JP2022147323A - charging controller - Google Patents

charging controller Download PDF

Info

Publication number
JP2022147323A
JP2022147323A JP2021048516A JP2021048516A JP2022147323A JP 2022147323 A JP2022147323 A JP 2022147323A JP 2021048516 A JP2021048516 A JP 2021048516A JP 2021048516 A JP2021048516 A JP 2021048516A JP 2022147323 A JP2022147323 A JP 2022147323A
Authority
JP
Japan
Prior art keywords
charging
current value
battery
qcd
rapid charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021048516A
Other languages
Japanese (ja)
Other versions
JP7414761B2 (en
Inventor
俊吏 福元
Shunri Fukumoto
裕輝 井口
Hiroki Iguchi
裕喜 永井
Hiroyoshi Nagai
貴昭 松井
Takaaki Matsui
健太 上井
Kenta Uei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Toyota Motor Corp
Original Assignee
Subaru Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp, Toyota Motor Corp filed Critical Subaru Corp
Priority to JP2021048516A priority Critical patent/JP7414761B2/en
Priority to CN202210268522.4A priority patent/CN115117957A/en
Publication of JP2022147323A publication Critical patent/JP2022147323A/en
Application granted granted Critical
Publication of JP7414761B2 publication Critical patent/JP7414761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a charging controller that avoids opportunity of rapid charging from being excessively restricted while inhibiting the rapid charging from causing reduction in battery performance.SOLUTION: A charging controller comprises: a calculation unit for calculating a damage storage amount indicating a storage amount of damage to a battery caused by rapid charging of the battery; and a charging control unit that permits rapid charging to the battery in the case that the damage storage amount is smaller than a threshold and, in the case that the damage storage amount is equal to or larger than the threshold, restricts rapid charging to the battery more than the case that the damage storage amount is smaller than the threshold. The calculation unit calculates the damage storage amount so that the damage storage amount increases more as a period in which a charging current value, a current value of the battery at the time of rapid charging, is larger than a predetermined value is longer and the damage storage amount decreases more as a period in which the charging current value is equal to or smaller than the predetermined value is longer and as a period in which the battery is not charged is longer.SELECTED DRAWING: Figure 4

Description

本発明は、充電制御装置に関する。 The present invention relates to a charging control device.

バッテリの性能の低下を抑制するために、バッテリへの急速充電の回数が所定回数以上になった場合に急速充電を禁止する技術が知られている(特許文献1参照)。 In order to suppress the deterioration of battery performance, there is known a technique of prohibiting rapid charging when the number of times of rapid charging of the battery exceeds a predetermined number (see Patent Document 1).

特開2001-218378号公報Japanese Patent Application Laid-Open No. 2001-218378

上述のように急速充電の回数のみに基づいて急速充電を禁止すると、必要以上に急速充電の機会を制限するおそれがある。 If rapid charging is prohibited based only on the number of times of rapid charging as described above, opportunities for rapid charging may be restricted more than necessary.

そこで本発明は、急速充電によるバッテリの性能の低下を抑制しつつ、急速充電の機会が過度に制限されることを回避した充電制御装置を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a charging control device that prevents the chances of rapid charging from being excessively restricted while suppressing deterioration in battery performance due to rapid charging.

上記目的は、バッテリを急速充電することによる前記バッテリへのダメージの蓄積量を示すダメージ蓄積量を算出する算出部と、前記ダメージ蓄積量が閾値未満の場合には前記バッテリへの急速充電を許可し、前記ダメージ蓄積量が前記閾値以上の場合には、前記ダメージ蓄積量が前記閾値未満の場合よりも前記バッテリへの急速充電を制限する充電制御部と、を備え、前記算出部は、急速充電時での前記バッテリの電流値である充電電流値が所定値より大きい期間が長くなるほど前記ダメージ蓄積量が増大し、前記充電電流値が前記所定値以下である期間が長くなるほど、及び前記バッテリの非充電の期間が長くなるほど前記ダメージ蓄積量が低下するように、前記ダメージ蓄積量を算出する、充電制御装置によって達成できる。 The above object is provided by a calculating unit for calculating a damage accumulated amount indicating an accumulated amount of damage to the battery due to rapid charging of the battery, and permitting rapid charging of the battery when the damage accumulated amount is less than a threshold. and a charging control unit that restricts rapid charging of the battery when the accumulated damage amount is equal to or greater than the threshold than when the accumulated damage amount is less than the threshold; The longer the period during which the charging current value, which is the current value of the battery during charging, is greater than a predetermined value, the greater the accumulated amount of damage. This can be achieved by a charging control device that calculates the amount of accumulated damage so that the amount of accumulated damage decreases as the non-charging period of the battery increases.

