法であって、AlNを主成分とし、焼結助剤の添加量が調整された第1のセラミックス原料粉から1または複数の第1のセラミックス成形体を形成する工程と、AlNを主成分とし、焼結助剤の添加量が前記第1のセラミックス原料粉の焼結助剤の添加量より少なく調整され、または焼結助剤が添加されない第2のセラミックス原料粉から1または複数の第2のセラミックス成形体を形成する工程と、前記1または複数の第1のセラミックス成形体および前記1または複数の第2のセラミックス成形体を組み合わせて、支持部材前駆体を形成する工程と、前記支持部材前駆体を焼成して支持部材を作製する工程と、AlNを主成分とし、焼結助剤が所定の量添加された第3のセラミックス原料粉から複数の第3のセラミックス成形体を形成する工程と、前記複数の第3のセラミックス成形体を所定の温度以上、所定の時間以上脱脂処理して複数の第3のセラミックス脱脂体を作製する工程と、電極を準備し、前記電極、前記複数の第3のセラミックス脱脂体を組み合わせて、一方の主面に載置面を有し、平板状に形成され、電極が埋設された電極埋設部材前駆体を形成する工程と、前記電極埋設部材前駆体を、前記主面に垂直方向に一軸加圧焼成して電極埋設部材を作製する工程と、前記電極埋設部材の前記載置面に対向する下面の前記支持部材を接合する接合部に前記支持部材を配置し、前記主面に垂直方向に加圧しつつ加熱する、または、接合材を準備し、前記電極埋設部材の前記載置面に対向する下面の前記支持部材を接合する接合部もしくは前記支持部材の接合される端面の少なくとも一方に前記接合材を塗布し、前記接合部に前記支持部材を配置し、前記主面に垂直方向に加圧しつつ加熱する、ことで前記電極埋設部材と前記支持部材とを接合する工程と、を含み、前記支持部材の前記第1のセラミックス成形体が焼成された第1の領域は、25℃における熱伝導率が100W/mK以上であり、前記支持部材の前記第2のセラミックス成形体が焼成された第2の領域は、25℃における熱伝導率が80W/mK以下であることを特徴としている。 (7) Further, a method for manufacturing a substrate holding member according to the present invention is a method for manufacturing a substrate holding member, in which a first ceramic raw material powder containing AlN as a main component and having an adjusted amount of a sintering aid is used. A step of forming one or more first ceramic compacts, and adjusting the amount of a sintering aid containing AlN as a main component to be less than the amount of the sintering aid added to the first ceramic raw powder, Alternatively, a step of forming one or more second ceramic compacts from a second ceramic raw material powder to which no sintering aid is added; A step of forming a support member precursor by combining the ceramic molded bodies of No., a step of firing the support member precursor to produce a support member, and a sintering aid containing AlN as a main component and a predetermined amount of addition of a sintering aid a step of forming a plurality of third ceramic compacts from the third ceramic raw material powder obtained; and preparing an electrode, combining the electrode and the plurality of third ceramic degreased bodies to form a flat plate having a mounting surface on one main surface, the electrode a step of forming an electrode-embedded member precursor in which is embedded; a step of uniaxially pressing and firing the electrode-embedded member precursor in a direction perpendicular to the main surface to produce an electrode-embedded member; The support member is placed at the joint where the support member on the lower surface facing the mounting surface is joined, and heated while being pressurized in the direction perpendicular to the main surface, or a joint material is prepared and the electrode-embedded member. The bonding material is applied to at least one of the bonding portion for bonding the support member and the end surface to which the support member is bonded on the lower surface facing the mounting surface of the, and the support member is arranged at the bonding portion, joining the electrode-embedded member and the support member by heating while applying pressure in a direction perpendicular to the main surface, wherein the first ceramic molded body of the support member is fired. The region has a thermal conductivity of 100 W/mK or more at 25°C, and the second region in which the second ceramic molded body of the support member is fired has a thermal conductivity of 80 W/mK or less at 25°C. It is characterized by something

これにより、支持部材に熱伝導率の異なる部分を設けることができ、支持部材の断熱性(支持部材を流れる熱流)を調整することができるので、基板保持部材の載置面の温度分布の対称性を調節することができるようになる。 As a result, the support member can be provided with portions having different thermal conductivities, and the heat insulating property (heat flow flowing through the support member) of the support member can be adjusted. You will be able to control your sexuality.

(8)また、本発明の前記基板保持部材の製造方法は、基板保持部材の製造方法であって、AlNを主成分とし、焼結助剤の添加量が調整された第1のセラミックス原料粉、およびAlNを主成分とし、焼結助剤の添加量が前記第1のセラミックス原料粉の焼結助剤の添加量より少なく調整され、または焼結助剤が添加されない第2のセラミックス原料粉を準備する工程と、前記第1のセラミックス原料粉または前記第2のセラミックス原料粉の一方を型に投入し仮成形し、他方をさらに型に投入し仮成形することを1回以上繰り返すことで、支持部材前駆体を形成する工程と、前記支持部材前駆体を焼成して支持部材を作製する工程と、AlNを主成分とし、焼結助剤が所定の量添加された第3のセラミックス原料粉から複数の第3のセラミックス成形体を形成する工程と、前記複数の第3のセラミックス成形体を所定の温度以上、所定の時間以上脱脂処理して複数の第3のセラミックス脱脂体を作製する工程と、電極を準備し、前記電極、前記複数の第3のセラミックス脱脂体を組み合わせて、一方の主面に載置面を有し、平板状に形成され、電極が埋設された電極埋設部材前駆体を形成する工程と、前記電極埋設部材前駆体を、前記主面に垂直方向に一軸加圧焼成して電極埋設部材を作製する工程と、前記電極埋設部材の前記載置面に対向する下面の前記支持部材を接合する接合部に前記支持部材を配置し、前記主面に垂直方向に加圧しつつ加熱する、または、接合材を準備し、前記電極埋設部材の前記載置面に対向する下面の前記支持部材を接合する接合部もしくは前記支持部材の接合される端面の少なくとも一方に前記接合材を塗布し、前記接合部に前記支持部材を配置し、前記主面に垂直方向に加圧しつつ加熱する、ことで前記電極埋設部材と前記支持部材とを接合する工程と、を含み、前記支持部材の第1のセラミックス成形体が焼成された第1の領域は、25℃における熱伝導率が100W/mK以上であり、前記支持部材の第2のセラミックス成形体が焼成された第2の領域は、25℃における熱伝導率が80W/mK以下であることを特徴としている。 (8) Further, the method for manufacturing a substrate holding member of the present invention is a method for manufacturing a substrate holding member, comprising a first ceramic raw powder containing AlN as a main component and having an adjusted amount of a sintering aid added. , and AlN as main components, and the amount of the sintering aid added is adjusted to be less than the amount of the sintering aid added in the first ceramic raw material powder, or the sintering aid is not added. and one of the first ceramic raw powder and the second ceramic raw powder is put into a mold and temporarily molded, and the other is further put into the mold and temporarily molded by repeating the steps one or more times. a step of forming a supporting member precursor; a step of firing the supporting member precursor to produce a supporting member; forming a plurality of third ceramic compacts from powder; and degreasing the plurality of third ceramic compacts at a predetermined temperature or higher for a predetermined time or longer to produce a plurality of third ceramic degreased compacts. a step of preparing an electrode, combining the electrode and the plurality of third ceramic degreased bodies, forming an electrode-embedded member having a mounting surface on one main surface, formed into a flat plate shape, and embedding the electrode; a step of forming a precursor; a step of uniaxially pressing and firing the electrode-embedded member precursor in a direction perpendicular to the main surface to produce an electrode-embedded member; The support member is placed at the joint where the support member on the lower surface is joined, and is heated while being pressurized in the direction perpendicular to the main surface, or a joint material is prepared and faces the mounting surface of the electrode-embedded member. The bonding material is applied to at least one of the joint portion of the lower surface where the support member is joined or the end face of the support member to be joined, the support member is arranged at the joint portion, and the support member is applied in the direction perpendicular to the main surface. joining the electrode-embedded member and the support member by heating while pressing, wherein the first region of the support member, in which the first ceramic compact is fired, is heat conductive at 25°C. is 100 W/mK or more, and the second region of the support member where the second ceramic compact is fired has a thermal conductivity of 80 W/mK or less at 25°C.

これにより、支持部材に熱伝導率の異なる部分を設けることができ、支持部材の断熱性(支持部材を流れる熱流)を調整することができるので、基板保持部材の載置面の温度分布の対称性を調節することができるようになる。 As a result, the support member can be provided with portions having different thermal conductivities, and the heat insulating property (heat flow flowing through the support member) of the support member can be adjusted. You will be able to control your sexuality.

本発明によれば、支持部材の断熱性を調整することができ、基板保持部材の載置面の温度分布の対称性を調節することができる。 According to the present invention, the heat insulation of the support member can be adjusted, and the symmetry of the temperature distribution on the mounting surface of the substrate holding member can be adjusted.

本発明の実施形態に係る支持部材の一例を示す模式的な断面図である。It is a typical sectional view showing an example of a support member concerning an embodiment of the present invention. (a)~(f)、それぞれ本発明の実施形態に係る支持部材の変形例を示す模式的な断面図である。4(a) to 4(f) are schematic cross-sectional views showing modifications of the support member according to the embodiment of the present invention, respectively. FIG. 本発明の実施形態に係る基板保持部材の一例を示す模式的な断面図である。1 is a schematic cross-sectional view showing an example of a substrate holding member according to an embodiment of the invention; FIG. 本発明の実施形態に係る基板保持部材の変形例を示す模式的な断面図である。FIG. 5 is a schematic cross-sectional view showing a modification of the substrate holding member according to the embodiment of the invention; 本発明の実施形態に係る基板保持部材の製造方法の一例を示すフローチャートである。4 is a flow chart showing an example of a method for manufacturing a substrate holding member according to an embodiment of the present invention; (a)~(c)、それぞれ本発明の実施形態に係る支持部材の製造工程の一段階を模式的に示す断面図である。4(a) to 4(c) are cross-sectional views schematically showing one stage of the manufacturing process of the support member according to the embodiment of the present invention, respectively. FIG. (a)~(c)、それぞれ本発明の実施形態に係る支持部材の異なる製造工程の一段階を模式的に示す断面図である。4(a) to 4(c) are cross-sectional views schematically showing different stages of the manufacturing process of the support member according to the embodiment of the present invention. FIG. (a)~(d)、それぞれ本発明の実施形態に係る基板保持部材の製造工程の一段階を模式的に示す断面図である。4(a) to 4(d) are cross-sectional views schematically showing one stage of the manufacturing process of the substrate holding member according to the embodiment of the present invention, respectively. FIG. (a)、(b)、それぞれ本発明の実施形態に係る基板保持部材の製造工程の一段階を模式的に示す断面図である。4A and 4B are cross-sectional views schematically showing one stage of the manufacturing process of the substrate holding member according to the embodiment of the present invention, respectively; FIG.

次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。なお、構成図において、各構成要素の大きさは概念的に表したものであり、必ずしも実際の寸法比率を表すものではない。 Next, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same components in each drawing, and overlapping descriptions are omitted. In addition, in the configuration diagram, the size of each component is conceptually represented, and does not necessarily represent the actual size ratio.

