JP2022152677A - Magnet raw material powder, magnet powder, and manufacturing method of magnet raw material powder - Google Patents

Magnet raw material powder, magnet powder, and manufacturing method of magnet raw material powder Download PDF

Info

Publication number
JP2022152677A
JP2022152677A JP2021055532A JP2021055532A JP2022152677A JP 2022152677 A JP2022152677 A JP 2022152677A JP 2021055532 A JP2021055532 A JP 2021055532A JP 2021055532 A JP2021055532 A JP 2021055532A JP 2022152677 A JP2022152677 A JP 2022152677A
Authority
JP
Japan
Prior art keywords
iron
samarium
tbcu
raw material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021055532A
Other languages
Japanese (ja)
Other versions
JP2022152677A5 (en
Inventor
卓 佐藤
Taku Sato
周祐 岡田
Shusuke Okada
一行 鈴木
Kazuyuki Suzuki
健太 高木
Kenta Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
TDK Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, TDK Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2021055532A priority Critical patent/JP2022152677A/en
Publication of JP2022152677A publication Critical patent/JP2022152677A/en
Publication of JP2022152677A5 publication Critical patent/JP2022152677A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a magnet raw material powder containing single crystal particles of a TbCu7 type samarium-iron alloy in which heterogeneous phases are suppressed.SOLUTION: A magnet raw material powder contains single crystal particles of a TbCu7 type samarium-iron-zirconium alloy.SELECTED DRAWING: Figure 1

Description

本発明は、磁石原料粉末、磁石粉末、及び磁石原料粉末の製造方法に関する。 TECHNICAL FIELD The present invention relates to a magnet raw powder, a magnet powder, and a method for producing a magnet raw powder.

ネオジム磁石を超える高い磁気特性を有する磁石の原料として、TbCu型結晶構造を有するサマリウム-鉄-窒素系磁石粉末(以下、「TbCu型サマリウム-鉄-窒素系磁石粉末」ともいう)が知られている。このようなTbCu型サマリウム-鉄-窒素系磁石粉末は、TbCu型サマリウム-鉄系合金粉末を窒化処理することによって製造される。 Samarium-iron-nitrogen magnet powder having a TbCu 7 -type crystal structure (hereinafter also referred to as “TbCu 7 -type samarium-iron-nitrogen magnet powder”) is known as a raw material for magnets having magnetic properties superior to those of neodymium magnets. It is Such a TbCu 7 -type samarium-iron-nitrogen magnet powder is produced by nitriding a TbCu 7 -type samarium-iron alloy powder.

ここで、高い磁気特性、特に高い最大エネルギー積を有する磁石を得るためには、TbCu型サマリウム-鉄-窒素系磁石粉末自体が、高い磁気特性を示すことのできる異方性磁石粉末であることが必要である。そのために、窒化前のTbCu型サマリウム-鉄系合金粉末(磁石原料粉末)が単結晶粒子微粉末であることが望まれる。 Here, in order to obtain a magnet having high magnetic properties, particularly a high maximum energy product, the TbCu 7 -type samarium-iron-nitrogen magnet powder itself is an anisotropic magnet powder capable of exhibiting high magnetic properties. It is necessary. Therefore, it is desired that the TbCu 7 -type samarium-iron alloy powder (magnet raw material powder) before nitriding is fine single-crystal particles.

特許文献1、2には、溶融塩を用いてサマリウム原料と鉄原料とを反応させることによる、TbCu型サマリウム-鉄合金の単結晶粒子の合成について記載されている。 Patent Documents 1 and 2 describe the synthesis of single crystal particles of a TbCu 7 -type samarium-iron alloy by reacting a samarium raw material and an iron raw material using a molten salt.

特開2020-13887号公報Japanese Patent Application Laid-Open No. 2020-13887 国際公開第2020/183885号WO2020/183885

特許文献1、2に記載の技術では、熱処理温度を比較的低く設定する等によってThZn17型サマリウム-鉄合金相の生成が抑えられている。しかしながら、低い熱処理温度では原料の拡散が不十分となり、未反応の鉄相等の異相が生じやすいため、TbCu型サマリウム-鉄合金相の比率が低下し得る。一方、未反応鉄相の低減を優先させた場合に、TbCu型の単結晶粒子が得られないことがある。そのため、異相が抑えられたTbCu型サマリウム-鉄系合金の単結晶粒子を含む磁石原料粉末が求められている。 In the techniques described in Patent Documents 1 and 2, the formation of the Th 2 Zn 17 -type samarium-iron alloy phase is suppressed by setting the heat treatment temperature relatively low. However, at a low heat treatment temperature, diffusion of the raw material becomes insufficient, and different phases such as an unreacted iron phase are likely to occur, so the ratio of the TbCu 7 -type samarium-iron alloy phase may decrease. On the other hand, when priority is given to reducing the unreacted iron phase, TbCu 7 -type single crystal particles may not be obtained. Therefore, there is a demand for a magnet raw material powder containing single crystal particles of a TbCu 7 -type samarium-iron alloy in which heterogeneous phases are suppressed.

上記に鑑みて、本発明の一態様は、異相が抑えられたTbCu型サマリウム-鉄系合金の単結晶粒子を含む磁石原料粉末を提供することを課題とする。 In view of the above, it is an object of one aspect of the present invention to provide a magnet raw material powder containing single crystal particles of a TbCu 7 -type samarium-iron alloy in which heterogeneous phases are suppressed.

本発明の一態様は、TbCu型サマリウム-鉄-ジルコニウム合金の単結晶粒子を含む磁石原料粉末である。 One aspect of the present invention is a magnet raw powder containing single crystal particles of a TbCu 7 -type samarium-iron-zirconium alloy.

本発明の一態様によれば、異相が抑えられたTbCu型サマリウム-鉄系合金の単結晶粒子を含む磁石原料粉末を提供できる。 According to one aspect of the present invention, it is possible to provide a magnet raw material powder containing single crystal particles of a TbCu 7 -type samarium-iron alloy in which heterogeneous phases are suppressed.

実施例1、比較例1及び比較例2の磁石原料粉末のX線回折スペクトルを示す。1 shows X-ray diffraction spectra of magnet raw material powders of Example 1, Comparative Examples 1 and 2. FIG.

以下、本発明を実施するための形態を説明するが、本発明は、以下の実施形態に記載した内容により限定されるものではない。 Modes for carrying out the present invention will be described below, but the present invention is not limited by the contents described in the following embodiments.

<磁石原料粉末>
本実施形態は、磁石原料粉末であって、TbCu型サマリウム-鉄-ジルコニウム合金の単結晶粒子を含むものである。ここで、TbCu型サマリウム-鉄-ジルコニウム合金は、TbCu型サマリウム-鉄系合金に含まれるものであり、TbCu型サマリウム-鉄合金中のサマリウム原子の一部がジルコニウム原子に置き換えられたものであってよい。本明細書において、「粉末」とは粒子の集合体を指す。また、「単結晶粒子」とは、その内部に結晶粒界を含まないか又は実質的に含まない、結晶方位が揃った粒子を指す。なお、磁石原料粉末中の単結晶粒子の存在は、例えば、透過型電子顕微鏡を用いて取得された制限視野回折像を観察することによって評価され得る。
<Magnet Raw Material Powder>
This embodiment is a magnet raw material powder containing single crystal particles of a TbCu 7 -type samarium-iron-zirconium alloy. Here, the TbCu 7 -type samarium-iron-zirconium alloy is included in the TbCu 7 -type samarium-iron alloy, and part of the samarium atoms in the TbCu 7 -type samarium-iron alloy are replaced with zirconium atoms. can be anything. As used herein, "powder" refers to an aggregate of particles. Further, the term “single crystal grain” refers to a grain with a uniform crystal orientation that does not contain or substantially does not contain a crystal grain boundary therein. The presence of single-crystal particles in the magnet raw material powder can be evaluated, for example, by observing a selected area diffraction image obtained using a transmission electron microscope.

