JP2022148091A - steel member - Google Patents

steel member Download PDF

Info

Publication number
JP2022148091A
JP2022148091A JP2021049620A JP2021049620A JP2022148091A JP 2022148091 A JP2022148091 A JP 2022148091A JP 2021049620 A JP2021049620 A JP 2021049620A JP 2021049620 A JP2021049620 A JP 2021049620A JP 2022148091 A JP2022148091 A JP 2022148091A
Authority
JP
Japan
Prior art keywords
mass
steel
steel member
content
unavoidable impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021049620A
Other languages
Japanese (ja)
Inventor
啓介 渡邉
Keisuke Watanabe
盛彦 中崎
Morihiko Nakasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2021049620A priority Critical patent/JP2022148091A/en
Publication of JP2022148091A publication Critical patent/JP2022148091A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

To inhibit strain during quenching by the chemical compositional design of a steel member, without using a production process such as vacuum-cooling.SOLUTION: A steel member comprises chemical components of C: 0.20-0.30 mass%, Si: 0.30-0.80 mass%, Mn: 0.10-0.50 mass%, Cr: 1.50-2.20 mass%, with the balance being Fe and unavoidable impurities. The steel member also may comprise Ni: 0.40-3.50 mass% and/or Mo: 0.15-0.45 mass%.SELECTED DRAWING: None

Description

本発明は、鋼部材、特に鋼部材の浸炭焼入れ時に不可避的に発生する熱処理歪を抑制する技術に関する。 TECHNICAL FIELD The present invention relates to a technique for suppressing heat treatment distortion that inevitably occurs during carburizing and quenching of steel members, particularly steel members.

歯車等の鋼部材は、靭性を維持しながら表面硬度を高めるために浸炭焼入れ処理が行われる場合が多い。浸炭焼入れ処理は、鋼部材をオーステナイト化温度以上に昇温した状態で表面の炭素濃度を増大させる浸炭処理を行った後に、焼入れ処理を行って芯部の靭性を確保するとともに、表面硬度を高める処理である。 Steel members such as gears are often carburized and quenched to increase surface hardness while maintaining toughness. In the carburizing and quenching process, the steel member is heated to the austenitizing temperature or higher, and then carburized to increase the carbon concentration on the surface, followed by quenching to ensure the toughness of the core and increase the surface hardness. processing.

浸炭焼入れ処理として、出側に油焼入れ槽を備えた大型の熱処理炉を用いて、鋼部材を長時間浸炭処理した直後に油焼入れする方法が知られている。焼入れ時の冷却剤を油とする理由は、水の場合よりも比較的緩やかな冷却が行えることによる歪みの抑制を目的としたものである。しかしながら、油焼入れを行っても、上記従来の方法で浸炭焼入れ処理を行った鋼部材は、歪みの発生の問題を解消することが困難であり、高い寸法精度が必要な部材については、浸炭焼入れ後に切削、研削、研磨等の工程が必要となっていた。 As a carburizing and quenching treatment, a method is known in which a steel member is carburized for a long period of time in a large heat treatment furnace equipped with an oil quenching tank on the exit side, and then immediately after the oil quenching. The reason why oil is used as a coolant during quenching is to suppress distortion due to relatively gentle cooling compared to water. However, even if oil quenching is performed, it is difficult to solve the problem of distortion in steel members that have been carburized and quenched by the above-mentioned conventional method. Processes such as cutting, grinding, and polishing were required later.

浸炭処理後の焼入れ処理として、部品全体に焼入れ処理を行うのではなく局所的に焼入れを行う高周波焼入れ方法を適用することが考えられる。しかしながら、単純に高周波焼入れ処理を適用しただけでは、歪発生を十分に抑制することができない。これは、浸炭処理直後、焼入れ前の冷却時に生じる歪による。 As the hardening treatment after the carburizing treatment, it is conceivable to apply an induction hardening method in which hardening is performed locally instead of hardening the entire part. However, simply applying induction hardening cannot sufficiently suppress the occurrence of distortion. This is due to strain that occurs during cooling immediately after carburizing and before quenching.