本発明によれば、急速充電によるバッテリの性能の低下を抑制しつつ、急速充電の機会が過度に制限されることを回避した充電制御装置を提供できる。 Advantageous Effects of Invention According to the present invention, it is possible to provide a charging control device that avoids excessive limitation of opportunities for quick charging while suppressing degradation of battery performance due to quick charging.

図1は、車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle. 図2Aは、バッテリの急速充電の回数に応じた抵抗増加率の推移を示したグラフであり、図2Bは、急速充電時での充電電流値Inの推移を示したグラフである。FIG. 2A is a graph showing the transition of the resistance increase rate according to the number of times the battery is rapidly charged, and FIG. 2B is a graph showing the transition of the charging current value In during rapid charging. 図3Aは、充電電流値Inに応じたΔdを示したグラフであり、図3Bは、充電時でのバッテリのSOC及び温度に応じた無限定格電流値α及び許容電流値βを規定したマップである。FIG. 3A is a graph showing Δd according to the charging current value In, and FIG. 3B is a map that defines the infinite rated current value α and allowable current value β according to the SOC and temperature of the battery during charging. be. 図4Aは、急速充電の許可又は制限を決定する制御の一例を示したフローチャートであり、図4Bは、ダメージ蓄積量QCdの算出制御の一例を示したフローチャートである。FIG. 4A is a flowchart showing an example of control for determining whether to permit or limit rapid charging, and FIG. 4B is a flowchart showing an example of control for calculating the accumulated damage amount QCd. 図5は、充電電流値Inを許容電流値βに維持して急速充電を実行しその後に急速充電を休止する場合のダメージ蓄積量QCdの推移を示したタイミングチャートである。FIG. 5 is a timing chart showing changes in the amount of accumulated damage QCd when rapid charging is performed while maintaining the charging current value In at the allowable current value β, and then the rapid charging is suspended. 図6は、充電電流値Inを無限定格電流値α以下で充電を開始してその後に急速充電を休止する場合のダメージ蓄積量QCdの推移を示したタイミングチャートである。FIG. 6 is a timing chart showing changes in the amount of accumulated damage QCd when charging is started at a charging current value In equal to or lower than the infinite rated current value α and then rapid charging is suspended. 図7は、充電電流値Inを許容電流値βに維持する急速充電と放電を繰り返す場合のダメージ蓄積量QCdの推移を示したタイミングチャートである。FIG. 7 is a timing chart showing changes in the amount of accumulated damage QCd when rapid charging and discharging are repeated while maintaining the charging current value In at the allowable current value β. 図8は、充電電流値Inを無限定格電流値αに維持して急速充電と放電を繰り返す場合のダメージ蓄積量QCdの推移を示したタイミングチャートである。FIG. 8 is a timing chart showing changes in the amount of accumulated damage QCd when rapid charging and discharging are repeated while the charging current value In is maintained at the infinite rated current value α. 図9は、充電電流値Inを許容電流値βに維持して急速充電と放電を繰り返して充電が停止される場合のダメージ蓄積量QCdの推移を示したタイミングチャートである。FIG. 9 is a timing chart showing changes in the amount of accumulated damage QCd when charging is stopped after repeating rapid charging and discharging while maintaining the charging current value In at the allowable current value β. 図10は、充電電流値Inを無限定格電流値αに維持して急速充電と放電を繰り返して充電が停止される場合のダメージ蓄積量QCdの推移を示したタイミングチャートである。FIG. 10 is a timing chart showing changes in the amount of accumulated damage QCd when charging is stopped after repeating rapid charging and discharging while maintaining the charging current value In at the infinite rated current value α.