本形態は、TbCu型サマリウム-鉄-ジルコニウム合金の単結晶粒子を含む合金粉末であることで、残留鉄相(合金の生成過程で生じ得る未反応鉄単体相)等の異相の生成が抑えられたTbCu型サマリウム-鉄系合金の単結晶粒子含有の磁石原料粉末を得ることができる。そのため、本形態による磁石原料粉末の品質は高く、本形態による磁石原料粉末を窒化処理して得られるTbCu型サマリウム-鉄-窒素系磁石粉末の磁気特性、特に最大エネルギー積をさらに高めることができる。 This form is an alloy powder containing single crystal particles of a TbCu 7 -type samarium-iron-zirconium alloy, so that the formation of a different phase such as a residual iron phase (an unreacted iron single phase that can occur in the process of forming an alloy) is suppressed. It is possible to obtain a magnet raw material powder containing single crystal particles of the TbCu 7 -type samarium-iron alloy. Therefore, the quality of the magnet raw material powder according to the present embodiment is high, and the magnetic properties, particularly the maximum energy product, of the TbCu 7 -type samarium-iron-nitrogen based magnet powder obtained by nitriding the magnet raw material powder according to the present embodiment can be further enhanced. can.

本形態による磁石原料粉末(TbCu型サマリウム-鉄系合金粉末)においては、CoKα線を用いたX線回折(XRD)の測定で得られたX線回折スペクトルにおけるTbCu型サマリウム-鉄-ジルコニウム合金相の(110)面の回折ピークに対する、SmFe17相の(024)面の回折ピークの強度比が、好ましくは0.40以下、より好ましくは0.20以下、さらに好ましくは0.10以下、さらに好ましくは0.01以下であってよい。上記強度比は、より具体的には、2θ=42.5°近傍に観測されるTbCu型合金相の(110)面の回折ピークの積分強度(I42.5)に対する、2θ=44.1°近傍に観測されるThZn17型合金相の(024)面の回折ピークの積分強度(I44.1)の比(I44.1/I42.5)とすることができる。上記の回折ピークの強度比を有する磁石原料粉末では、TbCu型サマリウム-鉄-ジルコニウム合金相の割合が十分に高くなっている。 In the magnet raw material powder (TbCu 7 -type samarium-iron alloy powder) according to the present embodiment, TbCu 7 -type samarium-iron-zirconium in the X-ray diffraction spectrum obtained by X-ray diffraction (XRD) measurement using CoKα rays The intensity ratio of the diffraction peak of the (024) plane of the Sm 2 Fe 17 phase to the diffraction peak of the (110) plane of the alloy phase is preferably 0.40 or less, more preferably 0.20 or less, further preferably 0.20 or less. It may be 10 or less, more preferably 0.01 or less. More specifically, the intensity ratio is 2θ=44.5° with respect to the integrated intensity (I 42.5 ) of the diffraction peak of the (110) plane of the TbCu 7 -type alloy phase observed near 2θ=42.5°. It can be defined as the ratio (I 44.1 /I 42.5 ) of the integrated intensity (I 44.1 ) of the diffraction peak of the (024) plane of the Th 2 Zn 17 -type alloy phase observed in the vicinity of 1°. In the raw magnet powder having the above diffraction peak intensity ratio, the proportion of the TbCu 7 -type samarium-iron-zirconium alloy phase is sufficiently high.

TbCu型サマリウム-鉄-ジルコニウム合金相の格子定数比率(c/a)は、好ましくは0.840以上、より好ましくは0.842以上、さらに好ましくは0.845以上であってよい。格子定数比率は、磁石原料粉末のX線回折スペクトルに基づき、リートベルト解析等を利用して求めることができる。上記格子定数比率(c/a)が0.84以上である磁石原料粉末では、TbCu型サマリウム-鉄-ジルコニウム合金相の割合が十分に高くなっている。 The lattice constant ratio (c/a) of the TbCu 7 -type samarium-iron-zirconium alloy phase may be preferably 0.840 or more, more preferably 0.842 or more, and even more preferably 0.845 or more. The lattice constant ratio can be obtained by using Rietveld analysis or the like based on the X-ray diffraction spectrum of the magnet raw material powder. In the magnet raw material powder having a lattice constant ratio (c/a) of 0.84 or more, the proportion of the TbCu 7 -type samarium-iron-zirconium alloy phase is sufficiently high.

磁石原料粉末におけるTbCu型サマリウム-鉄-ジルコニウム合金相の割合は、磁石原料粉末全体に対して、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上であってよい。磁石原料粉末を構成する粒子が、TbCu型サマリウム-鉄-ジルコニウム合金相から実質的になる、又はTbCu型結晶であることが好ましい。上記割合は、X線回折スペクトルの積分強度に基づいて求められる割合(%)である。TbCu型サマリウム-鉄-ジルコニウム合金相の割合は、具体的には、TbCu型合金相の主回折ピークである、2θ=49.8°近傍に観測される(111)面の積分強度(I_TbCu)と、Fe相の主回折ピークである、2θ=52.7°近傍に観測される(110)面の積分強度(I_Fe)と、TbCu型合金相とFe相以外の相の主回折ピークの積分強度(I_Other)を求め、I_TbCu/(I_TbCu+I_Fe+I_Other)×100より積分強度の百分率で求めることができる。ここで、TbCu型合金相以外の相とは例えばSmFe相、SmFe相、(Sm、Zr)Fe相、ZrO相、ZrFe相、サマリウム酸化物相等がある。 The proportion of the TbCu 7 -type samarium-iron-zirconium alloy phase in the raw material powder for magnets may be preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more, relative to the entire raw material powder for magnets. It is preferable that the particles constituting the magnet raw material powder consist essentially of a TbCu 7 -type samarium-iron-zirconium alloy phase or are TbCu 7 -type crystals. The above ratio is a ratio (%) obtained based on the integrated intensity of the X-ray diffraction spectrum. Specifically, the ratio of the TbCu 7 - type samarium-iron-zirconium alloy phase is the integrated intensity ( I_TbCu 7 ), the integrated intensity (I_Fe) of the (110) plane observed near 2θ = 52.7°, which is the main diffraction peak of the Fe phase, and the main diffraction peaks of the TbCu 7 -type alloy phase and the phase other than the Fe phase. The integrated intensity (I_Other) of the diffraction peak is obtained, and it can be obtained as a percentage of the integrated intensity from I_TbCu 7 /(I_TbCu 7 +I_Fe+I_Other)×100. Here, the phases other than the TbCu 7 -type alloy phase include, for example, SmFe 2 phase, SmFe 3 phase, (Sm, Zr)Fe 2 phase, ZrO 2 phase, ZrFe 2 phase, samarium oxide phase, and the like.

また、磁石原料粉末におけるFe相(単体鉄相)の割合は、好ましくは10.00%以下、より好ましくは5%以下、さらに好ましくは1.00%以下、さらに好ましくは0.10%以下、さらに好ましくは0.01%以下であってよい。磁石原料粉末におけるFe相の割合が10%以下であることで、TbCu型サマリウム-鉄-ジルコニウム合金相の割合を高めることができる。磁石原料粉末におけるFe相の上記割合も、上記のTbCu型サマリウム-鉄-ジルコニウム合金相の割合と同様に、磁石原料粉末のX線回折スペクトルから求められる割合である。 In addition, the ratio of the Fe phase (single iron phase) in the magnet raw material powder is preferably 10.00% or less, more preferably 5% or less, still more preferably 1.00% or less, further preferably 0.10% or less, More preferably, it may be 0.01% or less. When the ratio of the Fe phase in the magnet raw material powder is 10% or less, the ratio of the TbCu 7 -type samarium-iron-zirconium alloy phase can be increased. The ratio of the Fe phase in the raw material powder for magnets is also a ratio obtained from the X-ray diffraction spectrum of the raw powder for magnets, similarly to the ratio of the TbCu 7 -type samarium-iron-zirconium alloy phase.