[実施形態]
[支持部材の構成]
まず、本発明の実施形態に係る支持部材の構成を説明する。図1は、本発明の実施形態に係る支持部材の一例を示す模式的な断面図である。本発明の実施形態に係る支持部材100は、AlNを主成分とするセラミックス焼結体により円筒状に形成される。AlNを主成分とするとは、セラミックス焼結体にAlNが90wt%以上含まれることをいう。
[Embodiment]
[Configuration of Supporting Member]
First, the configuration of the support member according to the embodiment of the present invention will be described. FIG. 1 is a schematic cross-sectional view showing an example of a support member according to an embodiment of the invention. A support member 100 according to an embodiment of the present invention is formed in a cylindrical shape from a ceramic sintered body containing AlN as a main component. Having AlN as a main component means that the ceramic sintered body contains 90 wt % or more of AlN.

支持部材100は、第1の領域101および第2の領域102で構成される。第1の領域101の25℃における熱伝導率は100W/mK以上であり、第2の領域102の25℃における熱伝導率は80W/mK以下である。このように、支持部材100に熱伝導率の異なる部分を設けることにより、支持部材100の断熱性(支持部材100を流れる熱流)を調整することができる。その結果、基板保持部材の載置面の温度分布の対称性を調節することができるようになる。基板保持部材の載置面の温度分布の対称性とは、載置面の中心から外周へ向かう所定の温度勾配のことである。 The support member 100 is composed of a first region 101 and a second region 102 . The thermal conductivity at 25° C. of the first region 101 is 100 W/mK or more, and the thermal conductivity of the second region 102 at 25° C. is 80 W/mK or less. Thus, by providing the support member 100 with portions having different thermal conductivities, the heat insulation of the support member 100 (heat flow flowing through the support member 100) can be adjusted. As a result, the symmetry of the temperature distribution on the mounting surface of the substrate holding member can be adjusted. The symmetry of the temperature distribution on the mounting surface of the substrate holding member means a predetermined temperature gradient from the center to the outer periphery of the mounting surface.

図2(a)~(f)は、それぞれ、本発明の実施形態に係る支持部材の変形例を示す模式的な断面図である。支持部材100の形状や支持部材100を構成する第1の領域101および第2の領域102の境界の位置は、図2(a)~(f)等に示されるように様々なものが考えられる。拡径部のみ第1の領域101であってもよいし、円筒部の途中まで第1の領域であってもよい。また、拡径部がなくてもよいし、拡径部と対向する側のフランジ部がなくてもよい。また、拡径部が第1の領域101および第2の領域102で形成されていてもよいし、拡径部に段差があってもよい。また、拡径部が第2の領域102で形成されていてもよいし、図示されていないが、第1の領域101または第2の領域102の少なくとも一方が離れて形成されていてもよい。このように、熱伝導率の異なる領域により支持部材100を構成することで、支持部材100の断熱性を調整することができる。また、電極埋設部材との接合と熱伝導率の両方を考慮して、支持部材100を構成する領域を設計することもできる。 2(a) to 2(f) are schematic cross-sectional views showing modifications of the support member according to the embodiment of the present invention. The shape of the support member 100 and the position of the boundary between the first region 101 and the second region 102 that constitute the support member 100 may vary as shown in FIGS. 2(a) to 2(f). . The first region 101 may be only the enlarged diameter portion, or the first region may extend to the middle of the cylindrical portion. Further, the enlarged diameter portion may be omitted, or the flange portion facing the enlarged diameter portion may be omitted. Further, the enlarged diameter portion may be formed by the first region 101 and the second region 102, or the enlarged diameter portion may have a step. Also, the enlarged diameter portion may be formed in the second region 102, or, although not shown, at least one of the first region 101 or the second region 102 may be formed apart. By configuring the support member 100 with regions having different thermal conductivities in this way, the heat insulating properties of the support member 100 can be adjusted. In addition, it is also possible to design the region constituting the support member 100 in consideration of both the bonding with the electrode-embedded member and the thermal conductivity.

第1の領域101および第2の領域102を形成するセラミックス焼結体は、主成分がいずれもAlNで同一であり、焼結時の収縮率が同程度であるので、異なる領域を歪みなく一体化でき、第1の領域101および第2の領域102の界面の結合が強固となる。また、支持部材100を備えた基板保持部材使用時の第1の領域101および第2の領域102の熱膨張率も同程度であるので、繰り返し使用しても界面でクラック等が発生する虞を低減できる。 The ceramic sintered bodies forming the first region 101 and the second region 102 have the same main component, AlN, and have approximately the same degree of shrinkage during sintering. The interface between the first region 101 and the second region 102 is strongly bonded. Further, since the thermal expansion coefficients of the first region 101 and the second region 102 are approximately the same when the substrate holding member including the supporting member 100 is used, there is no risk of cracks or the like occurring at the interface even after repeated use. can be reduced.

第1の領域101に含まれるY成分のY換算濃度は、0.4wt%以上5wt%以下であることが好ましい。これにより、焼結助剤としてYを使用したとき、第1の領域101の25℃における熱伝導率を100W/mK以上に容易に調整ができる。また、第2の領域102に含まれるY成分のY換算濃度は、0.1wt%以下であることが好ましい。これにより、焼結助剤としてYを使用したとき、第2の領域102の25℃における熱伝導率を80W/mK以下に容易に調整ができる。また、このように、AlN製の支持部材100にY濃度の異なる部分を設けることにより、熱伝導率が異なる部分を容易に設けることができる。その結果、複合的な熱伝導特性により支持部材100の断熱性を調整することができる。 The Y 2 O 3 equivalent concentration of the Y component contained in the first region 101 is preferably 0.4 wt % or more and 5 wt % or less. Thereby, when Y 2 O 3 is used as the sintering aid, the thermal conductivity of the first region 101 at 25° C. can be easily adjusted to 100 W/mK or more. Further, the Y 2 O 3 equivalent concentration of the Y component contained in the second region 102 is preferably 0.1 wt % or less. Thereby, when Y 2 O 3 is used as the sintering aid, the thermal conductivity at 25° C. of the second region 102 can be easily adjusted to 80 W/mK or less. In addition, by providing portions with different Y concentrations in the AlN support member 100 in this manner, portions with different thermal conductivities can be easily provided. As a result, the heat insulating properties of the support member 100 can be adjusted by combining heat conduction properties.

第2の領域102に含まれるY成分のY換算濃度が0.1wt%以下であるとは、Y成分が実質的に添加されていない0wt%であることを含む。Y成分が実質的に添加されていないとは、焼結助剤としてY成分を添加していないことを意味し、Y成分が不純物として含まれ、Y換算濃度が10ppm未満である場合は、実質的に0wt%であるとする。 The fact that the Y 2 O 3 equivalent concentration of the Y component contained in the second region 102 is 0.1 wt % or less includes 0 wt % where the Y component is not substantially added. When the Y component is not substantially added means that the Y component is not added as a sintering aid, and the Y component is included as an impurity and the Y 2 O 3 conversion concentration is less than 10 ppm. is substantially 0 wt %.

AlNを主成分とするセラミックス焼結体は、熱伝導率が高く、耐熱性、耐プラズマ性に優れており、Y成分のY換算濃度が10wt%以下の範囲では、濃度が低いほど熱伝導率も低くなることが分かっているため、容易に熱伝導率を調整することができる。そのため、AlNを主成分とするセラミックス焼結体により第1の領域101および第2の領域102を形成することで、領域ごとに熱伝導率が調整され、耐熱性、耐プラズマ性に優れた支持部材100を構成できる。 Ceramic sintered bodies containing AlN as a main component have high thermal conductivity and are excellent in heat resistance and plasma resistance. Since it is known that the thermal conductivity is also lowered, the thermal conductivity can be easily adjusted. Therefore, by forming the first region 101 and the second region 102 from a ceramic sintered body containing AlN as a main component, the thermal conductivity is adjusted for each region, and a support excellent in heat resistance and plasma resistance can be obtained. Member 100 can be constructed.

支持部材100の一方の端部は第1の領域101で構成され、支持部材100の他方の端部は第2の領域102で構成されることが好ましい。このように、支持部材100の一方の端部と他方の端部の熱伝導率が異なること、すなわち、支持部材100の熱伝導特性が異なる部分を支持部材100の垂直方向に構成することにより、支持部材100を通過する熱流を制御することができる。 Preferably, one end of the support member 100 is configured with the first region 101 and the other end of the support member 100 is configured with the second region 102 . In this way, one end and the other end of the support member 100 have different thermal conductivities, that is, by arranging the portions of the support member 100 having different thermal conductivity characteristics in the vertical direction of the support member 100, Heat flow through the support member 100 can be controlled.

本発明の支持部材は、断熱性(支持部材を流れる熱流)を調整することができ、基板保持部材の載置面の温度分布の対称性を調節することができる。 The support member of the present invention can adjust the heat insulation (heat flow flowing through the support member), and can adjust the symmetry of the temperature distribution on the mounting surface of the substrate holding member.

[基板保持部材の構成]
次に、本発明の実施形態に係る基板保持部材の構成を説明する。図3は、本発明の実施形態に係る基板保持部材の一例を示す模式的な断面図である。本発明の実施形態に係る基板保持部材200は、電極埋設部材120と、支持部材100と、を備える。本発明の基板保持部材200は、シャフト付ヒーター、シャフト付静電チャック等に適用される。
[Structure of Substrate Holding Member]
Next, the configuration of the substrate holding member according to the embodiment of the present invention will be described. FIG. 3 is a schematic cross-sectional view showing an example of a substrate holding member according to an embodiment of the invention. A substrate holding member 200 according to an embodiment of the present invention includes an electrode embedded member 120 and a support member 100 . The substrate holding member 200 of the present invention is applied to heaters with shafts, electrostatic chucks with shafts, and the like.

電極埋設部材120は、AlNを主成分とするセラミックス焼結体からなり、平板状に形成される。AlNを主成分とするとは、セラミックス焼結体にAlNが90wt%以上含まれることをいう。電極埋設部材120は、一方の主面に基板を載置する載置面122を有する。また、電極埋設部材120の形状は、円板状、多角形状、楕円状など、様々な形状にすることができる。 The electrode-embedded member 120 is made of a ceramic sintered body containing AlN as a main component, and formed in a flat plate shape. Having AlN as a main component means that the ceramic sintered body contains 90 wt % or more of AlN. The electrode-embedded member 120 has a mounting surface 122 on which the substrate is mounted on one principal surface. Moreover, the shape of the electrode-embedded member 120 can be various shapes such as a disk shape, a polygonal shape, and an elliptical shape.

AlNを主成分とするセラミックス焼結体は、熱伝導率が高く、耐熱性、耐プラズマ性に優れている。そのため、AlNを主成分とするセラミックス焼結体により電極埋設部材120を形成することで、耐熱性、耐プラズマ性に優れた電極埋設部材120を構成できる。 A ceramic sintered body containing AlN as a main component has high thermal conductivity and is excellent in heat resistance and plasma resistance. Therefore, by forming the electrode-embedded member 120 from a ceramic sintered body containing AlN as a main component, the electrode-embedded member 120 having excellent heat resistance and plasma resistance can be configured.