[車両100の概略構成]
図1は、車両100の概略構成図である。車両100は、バッテリ110を搭載しており、バッテリ110に蓄えられた電力を用いてモータジェネレータ(以下「MG(Motor Generator)」と称する。)130により走行可能な電気自動車である。なお、車両100は、MG130に加えてエンジンをさらに搭載したハイブリッド車両であってもよいし、バッテリ110に加えて燃料電池をさらに搭載した燃料電池車等であってもよい。
[Schematic configuration of vehicle 100]
FIG. 1 is a schematic configuration diagram of a vehicle 100. As shown in FIG. The vehicle 100 is an electric vehicle that is equipped with a battery 110 and can run by a motor generator (hereinafter referred to as “MG (Motor Generator)”) 130 using power stored in the battery 110 . Vehicle 100 may be a hybrid vehicle in which an engine is installed in addition to MG 130, or a fuel cell vehicle in which a fuel cell is installed in addition to battery 110, or the like.

バッテリ110は、車両100の外部に設けられた充電器から供給される電力により充電する外部充電が可能なバッテリである。本実施例では、充電スタンド200から供給される電力を用いてバッテリ110を急速充電する場合を示している。急速充電とは、普通充電(たとえば数十kW)よりも大電力(たとえば数百kW)の直流電力をバッテリ110に供給することにより短時間で充電を完了する充電方式である。充電スタンド200のコネクタ280が車両100のインレット150に接続された状態で、車両100及び充電スタンド200において、外部充電の実行が指示されると、充電スタンド200から車両100のバッテリ110が充電される。尚、バッテリ110への充電は充電スタンド200に限定されず、家庭用の商用電源を利用してもよい。 Battery 110 is an externally chargeable battery that is charged with electric power supplied from a charger provided outside vehicle 100 . This embodiment shows a case where the battery 110 is rapidly charged using power supplied from the charging station 200 . Rapid charging is a charging method in which charging is completed in a short period of time by supplying DC power of higher power (for example, several hundred kW) than normal charging (for example, several tens of kW) to battery 110 . With the connector 280 of the charging stand 200 connected to the inlet 150 of the vehicle 100, when the vehicle 100 and the charging stand 200 are instructed to perform external charging, the battery 110 of the vehicle 100 is charged from the charging stand 200. . The charging of the battery 110 is not limited to the charging stand 200, and may be performed using a domestic commercial power source.

詳細には、車両100は、バッテリ110と、システムメインリレーSMRと、パワーコントロールユニット(以下「PCU(Power Control Unit)」と称する。)120と、MG130と、動力伝達ギヤ135と、駆動輪140と、インレット150と、充電リレーRYと、ECU160と、HMI(Human Machine Interface)装置170と、充電装置180とを備えている。 Specifically, vehicle 100 includes battery 110, system main relay SMR, power control unit (hereinafter referred to as "PCU (Power Control Unit)") 120, MG 130, power transmission gear 135, driving wheels 140, and , an inlet 150 , a charging relay RY, an ECU 160 , an HMI (Human Machine Interface) device 170 and a charging device 180 .

バッテリ110は、充放電可能に構成され、たとえば、リチウムイオン電池或いはニッケル水素電池等の二次電池である。なお、リチウムイオン二次電池は、リチウムを電荷担体とする二次電池であり、電解質が液体の一般的なリチウムイオン二次電池のほか、固体の電解質を用いた所謂全固体電池であってもよい。 Battery 110 is configured to be chargeable and dischargeable, and is, for example, a secondary battery such as a lithium-ion battery or a nickel-metal hydride battery. In addition, the lithium ion secondary battery is a secondary battery using lithium as a charge carrier, and in addition to a general lithium ion secondary battery in which the electrolyte is a liquid, even a so-called all-solid battery using a solid electrolyte good.

バッテリ110は、充電装置180を介してインレット150に接続され、インレット150に接続された充電スタンド200によって外部充電される。バッテリ110は、蓄えられた電力を走行時にPCU120を通じてMG130へ供給する。また、バッテリ110は、車両制動中のMG130の回生発電時にPCU120を通じてMG130の発電電力を受けて充電される。 Battery 110 is connected to inlet 150 via charging device 180 and externally charged by charging stand 200 connected to inlet 150 . Battery 110 supplies the stored electric power to MG 130 through PCU 120 during running. Further, battery 110 is charged by receiving power generated by MG 130 through PCU 120 when MG 130 regenerates power during vehicle braking.