磁石原料粉末中のジルコニウムの量は、磁石原料粉末全量に対して、好ましくは0.1重量%以上15重量%以下、より好ましくは0.5重量%以上8重量%以下であってよい。ジルコニウムの量の測定は、例えば発光分光分析法を使用して行うことができる。ジルコニウムの量を上記範囲とすることで、Fe相の割合を低減でき、且つ熱的に安定したTbCu型合金の単結晶粒子を得ることができる。 The amount of zirconium in the magnet raw powder may be preferably 0.1 wt % or more and 15 wt % or less, more preferably 0.5 wt % or more and 8 wt % or less, relative to the total amount of the magnet raw powder. The amount of zirconium can be measured using, for example, optical emission spectroscopy. By setting the amount of zirconium within the above range, the proportion of the Fe phase can be reduced, and thermally stable TbCu 7 -type alloy single crystal particles can be obtained.

TbCu型サマリウム-鉄-ジルコニウム合金の粒子の粒径は、好ましくは3.0μm以下、より好ましくは1.0μm以下であってよい。粒径の下限は特に限定されないが、本形態による合金粉末を用いて製造される磁石の熱安定性を確保する観点から、粒子の粒径は0.5μm以上であると好ましい。なお、上記平均粒径は、走査型電子顕微鏡によって測定された値である。上記TbCu型サマリウム-鉄-ジルコニウム合金の粒子には、単結晶粒子のみならず、多結晶粒子が含まれていてよい。 The particle size of the particles of the TbCu 7 type samarium-iron-zirconium alloy may preferably be 3.0 μm or less, more preferably 1.0 μm or less. Although the lower limit of the particle size is not particularly limited, the particle size of the particles is preferably 0.5 μm or more from the viewpoint of ensuring the thermal stability of the magnet manufactured using the alloy powder according to the present embodiment. In addition, the said average particle diameter is the value measured by the scanning electron microscope. The particles of the TbCu 7 -type samarium-iron-zirconium alloy may include not only single crystal particles but also polycrystalline particles.

なお、本形態による磁石原料粉末において、全元素中のサマリウム元素の割合(原子%)は、5%以上15%以下であってよい。また、磁石原料粉末において、全元素中の鉄元素及びジルコニウム元素の割合は、85%以上95%以下であってよい。さらに、磁石原料粉末におけるTbCu型サマリウム-鉄-ジルコニウム合金は、本形態の作用効果を妨げない範囲で、サマリウム以外の希土類元素を含んでいてもよいし、鉄及びジルコニウム以外の遷移元素、例えばコバルト等を含んでいてもよい。 In addition, in the magnet raw material powder according to the present embodiment, the ratio (atomic %) of the samarium element in all the elements may be 5% or more and 15% or less. Further, in the raw material powder for magnets, the ratio of the iron element and the zirconium element in all the elements may be 85% or more and 95% or less. Furthermore, the TbCu 7 -type samarium-iron-zirconium alloy in the raw material powder for magnets may contain rare earth elements other than samarium, transition elements other than iron and zirconium, such as It may contain cobalt or the like.

また、本形態による磁石原料粉末は、TbCu型サマリウム-鉄-ジルコニウム合金の単結晶粒子以外に、SmFeの粒子、SmFeの粒子、(Sm、Zr)Feの粒子、ZrOの粒子、ZrFe、サマリウム酸化物等の粒子等を含んでいてよい。 In addition, the magnet raw material powder according to the present embodiment includes SmFe 2 particles, SmFe 3 particles, (Sm, Zr)Fe 2 particles, and ZrO 2 particles in addition to single crystal particles of TbCu 7 -type samarium-iron-zirconium alloy. , ZrFe 2 , particles such as samarium oxide, and the like.

<磁石原料粉末の製造方法>
また、本実施形態は、磁石原料粉末の製造方法であって、金属サマリウムと、金属鉄と酸化ジルコニウムとの混合物と、アルカリ金属の塩化物及び/又はアルカリ土類金属の塩化物と、還元剤とを混合して熱処理することによって、TbCu型サマリウム-鉄-ジルコニウム合金の単結晶粒子を含む磁石原料粉末を得る、製造方法であってよい。
<Manufacturing Method of Magnet Raw Material Powder>
Further, the present embodiment is a method for producing a magnet raw material powder, comprising metallic samarium, a mixture of metallic iron and zirconium oxide, an alkali metal chloride and/or an alkaline earth metal chloride, and a reducing agent. and heat treatment to obtain a magnet raw material powder containing single crystal particles of a TbCu 7 -type samarium-iron-zirconium alloy.

本形態による製造方法では、アルカリ金属の塩化物及び/又はアルカリ土類金属の塩化物の溶融塩を利用する方法であることから、従来の加熱溶解及び冷却による合金化方法や超急冷法等では困難であった、準安定相のTbCu型結晶構造を有するサマリウム-鉄系合金の単結晶粒子を合成できる。さらに、本形態では、ジルコニウムを含む原料、特に酸化ジルコニウムを用いることで、より高い温度での熱処理が可能になる。本形態によれば、TbCu型サマリウム-鉄-ジルコニウム合金の単結晶粒子を含む磁石原料粉末が得られる。 Since the production method according to the present embodiment uses a molten salt of an alkali metal chloride and/or an alkaline earth metal chloride, conventional alloying methods by heating, dissolving and cooling, ultra-quenching, etc. It is possible to synthesize single crystal particles of a samarium-iron alloy having a TbCu 7 -type crystal structure in a metastable phase, which has been difficult. Furthermore, in this embodiment, by using a raw material containing zirconium, particularly zirconium oxide, heat treatment at a higher temperature becomes possible. According to this embodiment, a magnet raw material powder containing single crystal particles of TbCu 7 -type samarium-iron-zirconium alloy is obtained.

本形態による方法で用いられる金属鉄粉末と酸化ジルコニウム粉末との混合物は、前駆体である鉄-ジルコニウム酸化物粉末から作製することができる。ここで、鉄-ジルコニウム酸化物粉末は、水熱合成法、噴霧熱分解法、共沈法等で製造できる。噴霧熱分解法では、鉄塩とジルコニウム塩とを含む水溶液を調製し、水溶液を霧状にし、その霧状の水溶液を、好ましくはキャリアガス(例えば大気)とともに加熱する。水溶液を霧状にする手段は、特に限定されないが、超音波等を用いることが好ましい。水溶液に溶解させる鉄塩及びジルコニウム塩は、例えば硝酸塩等の水溶性の化合物であると好ましい。また、水溶液には、水素還元時の粒子間焼結を抑制するために硝酸カルシウム等のカルシウム塩、ストロンチウム塩といった粒成長抑制剤を添加しておくことが好ましい。 The mixture of metallic iron powder and zirconium oxide powder used in the method according to this embodiment can be made from a precursor iron-zirconium oxide powder. Here, the iron-zirconium oxide powder can be produced by a hydrothermal synthesis method, a spray pyrolysis method, a coprecipitation method, or the like. In spray pyrolysis, an aqueous solution containing an iron salt and a zirconium salt is prepared, the aqueous solution is atomized, and the atomized aqueous solution is heated, preferably with a carrier gas (eg, air). The means for atomizing the aqueous solution is not particularly limited, but it is preferable to use ultrasonic waves or the like. The iron salts and zirconium salts dissolved in the aqueous solution are preferably water-soluble compounds such as nitrates. In addition, it is preferable to add a grain growth inhibitor such as a calcium salt such as calcium nitrate or a strontium salt to the aqueous solution in order to suppress sintering between particles during hydrogen reduction.