この問題点を解決する方法として、特許文献1には、鋼部材をオーステナイト化温度以上に昇温する熱処理を行った後に鋼部材を冷却する方法において、上記鋼部材の冷却開始から所定の期間は、雰囲気ガスを大気圧よりも低く減圧した状態で冷却する減圧冷却を行う方法が開示されている。 As a method for solving this problem, Patent Document 1 discloses a method of cooling a steel member after performing a heat treatment for raising the temperature of the steel member to a temperature equal to or higher than the austenitizing temperature. , discloses a method of performing decompression cooling in which atmospheric gas is cooled in a state of being decompressed below atmospheric pressure.

特開2008-45200号公報Japanese Patent Application Laid-Open No. 2008-45200

特許文献1では、減圧冷却するための工程が必要となるため、工程費用が増大するおそれがある。
本発明は、減圧冷却方法等の製造プロセスではなく鋼部材の化学成分設計によって焼入れ時の歪を抑制することを目的とする。
In Patent Document 1, a process for cooling under reduced pressure is required, which may increase the process cost.
An object of the present invention is to suppress distortion during quenching by designing the chemical composition of a steel member rather than by a manufacturing process such as a decompression cooling method.

上記課題を解決するために、本発明に係る鋼部材は(1)C:0.20~0.30質量%、Si:0.30~0.80質量%、Mn:0.10~0.50質量%、Cr:1.50~2.20質量%の化学成分を有し、残部がFe及び不可避不純物からなる。 In order to solve the above problems, the steel member according to the present invention has (1) C: 0.20 to 0.30% by mass, Si: 0.30 to 0.80% by mass, Mn: 0.10 to 0.10% by mass. 50% by mass, Cr: 1.50 to 2.20% by mass, with the balance being Fe and unavoidable impurities.

本発明に係る鋼部材は(2)C:0.20~0.30質量%、Si:0.30~0.80質量%、Mn:0.10~0.50質量%、Cr:1.50~2.20質量%、Ni:0.40~3.50質量%の化学成分を有し、残部がFe及び不可避不純物からなる。 The steel member according to the present invention has (2) C: 0.20 to 0.30% by mass, Si: 0.30 to 0.80% by mass, Mn: 0.10 to 0.50% by mass, Cr: 1.0% by mass. It has a chemical composition of 50 to 2.20 mass %, Ni: 0.40 to 3.50 mass %, and the balance consists of Fe and unavoidable impurities.

本発明に係る鋼部材は(3)C:0.20~0.30質量%、Si:0.30~0.80質量%、Mn:0.10~0.50質量%、Cr:1.50~2.20質量%、Mo:0.15~0.45質量%の化学成分を有し、残部がFe及び不可避不純物からなる。 The steel member according to the present invention has (3) C: 0.20 to 0.30% by mass, Si: 0.30 to 0.80% by mass, Mn: 0.10 to 0.50% by mass, Cr: 1.0% by mass. It has a chemical composition of 50 to 2.20% by mass, Mo: 0.15 to 0.45% by mass, and the balance consists of Fe and unavoidable impurities.

本発明に係る鋼部材は(4)C:0.20~0.30質量%、Si:0.30~0.80質量%、Mn:0.10~0.50質量%、Cr:1.50~2.20質量%、Ni:0.40~3.50質量%、Mo:0.15~0.45質量%の化学成分を有し、残部がFe及び不可避不純物からなる。 The steel member according to the present invention has (4) C: 0.20 to 0.30% by mass, Si: 0.30 to 0.80% by mass, Mn: 0.10 to 0.50% by mass, Cr: 1.0% by mass. It has chemical components of 50 to 2.20% by mass, Ni: 0.40 to 3.50% by mass, Mo: 0.15 to 0.45% by mass, and the balance is Fe and unavoidable impurities.

本発明によれば、化学成分設計によって鋼部材のオーステナイト降伏強度を高めることができる。これにより、鋼部材の浸炭焼入れ時に不可避的に発生する熱処理歪(塑性変形)を抑制することができる。 According to the present invention, the austenite yield strength of steel members can be increased by chemical composition design. As a result, it is possible to suppress the heat treatment strain (plastic deformation) that inevitably occurs during carburizing and quenching of the steel member.

試験片の概略図である(第1実施例)。It is a schematic diagram of a test piece (first example). 試験片の概略図である(第2実施例)。It is the schematic of a test piece (2nd Example).