システムメインリレーSMRは、バッテリ110に接続される電力線PL1,NL1とPCU120との間に設けられ、図示しないスタートスイッチ等により車両システムが起動されるとECU160によってオンされる。 System main relay SMR is provided between power lines PL1, NL1 connected to battery 110 and PCU 120, and is turned on by ECU 160 when the vehicle system is activated by a start switch or the like (not shown).

PCU120は、MG130を駆動する駆動装置であり、コンバータやインバータ等の電力変換装置を含んで構成される。PCU120は、ECU160によって制御され、バッテリ110から受ける直流電力を、MG130を駆動するための交流電力に変換する。また、PCU120は、MG130により発電された交流電力を直流電力に変換してバッテリ110へ出力する。 PCU 120 is a driving device that drives MG 130 and includes a power conversion device such as a converter and an inverter. PCU 120 is controlled by ECU 160 and converts DC power received from battery 110 into AC power for driving MG 130 . PCU 120 also converts AC power generated by MG 130 into DC power and outputs the DC power to battery 110 .

MG130は、代表的には交流回転電機であり、たとえば、ロータに永久磁石が埋設された三相交流同期電動機である。MG130は、PCU120により駆動されて回転駆動力を発生し、MG130が発生した駆動力は、動力伝達ギヤ135を通じて駆動輪140に伝達される。一方、車両の制動時等には、MG130は、発電機として動作し、回生発電を行なう。MG130が発電した電力は、PCU120を通じてバッテリ110に供給される。 The MG 130 is typically an AC rotary electric machine, such as a three-phase AC synchronous electric motor with permanent magnets embedded in the rotor. MG 130 is driven by PCU 120 to generate rotational driving force, and the driving force generated by MG 130 is transmitted to drive wheels 140 through power transmission gear 135 . On the other hand, during braking of the vehicle or the like, MG 130 operates as a generator and performs regenerative power generation. Electric power generated by MG 130 is supplied to battery 110 through PCU 120 .

充電リレーRYは、充電装置180とバッテリ110との間の電路に設けられる。具体的には、充電リレーRYは、リレーK5,K6を含む。リレーK5は、充電装置180を介してインレット150に接続される電力線DCL1と、バッテリ110の正極に接続される電力線PL2との間に設けられる。リレーK6は、充電装置180を介してインレット150に接続される電力線DCL2と、バッテリ110の負極に接続される電力線NL2との間に設けられる。充電リレーRYは、ECU160によってON/OFFされる。 Charging relay RY is provided in an electric circuit between charging device 180 and battery 110 . Specifically, charging relay RY includes relays K5 and K6. Relay K5 is provided between power line DCL1 connected to inlet 150 via charging device 180 and power line PL2 connected to the positive electrode of battery 110 . Relay K6 is provided between power line DCL2 connected to inlet 150 via charging device 180 and power line NL2 connected to the negative electrode of battery 110 . Charging relay RY is turned ON/OFF by ECU 160 .

インレット150は、外部充電の実行時に充電スタンド200から供給される充電電力を受ける。インレット150には、充電スタンド200のコネクタ280が接続される。そして、外部充電の実行時、充電スタンド200から出力される直流電力が、インレット150から充電装置180を介して電力線DCL1、DCL2、充電リレーRY、電力線PL2,NL2、及び電力線PL1、NL1を通じてバッテリ110に供給される。充電装置180は、充電スタンド200から出力される直流電力を所望の充電電流に変換し、バッテリ110を充電する。詳しくは後述するが、充電装置180はECU160からの指令により、外部充電としてバッテリ110を急速充電することが可能である。ECU160は、充電制御装置の一例であり、後述する算出部及び充電制御部を機能的に実現する。 Inlet 150 receives charging power supplied from charging stand 200 when external charging is performed. Connector 280 of charging stand 200 is connected to inlet 150 . When external charging is performed, DC power output from charging stand 200 is supplied from inlet 150 to battery 110 via charging device 180, power lines DCL1 and DCL2, charging relay RY, power lines PL2 and NL2, and power lines PL1 and NL1. supplied to Charging device 180 converts the DC power output from charging stand 200 into a desired charging current to charge battery 110 . Although the details will be described later, the charging device 180 can rapidly charge the battery 110 as external charging according to a command from the ECU 160 . The ECU 160 is an example of a charging control device, and functionally implements a calculation unit and a charging control unit, which will be described later.