鉄-ジルコニウム酸化物粉末の製造に上述の噴霧熱分解法を使用することによって、元素分布が均一な酸化物粉末を得ることができ、ひいては元素分布が均一な磁石原料粉末を製造することができる。また、得られる鉄-ジルコニウム酸化物粉末が球状に近く、粒径のばらつきも小さいので、反応性も高い。 By using the above-described spray pyrolysis method for producing the iron-zirconium oxide powder, it is possible to obtain an oxide powder having a uniform elemental distribution, and thus to produce a magnet raw material powder having a uniform elemental distribution. . In addition, the obtained iron-zirconium oxide powder has a nearly spherical shape and a small variation in particle size, so that the reactivity is high.

なお、鉄-ジルコニウム酸化物粉末の一次粒子の平均粒径は、TbCu型サマリウム-鉄-ジルコニウム合金の粒子の粗大化を防ぐため、3.0μm以下、より好ましくは1μm以下が好ましい。粒径の下限は特に限定されないが、熱処理中のTbCu型サマリウム-鉄-ジルコニウム合金の粒子の粒子間凝結を抑制するために0.1μm以上であると好ましい。 The average particle size of the primary particles of the iron-zirconium oxide powder is preferably 3.0 μm or less, more preferably 1 μm or less, in order to prevent the particles of the TbCu 7 -type samarium-iron-zirconium alloy from becoming coarse. Although the lower limit of the particle size is not particularly limited, it is preferably 0.1 μm or more in order to suppress inter-particle aggregation of the TbCu 7 -type samarium-iron-zirconium alloy particles during heat treatment.

得られたた鉄-ジルコニウム酸化物粉末は、例えば500℃程度の温度での水素ガスによる処理によって、粉末中の鉄を還元し、金属鉄粉末と酸化ジルコニウム粉末との混合物とすることができる。本形態では、原料として金属の形態ではなく、酸化物の形態のジルコニウムを添加することで、TbCu型サマリウム-鉄-ジルコニウム合金の粒子内のジルコニウムが均一となる。 The obtained iron-zirconium oxide powder can be treated with hydrogen gas at a temperature of, for example, about 500° C. to reduce the iron in the powder to obtain a mixture of metallic iron powder and zirconium oxide powder. In this embodiment, zirconium in the particles of the TbCu 7 -type samarium-iron-zirconium alloy becomes uniform by adding zirconium in the form of oxide instead of the form of metal as a raw material.

金属鉄粉末と酸化ジルコニウム粉末との混合物の前駆体となる鉄-ジルコニウム酸化物粉末において、鉄元素とジルコニウム元素との比は(Fe:Zr)は、好ましくは1:0.01~1:0.18、より好ましくは1:0.02~1:0.15であってよい。上記範囲の比で構成された原料(鉄源及びジルコニウム源)を使用することで、TbCu型マリウム-鉄-ジルコニウム合金の単結晶粒子をより確実に生成させることができる。 In the iron-zirconium oxide powder which is the precursor of the mixture of metallic iron powder and zirconium oxide powder, the ratio of iron element to zirconium element (Fe:Zr) is preferably 1:0.01 to 1:0. .18, more preferably 1:0.02 to 1:0.15. By using raw materials (iron source and zirconium source) having a ratio within the above range, single crystal particles of TbCu 7 -type malium-iron-zirconium alloy can be produced more reliably.

上記製造方法における熱処理におけるサマリウム源としては、サマリウム金属若しくはサマリウム化合物、もしくはその混合物が挙げられる。サマリウム化合物は、例えば、酸化物又はハロゲン化物の状態であっても良い。ハロゲン化物としては、塩化物、臭化物、ヨウ化物、及びフッ化物などが挙げられる。 The samarium source in the heat treatment in the above production method includes samarium metals, samarium compounds, or mixtures thereof. The samarium compounds may be in the form of oxides or halides, for example. Halides include chlorides, bromides, iodides, fluorides, and the like.

上記製造方法における熱処理において用いられるアルカリ金属の塩化物としては、LiCl、KCl、NaCl等が挙げられる。アルカリ土類金属の塩化物としては、例えば、CaCl、MgCl、BaCl、SrCl等が挙げられる。上記のアルカリ金属の塩化物及び/又はアルカリ土類金属の塩化物は、粉末の形態であってよい。また、熱処理では、還元剤として、金属カルシウム及び/又は水素化カルシウムを用いることが好ましい。 Alkali metal chlorides used in the heat treatment in the above production method include LiCl, KCl, NaCl, and the like. Chlorides of alkaline earth metals include, for example, CaCl 2 , MgCl 2 , BaCl 2 , SrCl 2 and the like. The alkali metal chlorides and/or alkaline earth metal chlorides may be in powder form. Moreover, in the heat treatment, it is preferable to use metallic calcium and/or calcium hydride as a reducing agent.

本形態では、TbCu型サマリウム-鉄合金系合金粉末(磁石原料粉末)の製造の原料に、ジルコニウムを含む化合物を利用することで、より高い温度での熱処理が可能となる。具体的には600℃超、好ましくは650℃以上、より好ましくは700℃以上での熱処理が可能となる。そのため、TbCu型サマリウム-鉄-ジルコニウム合金の単結晶粒子の割合をより多く、また異相である残留Fe相(未反応のFe)の割合をより少なくすることができるので、TbCu型サマリウム-鉄合金系合金粉末から得られる、TbCu型サマリウム-鉄-窒素系磁石粉末の磁気特性を向上させることができる。なお、熱処理の温度は、TbCu型結晶相を安定して生成するために、好ましくは850℃以下、より好ましくは800℃以下であってよい。 In the present embodiment, a compound containing zirconium is used as a raw material for manufacturing the TbCu 7 -type samarium-iron alloy powder (magnet raw material powder), which enables heat treatment at a higher temperature. Specifically, heat treatment at a temperature higher than 600° C., preferably 650° C. or higher, more preferably 700° C. or higher is possible. Therefore, the ratio of single crystal particles of the TbCu 7 - type samarium-iron-zirconium alloy can be increased, and the ratio of the residual Fe phase (unreacted Fe), which is a different phase, can be reduced. It is possible to improve the magnetic properties of the TbCu 7 type samarium-iron-nitrogen based magnet powder obtained from the iron alloy based alloy powder. The heat treatment temperature is preferably 850° C. or lower, more preferably 800° C. or lower, in order to stably generate the TbCu 7 -type crystal phase.

なお、熱処理によって得られた粉末は、洗浄処理することができる。洗浄には純水等を用いる。洗浄処理によって、熱処理後の粉末中に残存するアルカリ金属の塩化物及び/又はアルカリ土類金属の塩化物を除去することができる。さらに、上記洗浄処理の後、乾燥することができる。乾燥は、常温での真空乾燥が好ましい。乾燥処理によって、得られた合金粉末の酸化を抑制することができる。乾燥に際しては、残存している水を、イソプロパノール等の揮発性有機溶剤で置換してから行ってもよい。 In addition, the powder obtained by the heat treatment can be washed. Pure water or the like is used for washing. The washing treatment can remove alkali metal chlorides and/or alkaline earth metal chlorides remaining in the powder after the heat treatment. Furthermore, it can be dried after the cleaning treatment. Drying is preferably vacuum drying at room temperature. Oxidation of the obtained alloy powder can be suppressed by the drying treatment. Drying may be carried out after replacing remaining water with a volatile organic solvent such as isopropanol.