本実施形態の鋼部材は、靭性、表面硬度及び低歪性が求められる部品に広く用いることができる。この種の部品には、例えば車両部品としてのギヤ、シャフトが含まれる。モータを車両走行用の動力部として有する車両(電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車)においては、本実施形態の鋼部材を母材とする歪の少ない部品を用いることにより、車両走行時の静粛性を高めることができる。 The steel member of this embodiment can be widely used for parts that require toughness, surface hardness, and low distortion. Such parts include, for example, gears and shafts as vehicle parts. In a vehicle (electric vehicle, hybrid vehicle, plug-in hybrid vehicle) having a motor as a power unit for running the vehicle, by using parts with less distortion using the steel member of the present embodiment as a base material, Quietness can be enhanced.

(第1実施形態)
本実施形態の鋼部材は、C:0.20~0.30質量%、Si:0.30~0.80質量%、Mn:0.10~0.50質量%、Cr:1.50~2.20質量%の化学成分を有し、残部がFe及び不可避不純物からなる。化学成分は、溶鋼分析(JIS G0320)もしくは鋼材や部品の化学分析によって求めることができる。鋼部材の化学成分は、鋼の製造プロセスに含まれる溶鋼精錬工程において調整することができる。以下、各化学成分の含有率及び限定理由について説明する。
(First embodiment)
The steel member of this embodiment has C: 0.20 to 0.30% by mass, Si: 0.30 to 0.80% by mass, Mn: 0.10 to 0.50% by mass, Cr: 1.50 to 2. It has a chemical composition of 20% by mass, and the balance consists of Fe and unavoidable impurities. The chemical composition can be determined by molten steel analysis (JIS G0320) or chemical analysis of steel materials and parts. The chemical composition of the steel member can be adjusted in the molten steel refining process included in the steel manufacturing process. The content of each chemical component and the reason for limitation will be described below.

(Cについて)
Cは鋼部材の必須化学成分である。Cの含有率は、鋼部材全体を100質量%としたとき、0.20~0.30質量%であり、好ましくは0.22~0.26質量%である。Cは、鋼部材の硬さや芯部における焼入れ性、熱間や冷間での鍛造性、機械加工性に影響を与える元素である。Cの含有率を0.20~0.30質量%とすることにより、鋼部材の硬さを確保できるとともに、被削性および鍛造性等の加工性が阻害されることを抑制できる。Cの含有率が0.20質量%未満である場合には、浸炭処理後に鋼部材の芯部硬さが低下して、強度不足になる。一方、Cの含有率が0.30質量%よりも高い場合には、鋼材の硬さが増加することにより、被削性および鍛造性等の加工性が阻害されてしまう。
(About C)
C is an essential chemical component of steel members. The content of C is 0.20 to 0.30% by mass, preferably 0.22 to 0.26% by mass, when the entire steel member is 100% by mass. C is an element that affects the hardness of the steel member, the hardenability of the core, hot and cold forgeability, and machinability. By setting the C content to 0.20 to 0.30% by mass, it is possible to ensure the hardness of the steel member and to suppress deterioration of workability such as machinability and forgeability. If the C content is less than 0.20% by mass, the hardness of the core of the steel member decreases after carburizing treatment, resulting in insufficient strength. On the other hand, if the C content is higher than 0.30% by mass, the hardness of the steel increases, impairing workability such as machinability and forgeability.

(Siについて)
Siは鋼部材の必須化学成分である。Siの含有率は、鋼部材全体を100質量%としたとき、0.30~0.80質量%であり、好ましくは0.40~0.70質量%である。Siは、脱酸に必要な元素であり、また、鋼材の強度を高めて、疲労に伴う鋼材の組織変化の抑制や、疲労寿命の向上に寄与する元素であるとともに、浸炭処理時に不可避的に発生する熱処理歪の軽減に寄与する元素である。これらの効果を得るためには、Siの含有率を0.30質量%以上とする必要がある。一方、Siの含有率を0.80質量%よりも高くすると、鋼材の硬さが増加することにより、被削性および鍛造性等の加工性や浸炭が阻害される。
(About Si)
Si is an essential chemical component of steel members. The content of Si is 0.30 to 0.80% by mass, preferably 0.40 to 0.70% by mass, when the entire steel member is 100% by mass. Si is an element necessary for deoxidation, and is an element that increases the strength of steel materials, suppresses structural changes in steel materials due to fatigue, and contributes to improving fatigue life. It is an element that contributes to the reduction of heat treatment strain that occurs. In order to obtain these effects, the Si content must be 0.30% by mass or more. On the other hand, when the Si content is higher than 0.80% by mass, the hardness of the steel material increases, impeding workability such as machinability and forgeability, as well as carburization.