ECU160は、CPU(Central Processing Unit)162と、メモリ(RAM(Random Access Memory)及び読み書き可能なROM(Read Only Memory))164と、各種信号を入出力するための入出力ポート(図示せず)とを含んで構成される。CPU162は、ROMに格納されているプログラムをRAMに展開して実行する。ROMに格納されているプログラムには、ECU160の処理が記されている。ECU160は、インレット150にコネクタ280が接続されると、信号線SLを通じて充電スタンド200と各種メッセージをやり取りし、外部充電を実行する。また、ECU160は、バッテリ110のSOC(State Of Charge)を検出するSOCセンサ111、バッテリ110の温度を検出する温度センサ112、バッテリ110の電流値を検出する電流センサ113に電気的に接続されている。 The ECU 160 includes a CPU (Central Processing Unit) 162, memory (RAM (Random Access Memory) and readable and writable ROM (Read Only Memory)) 164, and input/output ports (not shown) for inputting and outputting various signals. and The CPU 162 expands the program stored in the ROM into the RAM and executes it. A program stored in the ROM describes processing of the ECU 160 . When the connector 280 is connected to the inlet 150, the ECU 160 exchanges various messages with the charging stand 200 through the signal line SL to perform external charging. The ECU 160 is also electrically connected to an SOC sensor 111 that detects the SOC (State Of Charge) of the battery 110, a temperature sensor 112 that detects the temperature of the battery 110, and a current sensor 113 that detects the current value of the battery 110. there is

ECU160は、車両の走行時には、システムメインリレーSMRをオンにするとともにPCU120を制御することにより、MG130の駆動及びバッテリ110の充放電を制御する。また、ECU160は、外部充電時には、充電リレーRYをオンにするとともに、信号線SLを通じて充電スタンド200と各種メッセージをやり取りすることにより、外部充電を実行する。さらに、ECU160は、バッテリ110のSOCが上限値に達すると、信号線SLを通じて充電スタンド200へ充電停止要求を送信するとともに充電リレーRYをオフにする。 When the vehicle is running, ECU 160 controls the driving of MG 130 and the charging and discharging of battery 110 by turning on system main relay SMR and controlling PCU 120 . During external charging, the ECU 160 turns on the charging relay RY and exchanges various messages with the charging station 200 through the signal line SL to execute external charging. Further, when the SOC of battery 110 reaches the upper limit, ECU 160 transmits a request to stop charging to charging station 200 through signal line SL and turns off charging relay RY.

充電スタンド200は、車両100へ電力を供給するための充電設備である。充電スタンド200は、例えば公共施設に設置され、充電電力(たとえば数十kW)よりも大電力(たとえば数百kW)の直流電力をバッテリ110に供給して急速充電を行うことが可能な充電スタンドである。尚、車両100と充電スタンド200とが接続されると、互いに通信可能となる。 Charging station 200 is charging equipment for supplying power to vehicle 100 . The charging stand 200 is installed, for example, in a public facility, and is capable of supplying DC power (for example, several hundred kW) higher than the charging power (for example, several tens of kW) to the battery 110 for rapid charging. is. Note that when the vehicle 100 and the charging station 200 are connected, they can communicate with each other.

HMI装置170は、車両100のユーザに様々な情報を提供したり、車両100のユーザの操作を受け付けたりする装置である。HMI装置170は、タッチパネルを備えたディスプレイやスピーカー等を含む。 The HMI device 170 is a device that provides various information to the user of the vehicle 100 and receives operations by the user of the vehicle 100 . The HMI device 170 includes a display with a touch panel, a speaker, and the like.