得られた磁石原料粉末は、窒化されて、サマリウム-鉄-ジルコニウム-窒素磁石粉末とすることができる。窒化の方法は特に限定されないが、アンモニア、アンモニアと水素との混合ガス、窒素、窒素と水素との混合ガス等の雰囲気下、300~500℃で、サマリウム-鉄-ジルコニウム合金の単結晶粒子を含む磁石材料粉末を熱処理する方法等が挙げられる。なお、磁石粉末の保磁力を高くするために最適な組成である、Sm0.667Fe5.6671.26が得られるよう単結晶粒子中の窒素の含有量を制御することが好ましい。また、窒化後のTbCu型サマリウム-鉄―窒素合金相の格子比率c/aは、TbCu型サマリウム-鉄合金相と比較して、±0.001~0.002程度の変化が生じる。 The obtained magnet raw material powder can be nitrided to obtain samarium-iron-zirconium-nitrogen magnet powder. The nitriding method is not particularly limited, but in an atmosphere such as ammonia, a mixed gas of ammonia and hydrogen, nitrogen, a mixed gas of nitrogen and hydrogen, etc., at 300 to 500 ° C., single crystal particles of a samarium-iron-zirconium alloy. A method of heat-treating the magnetic material powder contained therein, and the like. It is preferable to control the nitrogen content in the single crystal grains so as to obtain Sm 0.667 Fe 5.667 N 1.26 , which is the optimum composition for increasing the coercive force of the magnet powder. In addition, the lattice ratio c/a of the TbCu 7 -type samarium-iron-nitrogen alloy phase after nitridation changes by about ±0.001 to 0.002 compared to the TbCu 7 -type samarium-iron alloy phase.

なお、上記洗浄処理と窒化処理の順序は限定されることはなく、窒化処理の後に洗浄処理を行ってもよい。 The order of the cleaning treatment and the nitriding treatment is not limited, and the cleaning treatment may be performed after the nitriding treatment.

以下、本発明の実施例を説明するが、本発明は、以下の実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1)
[鉄及び酸化ジルコニウム混合粉末の作製]
硝酸鉄九水和物161.6g、硝酸カルシウム四水和物4.97g、及び硝酸ジルコニル二水和物2.68gを水4200mLに溶解させた後、硝酸26.8mlを加えて撹拌し、水溶液を得た。続いて、水溶液を超音波によって霧状とし、キャリアガス(大気)とともに、900℃に加熱した反応管を通すことによって、鉄-ジルコニウム酸化物粉末を作製した。さらに、得られた鉄-ジルコニウム酸化物粉末を、水素気流中500℃で6時間還元し、Fe金属粉末と酸化ジルコニウム粉末との混合物とした。
(Example 1)
[Production of mixed powder of iron and zirconium oxide]
After dissolving 161.6 g of iron nitrate nonahydrate, 4.97 g of calcium nitrate tetrahydrate, and 2.68 g of zirconyl nitrate dihydrate in 4200 mL of water, 26.8 mL of nitric acid is added and stirred to form an aqueous solution. got Subsequently, the aqueous solution was atomized by ultrasonic waves and passed through a reaction tube heated to 900° C. together with a carrier gas (atmosphere) to prepare iron-zirconium oxide powder. Further, the obtained iron-zirconium oxide powder was reduced in a hydrogen stream at 500° C. for 6 hours to obtain a mixture of Fe metal powder and zirconium oxide powder.

[サマリウム-鉄-ジルコニウム合金粉末の作製]
上述のようにして得られたFe金属粉末と酸化ジルコニウム粉末との混合物0.24gと、サマリウム金属粉末0.40gと、塩化リチウム(LiCl)0.63と、塩化カルシウム(CaCl)0.42gと、カルシウム金属0.20gを鉄製るつぼに入れ、アルゴン(Ar)雰囲気中、700℃で6時間熱処理し、サマリウム-鉄-ジルコニウム合金粉末を得た。
[Preparation of samarium-iron-zirconium alloy powder]
0.24 g of the mixture of Fe metal powder and zirconium oxide powder obtained as described above, 0.40 g of samarium metal powder, 0.63 of lithium chloride (LiCl), and 0.42 g of calcium chloride (CaCl 2 ) Then, 0.20 g of calcium metal was placed in an iron crucible and heat treated at 700° C. for 6 hours in an argon (Ar) atmosphere to obtain samarium-iron-zirconium alloy powder.

[合金粉末の洗浄]
得られたサマリウム-鉄-ジルコニウム合金粉末を純水で洗浄し、カルシウム金属、並びに未反応のサマリウム及び塩化リチウムを除去した。続いて、水をイソプロパノールで置換した後、常温で真空乾燥させた。
[Washing of alloy powder]
The obtained samarium-iron-zirconium alloy powder was washed with pure water to remove calcium metal and unreacted samarium and lithium chloride. Subsequently, after replacing water with isopropanol, vacuum drying was performed at room temperature.

(実施例2)
硝酸ジルコニル二水和物の量を5.35g、水を4200mlとしたこと以外は、実施例1と同様にして、Fe金属粉末と酸化ジルコニウム粉末との混合物を作製し、サマリウム-鉄-ジルコニウム合金粉末を作製した。さらに同様に、得られたサマリウム-鉄-ジルコニウム合金粉末を洗浄した。
(Example 2)
A mixture of Fe metal powder and zirconium oxide powder was prepared in the same manner as in Example 1 except that the amount of zirconyl nitrate dihydrate was 5.35 g and the amount of water was 4200 ml, and a samarium-iron-zirconium alloy was prepared. A powder was produced. Furthermore, similarly, the obtained samarium-iron-zirconium alloy powder was washed.

(実施例3)
硝酸ジルコニル二水和物の量を10.7g、水を4400mlとしたこと以外は、実施例1と同様にして、Fe金属粉末と酸化ジルコニウム粉末との混合物を作製し、サマリウム-鉄-ジルコニウム合金粉末を作製した。さらに同様に、得られたサマリウム-鉄-ジルコニウム合金粉末を洗浄した。
(Example 3)
A mixture of Fe metal powder and zirconium oxide powder was prepared in the same manner as in Example 1 except that the amount of zirconyl nitrate dihydrate was 10.7 g and the amount of water was 4400 ml, and a samarium-iron-zirconium alloy was prepared. A powder was produced. Furthermore, similarly, the obtained samarium-iron-zirconium alloy powder was washed.

(比較例1)
[鉄粉末の作製]
硝酸鉄九水和物161.6g、及び硝酸カルシウム四水和物4.97gを水4000mLに溶解させた後、硝酸26.8mlを加えて撹拌し、水溶液を得た。続いて、水溶液を超音波によって霧状とし、キャリアガス(大気)とともに、900℃に加熱した反応管を通すことによって、酸化鉄粉末を作製した。得られた酸化鉄粉末を、水素気流中500℃で6時間還元して鉄粉末を作製した。
(Comparative example 1)
[Production of iron powder]
After dissolving 161.6 g of iron nitrate nonahydrate and 4.97 g of calcium nitrate tetrahydrate in 4000 mL of water, 26.8 ml of nitric acid was added and stirred to obtain an aqueous solution. Subsequently, the aqueous solution was atomized by ultrasonic waves and passed through a reaction tube heated to 900° C. together with a carrier gas (atmosphere) to prepare iron oxide powder. The obtained iron oxide powder was reduced in a hydrogen stream at 500° C. for 6 hours to prepare an iron powder.