(Mnについて)
Mnは鋼部材の必須化学成分である。Mnの含有率は、鋼部材全体を100質量%としたとき、0.10~0.50質量%であり、好ましくは0.20~0.40質量%である。Mnは焼入性の確保に必要な元素であり、0.10質量%以上が必要である。一方、Mnの含有率を0.50質量%よりも高くすると、鋼材の硬さが増加することにより、被削性および鍛造性等の加工性が阻害される。
(About Mn)
Mn is an essential chemical component of steel members. The Mn content is 0.10 to 0.50% by mass, preferably 0.20 to 0.40% by mass, when the entire steel member is 100% by mass. Mn is an element necessary for ensuring hardenability, and its content is required to be 0.10% by mass or more. On the other hand, when the Mn content is higher than 0.50% by mass, the hardness of the steel increases, impairing workability such as machinability and forgeability.

(Crについて)
Crは鋼部材の必須化学成分である。Crの含有率は、鋼部材全体を100質量%としたとき、1.50~2.20質量%であり、好ましくは1.70~1.90質量%である。Crは球状化焼なまし組織における球状化炭化物を増やしたり、浸炭処理時に不可避的に発生する熱処理歪を軽減するために1.50質量%以上必要である。一方、Crの含有率を2.20質量%よりも高くすると、鋼材の硬さが増加することにより、被削性および鍛造性等の加工性が阻害される。
(About Cr)
Cr is an essential chemical component of steel members. The Cr content is 1.50 to 2.20% by mass, preferably 1.70 to 1.90% by mass, when the entire steel member is 100% by mass. Cr is required to be 1.50% by mass or more in order to increase spheroidized carbides in the spheroidized annealed structure and to reduce heat treatment strain that inevitably occurs during carburizing treatment. On the other hand, if the Cr content is higher than 2.20% by mass, the hardness of the steel increases, impairing workability such as machinability and forgeability.

(Fe及び不可避不純物について)
Feは鋼部材の主要金属である。不可避不純物とは、鋼の製造過程において、意図せず混入し、除去しきれずに残存する不純物である。C、Si、Mn、Crはいずれも本実施形態の鋼部材の必須化学成分であるため、不可避不純物ではない。本実施形態の不可避不純物には、Ni、Moが含まれる場合がある。言うまでもないが、Niが不可避不純物として含まれている場合であっても、その含有率が後述する第2実施形態に示す下限値(0.40質量%)を超えることはない。また、Moが不可避不純物として含まれている場合であっても、その含有率が後述する第3実施形態に示す下限値(0.15質量%)を超えることはない。なお、P及びSが不可避不純物として含まれることもある(第2~第4実施形態においても同様である)。Pは、スクラップから含有される不可避不純物であるが、オーステナイト粒界に偏析して衝撃強度や曲げ強度などの靱性を低下させる。そこで、Pは0.030質量%以下に制限することが望ましい。Sは、被削性を向上させる元素である。しかし、Sは非金属介在物MnSを生成して靱性および疲労強度を低下させる。そこで、Sは0.030%以下に制限することが望ましい。
(Regarding Fe and inevitable impurities)
Fe is the main metal in steel members. Unavoidable impurities are impurities that are unintentionally mixed in during the steel manufacturing process and remain unremoved. C, Si, Mn, and Cr are all essential chemical components of the steel member of the present embodiment, and are not inevitable impurities. The unavoidable impurities of this embodiment may include Ni and Mo. Needless to say, even when Ni is contained as an unavoidable impurity, the content does not exceed the lower limit (0.40% by mass) shown in the second embodiment described later. Moreover, even when Mo is contained as an unavoidable impurity, the content does not exceed the lower limit (0.15% by mass) shown in the third embodiment described later. Incidentally, P and S may be contained as unavoidable impurities (the same applies to the second to fourth embodiments). P, which is an unavoidable impurity contained in scrap, segregates at austenite grain boundaries and lowers toughness such as impact strength and bending strength. Therefore, it is desirable to limit P to 0.030% by mass or less. S is an element that improves machinability. However, S forms non-metallic inclusions MnS to reduce toughness and fatigue strength. Therefore, it is desirable to limit S to 0.030% or less.