電極埋設部材120は、内部に電極130が埋設される。電極130の形状は、メッシュ状や箔状など、様々な形状とすることができる。また、材質も、モリブデン、タングステンなど、様々な材質とすることができる。 The electrode 130 is embedded inside the electrode embedding member 120 . The shape of the electrode 130 can be various shapes such as a mesh shape and a foil shape. Also, various materials such as molybdenum and tungsten can be used.

電極埋設部材120は、複数の電極130を備えていてもよい。例えば、ヒーター用電極と静電吸着用電極とを備えることで、基板保持部材200は、ヒーター付静電チャックとして使用できる。 The electrode-embedded member 120 may have a plurality of electrodes 130 . For example, by providing a heater electrode and an electrostatic adsorption electrode, the substrate holding member 200 can be used as an electrostatic chuck with a heater.

支持部材100は、AlNを主成分とするセラミックス焼結体からなり、電極埋設部材120側の端部に設けられた拡径部112および拡径部より小径の円筒部114を有し、電極埋設部材120を支持する。AlNを主成分とするとは、セラミックス焼結体にAlNが90wt%以上含まれることをいう。なお、図3では、拡径部に対向する側の端部116も拡径部112と同様に、円筒部114より大径のフランジ部となっているが、本発明の支持部材100、および基板保持部材200は、これに限定されない。 The support member 100 is made of a ceramic sintered body containing AlN as a main component, and has an enlarged diameter portion 112 provided at the end on the side of the electrode embedding member 120 and a cylindrical portion 114 having a smaller diameter than the enlarged diameter portion. Support member 120 . Having AlN as a main component means that the ceramic sintered body contains 90 wt % or more of AlN. In FIG. 3, the end portion 116 on the side facing the enlarged diameter portion is also a flange portion having a larger diameter than the cylindrical portion 114, like the enlarged diameter portion 112. The holding member 200 is not limited to this.

支持部材100の拡径部112の端部の熱伝導率は、拡径部と対向する側の端部116の熱伝導率とは異なる。このように、拡径部112の端部と拡径部と対向する側の端部116の熱伝導率が異なること、すなわち、支持部材100の熱伝導特性が異なる部分を支持部材100の垂直方向に構成することにより、支持部材100を通過する熱流を制御することができる。その結果、電極埋設部材120と支持部材100との伝熱を調整することができ、基板の載置面122の温度分布の対称性を調節することができるようになる。なお、拡径部の端部とは、支持部材100の拡径部112の電極埋設部材120側の所定の領域をいい、電極埋設部材120側の一部であってもよいし、拡径部112全体であってもよい。 The thermal conductivity of the end portion of the enlarged diameter portion 112 of the support member 100 is different from the thermal conductivity of the end portion 116 on the side facing the enlarged diameter portion. In this way, the end portion of the enlarged diameter portion 112 and the end portion 116 on the side facing the enlarged diameter portion have different thermal conductivities, that is, the portions of the support member 100 having different thermal conductivity characteristics are arranged in the vertical direction of the support member 100 . , the heat flow through the support member 100 can be controlled. As a result, the heat transfer between the electrode-embedded member 120 and the support member 100 can be adjusted, and the symmetry of the temperature distribution on the mounting surface 122 of the substrate can be adjusted. The end portion of the enlarged diameter portion refers to a predetermined region of the enlarged diameter portion 112 of the support member 100 on the side of the electrode-embedded member 120. 112 as a whole.

図4は、本発明の実施形態に係る基板保持部材の変形例を示す模式的な断面図である。図4に示されるように、基板保持部材200は、電極埋設部材120と支持部材100との接合において、ボス118と支持部材100とが接合されることがある。この場合、製造過程上は、ボス118は電極埋設部材120の一部として形成されるが、本発明の基板保持部材200では、支持部材100と接合されたボス118は、支持部材100の一部、すなわち、拡径部112であるとみなす。よって、ボス118が形成される場合、ボス118の熱伝導率は、拡径部112の端部の熱伝導率と等しい。したがって、この場合も拡径部112の端部の熱伝導率は、拡径部と対向する側の端部116の熱伝導率と異なる。この場合、拡径部112の端部はボス118を含み、ボス118を超える所定の領域である。 FIG. 4 is a schematic cross-sectional view showing a modification of the substrate holding member according to the embodiment of the invention. As shown in FIG. 4, in the substrate holding member 200, the boss 118 and the supporting member 100 may be joined when the electrode-embedded member 120 and the supporting member 100 are joined. In this case, the boss 118 is formed as part of the electrode-embedded member 120 in the manufacturing process, but in the substrate holding member 200 of the present invention, the boss 118 joined to the support member 100 is part of the support member 100. , that is, the enlarged diameter portion 112 . Thus, when boss 118 is formed, the thermal conductivity of boss 118 is equal to the thermal conductivity of the end of enlarged diameter portion 112 . Therefore, also in this case, the thermal conductivity of the end portion of the enlarged diameter portion 112 is different from the thermal conductivity of the end portion 116 on the side facing the enlarged diameter portion. In this case, the end of enlarged diameter portion 112 includes boss 118 and is the predetermined area beyond boss 118 .

支持部材100の拡径部112の端部に含まれるY成分のY換算濃度は、0.4wt%以上5wt%以下であり、拡径部112と対向する側の端部116に含まれるY成分のY換算濃度は、0.1wt%以下であることが好ましい。このように、AlN製の支持部材100の垂直方向にY濃度の異なる部分を設けることにより、垂直方向に熱伝導率が異なる部分を設けることができ、支持部材100を通過する熱流が制御された基板保持部材200を実際に構成できる。 The Y 2 O 3 converted concentration of the Y component contained in the end portion of the enlarged diameter portion 112 of the support member 100 is 0.4 wt % or more and 5 wt % or less, and is contained in the end portion 116 on the side facing the enlarged diameter portion 112 . It is preferable that the concentration of the Y component converted to Y 2 O 3 is 0.1 wt % or less. Thus, by providing portions with different Y concentrations in the vertical direction of the AlN support member 100, it is possible to provide portions with different thermal conductivity in the vertical direction, and the heat flow passing through the support member 100 is controlled. The substrate holding member 200 can actually be constructed.

ボス118が形成されない場合、電極埋設部材120の支持部材100との接合部124に含まれるY成分のY換算濃度は、支持部材100の拡径部112の端部に含まれるY成分のY換算濃度と略同一であることが好ましい。このように、電極埋設部材120の接合部124と支持部材100の拡径部112の端部のY成分のY換算濃度が略同一であることで、接合面の接合強度が安定し信頼性の高い基板保持部材200となる。なお、Y成分のY換算濃度が略同一であるとは、それぞれのY成分のY換算濃度の差が0.1wt%以下であることとする。 When the boss 118 is not formed, the Y 2 O 3 -converted concentration of the Y component contained in the joint portion 124 of the electrode-embedded member 120 and the support member 100 is the Y component contained in the end portion of the enlarged-diameter portion 112 of the support member 100 . is preferably substantially the same as the Y 2 O 3 converted concentration of As described above, since the concentration of the Y component converted to Y 2 O 3 at the joint portion 124 of the electrode-embedded member 120 and the end portion of the enlarged-diameter portion 112 of the support member 100 is substantially the same, the joint strength of the joint surface is stabilized. The substrate holding member 200 is highly reliable. Note that the Y 2 O 3 equivalent concentrations of the Y components are substantially the same means that the difference in the Y 2 O 3 equivalent concentrations of the respective Y components is 0.1 wt % or less.

基板保持部材200は、上記以外に必要な端子140および端子穴142を備える。これにより、電極130に給電することができる。 The substrate holding member 200 has necessary terminals 140 and terminal holes 142 in addition to the above. Thereby, power can be supplied to the electrode 130 .

本発明の基板保持部材は、支持部材の断熱性(支持部材を流れる熱流)を調整することができ、基板保持部材の載置面の温度分布の対称性を調節することができる。 The substrate holding member of the present invention can adjust the heat insulating properties of the supporting member (heat flow flowing through the supporting member), and can adjust the symmetry of the temperature distribution on the mounting surface of the substrate holding member.

[基板保持部材の製造方法]
次に、本発明の実施形態に係る基板保持部材の製造方法を説明する。図5は、本発明の実施形態に係る基板保持部材の製造方法の一例を示すフローチャートである。本発明の実施形態に係る基板保持部材の製造方法は、図5に示すように、支持部材前駆体形成工程STEP1、支持部材前駆体焼成工程STEP2、第3のセラミックス成形体形成工程STEP3、第3のセラミックス脱脂体作製工程STEP4、電極埋設部材前駆体形成工程STEP5、電極埋設部材前駆体焼成工程STEP6、および接合工程STEP7を備えている。
[Manufacturing method of substrate holding member]
Next, a method for manufacturing a substrate holding member according to an embodiment of the present invention will be described. FIG. 5 is a flow chart showing an example of a method for manufacturing a substrate holding member according to an embodiment of the invention. As shown in FIG. 5, the method for manufacturing a substrate holding member according to the embodiment of the present invention comprises a supporting member precursor forming step STEP1, a supporting member precursor firing step STEP2, a third ceramic compact forming step STEP3, and a third A ceramic degreased body preparation step STEP4, an electrode-embedded member precursor formation step STEP5, an electrode-embedded member precursor firing step STEP6, and a bonding step STEP7.

支持部材前駆体形成工程STEP1では、AlNを主成分とし、焼結助剤の添加量が異なるセラミックス原料粉で構成される支持部材前駆体30を形成する。AlNを主成分とし、焼結助剤の添加量が異なるセラミックス原料粉で構成される支持部材前駆体30を形成する方法は、様々考えられるが、例えば、以下のような方法で形成できる。図6(a)~(c)は、それぞれ、本発明の実施形態に係る支持部材の製造工程の一段階を模式的に示す断面図である。 In a support member precursor forming step STEP1, a support member precursor 30 is formed which is composed of ceramic raw material powder containing AlN as a main component and having different amounts of sintering aids added. Although various methods are conceivable for forming the supporting member precursor 30 composed of ceramic raw material powder containing AlN as a main component and having different amounts of the sintering aid added, for example, the following method can be used. 6A to 6C are cross-sectional views schematically showing one stage of the manufacturing process of the support member according to the embodiment of the present invention.

第1のセラミックス成形体形成工程STEP1-1では、AlNを主成分とし、焼結助剤の添加量が調整された第1のセラミックス原料粉から1または複数の第1のセラミックス成形体11を形成する。例えば、セラミックス原料粉末に焼結助剤のY成分としてY、バインダ、可塑剤、分散剤などの添加剤を適宜添加して混合して、スラリーを作製し、スプレードライ法等により顆粒(第1のセラミックス原料粉)を造粒後、加圧成形して1または複数の第1のセラミックス成形体11を形成することができる。なお、焼結助剤のY成分としては、Yであってもよいし、焼結の結果YAG、YAP、YAM、YのようなYを含む酸化物になるものを添加してもよい。 In the first ceramic molded body forming step STEP1-1, one or more first ceramic molded bodies 11 are formed from a first ceramic raw powder containing AlN as a main component and having an adjusted amount of sintering aid added. do. For example, Y 2 O 3 as the Y component of the sintering aid, additives such as Y 2 O 3 , a binder, a plasticizer, and a dispersant are appropriately added to the ceramic raw powder and mixed to prepare a slurry, and the granules are formed by a spray drying method or the like. After granulating the (first ceramics raw material powder), it is possible to form one or a plurality of first ceramics compacts 11 by pressure molding. The Y component of the sintering aid may be Y 2 O 3 , or an oxide containing Y such as YAG, YAP, YAM, Y 2 O 3 is added as a result of sintering. You may

セラミックス原料粉末は、高純度であることが好ましく、その純度は、好ましくは96%以上、より好ましくは98%以上である。また、セラミックス原料粉末の平均粒径は、好ましくは0.1μm以上1.0μm以下である。 The ceramic raw material powder preferably has a high purity, and the purity is preferably 96% or higher, more preferably 98% or higher. Also, the average particle size of the ceramic raw material powder is preferably 0.1 μm or more and 1.0 μm or less.