[サマリウム-鉄合金粉末の作製]
上述のようにして得られた鉄粉末0.24gと、サマリウム粉末0.40gと、塩化リチウム(LiCl)0.63と、塩化カルシウム(CaCl)0.42gと、金属カルシウム0.20gを鉄製るつぼに入れ、アルゴン(Ar)雰囲気中、600℃で6時間熱処理し、サマリウム-鉄合金粉末を得た。
[Preparation of samarium-iron alloy powder]
0.24 g of the iron powder obtained as described above, 0.40 g of samarium powder, 0.63 g of lithium chloride (LiCl), 0.42 g of calcium chloride (CaCl 2 ), and 0.20 g of metallic calcium were mixed together. It was placed in a crucible and heat treated at 600° C. for 6 hours in an argon (Ar) atmosphere to obtain samarium-iron alloy powder.

[合金粉末の洗浄]
得られたサマリウム-鉄合金粉末を、実施例1と同様に洗浄した。
[Washing of alloy powder]
The obtained samarium-iron alloy powder was washed in the same manner as in Example 1.

(比較例2)
サマリウム-鉄合金粉末を得るための熱処理の温度を700℃としたこと以外は、比較例1と同様にして、サマリウム-鉄合金粉末を得て、さらに洗浄を行った。
(Comparative example 2)
A samarium-iron alloy powder was obtained in the same manner as in Comparative Example 1, except that the heat treatment temperature for obtaining the samarium-iron alloy powder was changed to 700° C., and the powder was further washed.

(比較例3)
硝酸ジルコニル二水和物の量を21.4g、水を4800mlとしたこと以外は、実施例1と同様にして、Fe金属粉末と酸化ジルコニウム粉末との混合物を作製し、サマリウム-鉄-ジルコニウム合金粉末を作製した。さらに同様に、得られたサマリウム-鉄-ジルコニウム合金粉末を洗浄した。
(Comparative Example 3)
A mixture of Fe metal powder and zirconium oxide powder was prepared in the same manner as in Example 1 except that the amount of zirconyl nitrate dihydrate was 21.4 g and the amount of water was 4800 ml, and a samarium-iron-zirconium alloy was prepared. A powder was produced. Furthermore, similarly, the obtained samarium-iron-zirconium alloy powder was washed.

<評価・測定>
[TbCu型サマリウム-鉄-ジルコニウム単結晶粒子の有無]
サンプルと熱硬化性樹脂(G2樹脂)を体積比で等量程度をよく混合した後にFIB(Focused Ion Beam:集束イオンビーム)用試料台(ピンスタブ)上に塗布し、真空脱泡した後にホットプレートを用いて120℃で1時間加熱し硬化させた。上記で作製した試料の表面を研磨紙で乾式研磨した。研磨紙の順序は粗い研磨紙(#600)で粗研磨した後、中程度の研磨紙(#1200)でさらに研磨し、最終的に細かい研磨紙(#3000)で仕上げ研磨することによって、研磨面を鏡面とした。上記で鏡面加工した試料をFIB装置によって薄片状に加工した。上記で得た薄片の断面に対し、収差補正TEM装置を用いて300kVの加速電圧でSTEM-EDS測定(Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy:走査型透過電子顕微鏡-エネルギー分散型X線分光分析)を実施した。これにより、TbCu型Sm-Fe-Zr粒子の有無を確認した。具体的には、Zr:Sm:Feの原子比率にしてFe/(Zr+Sm)がおおよそ7.0~10.0である粒子をTbCu型サマリウム-鉄-ジルコニウム粒子とした。さらに、TEM分析(Transmission Electron Microscopy)の電子線回折像により、TbCu型サマリウム-鉄-ジルコニウム粒子の結晶性を評価し、TbCu型サマリウム-鉄-ジルコニウム単結晶粒子の有無を評価した。より具体的には,逆格子空間の格子点がスポット状であり、その格子点がTbCu型結晶構造の空間群であるP6/mmmと一致する孤立粒子を、TbCu型サマリウム-鉄-ジルコニウム単結晶粒子とした。
<Evaluation/measurement>
[Presence or absence of TbCu 7 -type samarium-iron-zirconium single crystal particles]
After mixing the sample and the thermosetting resin (G2 resin) in an equal volume ratio, apply it on a sample stage (pin stub) for FIB (Focused Ion Beam), vacuum degassing, and then hot plate and cured by heating at 120° C. for 1 hour. The surface of the sample prepared above was dry-polished with abrasive paper. The order of polishing paper is rough polishing with coarse polishing paper (#600), followed by further polishing with medium polishing paper (#1200), and finally polishing with fine polishing paper (#3000). The surface is a mirror surface. The mirror-finished sample was processed into a thin piece by an FIB apparatus. STEM-EDS measurement (Scanning Transmission Electron Microscopy-Energy Dispersive X-ray spectroscopy) was performed on the cross section of the thin piece obtained above at an acceleration voltage of 300 kV using an aberration correction TEM device. carried out. Thus, the presence or absence of TbCu 7 -type Sm--Fe--Zr particles was confirmed. Specifically, particles having a Zr:Sm:Fe atomic ratio of Fe/(Zr+Sm) of approximately 7.0 to 10.0 were used as TbCu 7 -type samarium-iron-zirconium particles. Further, the crystallinity of the TbCu 7 -type samarium-iron-zirconium particles was evaluated by electron beam diffraction images of TEM analysis (Transmission Electron Microscopy), and the presence or absence of TbCu 7 -type samarium-iron-zirconium single crystal particles was evaluated. More specifically, the lattice points of the reciprocal lattice space are spot-shaped, and the isolated particles whose lattice points coincide with P6/mmm, which is the space group of the TbCu 7 -type crystal structure, are treated as TbCu 7 -type samarium-iron-zirconium Single crystal particles were used.

[TbCu型合金相の(110)面の回折ピークに対するThZn17型合金相の(024)面の回折ピークの強度比]
X線回折装置Empyrean(Malvern Panalytical製)及びX線検出器Pixcel 1D(Malvern Panalytical製)を用いて、サマリウム-鉄-ジルコニウム合金粉末のX線回折スペクトルを測定した。具体的には、X線源として、Co管球を使用し、管電圧45kV、管電流40mA、測定角度30~60°、測定ステップ幅0.013°、幅スキャンスピード0.09°/secの条件で、サマリウム-鉄-ジルコニウム合金粉末のX線回折スペクトルを測定した。X線回折パターンの解析ソフトとして、High Score Plus(Malvern Panalytical製)を用い、最小有意度を1.00に設定して、ピークサーチ及びプロファイルフィッティングを実施した。具体的には、42.5°近傍に観測されるTbCu型合金相の(110)面の回折ピークの積分強度と、44.1°近傍に観測されるThZn17型合金相の(024)面の回折ピークの積分強度を求めた後、X線回折ピークの強度比を算出した。図1に、実施例1、比較例1及び比較例2による磁石原料粉末のX線回折スペクトルを示す。
[Intensity ratio of the diffraction peak of the (024) plane of the Th 2 Zn 17 -type alloy phase to the diffraction peak of the (110) plane of the TbCu 7 -type alloy phase]
An X-ray diffraction spectrum of the samarium-iron-zirconium alloy powder was measured using an X-ray diffractometer Empyrean (manufactured by Malvern Panalytical) and an X-ray detector Pixel 1D (manufactured by Malvern Panalytical). Specifically, a Co tube was used as the X-ray source, with a tube voltage of 45 kV, a tube current of 40 mA, a measurement angle of 30 to 60°, a measurement step width of 0.013°, and a width scan speed of 0.09°/sec. Under the conditions, the X-ray diffraction spectrum of the samarium-iron-zirconium alloy powder was measured. High Score Plus (manufactured by Malvern Panalytical) was used as analysis software for X-ray diffraction patterns, and peak search and profile fitting were performed with the minimum significance set to 1.00. Specifically, the integrated intensity of the diffraction peak of the ( 110) plane of the TbCu 7 - type alloy phase observed near 42.5° and the ( 024) surface, the intensity ratio of the X-ray diffraction peaks was calculated. FIG. 1 shows the X-ray diffraction spectra of the magnet raw material powders according to Example 1, Comparative Examples 1 and 2. In FIG.