(第2実施形態)
本実施形態の鋼部材は、C:0.20~0.30質量%、Si:0.30~0.80質量%、Mn:0.10~0.50質量%、Cr:1.50~2.20質量%、Ni:0.40~3.50質量%の化学成分を有し、残部がFe及び不可避不純物からなる。C、Si、Mn、Crの含有率の限定理由は、第1実施形態で詳述したから説明を繰り返さない。
(Second embodiment)
The steel member of this embodiment has C: 0.20 to 0.30% by mass, Si: 0.30 to 0.80% by mass, Mn: 0.10 to 0.50% by mass, Cr: 1.50 to 2.20% by mass, Ni: 0.40 to 3.50% by mass, and the balance being Fe and unavoidable impurities. The reason for limiting the contents of C, Si, Mn, and Cr has been explained in detail in the first embodiment, so the explanation will not be repeated.

(Niについて)
Niの含有率は、鋼部材全体を100質量%としたとき、0.40~3.50質量%であり、好ましくは0.50~2.50質量%である。Niは、鋼部材の焼入れ性及び靭性を向上させるとともに、浸炭処理時に不可避的に発生する熱処理歪の軽減に寄与する元素である。この効果を発現させるためには、Niを0.40質量%以上含有させることが好ましい。一方、Niの含有率を3.50質量%よりも高くすると、鋼材の硬さが増加することにより、被削性および鍛造性等の加工性が阻害されるとともに、コストが増大する。
(About Ni)
The content of Ni is 0.40 to 3.50% by mass, preferably 0.50 to 2.50% by mass, when the entire steel member is 100% by mass. Ni is an element that improves the hardenability and toughness of steel members and contributes to reducing heat treatment strain that inevitably occurs during carburizing. In order to exhibit this effect, it is preferable to contain 0.40% by mass or more of Ni. On the other hand, when the Ni content is higher than 3.50% by mass, the hardness of the steel material increases, impeding workability such as machinability and forgeability, and increasing the cost.

C、Si、Mn、Cr、Niはいずれも本実施形態の鋼部材の必須化学成分であるため、不可避不純物ではない。本実施形態の不可避不純物には、Moが含まれる場合がある。Moが不可避不純物として含まれている場合であっても、その含有率が後述する第3実施形態に示す下限値(0.15質量%)を超えることはない。 C, Si, Mn, Cr, and Ni are all essential chemical components of the steel member of the present embodiment, and are not inevitable impurities. The unavoidable impurities of this embodiment may contain Mo. Even when Mo is contained as an unavoidable impurity, the content does not exceed the lower limit (0.15% by mass) shown in the third embodiment described later.

(第3実施形態)
本実施形態の鋼部材は、C:0.20~0.30質量%、Si:0.30~0.80質量%、Mn:0.10~0.50質量%、Cr:1.50~2.20質量%、Mo:0.15~0.45質量%の化学成分を有し、残部がFe及び不可避不純物からなる。C、Si、Mn、Crの含有率の限定理由は、第1実施形態で詳述したから説明を繰り返さない。
(Third embodiment)
The steel member of this embodiment has C: 0.20 to 0.30% by mass, Si: 0.30 to 0.80% by mass, Mn: 0.10 to 0.50% by mass, Cr: 1.50 to 2.20% by mass, Mo: 0.15 to 0.45% by mass, with the balance being Fe and unavoidable impurities. The reason for limiting the contents of C, Si, Mn, and Cr has been explained in detail in the first embodiment, so the explanation will not be repeated.