混合方法は、湿式、乾式の何れであってもよく、例えばボールミル、振動ミルなどの混合器を用いることができる。成形方法としては、例えば、一軸加圧成形や冷間静水等方圧加圧(CIP:Cold Isostatic Pressing)法などの公知の方法を用いればよい。なお、第1のセラミックス成形体11を形成する方法は、加圧成形に限らず、例えば、グリーンシート積層、鋳込み成形、または押出し成形であっても適用が可能である。 The mixing method may be either wet or dry, and mixers such as ball mills and vibrating mills may be used. As the molding method, for example, a known method such as uniaxial pressure molding or cold isostatic pressing (CIP) method may be used. The method of forming the first ceramic molded body 11 is not limited to pressure molding, and green sheet lamination, slip casting, or extrusion molding, for example, can also be applied.

第2のセラミックス成形体形成工程STEP1-2では、AlNを主成分とし、焼結助剤の添加量が前記第1のセラミックス原料粉の焼結助剤の添加量より少なく調整され、または焼結助剤が添加されない第2のセラミックス原料粉から1または複数の第2のセラミックス成形体12を形成する。第2のセラミックス原料粉の作製方法や第2のセラミックス成形体12の成形方法等の詳細は、第1のセラミックス成形体形成工程STEP1-1と同じでよい。 In the second ceramic compact formation step STEP1-2, AlN is the main component, and the amount of the sintering aid added is adjusted to be less than the amount of the sintering aid added to the first ceramic raw material powder, or sintering is performed. One or a plurality of second ceramic compacts 12 are formed from the second ceramic raw powder to which no auxiliary agent is added. The details of the method for producing the second ceramic raw material powder and the method for forming the second ceramic compact 12 may be the same as in the first ceramic compact forming step STEP1-1.

1または複数の第1のセラミックス成形体11は、成形後、機械加工により成形体の形状が整えられてもよい。また、1または複数の第2のセラミックス成形体12は、成形後、機械加工により成形体の形状が整えられてもよい。 After molding, the one or more first ceramic molded bodies 11 may be shaped by machining. Also, one or more of the second ceramic molded bodies 12 may be shaped by machining after molding.

このとき、一方のセラミックス成形体の一部が、他方のセラミックス成形体に設けられた収容空間に収容されるように形状が整えられてもよい。また、このとき、収容空間が設けられたセラミックス成形体の収縮率が、一部が収容空間に収容されるセラミックス成形体の収縮率より大きくなるように形成されてもよい。これにより、収容空間が設けられたセラミックス成形体が焼結時により大きく収縮することで、収容空間の外形が収容したセラミックス成形体の一部の外形よりも小さくなり、当接する部分において収容空間が設けられたセラミックス成形体が焼成したものと収容されたセラミックス成形体が焼成したものとの間に隙間が生じず、互いに密着したものとなる。収縮率の差は、0.3%以下であることが好ましい。 At this time, the shape may be arranged so that a part of one ceramic molded body is accommodated in the accommodation space provided in the other ceramic molded body. Also, at this time, the shrinkage rate of the ceramic molded body provided with the housing space may be larger than the shrinkage rate of the ceramic molded body partially housed in the housing space. As a result, the ceramic molded body provided with the housing space shrinks more during sintering, so that the outer shape of the housing space becomes smaller than the outer shape of a part of the ceramic molded body in which the housing space is provided, and the housing space is reduced in the abutting portion. There is no gap between the sintered ceramic molded body provided and the sintered ceramic molded body housed, and they are in close contact with each other. The difference in shrinkage rate is preferably 0.3% or less.

例えば、セラミックス成形体11、12の成形する際の成形圧力、例えば、CIP圧力、鋳込み圧力、押出し圧力などを変えて嵩密度を変えることにより、収縮率を相違させることができる。また、セラミックス成形体11、12の素材となるセラミックス粒子径、バインダ割合などを相違させることによっても、収縮率を相違させることができる。 For example, the shrinkage ratio can be varied by changing the bulk density by changing the molding pressure when molding the ceramic molded bodies 11 and 12, such as CIP pressure, casting pressure, and extrusion pressure. Also, the shrinkage ratio can be made different by changing the ceramic particle size, the binder ratio, etc., which are the raw materials of the ceramic compacts 11 and 12 .

図6(a)は、第2のセラミックス成形体12の一部が第1のセラミックス成形体11に収容されるように第1のセラミックス成形体11および第2のセラミックス成形体12が機械加工された様子を示している。 FIG. 6( a ) shows that the first ceramic compact 11 and the second ceramic compact 12 are machined so that a part of the second ceramic compact 12 is accommodated in the first ceramic compact 11 . It shows how it looks.

組み合わせ工程STEP1-3では、1または複数の第1のセラミックス成形体11および1または複数の第2のセラミックス成形体12を組み合わせて、支持部材前駆体30を形成する。このようにすることで、AlNを主成分とし、焼結助剤の添加量が異なるセラミックス原料粉で構成される支持部材前駆体30を形成できる。 In the combining step STEP1-3, one or more first ceramic molded bodies 11 and one or more second ceramic molded bodies 12 are combined to form a supporting member precursor 30. FIG. By doing so, it is possible to form the support member precursor 30 composed of the ceramic raw material powder containing AlN as the main component and having different amounts of the sintering aid added.

また、AlNを主成分とし、焼結助剤の添加量が異なるセラミックス原料粉で構成される支持部材前駆体30は、例えば、以下のような方法で形成してもよい。図7(a)~(c)は、それぞれ、本発明の実施形態に係る支持部材の異なる製造工程の一段階を模式的に示す断面図である。 Further, the supporting member precursor 30 composed of ceramic raw material powder containing AlN as a main component and having different amounts of sintering aid added may be formed by, for example, the following method. FIGS. 7A to 7C are cross-sectional views schematically showing different stages of the manufacturing process of the support member according to the embodiment of the present invention.

セラミックス原料粉準備工程1’-1では、AlNを主成分とし、焼結助剤の添加量が調整された第1のセラミックス原料粉、およびAlNを主成分とし、焼結助剤の添加量が第1のセラミックス原料粉の焼結助剤の添加量より少なく調整され、または焼結助剤が添加されない第2のセラミックス原料粉を準備する。本工程における第1のセラミックス原料粉および第2のセラミックス原料粉の作製方法の詳細は、第1のセラミックス成形体形成工程STEP1-1と同じでよい。 In the ceramic raw material powder preparation step 1′-1, a first ceramic raw powder containing AlN as a main component and having an adjusted amount of sintering aid added, and a first ceramic raw powder having AlN as a main component and having an added amount of sintering aid A second ceramic raw powder is prepared in which the amount of the sintering aid added is smaller than that of the first ceramic raw powder, or in which no sintering aid is added. The details of the method for producing the first ceramic raw powder and the second ceramic raw powder in this step may be the same as in the first ceramic compact forming step STEP1-1.

支持部材前駆体形成工程1’-2では、第1のセラミックス原料粉または第2のセラミックス原料粉の一方を型に投入し仮成形し、他方をさらに型に投入し仮成形することを1回以上繰り返すことで、支持部材前駆体30を形成する。このようにすることで、AlNを主成分とし、焼結助剤の添加量が異なる第1の領域101および第2の領域102で構成される支持部材前駆体30を形成できる。 In the supporting member precursor forming step 1′-2, one of the first ceramic raw powder and the second ceramic raw powder is put into a mold for provisional molding, and the other is further put into the mold for temporary molding once. By repeating the above steps, the support member precursor 30 is formed. By doing so, the support member precursor 30 composed of the first region 101 and the second region 102 containing AlN as a main component and having different amounts of the sintering aid added can be formed.

なお、仮成形された支持部材前駆体30は、仮成形後、機械加工により形状が整えられてもよい。また、仮成形された支持部材前駆体30は、柱状や筒状等の簡略化された形状で仮成形され、機械加工により拡径部等の形状が整えられてもよい。 It should be noted that the shape of the temporarily molded support member precursor 30 may be adjusted by machining after the temporary molding. Further, the temporarily molded support member precursor 30 may be temporarily molded in a simplified shape such as a columnar shape or a cylindrical shape, and the shape of the enlarged diameter portion and the like may be adjusted by machining.

第1のセラミックス原料粉が焼結されたセラミックス焼結体が配置される領域を第1の領域101と呼び、第2のセラミックス原料粉が焼結されたセラミックス焼結体が配置された領域を第2の領域102と呼ぶ。すなわち、支持部材前駆体形成工程STEP1において、第1のセラミックス成形体11が配置された領域が焼結後に第1の領域101となり、第2のセラミックス成形体12が配置された領域が焼結後に第2の領域102となる。支持部材100の第1のセラミックス成形体11が焼成された第1の領域101は、25℃における熱伝導率が100W/mK以上である。また、支持部材100の第2のセラミックス成形体12が焼成された第2の領域102は、25℃における熱伝導率が80W/mK以下である。 The area where the ceramic sintered body obtained by sintering the first ceramic raw material powder is arranged is called a first area 101, and the area where the ceramic sintered body obtained by sintering the second ceramic raw material powder is arranged is called a first area 101. It is called a second area 102 . That is, in the supporting member precursor forming step STEP1, the region where the first ceramic molded body 11 is arranged becomes the first region 101 after sintering, and the region where the second ceramic molded body 12 is arranged becomes after sintering. It becomes the second area 102 . The first region 101 of the supporting member 100 where the first ceramic compact 11 is fired has a thermal conductivity of 100 W/mK or more at 25°C. Also, the second region 102 of the support member 100 where the second ceramic compact 12 is fired has a thermal conductivity of 80 W/mK or less at 25°C.

支持部材前駆体焼成工程STEP2では、支持部材前駆体30を焼成して電極埋設部材120を支持する支持部材100を焼成する。支持部材100の焼成は、常圧焼成であることが好ましい。また、焼成温度は、1800℃以上2000℃以下であることが好ましい。焼成時間は、1時間以上12時間以下であることが好ましい。焼成雰囲気は、例えば、窒素や不活性ガス雰囲気であるが、真空などの雰囲気であってもよい。 In the supporting member precursor baking step STEP2, the supporting member precursor 30 is baked to bake the supporting member 100 that supports the electrode embedded member 120 . Firing of the support member 100 is preferably normal pressure firing. Also, the firing temperature is preferably 1800° C. or higher and 2000° C. or lower. The firing time is preferably 1 hour or more and 12 hours or less. The firing atmosphere is, for example, a nitrogen or inert gas atmosphere, but may be a vacuum atmosphere.