[TbCu7型サマリウム-鉄-ジルコニウム合金の格子定数比率(c/a)]
サマリウム-鉄-ジルコニウム合金粉末のX線回折スペクトルを測定した後、リートベルト解析を実施することにより、格子定数比率(c/a)を求めた。
[Lattice constant ratio (c/a) of TbCu 7 -type samarium-iron-zirconium alloy]
After measuring the X-ray diffraction spectrum of the samarium-iron-zirconium alloy powder, the lattice constant ratio (c/a) was determined by Rietveld analysis.

[TbCu型サマリウム-鉄-ジルコニウム合金相の割合(%)]
解析ソフトHigh Score Plusを用いて、TbCu型合金相の主回折ピークである49.8°近傍に観測される(111)面の積分強度(I_TbCu)と、Fe相の主回折ピークである52.7°近傍に観測される(110)面の積分強度(I_Fe)と、TbCu型合金相とFe相以外の相の主回折ピークの積分強度(I_Other)を求め、下式
I_TbCu/(I_TbCu+I_Fe+I_Other)×100
から、TbCu型サマリウム-鉄-ジルコニウム合金相の割合(%)を算出した。
[Proportion of TbCu 7 -type samarium-iron-zirconium alloy phase (%)]
Using the analysis software High Score Plus, the integrated intensity ( I_TbCu ) of the (111) plane observed near 49.8°, which is the main diffraction peak of the TbCu 7 -type alloy phase, and the main diffraction peak of the Fe phase The integrated intensity (I_Fe) of the (110) plane observed near 52.7° and the integrated intensity (I_Other) of the main diffraction peaks of the phases other than the TbCu 7 type alloy phase and the Fe phase were obtained, and the following formula I_TbCu 7 / ( I_TbCu7 +I_Fe+I_Other)×100
From this, the ratio (%) of the TbCu 7 -type samarium-iron-zirconium alloy phase was calculated.

[残留Fe相の割合]
解析ソフトHigh Score Plus(Malvern Panalytical製)を用いて、TbCu型サマリウム-鉄-ジルコニウム合金相の主回折ピークである49.8°近傍に観測される(111)面の積分強度(I_TbCu)と、Fe相の主回折ピークである52.7°近傍に観測される(110)面の積分強度(I_Fe)と、TbCu型合金相とFe相以外のサマリウム-鉄-ジルコニウム合金相の主回折ピークの積分強度(I_Other)を求め、下式
I_Fe/(I_TbCu+I_Fe+I_Other)×100
から、残留Fe相の割合(%)を算出した。
[Proportion of residual Fe phase]
Using the analysis software High Score Plus (manufactured by Malvern Panalytical), the integrated intensity ( I_TbCu ) of the (111) plane observed near 49.8°, which is the main diffraction peak of the TbCu 7 -type samarium-iron-zirconium alloy phase. , the integrated intensity (I_Fe) of the (110) plane observed near 52.7°, which is the main diffraction peak of the Fe phase, and the TbCu 7 -type alloy phase and the main samarium-iron-zirconium alloy phases other than the Fe phase. Obtain the integrated intensity (I_Other) of the diffraction peak, and use the following formula: I_Fe/(I_TbCu 7 +I_Fe+I_Other)×100
, the ratio (%) of the residual Fe phase was calculated.

[Zr量(重量%)]
ICP-AES(Inductively Coupled Plasma Atomic Emission Spectroscopy:発光分光分析法)を用いて、Zrの重量比率(重量%)を測定した。
[Zr amount (% by weight)]
The weight ratio (% by weight) of Zr was measured using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy).

[TbCu型サマリウム-鉄-ジルコニウム合金粒子の平均粒子径]
SEM-EDS測定(Scanning Electron Microscopy-Energy Dispersive Spectroscopy:走査型電子顕微鏡-エネルギー分散型X線分光分析)を実施した。これにより、TbCu型Sm-Fe-Zr粒子を選定した。具体的には、Zr:Sm:Feの原子比率にしてFe/(Zr+Sm)がおおよそ7.0~10.0である粒子をTbCu型サマリウム-鉄-ジルコニウム粒子とした。さらに、SEM分析(Scanning Electron Microscopy)の電子線回折像により、TbCu型サマリウム-鉄-ジルコニウム粒子の中から、無作為に100個以上を選定し、これらの粒子直径を測定し、その平均を平均粒子径とした。ここで、結晶粒子径Dは円相当径を使用したため、結晶粒子径Dと面積Sを用いて D=√(4S/π) で定義した。
[Average particle size of TbCu 7 -type samarium-iron-zirconium alloy particles]
SEM-EDS measurements (Scanning Electron Microscopy--Energy Dispersive Spectroscopy) were performed. As a result, TbCu 7 -type Sm--Fe--Zr particles were selected. Specifically, particles having a Zr:Sm:Fe atomic ratio of Fe/(Zr+Sm) of approximately 7.0 to 10.0 were used as TbCu 7 -type samarium-iron-zirconium particles. Furthermore, from the electron beam diffraction image of SEM analysis (Scanning Electron Microscopy), 100 or more TbCu 7 -type samarium-iron-zirconium particles were randomly selected, the particle diameters of these particles were measured, and the average was It was taken as the average particle size. Here, the crystal grain diameter D was defined by D=√(4S/π) using the crystal grain diameter D and the area S because the equivalent circle diameter was used.

表1に、実施例1~3及び比較例1~3の製造条件及び評価結果を示す。 Table 1 shows the production conditions and evaluation results of Examples 1 to 3 and Comparative Examples 1 to 3.

Figure 2022152677000002
Figure 2022152677000002

表1より、比較例1では600℃の熱処理によりTbCu型サマリウム-鉄系合金粉末が得られているがFe相が観測された。その残留Fe相を低減するために700℃で熱処理を行なった結果、残留Fe相が低減されたが700℃ではThZn17型サマリウム-鉄系合金が安定化し、TbCu型サマリウム-鉄系合金粉末は得られなかった。本発明の実施例1~実施例3では、ジルコニウムを含む合金系の単結晶粒子を含むTbCu型サマリウム-鉄系合金粉末であって、鉄相の生成が低減された磁石原料粉末が得られている。これは、TbCu型サマリウム-鉄系合金粉末にジルコニウムが添加されることでTbCu型構造が安定化したことに起因すると考えられる。一方、過剰なジルコニウムを含んでいる比較例3ではTbCu型サマリウム-鉄系合金粉末は得られていない。これは、Zrが多すぎる場合にはZrFe相等のZrリッチ相が形成され、結果的にTbCu型サマリウム-鉄系合金相にZrが導入されなかったことが原因であると考えられる。 From Table 1, in Comparative Example 1, a TbCu 7 -type samarium-iron alloy powder was obtained by heat treatment at 600° C., but an Fe phase was observed. In order to reduce the residual Fe phase, heat treatment was performed at 700 ° C. As a result, the residual Fe phase was reduced, but at 700 ° C., the Th 2 Zn 17 -type samarium-iron alloy was stabilized, and the TbCu 7 -type samarium-iron alloy was stabilized. No alloy powder was obtained. In Examples 1 to 3 of the present invention, a TbCu 7 -type samarium-iron alloy powder containing zirconium-containing alloy-based single crystal particles, which is a magnet raw material powder in which the formation of an iron phase is reduced, was obtained. ing. This is probably because the TbCu 7 -type structure was stabilized by adding zirconium to the TbCu 7 -type samarium-iron alloy powder. On the other hand, in Comparative Example 3 containing excess zirconium, no TbCu 7 -type samarium-iron alloy powder was obtained. This is probably because Zr-rich phases such as ZrFe 2 phase were formed when Zr was too much, and as a result, Zr was not introduced into the TbCu 7 -type samarium-iron alloy phase.