(Moについて)
Moの含有率は、鋼部材全体を100質量%としたとき、0.15~0.45質量%であり、好ましくは0.25~0.40質量%である。Moは鋼部材の焼入れ性を向上させるとともに、浸炭処理時に不可避的に発生する熱処理歪の軽減に寄与する元素である。この効果を発現させるためには、Moを0.15質量%以上含有させることが好ましい。一方、Moの含有率を0.45質量%よりも高くすると、鋼材の硬さが増大することにより、被削性および鍛造性等の加工性が阻害されるとともに、コストが増大する。
(About Mo)
The content of Mo is 0.15 to 0.45% by mass, preferably 0.25 to 0.40% by mass, when the entire steel member is 100% by mass. Mo is an element that improves the hardenability of steel members and contributes to reducing heat treatment strain that inevitably occurs during carburizing. In order to express this effect, it is preferable to contain 0.15% by mass or more of Mo. On the other hand, when the Mo content is higher than 0.45% by mass, the hardness of the steel material increases, impeding workability such as machinability and forgeability, and increasing the cost.

C、Si、Mn、Cr、Moはいずれも本実施形態の鋼部材の必須化学成分であるため、不可避不純物ではない。本実施形態の不可避不純物には、Niが含まれる場合がある。Niが不可避不純物として含まれている場合であっても、その含有率が前述の第2実施形態に示す下限値(0.40質量%)を超えることはない。 C, Si, Mn, Cr, and Mo are all essential chemical components of the steel member of the present embodiment, and are not inevitable impurities. The unavoidable impurities of the present embodiment may contain Ni. Even when Ni is contained as an unavoidable impurity, the content does not exceed the lower limit (0.40% by mass) shown in the second embodiment.

(第4実施形態)
本実施形態の鋼部材は、C:0.20~0.30質量%、Si:0.30~0.80質量%、Mn:0.10~0.50質量%、Cr:1.50~2.20質量%、Ni:0.40~3.50質量%、Mo:0.15~0.45質量%の化学成分を有し、残部がFe及び不可避不純物からなる。C、Si、Mn、Cr、Ni、Moの含有率の限定理由は、第1~第3実施形態で詳述したから詳細な説明を省略する。C、Si、Mn、Cr、Ni、Moはいずれも本実施形態の鋼部材の必須化学成分であるため、不可避不純物ではない。
(Fourth embodiment)
The steel member of this embodiment has C: 0.20 to 0.30% by mass, Si: 0.30 to 0.80% by mass, Mn: 0.10 to 0.50% by mass, Cr: 1.50 to 2.20% by mass, Ni: 0.40 to 3.50% by mass, Mo: 0.15 to 0.45% by mass, and the balance consists of Fe and unavoidable impurities. The reasons for limiting the contents of C, Si, Mn, Cr, Ni, and Mo have been explained in detail in the first to third embodiments, so a detailed explanation will be omitted. C, Si, Mn, Cr, Ni, and Mo are all essential chemical components of the steel member of the present embodiment, and are not inevitable impurities.

実施例を示しながら、本発明について具体的に説明する。

Figure 2022148091000001
(第1実施例)
表1の各試料の化学成分からなる素材を真空溶解炉にて溶製し、100(kg)の鋼塊を作製した。溶製した鋼塊を1250(℃)の加熱温度で10.8(ks)加熱した後に直径65(mm)の棒鋼に鍛伸し、空冷した。圧延を想定して、925(℃)の加熱温度で3.6(ks)加熱した後に空冷する焼ならし処理を実施した。この焼ならし材の中周部より図1に示すキー溝付き試験片を切り出した。この試験片を850(℃)で2(hr)保定後、油面に対して垂直な状態で100(℃)の油で焼入れを行った。試験片中部の振れをダイヤルゲージにて測定した。振れ量が0.82(mm)超の場合には比較例、振れ量が0.82(mm)以下の場合には発明例と評価した。なお、表1では発明例を発明鋼、比較例を従来鋼と表記した。また、各試料に不可避不純物として含まれる元素は、「-」と表記した。 The present invention will be specifically described with reference to examples.
Figure 2022148091000001
(First embodiment)
A raw material having the chemical composition of each sample shown in Table 1 was melted in a vacuum melting furnace to produce a steel ingot of 100 (kg). After heating the melted steel ingot for 10.8 (ks) at a heating temperature of 1250 (°C), it was forged into a steel bar with a diameter of 65 (mm) and air-cooled. Assuming rolling, a normalizing treatment was performed by heating for 3.6 (ks) at a heating temperature of 925 (°C) and then air cooling. A test piece with a keyway shown in FIG. 1 was cut out from the middle circumference of this normalized material. After holding this test piece at 850° C. for 2 hours, it was quenched in oil at 100° C. in a state perpendicular to the oil surface. The run-out of the middle portion of the test piece was measured with a dial gauge. When the deflection amount exceeded 0.82 (mm), it was evaluated as a comparative example, and when the deflection amount was 0.82 (mm) or less, it was evaluated as an invention example. In Table 1, invention examples are indicated as invention steel, and comparative examples are indicated as conventional steel. An element contained as an unavoidable impurity in each sample is indicated by "-".