[急速充電の詳細]
次に、バッテリ110の急速充電と、急速充電によるバッテリ110の抵抗増加率の推移について説明する。図2Aは、バッテリ110の急速充電の回数に応じた抵抗増加率の推移を示したグラフである。図2Aでは、1日1回~4回まで急速充電の回数に応じたバッテリ110の抵抗増加率を示している。図2Aでは、横軸は経過日数を示し、縦軸は抵抗増加率[%]を示している。図2Aでは、バッテリ110のSOCが0%から100%になるまで急速充電を行った場合を示している。
[Details of quick charging]
Next, the rapid charging of the battery 110 and transition of the resistance increase rate of the battery 110 due to the rapid charging will be described. FIG. 2A is a graph showing changes in the resistance increase rate according to the number of times the battery 110 has been rapidly charged. FIG. 2A shows the rate of increase in resistance of the battery 110 according to the number of times of quick charging from once to four times a day. In FIG. 2A, the horizontal axis indicates the elapsed days, and the vertical axis indicates the resistance increase rate [%]. FIG. 2A shows the case where the SOC of battery 110 is rapidly charged from 0% to 100%.

図2Aに示すように、1日に行う急速充電の回数が多いほど、日数が経過するにつれて抵抗増加率が上昇する。即ち、バッテリ110の性能が低下することを示している。従って、1日で行う急速充電の回数は少ない方が好ましいため、急速充電の回数を制限することが考えられる。しかしながら、バッテリ110の性能の低下は、急速充電の回数のみならず、充電時にバッテリ110に流れる電流値(以下、充電電流値Inと称する)や、充電時のSOCや温度にも影響する。一般的に、充電電流値Inが高いほど、SOCが大きいほど、及び温度が低いほど、バッテリ110の性能の低下に影響を与える。 As shown in FIG. 2A, as the number of times of rapid charging performed in a day increases, the rate of increase in resistance increases as the number of days elapses. That is, it indicates that the performance of the battery 110 is degraded. Therefore, since it is preferable that the number of times of rapid charging performed in one day is small, it is conceivable to limit the number of times of rapid charging. However, deterioration in the performance of battery 110 affects not only the number of times of rapid charging, but also the current value (hereinafter referred to as charging current value In) flowing through battery 110 during charging, SOC and temperature during charging. In general, the higher the charging current value In, the higher the SOC, and the lower the temperature, the lower the performance of the battery 110 is.

図2Bは、急速充電時での充電電流値Inの推移を示したグラフである。横軸は時間を示し、縦軸は電流値[A]を示している。図2Bでは、バッテリ110のSOCが0%から100%になるまで急速充電を行った場合を示しており、およそ45分から60分程度で完了する。充電電流値Inは、ECU160によりSOCに応じて制御される。具体的には、急速充電開始後のSOCが低い状態では充電電流値Inが高い値に維持され、SOCが所定値以上となると充電電流値Inは徐々に低下し、その後に充電電流値Inがゼロに制御されて急速充電は完了する。このように充電電流値Inは常に一定とは限らず、充電電流値Inが低い状態ではバッテリ110の性能の低下への影響は少ない。 FIG. 2B is a graph showing changes in the charging current value In during rapid charging. The horizontal axis indicates time, and the vertical axis indicates current value [A]. FIG. 2B shows a case where rapid charging is performed from 0% to 100% of the SOC of the battery 110, and is completed in approximately 45 to 60 minutes. The charging current value In is controlled by the ECU 160 according to the SOC. Specifically, when the SOC after the start of rapid charging is low, the charging current value In is maintained at a high value. Controlled to zero, rapid charging is completed. As described above, the charging current value In is not always constant, and when the charging current value In is low, there is little effect on deterioration of the performance of the battery 110 .

従って本実施例では、ECU160は充電電流値Inや、後述するSOCや温度を考慮して、急速充電がバッテリ110の性能の低下に影響を与える指標となるダメージ蓄積量QCd(Quick Charge damage)を算出し、ダメージ蓄積量QCdの大きさに応じてバッテリ110への急速充電の許可又は制限の何れかを決定する。 Therefore, in the present embodiment, the ECU 160 calculates a damage accumulation amount QCd (Quick Charge damage), which is an index of how the rapid charging affects the deterioration of the performance of the battery 110, in consideration of the charging current value In, the SOC and the temperature, which will be described later. Then, whether to permit or restrict rapid charging of the battery 110 is determined according to the magnitude of the accumulated damage amount QCd.