Claims (9)

TbCu型サマリウム-鉄-ジルコニウム合金の単結晶粒子を含む、磁石原料粉末。 A magnet raw material powder comprising single crystal particles of a TbCu type 7 samarium-iron-zirconium alloy. X線回折スペクトルにおけるTbCu型サマリウム-鉄-ジルコニウム合金相の(110)面の回折ピークに対するSmFe17相の(024)面の回折ピークの強度比が0.4以下である、請求項1に記載の磁石原料粉末。 The intensity ratio of the diffraction peak of the (024) plane of the Sm 2 Fe 17 phase to the diffraction peak of the (110) plane of the TbCu 7 -type samarium-iron-zirconium alloy phase in the X-ray diffraction spectrum is 0.4 or less. 2. The magnet raw material powder according to 1. TbCu型サマリウム-鉄-ジルコニウム合金相の格子定数比率c/aが0.84以上である、請求項1又は2に記載の磁石原料粉末。 3. The magnet raw material powder according to claim 1, wherein the TbCu 7 -type samarium-iron-zirconium alloy phase has a lattice constant ratio c/a of 0.84 or more. TbCu型サマリウム-鉄-ジルコニウム合金相の割合が95%以上である、請求項1乃至3のいずれか一項に記載の磁石原料粉末。 4. The magnet raw material powder according to claim 1, wherein the proportion of the TbCu 7 -type samarium-iron-zirconium alloy phase is 95% or more. 前記磁石原料粉末全量に対し、Zr量が0.5重量%以上8.0重量%以下である、請求項1乃至4のいずれか一項に記載の磁石原料粉末。 The raw magnet powder according to any one of claims 1 to 4, wherein the amount of Zr is 0.5 wt% or more and 8.0 wt% or less with respect to the total amount of the raw magnet powder. Fe相の割合が5%以下である、請求項1乃至5のいずれか一項に記載の磁石原料粉末。 The magnet raw material powder according to any one of claims 1 to 5, wherein the proportion of Fe phase is 5% or less. 前記TbCu型サマリウム-鉄-ジルコニウム合金の粒子の粒径が0.5μm以上3μm以下である、請求項1乃至6のいずれか一項に記載の磁石原料粉末。 7. The magnet raw material powder according to claim 1, wherein the TbCu 7 -type samarium-iron-zirconium alloy particles have a particle size of 0.5 μm or more and 3 μm or less. 請求項1乃至7のいずれか一項に記載の磁石原料粉末の窒化物を含む、磁石粉末。 A magnet powder comprising a nitride of the magnet raw material powder according to any one of claims 1 to 7. 金属鉄と、酸化ジルコニウムと、金属サマリウム若しくはサマリウム化合物又はそれらの混合物と、アルカリ金属の塩化物及び/又はアルカリ土類金属の塩化物と、還元剤とを混合して熱処理することによって、TbCu型サマリウム-鉄-ジルコニウム合金の単結晶粒子を含む磁石原料粉末を得る、磁石原料粉末の製造方法。 TbCu 7 by mixing and heat-treating metallic iron, zirconium oxide, metallic samarium or samarium compounds or mixtures thereof, alkali metal chlorides and/or alkaline earth metal chlorides, and a reducing agent. A method for producing a magnet raw material powder, comprising obtaining a magnet raw material powder containing single crystal particles of a samarium-iron-zirconium alloy.
JP2021055532A 2021-03-29 2021-03-29 Magnet raw material powder, magnet powder, and manufacturing method of magnet raw material powder Pending JP2022152677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021055532A JP2022152677A (en) 2021-03-29 2021-03-29 Magnet raw material powder, magnet powder, and manufacturing method of magnet raw material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021055532A JP2022152677A (en) 2021-03-29 2021-03-29 Magnet raw material powder, magnet powder, and manufacturing method of magnet raw material powder

Publications (2)

Publication Number Publication Date
JP2022152677A true JP2022152677A (en) 2022-10-12
JP2022152677A5 JP2022152677A5 (en) 2023-12-15

Family

ID=83555855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021055532A Pending JP2022152677A (en) 2021-03-29 2021-03-29 Magnet raw material powder, magnet powder, and manufacturing method of magnet raw material powder

Country Status (1)

Country Link
JP (1) JP2022152677A (en)

Similar Documents

Publication Publication Date Title
JP6845491B2 (en) Samarium-iron-nitrogen magnet powder and its manufacturing method
JP4837675B2 (en) High tap density ultrafine spherical metallic nickel powder and wet manufacturing method thereof
JP2008521745A (en) Improved system and method for the synthesis of gallium nitride powders
JP4737161B2 (en) Rare earth-iron-nitrogen based magnetic powder and method for producing the same
CN112384471A (en) Negative thermal expansion material, method for producing same, and composite material
US20220165463A1 (en) Solid composite material comprising nanoparticles and an alloy based on manganese, aluminum and optionally carbon, and method for producing the same
Kanerva et al. Chemical synthesis of WC–Co from water-soluble precursors: The effect of carbon and cobalt additions to WC synthesis
JP2005170760A (en) Fine particle and method of manufacturing the same
KR20230104343A (en) Method for manufacturing tungsten carbide particles and tungsten carbide particles prepared therefrom
Armetta et al. Synthesis of yttrium aluminum garnet nanoparticles in confined environment II: Role of the thermal treatment on the composition and microstructural evolution
JP2022152677A (en) Magnet raw material powder, magnet powder, and manufacturing method of magnet raw material powder
JP7137830B2 (en) Method for producing alloy particles and alloy particles
JP6660943B2 (en) Production method of plate-like alumina powder
Hasan et al. Synthesis of nanostructured lanthanum hexaboride via simple borothermal routes at low temperatures
CN112533872B (en) Garnet-type composite metal oxide and method for producing same
Pandit Synthesis and characterization of Yb doped Y2O3 nanopowder for transparent laser host ceramic materials
KR100456797B1 (en) FABRICATION METHOD OF NANOCRYSTALLINE TiN/Ti-M COMPOSITE POWDER VIA REACTION MILLING
Singh et al. Synthesis and local electronic structure of calcite nanoparticles
WO2020183886A1 (en) Anisotropic magnet powder, anisotropic magnet, and method for manufacturing anisotropic magnet powder
JP7349173B2 (en) Metastable single crystal rare earth magnet fine powder and its manufacturing method
KR20230136165A (en) Film forming materials, film forming slurry, thermal spray coating, and thermal spraying members
JP2011050829A (en) Method and apparatus for manufacturing particulate
WO2024053257A1 (en) Material for film formation and method for producing coating film
WO2023181547A1 (en) Samarium-iron-nitrogen based magnet powder and samarium-iron-nitrogen based magnet
JP7103612B2 (en) Rare earth metal-transition metal alloy powder manufacturing method and samarium-iron alloy powder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231206