第3のセラミックス成形体形成工程STEP3では、AlNを主成分とし、焼結助剤が所定の量添加された第3のセラミックス原料粉から複数の第3のセラミックス成形体13を形成する。第3のセラミックス原料粉の作製方法や第3のセラミックス成形体13の成形方法等の詳細は、第1のセラミックス成形体形成工程STEP1-1と同じでよい。図8(a)~(d)、および図9(a)、(b)は、本発明の実施形態に係る基板保持部材の製造工程の一段階を模式的に示す断面図である。 In the third ceramic molded body forming step STEP3, a plurality of third ceramic molded bodies 13 are formed from a third ceramic raw powder containing AlN as a main component and to which a predetermined amount of sintering aid is added. The details of the method for producing the third ceramic raw material powder and the method for forming the third ceramic compact 13 may be the same as in the first ceramic compact forming step STEP1-1. 8A to 8D and 9A and 9B are cross-sectional views schematically showing one stage of the manufacturing process of the substrate holding member according to the embodiment of the present invention.

第3のセラミックス成形体形成工程STEP3では、一部のセラミックス成形体を、AlNを主成分とし、焼結助剤が第3のセラミックス原料粉とは異なる所定の量添加された第4のセラミックス原料粉から1または複数の第4のセラミックス成形体として形成してもよい。この場合、第3のセラミックス成形体13の個数は、1であってもよい。すなわち、第3のセラミックス成形体と第4のセラミックス成形体を合わせて複数作成すればよい。また、この場合、以降の第3のセラミックス成形体についての記載は、第4のセラミックス成形体に適用してもよい。 In the third ceramic molded body forming step STEP3, a part of the ceramic molded body is a fourth ceramic raw material containing AlN as a main component and a sintering aid added in a predetermined amount different from the third ceramic raw material powder. One or more fourth ceramic compacts may be formed from the powder. In this case, the number of third ceramic molded bodies 13 may be one. That is, a plurality of third ceramic molded bodies and fourth ceramic molded bodies may be produced together. Also, in this case, the description of the third ceramic molded body hereinafter may be applied to the fourth ceramic molded body.

複数の第3のセラミックス成形体13は、成形後、機械加工により成形体の形状が整えられてもよい。また、第3のセラミックス成形体13の片面(他の第3のセラミックス成形体13との接合面)に、電極130の形状に合わせた形状の溝が形成されてもよい。2つの第3のセラミックス成形体13のそれぞれの片面に、電極130の形状に合わせた形状の溝が形成されてもよい。機械加工は、脱脂後に行なってもよい。 After molding, the plurality of third ceramic molded bodies 13 may be shaped by machining. Also, a groove having a shape matching the shape of the electrode 130 may be formed on one side of the third ceramic molded body 13 (the joint surface with the other third ceramic molded body 13). A groove having a shape matching the shape of the electrode 130 may be formed on one side of each of the two third ceramic molded bodies 13 . Machining may be performed after degreasing.

第3のセラミックス脱脂体作製工程STEP4では、複数の第3のセラミックス成形体13を所定の温度以上、所定の時間以上脱脂処理して複数の第3のセラミックス脱脂体23を作製する。例えば、500℃以上900℃以下の温度で熱処理され、第3のセラミックス脱脂体23となる。脱脂時間は、1時間以上120時間以下であることが好ましい。脱脂には、大気炉または窒素雰囲気炉を用いることができるが、大気炉の方が好ましい。 In the third ceramic degreased body manufacturing step STEP4, the plurality of third ceramic degreased bodies 23 are manufactured by degreasing the plurality of third ceramic compacts 13 at a predetermined temperature or higher for a predetermined time or longer. For example, it is heat-treated at a temperature of 500° C. or higher and 900° C. or lower to form the third ceramic degreased body 23 . The degreasing time is preferably from 1 hour to 120 hours. An air furnace or a nitrogen atmosphere furnace can be used for degreasing, but an air furnace is preferred.

電極埋設部材前駆体形成工程STEP5では、電極130を準備し、電極130、複数の第3のセラミックス脱脂体23を組み合わせて、平板状に形成され、一方の主面に載置面122を有し、電極130が埋設された電極埋設部材前駆体40を形成する。 In the electrode-embedded member precursor forming step STEP5, the electrode 130 is prepared, and the electrode 130 and the plurality of third ceramic degreased bodies 23 are combined to form a flat plate having a mounting surface 122 on one main surface. , to form the electrode-embedded member precursor 40 in which the electrode 130 is embedded.

電極130は、基板保持部材200の設計に応じた形状に加工されたものを準備する。電極130の形状は、メッシュ状や箔状など、様々な形状とすることができる。また、材質も、モリブデン、タングステンなど、様々な材質とすることができる。 The electrode 130 is prepared by processing into a shape according to the design of the substrate holding member 200 . The shape of the electrode 130 can be various shapes such as a mesh shape and a foil shape. Also, various materials such as molybdenum and tungsten can be used.

電極埋設部材前駆体焼成工程STEP6では、形成された電極埋設部材前駆体40を、主面に垂直方向に一軸加圧焼成して電極埋設部材120を作製する。加圧する力は、1MPa以上であることが好ましい。また、焼成温度は、1700℃以上2000℃以下であることが好ましい。焼成時間は、1時間以上12時間以下であることが好ましく、1時間以上5時間以下であることがより好ましい。焼成雰囲気は、例えば、窒素や不活性ガス雰囲気であるが、真空などの雰囲気であってもよい。これにより、複数の第3のセラミックス脱脂体23が焼結して、セラミックス焼結体となり、これらが一体化され、電極130が埋設された電極埋設部材120が得られる。 In the electrode-embedded member precursor firing step STEP6, the formed electrode-embedded member precursor 40 is uniaxially pressed and fired in the direction perpendicular to the main surface to fabricate the electrode-embedded member 120 . The pressure to be applied is preferably 1 MPa or more. Also, the firing temperature is preferably 1700° C. or higher and 2000° C. or lower. The firing time is preferably 1 hour or more and 12 hours or less, more preferably 1 hour or more and 5 hours or less. The firing atmosphere is, for example, a nitrogen or inert gas atmosphere, but may be a vacuum atmosphere. As a result, the plurality of third ceramic degreased bodies 23 are sintered to form ceramic sintered bodies, which are integrated to obtain the electrode-embedded member 120 in which the electrodes 130 are embedded.

接合工程STEP7では、電極埋設部材120と支持部材100とを接合する。接合は、接合材を用いた接合方法、および接合材を用いない接合方法のいずれかを用いることができる。 In the joining step STEP7, the electrode-embedded member 120 and the support member 100 are joined. For joining, either a joining method using a joining material or a joining method not using a joining material can be used.

最初に接合材を用いた接合方法を説明する。まず、接合材150を準備し、電極埋設部材120の載置面122に対向する下面の支持部材100を接合する接合部124または支持部材100の接合部側の端面の少なくとも一方に接合材を塗布する。接合部124および支持部材100の接合部側の端面は、表面粗さRaを1.6μm以下、より好ましくは0.4μm以下に研磨することが好ましい。塗布する接合材の厚さは、5μm以上30μm以下であることが好ましい。次に、接合部124に支持部材100を配置し、主面(載置面122)に垂直方向に加圧しつつ加熱する。加圧する力は、5kPa以上であることが好ましい。また、加熱温度は、1500℃以上1800℃以下であることが好ましい。加熱時間は、0.5時間以上5時間以下であることが好ましい。加熱雰囲気は、例えば、窒素や不活性ガス雰囲気であるが、真空などの雰囲気であってもよい。これにより、電極埋設部材120と支持部材100とを接合することができる。 First, a bonding method using a bonding material will be described. First, a bonding material 150 is prepared, and the bonding material is applied to at least one of the bonding portion 124 on the lower surface of the supporting member 100 facing the mounting surface 122 of the electrode-embedded member 120 and the end surface of the supporting member 100 on the bonding portion side. do. The joint portion 124 and the end face of the support member 100 on the joint portion side are preferably polished to a surface roughness Ra of 1.6 μm or less, more preferably 0.4 μm or less. The thickness of the applied bonding material is preferably 5 μm or more and 30 μm or less. Next, the support member 100 is placed on the joint 124 and heated while being pressurized in the direction perpendicular to the main surface (mounting surface 122). The pressing force is preferably 5 kPa or more. Also, the heating temperature is preferably 1500° C. or higher and 1800° C. or lower. The heating time is preferably 0.5 hours or more and 5 hours or less. The heating atmosphere is, for example, a nitrogen or inert gas atmosphere, but may be an atmosphere such as a vacuum. Thereby, the electrode-embedded member 120 and the support member 100 can be joined.

このとき、接合する電極埋設部材120の接合部124と支持部材100との組成に関して、Yに換算したY成分が双方で略同一であることが好ましい。略同一である場合、接合材に含まれる成分が、電極埋設部材120の接合部および支持部材100の双方に対称的に拡散することで、接合後の成分が接合面に対して対称となり、良好な接合面が形成される。なお、接合材は、電極埋設部材120と支持部材100とを接合できればどのようなものであってもよい。例えば、電極埋設部材120および支持部材100と同一の主成分であるAlN粉末にY粉末を少なくとも含む混合粉末のペーストであってもよい。また、AlN90wt%以上95wt%以下で、Yを5wt%以上含み、必要に応じて接合時融液となる温度を調節するためにCaO、MgO、ZrO、SiOを含むペーストであってもよい。 At this time, regarding the composition of the joint portion 124 of the electrode-embedded member 120 to be joined and the support member 100, the Y component converted to Y 2 O 3 is preferably substantially the same in both. When they are substantially the same, the components contained in the bonding material diffuse symmetrically to both the bonding portion of the electrode-embedded member 120 and the supporting member 100, so that the components after bonding become symmetrical with respect to the bonding surface, which is favorable. A good joint surface is formed. Note that any bonding material may be used as long as it can bond the electrode-embedded member 120 and the support member 100 together. For example, it may be a mixed powder paste containing at least Y 2 O 3 powder in AlN powder, which is the same main component as the electrode embedding member 120 and the supporting member 100 . Also, the paste contains 90 wt % to 95 wt % AlN, contains 5 wt % or more of Y 2 O 3 , and optionally contains CaO, MgO, ZrO 2 , and SiO 2 in order to adjust the temperature of the molten liquid during bonding. may

次に接合材150を用いない接合方法を説明する。電極埋設部材120の載置面122に対向する下面の支持部材100を接合する接合部124に支持部材100を配置する。接合部124および支持部材100の接合部側の端面は、表面粗さRaを0.1μm以下に研磨することが好ましい。次に、主面(載置面122)に垂直方向に加圧しつつ加熱する。加圧する力は、1MPa以上であることが好ましい。また、加熱温度は、1600℃以上2000℃以下であることが好ましい。加熱時間は、0.5時間以上6時間以下であることが好ましい。加熱雰囲気は、例えば、窒素や不活性ガス雰囲気であるが、真空などの雰囲気であってもよい。これにより、電極埋設部材120と支持部材100とを接合することができる。 Next, a bonding method that does not use the bonding material 150 will be described. The support member 100 is arranged at the joint 124 where the support member 100 on the lower surface facing the mounting surface 122 of the electrode-embedded member 120 is joined. The joint portion 124 and the end face of the support member 100 on the joint portion side are preferably ground to a surface roughness Ra of 0.1 μm or less. Next, the main surface (mounting surface 122) is heated while being pressurized in the vertical direction. The pressure to be applied is preferably 1 MPa or more. Moreover, the heating temperature is preferably 1600° C. or higher and 2000° C. or lower. The heating time is preferably 0.5 hours or more and 6 hours or less. The heating atmosphere is, for example, a nitrogen or inert gas atmosphere, but may be an atmosphere such as a vacuum. Thereby, the electrode-embedded member 120 and the support member 100 can be joined.