(第2実施例)
表1の各試料の化学成分からなる素材を真空溶解炉にて溶製し、100(kg)の鋼塊を作製した。溶製した鋼塊を1250(℃)の加熱温度で10.8(ks)加熱した後に直径65(mm)の棒鋼に鍛伸し、空冷した。圧延を想定して、925(℃)の加熱温度で3.6(ks)加熱した後に空冷する焼ならし処理を実施した。この焼ならし材の中周部より図2に示す引張試験片を切り出した。試験片中央部を900℃に加熱しオーステナイト化した後、1(mm/s)の引張速度で引張試験を行った。この応力-ひずみ曲線より降伏応力(γ降伏応力)を求めた。γ降伏応力が134(MPa)未満の場合には比較例、γ降伏応力が134(MPa)以上の場合には発明例と評価した。なお、本発明の必須元素とともに、必須元素以外の元素を含有する鋼部材であっても「振れ量が0.82(mm)以下、かつ、γ降伏応力が134(MPa)以上」の条件を満足する鋼部材であれば、本発明の範囲に含まれる。
(Second embodiment)
A raw material having the chemical composition of each sample shown in Table 1 was melted in a vacuum melting furnace to produce a steel ingot of 100 (kg). After heating the melted steel ingot for 10.8 (ks) at a heating temperature of 1250 (°C), it was forged into a steel bar with a diameter of 65 (mm) and air-cooled. Assuming rolling, a normalizing treatment was performed by heating for 3.6 (ks) at a heating temperature of 925 (°C) and then air cooling. A tensile test piece shown in FIG. 2 was cut out from the middle peripheral portion of this normalized material. After heating the central portion of the test piece to 900° C. to austenitize it, a tensile test was performed at a tensile speed of 1 (mm/s). A yield stress (γ yield stress) was obtained from this stress-strain curve. When the γ yield stress was less than 134 (MPa), it was evaluated as a comparative example, and when the γ yield stress was 134 (MPa) or more, it was evaluated as an invention example. In addition to the essential elements of the present invention, even for steel members containing elements other than essential elements, the condition that "the amount of deflection is 0.82 (mm) or less and the γ yield stress is 134 (MPa) or more" is satisfied. Any satisfactory steel member is within the scope of the present invention.

発明鋼1及び従来鋼10を比較して、Siの含有量を高めることによって、γ降伏応力の向上及び振れ量の低下を実現できることがわかった。発明鋼1及び従来鋼11を比較して、Crの含有量を高めることによって、γ降伏応力の向上及び振れ量の低下を実現できることがわかった。発明鋼1及び発明鋼16を比較して、Niを適切に添加することによって、γ降伏応力の向上及び振れ量の低下を実現できることがわかった。発明鋼1及び発明鋼21を比較して、Moを適切に添加することによって、γ降伏応力の向上及び振れ量の低下を実現できることがわかった。


By comparing invention steel 1 and conventional steel 10, it was found that an increase in the γ yield stress and a decrease in deflection can be achieved by increasing the Si content. By comparing invention steel 1 and conventional steel 11, it was found that an increase in the γ yield stress and a decrease in deflection can be achieved by increasing the Cr content. By comparing invention steel 1 and invention steel 16, it was found that the appropriate addition of Ni can improve the γ yield stress and reduce the amount of deflection. By comparing invention steel 1 and invention steel 21, it was found that by appropriately adding Mo, an improvement in the γ yield stress and a reduction in the amount of deflection can be realized.