このとき、接合する電極埋設部材120の接合部124と支持部材100との組成に関して、Y成分が双方で略同一であることが好ましい。略同一である場合、電極埋設部材120の接合部124および支持部材100に含まれるAlN粒子表面に形成された酸化物成分が、それぞれ支持部材100および電極埋設部材120の接合部124に対称的に拡散することで、接合後の成分が接合面に対して対称となり、良好な接合面が形成される。 At this time, regarding the composition of the joint portion 124 of the electrode-embedded member 120 to be joined and the support member 100, it is preferable that the three components of Y 2 O are substantially the same in both. When they are substantially the same, the oxide components formed on the surfaces of the AlN particles contained in the joint portion 124 of the electrode-embedded member 120 and the support member 100 are symmetrically formed on the joint portion 124 of the support member 100 and the electrode-embedded member 120, respectively. By diffusing, the components after bonding become symmetrical with respect to the bonding surface, and a good bonding surface is formed.

そして、基板保持部材200に必要な端子穴142を設ける。端子穴142の穿設は、支持部材100との接合の前に行なってもよいし、後に行なってもよい。そして、端子穴142にロウ材等で端子140を接続する。端子140は、Ni等を用いることができる。また、ロウ材はAuロウ等を用いることができる。 Then, necessary terminal holes 142 are provided in the board holding member 200 . The terminal hole 142 may be drilled before or after joining with the support member 100 . Then, the terminal 140 is connected to the terminal hole 142 with brazing material or the like. Ni or the like can be used for the terminal 140 . Also, Au brazing or the like can be used as the brazing material.

このようにすることで、支持部材の断熱性(支持部材を流れる熱流)を調整することができ、基板保持部材の載置面の温度分布の対称性を調節することができる基板保持部材を製造することができる。 By doing so, the substrate holding member can be manufactured which can adjust the heat insulating properties of the supporting member (heat flow flowing through the supporting member) and can adjust the symmetry of the temperature distribution on the mounting surface of the substrate holding member. can do.

[実施例および比較例]
(実施例1)
(支持部材の作製)
5wt%Yを添加したAlNを主成分とする第1のセラミックス原料粉を準備した。これを用いて、外径Φ90mm、内径Φ50mm、厚み25mm、片側よりΦ65mm、深さ15mmのザグリを形成したリング状に形成された第1のセラミックス成形体をCIP成形した。成形圧を1000kgf/cmに調整したときの嵩密度は2.29g/cmであり、これを焼成したときの収縮率は17.31%であった。
[Examples and Comparative Examples]
(Example 1)
(Production of support member)
A first ceramic raw material powder containing AlN to which 5 wt % Y 2 O 3 was added as a main component was prepared. Using this, a ring-shaped first ceramic molded body having an outer diameter of Φ90 mm, an inner diameter of Φ50 mm, a thickness of 25 mm, a counter bore of Φ65 mm from one side, and a depth of 15 mm was formed by CIP molding. The bulk density was 2.29 g/cm 3 when the molding pressure was adjusted to 1000 kgf/cm 2 , and the shrinkage rate when fired was 17.31%.

また、焼結助剤を添加していないAlNを主成分とする第2のセラミックス原料粉を準備した。これを用いて、円筒部外径Φ65mm、内径Φ50mm、高さ150mm、下部フランジ部外径Φ90mm、内径50mm、厚み25mmの第2のセラミックス成形体をCIP形成した。成形圧を1400kgf/cmに調整したときの嵩密度は2.32g/cmであり、これを焼成したときの収縮率は17.01%であった。 Also, a second ceramic raw material powder containing AlN as a main component without adding a sintering aid was prepared. Using this, a second ceramic compact having a cylinder outer diameter of Φ65 mm, an inner diameter of Φ50 mm, a height of 150 mm, a lower flange outer diameter of Φ90 mm, an inner diameter of 50 mm, and a thickness of 25 mm was formed by CIP. The bulk density was 2.32 g/cm 3 when the molding pressure was adjusted to 1400 kgf/cm 2 , and the shrinkage rate when fired was 17.01%.

第1のセラミックス成形体と第2のセラミックス成形体を組み合わせて支持部材前駆体を作製した。これを、N雰囲気、最高温度1900℃、最高到達温度保持時間2時間で常圧焼成をした。そして、焼成した支持部材を所定の形状に加工した後、拡径部側の端面をRa0.4μmで加工した。このときの拡径部の直径はΦ70mmであった。 A support member precursor was produced by combining the first ceramic molded body and the second ceramic molded body. This was sintered under atmospheric pressure in an N2 atmosphere, at a maximum temperature of 1900° C., and for a maximum temperature retention time of 2 hours. Then, after processing the fired support member into a predetermined shape, the end surface on the enlarged diameter portion side was processed with Ra of 0.4 μm. The diameter of the enlarged diameter portion at this time was Φ70 mm.

(電極埋設部材の作製)
5wt%Yを添加したAlNを主成分とする第1のセラミックス原料粉を準備した。すなわち、実施例1の支持部材の拡径部を形成したセラミックス原料粉と同一の原料粉である。これを用いて、内径Φ320mmのカーボン型に原料粉を一定量投入し、仮プレスして整地後にMoメッシュ(線径0.1mm、メッシュサイズ#50、平織り)を所定の形状に裁断したヒーター電極を載置した。さらに給電端子位置に接続部材となるWペレット(Φ8mm×0.2mm)を載置し、原料粉を投入し、原料粉で電極を埋設した。そして、カーボンパンチをセットしたのち、1800℃以上1MPa以上の圧力でホットプレス焼成した。焼成後加工により、直径310mm、厚み25mm、一方の面に外径70mm、内径50mm、高さ2mmのボスを設けた。ボスの端面はRa0.4μmで加工した。
(Preparation of electrode embedded member)
A first ceramic raw material powder containing AlN to which 5 wt % Y 2 O 3 was added as a main component was prepared. That is, it is the same raw material powder as the ceramic raw material powder that formed the enlarged diameter portion of the support member in Example 1. Using this, a certain amount of raw material powder is put into a carbon mold with an inner diameter of Φ 320 mm, temporarily pressed, and after leveling, Mo mesh (wire diameter 0.1 mm, mesh size # 50, plain weave) is cut into a predetermined shape. was placed. Further, a W pellet (Φ8 mm×0.2 mm) serving as a connecting member was placed at the position of the power supply terminal, raw material powder was added, and the electrode was embedded with the raw material powder. After setting a carbon punch, hot press firing was performed at a pressure of 1800° C. or higher and 1 MPa or higher. After firing, a boss having a diameter of 310 mm, a thickness of 25 mm, and an outer diameter of 70 mm, an inner diameter of 50 mm, and a height of 2 mm was provided on one surface. The end face of the boss was processed with Ra of 0.4 μm.

(接合)
接合部に10wt%のYを添加したAlN接合材ペーストを15μm塗布し、支持部材を配置し、載置面に垂直な方向に5kPaの力を加えつつ、1700℃、1時間加熱して接合した。その後、給電端子の位置にWペレットが露出するまで穴加工を行い、Φ5mm、長さ250mmのNi棒を、Auロウで真空中1000℃でロウ付けを行なった。最後に、仕上げ加工として、外形を所定の形状に加工した。このようにして、実施例1の基板保持部材を作製した。
(bonding)
AlN bonding material paste containing 10 wt% Y 2 O 3 was applied to the bonding area to a thickness of 15 μm, a supporting member was placed, and a force of 5 kPa was applied in a direction perpendicular to the mounting surface while heating at 1700° C. for 1 hour. joined together. After that, hole processing was performed until the W pellet was exposed at the position of the power supply terminal, and a Ni rod having a diameter of 5 mm and a length of 250 mm was brazed with Au brazing at 1000° C. in vacuum. Finally, as a finishing process, the external shape was processed into a predetermined shape. Thus, the substrate holding member of Example 1 was produced.

(実施例2)
(支持部材の作製)
実施例2の支持部材は、第2のセラミックス原料粉で拡径部を、第1のセラミックス原料粉で円筒部を作製した。それ以外の条件は、実施例1の支持部材と同一とした。
(Example 2)
(Production of support member)
In the supporting member of Example 2, the expanded diameter portion was made of the second ceramic raw material powder, and the cylindrical portion was made of the first ceramic raw material powder. Other conditions were the same as those of the support member of Example 1.

(電極埋設部材の作製)
5wt%Yを添加したAlNを主成分とする第1のセラミックス原料粉を準備した。すなわち、実施例2の支持部材の円筒部を形成したセラミックス原料粉と同一の原料粉である。これを用いて、CIP成形により、径Φ320mm、厚さ15mmの第3のセラミックス成形体、および径Φ320mm、厚さ20mmの第3のセラミックス成形体を作製した。また、焼結助剤を添加していないAlNを主成分とする第2のセラミックス原料粉を準備した。すなわち、実施例2の支持部材の拡径部を形成したセラミックス原料粉と同一の原料粉である。これを用いて、CIP成形により、径Φ90mm、厚さ5mmの第4のセラミックス成形体を形成した。これは焼成後ボスとなる成形体である。
(Preparation of electrode embedded member)
A first ceramic raw material powder containing AlN to which 5 wt % Y 2 O 3 was added as a main component was prepared. That is, it is the same raw material powder as the ceramic raw material powder forming the cylindrical portion of the supporting member in Example 2. Using this, a third ceramic compact having a diameter of Φ320 mm and a thickness of 15 mm and a third ceramic compact having a diameter of Φ320 mm and a thickness of 20 mm were produced by CIP molding. Also, a second ceramic raw material powder containing AlN as a main component without adding a sintering aid was prepared. That is, it is the same raw material powder as the ceramic raw material powder that formed the enlarged diameter portion of the supporting member in Example 2. Using this, a fourth ceramic compact having a diameter of Φ90 mm and a thickness of 5 mm was formed by CIP molding. This is a compact that becomes a boss after firing.

第3のセラミックス成形体の間に実施例1と同一の電極を挟み、下面となる側に第4のセラミックス成形体を配置し、1800℃以上1MPa以上の圧力でホットプレス焼成した。焼成後加工により、直径310mm、厚み25mm、一方の面に外径70mm、内径50mm、高さ2mmのボスを設けた。ボスの端面はRa0.4μmで加工した。 The same electrode as in Example 1 was sandwiched between the third ceramic compacts, the fourth ceramic compact was arranged on the lower surface side, and hot-press fired at a pressure of 1800° C. or higher and 1 MPa or higher. After firing, a boss having a diameter of 310 mm, a thickness of 25 mm, and an outer diameter of 70 mm, an inner diameter of 50 mm, and a height of 2 mm was provided on one surface. The end face of the boss was processed with Ra of 0.4 μm.