Claims (4)

C:0.20~0.30質量%、Si:0.30~0.80質量%、Mn:0.10~0.50質量%、Cr:1.50~2.20質量%の化学成分を有し、
残部がFe及び不可避不純物からなる鋼部材。
C: 0.20 to 0.30 mass%, Si: 0.30 to 0.80 mass%, Mn: 0.10 to 0.50 mass%, Cr: 1.50 to 2.20 mass% chemical components has
A steel member whose balance consists of Fe and unavoidable impurities.
C:0.20~0.30質量%、Si:0.30~0.80質量%、Mn:0.10~0.50質量%、Cr:1.50~2.20質量%、Ni:0.40~3.50質量%の化学成分を有し、
残部がFe及び不可避不純物からなる鋼部材。
C: 0.20 to 0.30% by mass, Si: 0.30 to 0.80% by mass, Mn: 0.10 to 0.50% by mass, Cr: 1.50 to 2.20% by mass, Ni: Having a chemical composition of 0.40 to 3.50% by mass,
A steel member whose balance is Fe and unavoidable impurities.
C:0.20~0.30質量%、Si:0.30~0.80質量%、Mn:0.10~0.50質量%、Cr:1.50~2.20質量%、Mo:0.15~0.45質量%の化学成分を有し、
残部がFe及び不可避不純物からなる鋼部材。
C: 0.20 to 0.30% by mass, Si: 0.30 to 0.80% by mass, Mn: 0.10 to 0.50% by mass, Cr: 1.50 to 2.20% by mass, Mo: having a chemical composition of 0.15 to 0.45% by mass,
A steel member whose balance consists of Fe and unavoidable impurities.
C:0.20~0.30質量%、Si:0.30~0.80質量%、Mn:0.10~0.50質量%、Cr:1.50~2.20質量%、Ni:0.40~3.50質量%、Mo:0.15~0.45質量%の化学成分を有し、
残部がFe及び不可避不純物からなる鋼部材。
C: 0.20 to 0.30% by mass, Si: 0.30 to 0.80% by mass, Mn: 0.10 to 0.50% by mass, Cr: 1.50 to 2.20% by mass, Ni: 0.40 to 3.50% by mass, Mo: having a chemical composition of 0.15 to 0.45% by mass,
A steel member whose balance is Fe and unavoidable impurities.
JP2021049620A 2021-03-24 2021-03-24 steel member Pending JP2022148091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021049620A JP2022148091A (en) 2021-03-24 2021-03-24 steel member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021049620A JP2022148091A (en) 2021-03-24 2021-03-24 steel member

Publications (1)

Publication Number Publication Date
JP2022148091A true JP2022148091A (en) 2022-10-06

Family

ID=83463888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021049620A Pending JP2022148091A (en) 2021-03-24 2021-03-24 steel member

Country Status (1)

Country Link
JP (1) JP2022148091A (en)

Similar Documents

Publication Publication Date Title
CN110846580B (en) high-Mo high-performance Mn-Cr series steel for wind power output gear and production method thereof
JP5669339B2 (en) Manufacturing method of high strength carburized parts
KR20090125134A (en) Case-hardened steel pipe excellent in workability and process for production thereof
JP2007146232A (en) Method for producing soft-nitrided machine part made of steel
JP6794012B2 (en) Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance
JP2009299148A (en) Method for manufacturing high-strength carburized component
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JPWO2017115842A1 (en) Case-hardened steel, carburized parts and method for producing case-hardened steel
JP2010007120A (en) Method for manufacturing high-strength carburized component
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP6057626B2 (en) Machine structural steel with low heat treatment deformation
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JP5583352B2 (en) Induction hardening steel and induction hardening parts with excellent static torsional fracture strength and torsional fatigue strength
JP2009299165A (en) Method for manufacturing high-strength carburized component by induction hardening
WO2015005311A1 (en) Coil spring, and method for manufacturing same
JP5688742B2 (en) Steel manufacturing method with excellent toughness and wear resistance
WO2018180342A1 (en) Shaft member
JPH11181542A (en) Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production
CN112941404B (en) High-strength high-toughness low-carbon gear steel and preparation method thereof
JP2009299147A (en) Method for manufacturing high-strength carburized component
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
JP2022148091A (en) steel member
CN109763063B (en) Alloy structural steel suitable for high-strength transmission shaft
JPH04124217A (en) Production of high strength gear steel excellent in softening property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231026