(接合)
接合は、実施例1と同様の接合材を用いて接合した。最後に、仕上げ加工として、外形を所定の形状に加工した。このようにして、実施例2の基板保持部材を作製した。
(bonding)
The bonding was performed using the same bonding material as in Example 1. Finally, as a finishing process, the external shape was processed into a predetermined shape. Thus, the substrate holding member of Example 2 was produced.

(実施例3)
(支持部材の作製)
5wt%Yを添加したAlNを主成分とする第1のセラミックス原料粉、および焼結助剤を添加していないAlNを主成分とする第2のセラミックス原料粉を準備した。すなわち、実施例1の支持部材を形成した2種類のセラミックス原料粉と同一の原料粉である。
(Example 3)
(Production of support member)
A first ceramic raw powder mainly composed of AlN to which 5 wt % Y 2 O 3 was added and a second ceramic raw powder mainly composed of AlN to which no sintering aid was added were prepared. That is, it is the same raw material powder as the two kinds of ceramic raw material powders forming the support member of Example 1.

金型に第1のセラミックス原料粉を充填し、仮プレスした。その後、第2のセラミックス原料粉を充填し仮プレス後、CIP成形して、第1のセラミックス原料粉からなる部分と第2のセラミックス原料粉からなる部分が2層に形成されたセラミックス成形体を作製した。このセラミックス成形体を機械加工することで、支持部材前駆体を作製した。実施例3の支持部材前駆体は、拡径部から円筒部の中間程度までが第1のセラミックス原料粉により形成され、円筒部の中間程度から下の部分が第2のセラミックス原料粉により形成されていた。これを、N雰囲気、最高温度1900℃、最高到達温度保持時間2時間で常圧焼成をした。そして、焼成した支持部材を所定の形状に加工した後、拡径部側の端面をRa0.4μmで加工した。このときの拡径部の直径はΦ70mmであった。 The mold was filled with the first ceramic raw material powder and temporarily pressed. After that, the second ceramic raw powder is filled, and after temporary pressing, CIP molding is performed to obtain a ceramic molded body in which a portion made of the first ceramic raw powder and a portion made of the second ceramic raw powder are formed in two layers. made. A support member precursor was produced by machining the ceramic compact. In the supporting member precursor of Example 3, the portion from the expanded diameter portion to the middle portion of the cylindrical portion is formed from the first ceramic raw material powder, and the portion from the middle portion to the lower portion of the cylindrical portion is formed from the second ceramic raw material powder. was This was sintered under atmospheric pressure in an N2 atmosphere, at a maximum temperature of 1900° C., and for a maximum temperature retention time of 2 hours. Then, after processing the fired support member into a predetermined shape, the end surface on the enlarged diameter portion side was processed with Ra of 0.4 μm. The diameter of the enlarged diameter portion at this time was Φ70 mm.

(電極埋設部材の作製)
電極埋設部材は、実施例1と同一とした。ボスの端面はRa0.4μmで加工した。
(Preparation of electrode embedded member)
The electrode-embedded member was the same as in Example 1. The end face of the boss was processed with Ra of 0.4 μm.

(接合)
接合は、接合材を使用せず、1800℃、1MPaで拡散接合を行った。最後に、仕上げ加工として、外形を所定の形状に加工した。このようにして、実施例3の基板保持部材を作製した。
(bonding)
Diffusion bonding was performed at 1800° C. and 1 MPa without using a bonding material. Finally, as a finishing process, the external shape was processed into a predetermined shape. Thus, the substrate holding member of Example 3 was produced.

[熱伝導率の測定]
第1のセラミックス原料粉および第2のセラミックス原料粉を用いて、実施例1の支持部材と同様に製作した部材の第1の領域および第2の領域からΦ10mm厚み2mmtの試験片を切り出し、レーザーフラッシュ法で熱伝導率を測定した。その結果、第1の領域は160W/mK、第2の領域は70W/mKであった。
[Measurement of thermal conductivity]
Using the first ceramic raw material powder and the second ceramic raw material powder, a test piece of φ10 mm thickness 2 mmt was cut out from the first region and the second region of the member manufactured in the same manner as the supporting member of Example 1, and laser Thermal conductivity was measured by flash method. As a result, the first area was 160 W/mK and the second area was 70 W/mK.

[繰り返し加熱試験]
実施例の基板保持部材を、100℃から600℃までの繰り返し加熱を20回行なった。その後、接合面からのHeリークを測定したところ、いずれも1×10-10Pa・m/s以下と小さく維持されていた。接合不良がある場合、この程度の回数以下で不具合が起こることがほとんどであるため、実施例の基板保持部材は、接合不良のない信頼性の高い基板保持部材であることが確かめられた。
[Repeated heating test]
The substrate holding member of the example was repeatedly heated from 100° C. to 600° C. 20 times. After that, when the He leak from the joint surface was measured, it was kept small at 1×10 −10 Pa·m 3 /s or less. In most cases, when there is poor bonding, the failure occurs less than this number of times. Therefore, it was confirmed that the substrate holding member of the example is a highly reliable substrate holding member that does not have poor bonding.

[載置面の温度分布の対称性]
実施例の基板保持部材に基板を載置し、基板中心部の表面温度を400℃になるように調整した。このとき、実施例1では、基板の中心から外周に向かって、同心円状の4.5℃の緩やかな温度勾配を発生させることができた。また、実施例2では、実施例1と同様の1.7℃の温度勾配を、実施例3では3.3℃の温度勾配を発生させることができた。これにより、実施例の基板保持部材は、基板の温度分布の対称性を調整することができることが確かめられた。
[Symmetry of Temperature Distribution on Placement Surface]
A substrate was placed on the substrate holding member of the example, and the surface temperature of the central portion of the substrate was adjusted to 400°C. At this time, in Example 1, a gentle concentric temperature gradient of 4.5° C. could be generated from the center of the substrate toward the outer periphery. Further, in Example 2, a temperature gradient of 1.7° C. similar to that in Example 1 could be generated, and in Example 3, a temperature gradient of 3.3° C. could be generated. As a result, it was confirmed that the substrate holding member of the example can adjust the symmetry of the temperature distribution of the substrate.

以上により、本発明の支持部材および基板保持部材は、接合後に応力の不具合が生じず、かつ支持部材の断熱性を調整して基板の温度分布の対称性を調整することができることが確かめられた。また、本発明の製造方法は、そのような基板保持部材を製造できることが確かめられた。 From the above, it was confirmed that the supporting member and the substrate holding member of the present invention do not cause any problem of stress after bonding, and that the symmetry of the temperature distribution of the substrate can be adjusted by adjusting the heat insulating property of the supporting member. . Moreover, it was confirmed that the manufacturing method of the present invention can manufacture such a substrate holding member.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形および均等物に及ぶことはいうまでもない。また、各図面に示された構成要素の構造、形状、数、位置、大きさ等は説明の便宜上のものであり、適宜変更しうる。 It goes without saying that the present invention is not limited to the above-described embodiments, but extends to various modifications and equivalents within the spirit and scope of the present invention. Also, the structure, shape, number, position, size, etc. of the constituent elements shown in each drawing are for convenience of explanation, and may be changed as appropriate.

11 第1のセラミックス成形体
12 第2のセラミックス成形体
13 第3のセラミックス成形体
23 第3のセラミックス脱脂体
30 支持部材前駆体
40 電極埋設部材前駆体
100 支持部材
101 第1の領域
102 第2の領域
112 拡径部
114 円筒部
116 拡径部と対向する側の端部
118 ボス
120 電極埋設部材
122 載置面
124 接合部
130 電極
140 端子
142 端子穴
150 接合材
200 基板保持部材
11 First ceramic molded body 12 Second ceramic molded body 13 Third ceramic molded body 23 Third ceramic degreased body 30 Support member precursor 40 Electrode-embedded member precursor 100 Support member 101 First region 102 Second area 112 enlarged diameter portion 114 cylindrical portion 116 end portion 118 on the side facing the enlarged diameter portion boss 120 electrode embedding member 122 mounting surface 124 joint portion 130 electrode 140 terminal 142 terminal hole 150 joint material 200 substrate holding member

Claims (8)

支持部材であって、
前記支持部材は、AlNを主成分とするセラミックス焼結体により円筒状に形成され、
前記支持部材は、第1の領域および第2の領域で構成され、
前記第1の領域の25℃における熱伝導率は100W/mK以上であり、
前記第2の領域の25℃における熱伝導率は80W/mK以下であることを特徴とする支持部材。
A support member,
The support member is formed in a cylindrical shape from a ceramic sintered body containing AlN as a main component,
The support member is composed of a first region and a second region,
The thermal conductivity of the first region at 25° C. is 100 W/mK or more,
The supporting member, wherein the second region has a thermal conductivity of 80 W/mK or less at 25°C.
前記第1の領域に含まれるY成分のY換算濃度は、0.4wt%以上5wt%以下であり、
前記第2の領域に含まれるY成分のY換算濃度は、0.1wt%以下であることを特徴とする請求項1に記載の支持部材。
Y 2 O 3 conversion concentration of the Y component contained in the first region is 0.4 wt% or more and 5 wt% or less,
2. The support member according to claim 1, wherein the Y component contained in the second region has a Y2O3 converted concentration of 0.1 wt % or less.
前記支持部材の一方の端部は前記第1の領域で構成され、前記支持部材の他方の端部は前記第2の領域で構成されることを特徴とする請求項1または請求項2に記載の支持部材。 3. The support member according to claim 1, wherein one end of said support member is configured by said first region, and the other end of said support member is configured by said second region. support member. 基板保持部材であって、
AlNを主成分とするセラミックス焼結体からなり、電極が埋設された平板状の電極埋設部材と、
AlNを主成分とするセラミックス焼結体からなり、前記電極埋設部材側の端部に設けられた拡径部および前記拡径部より小径の円筒部を有し、前記電極埋設部材を支持する支持部材と、を備え、
前記拡径部の端部の熱伝導率は、前記拡径部と対向する側の端部の熱伝導率とは異なることを特徴とする基板保持部材。
A substrate holding member,
a plate-shaped electrode-embedded member made of a ceramic sintered body containing AlN as a main component, in which an electrode is embedded;
A support made of a ceramic sintered body containing AlN as a main component, having an enlarged diameter portion provided at the end on the side of the electrode-embedded member and a cylindrical portion having a smaller diameter than the enlarged diameter portion, and supporting the electrode-embedded member. comprising a member and
The substrate holding member, wherein the heat conductivity of the end portion of the enlarged diameter portion is different from the heat conductivity of the end portion facing the enlarged diameter portion.
前記拡径部の端部に含まれるY成分のY換算濃度は、0.4wt%以上5wt%以下であり、
前記拡径部と対向する側の端部に含まれるY成分のY換算濃度は、0.1wt%以下であることを特徴とする請求項4に記載の基板保持部材。
Y 2 O 3 conversion concentration of the Y component contained in the end portion of the enlarged diameter portion is 0.4 wt% or more and 5 wt% or less,
5. The substrate holding member according to claim 4 , wherein the Y component contained in the end portion facing the enlarged diameter portion has a Y2O3 converted concentration of 0.1 wt % or less.
前記電極埋設部材に含まれるY成分のY換算濃度は、前記支持部材の前記拡径部の端部に含まれるY成分のY換算濃度と略同一であることを特徴とする請求項5に記載の基板保持部材。 The Y 2 O 3 converted concentration of the Y component contained in the electrode embedded member is substantially the same as the Y 2 O 3 converted concentration of the Y component contained in the end portion of the expanded diameter portion of the support member. The substrate holding member according to claim 5. 基板保持部材の製造方法であって、
AlNを主成分とし、焼結助剤の添加量が調整された第1のセラミックス原料粉から1または複数の第1のセラミックス成形体を形成する工程と、
AlNを主成分とし、焼結助剤の添加量が前記第1のセラミックス原料粉の焼結助剤の添加量より少なく調整され、または焼結助剤が添加されない第2のセラミックス原料粉から1または複数の第2のセラミックス成形体を形成する工程と、
前記1または複数の第1のセラミックス成形体および前記1または複数の第2のセラミックス成形体を組み合わせて、支持部材前駆体を形成する工程と、
前記支持部材前駆体を焼成して支持部材を作製する工程と、
AlNを主成分とし、焼結助剤が所定の量添加された第3のセラミックス原料粉から複数の第3のセラミックス成形体を形成する工程と、
前記複数の第3のセラミックス成形体を所定の温度以上、所定の時間以上脱脂処理して複数の第3のセラミックス脱脂体を作製する工程と、
電極を準備し、前記電極、前記複数の第3のセラミックス脱脂体を組み合わせて、一方の主面に載置面を有し、平板状に形成され、電極が埋設された電極埋設部材前駆体を形成する工程と、
前記電極埋設部材前駆体を、前記主面に垂直方向に一軸加圧焼成して電極埋設部材を作製する工程と、
前記電極埋設部材の前記載置面に対向する下面の前記支持部材を接合する接合部に前記支持部材を配置し、前記主面に垂直方向に加圧しつつ加熱する、または、接合材を準備し、前記電極埋設部材の前記載置面に対向する下面の前記支持部材を接合する接合部もしくは前記支持部材の接合される端面の少なくとも一方に前記接合材を塗布し、前記接合部に前記支持部材を配置し、前記主面に垂直方向に加圧しつつ加熱する、ことで前記電極埋設部材と前記支持部材とを接合する工程と、を含み、
前記支持部材の前記第1のセラミックス成形体が焼成された第1の領域は、25℃における熱伝導率が100W/mK以上であり、
前記支持部材の前記第2のセラミックス成形体が焼成された第2の領域は、25℃における熱伝導率が80W/mK以下であることを特徴とする基板保持部材の製造方法。
A method for manufacturing a substrate holding member, comprising:
a step of forming one or a plurality of first ceramic compacts from a first ceramic raw material powder containing AlN as a main component and having an adjusted amount of a sintering aid;
1 from a second ceramic raw powder containing AlN as a main component and adjusted to have a sintering aid added in an amount less than the sintering aid added in the first ceramic raw powder or to which no sintering aid is added or a step of forming a plurality of second ceramic molded bodies;
combining the one or more first ceramic molded bodies and the one or more second ceramic molded bodies to form a support member precursor;
a step of baking the supporting member precursor to produce a supporting member;
A step of forming a plurality of third ceramic compacts from a third ceramic raw material powder containing AlN as a main component and having a predetermined amount of a sintering aid added thereto;
a step of degreasing the plurality of third ceramic molded bodies at a predetermined temperature or higher for a predetermined time or longer to produce a plurality of third ceramic degreased bodies;
An electrode is prepared, and the electrode and the plurality of third ceramic degreased bodies are combined to form an electrode-embedded member precursor having a mounting surface on one main surface, formed in a flat plate shape, and having the electrode embedded therein. forming;
a step of uniaxially pressurizing and sintering the electrode-embedded member precursor in a direction perpendicular to the main surface to produce an electrode-embedded member;
The supporting member is placed at the joint where the supporting member is joined on the lower surface of the electrode-embedded member facing the mounting surface, and the main surface is pressurized and heated in a vertical direction, or a joining material is prepared. The bonding material is applied to at least one of a bonding portion of the lower surface of the electrode-embedded member opposite to the mounting surface where the supporting member is bonded or an end surface of the supporting member to be bonded, and the bonding material is applied to the bonding portion. and heating while applying pressure in a direction perpendicular to the main surface to join the electrode-embedded member and the support member;
The first region of the support member where the first ceramic compact is fired has a thermal conductivity of 100 W/mK or more at 25° C.,
A method for manufacturing a substrate holding member, wherein the second region of the supporting member where the second ceramic compact is fired has a thermal conductivity of 80 W/mK or less at 25°C.
基板保持部材の製造方法であって、
AlNを主成分とし、焼結助剤の添加量が調整された第1のセラミックス原料粉、およびAlNを主成分とし、焼結助剤の添加量が前記第1のセラミックス原料粉の焼結助剤の添加量より少なく調整され、または焼結助剤が添加されない第2のセラミックス原料粉を準備する工程と、
前記第1のセラミックス原料粉または前記第2のセラミックス原料粉の一方を型に投入し仮成形し、他方をさらに型に投入し仮成形することを1回以上繰り返すことで、支持部材前駆体を形成する工程と、
前記支持部材前駆体を焼成して支持部材を作製する工程と、
AlNを主成分とし、焼結助剤が所定の量添加された第3のセラミックス原料粉から複数の第3のセラミックス成形体を形成する工程と、
前記複数の第3のセラミックス成形体を所定の温度以上、所定の時間以上脱脂処理して複数の第3のセラミックス脱脂体を作製する工程と、
電極を準備し、前記電極、前記複数の第3のセラミックス脱脂体を組み合わせて、一方の主面に載置面を有し、平板状に形成され、電極が埋設された電極埋設部材前駆体を形成する工程と、
前記電極埋設部材前駆体を、前記主面に垂直方向に一軸加圧焼成して電極埋設部材を作製する工程と、
前記電極埋設部材の前記載置面に対向する下面の前記支持部材を接合する接合部に前記支持部材を配置し、前記主面に垂直方向に加圧しつつ加熱する、または、接合材を準備し、前記電極埋設部材の前記載置面に対向する下面の前記支持部材を接合する接合部もしくは前記支持部材の接合される端面の少なくとも一方に前記接合材を塗布し、前記接合部に前記支持部材を配置し、前記主面に垂直方向に加圧しつつ加熱する、ことで前記電極埋設部材と前記支持部材とを接合する工程と、を含み、
前記支持部材の第1のセラミックス成形体が焼成された第1の領域は、25℃における熱伝導率が100W/mK以上であり、
前記支持部材の第2のセラミックス成形体が焼成された第2の領域は、25℃における熱伝導率が80W/mK以下であることを特徴とする基板保持部材の製造方法。
A method for manufacturing a substrate holding member, comprising:
a first ceramic raw powder containing AlN as a main component and having an adjusted amount of a sintering aid; and a step of preparing a second ceramic raw material powder adjusted to be less than the additive amount of the agent or not added with the sintering aid;
One of the first ceramics raw powder and the second ceramics raw powder is put into a mold for temporary molding, and the other is further put into the mold for temporary molding, which is repeated one or more times to obtain a supporting member precursor. forming;
a step of baking the supporting member precursor to produce a supporting member;
A step of forming a plurality of third ceramic compacts from a third ceramic raw material powder containing AlN as a main component and having a predetermined amount of a sintering aid added thereto;
a step of degreasing the plurality of third ceramic molded bodies at a predetermined temperature or higher for a predetermined time or longer to produce a plurality of third ceramic degreased bodies;
An electrode is prepared, and the electrode and the plurality of third ceramic degreased bodies are combined to form an electrode-embedded member precursor having a mounting surface on one main surface, formed in a flat plate shape, and having the electrode embedded therein. forming;
a step of uniaxially pressurizing and sintering the electrode-embedded member precursor in a direction perpendicular to the main surface to produce an electrode-embedded member;
The supporting member is placed at the joint where the supporting member is joined on the lower surface of the electrode-embedded member facing the mounting surface, and the main surface is pressurized and heated in a vertical direction, or a joining material is prepared. The bonding material is applied to at least one of a bonding portion of the lower surface of the electrode-embedded member opposite to the mounting surface where the supporting member is bonded or an end surface of the supporting member to be bonded, and the bonding material is applied to the bonding portion. and heating while applying pressure in a direction perpendicular to the main surface to join the electrode-embedded member and the support member;
The first region of the support member where the first ceramic compact is fired has a thermal conductivity at 25° C. of 100 W/mK or more,
A method for manufacturing a substrate holding member, wherein the second region of the supporting member, in which the second ceramic compact is fired, has a thermal conductivity of 80 W/mK or less at 25°C.
JP2021060036A 2021-03-31 2021-03-31 Support member, substrate holding member, and manufacturing method thereof Pending JP2022156381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021060036A JP2022156381A (en) 2021-03-31 2021-03-31 Support member, substrate holding member, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021060036A JP2022156381A (en) 2021-03-31 2021-03-31 Support member, substrate holding member, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2022156381A true JP2022156381A (en) 2022-10-14

Family

ID=83558482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021060036A Pending JP2022156381A (en) 2021-03-31 2021-03-31 Support member, substrate holding member, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2022156381A (en)

Similar Documents

Publication Publication Date Title
WO2001097264A1 (en) Hot plate
TWI830990B (en) Stacked structure and semiconductor manufacturing apparatus member
KR100634182B1 (en) Substrate heater and fabrication method for the same
KR102209157B1 (en) Components for semiconductor manufacturing equipment
KR20170007739A (en) Improved method for manufacturing large co-fired articles
JP2022156381A (en) Support member, substrate holding member, and manufacturing method thereof
KR102246856B1 (en) SiC heater
JP6672244B2 (en) Manufacturing method of ceramic joined body
US11715661B2 (en) Composite sintered body and method of manufacturing composite sintered body
JP2022055871A (en) Substrate holding member and manufacturing method thereof
TW202121576A (en) Semiconductor manufacturing equipment component and method of making the same
JP2022055875A (en) Substrate holding member and manufacturing method thereof
JP2024065891A (en) Ceramic heater
JP7125265B2 (en) Substrate heating device and manufacturing method thereof
US11869796B2 (en) Electrode-embedded member and method for manufacturing same, electrostatic chuck, and ceramic heater
JP2023149341A (en) Electrode burying member, and substrate holding member
JP2023072822A (en) Electrode embedded material
JP2023116214A (en) Electrode embedded member and method of manufacturing the same
JP2023149343A (en) Electrode burying member, and substrate holding member
JP7240232B2 (en) holding device
JP2019029600A (en) Manufacturing method of ceramic member
JP2023169797A (en) Electrode embedding member and substrate holding member
JP2002170870A (en) Ceramic substrate and electrostatic chuck for semiconductor fabrication/inspection equipment
WO2023176886A1 (en) Electrostatic chuck member, electrostatic chuck device, and method for manufacturing electrostatic chuck member
JP7265941B2 (en) zygote

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240529