ダメージ蓄積量QCdは以下のように算出される。
QCd=QCdn-1+Δd…(1)
QCdは今回値を示し、QCdn-1は前回値を示す。
Δdは、以下のように定義される。
Δd=(In-α)/(β-α)…(2)
Δd=-E…(3)
図3Aは、充電電流値Inに応じたΔdを示したグラフである。無限定格電流値αは、バッテリ110の性能の低下に影響を与えることが少ない、充電時に流れる最大の電流値を示す。無限定格電流値αは所定値の一例である。許容電流値βは、充電時にバッテリ110に流すことができる最大の電流値を示す。Δdは、充電電流値Inが無限定格電流値αよりも大きく許容電流値β以下の場合に(2)の式に従って算出され、無限定格電流値α以下の場合には(3)の式に従って算出される。例えば、Δdは、充電電流値Inが許容電流値βの場合に「D」(D>0)と算出され、充電電流値Inが無限定格電流値α以下の場合には「-E」と算出される。
The accumulated damage amount QCd is calculated as follows.
QCdn = QCdn -1 + Δd (1)
QCd n indicates the current value, and QCd n-1 indicates the previous value.
Δd is defined as follows.
Δd=(In−α)/(β−α) (2)
Δd=−E (3)
FIG. 3A is a graph showing Δd according to the charging current value In. The infinite rated current value α indicates the maximum current value that flows during charging and that has little effect on deterioration of the performance of battery 110 . The infinite rated current value α is an example of a predetermined value. Allowable current value β indicates the maximum current value that can flow to battery 110 during charging. Δd is calculated according to the equation (2) when the charging current value In is greater than the infinite rated current value α and equal to or less than the allowable current value β, and is calculated according to the equation (3) when the infinite rated current value α or less be done. For example, Δd is calculated as "D"(D>0) when the charging current value In is the allowable current value β, and is calculated as "-E" when the charging current value In is the infinite rated current value α or less. be done.

即ち、充電電流値Inが無限定格電流値αより大きく許容電流値β以下となる期間が長くなるほど、ダメージ蓄積量QCdにはΔdが加算されて増大する。これに対して充電電流値Inが無限定格電流値α以下となる期間が長くなるほど、ダメージ蓄積量QCdからΔdが減算されて低下する。ここで、充電が行われていない非充電の期間では、充電電流値Inが0として上記(2)の式に基づいてダメージ蓄積量QCdが算出される。即ち、この場合もダメージ蓄積量QCdはΔdが減算されて低下する。尚、「D」は例えば1であり、「-E」は例えば-0.2であるがこれに限定されない。 That is, the longer the period in which the charging current value In is greater than the infinite rated current value α and equal to or less than the allowable current value β, the longer the damage accumulation amount QCd is increased by adding Δd. On the other hand, the longer the period during which the charging current value In is equal to or less than the infinite rated current value α, the more the accumulated damage amount QCd is reduced by subtracting Δd. Here, in the non-charging period in which charging is not performed, the accumulated damage amount QCd is calculated based on the above equation (2) with the charging current value In set to 0. That is, in this case also, the amount of accumulated damage QCd is reduced by subtracting Δd. Note that "D" is, for example, 1, and "-E" is, for example, -0.2, but is not limited to these.

ここで無限定格電流値α及び許容電流値βは、充電時でのバッテリ110のSOC及び温度毎に異なる値をとる。図3Bは、充電時でのバッテリ110のSOC及び温度に応じた無限定格電流値α及び許容電流値βを規定したマップである。図3Bでは、2つの無限定格電流値αを無限定格電流値α1及びα2として示し、2つの許容電流値βをそれぞれ許容電流値β1及びβ2として示している。図3Bでは、許容電流値β1を実線、許容電流値β2を点線、無限定格電流値α1を一点鎖線、無限定格電流値α2を2点鎖線で示している。無限定格電流値α1及び許容電流値β1はバッテリ110が所定の温度である場合を示している。無限定格電流値α2及び許容電流値β2は、無限定格電流値α1及び許容電流値β1でのバッテリ110の温度よりも低い温度の場合を示している。バッテリ110の温度が高い場合の無限定格電流値α1の方が、温度が低い場合の無限定格電流値α2よりも高い値をとり、許容電流値β1及びβ2に関しても同様である。即ち、バッテリ110の温度が低いほど、バッテリ110の性能の低下に影響を与える可能性がある。 Here, the infinite rated current value α and the allowable current value β take different values depending on the SOC and temperature of the battery 110 during charging. FIG. 3B is a map that defines the infinite rated current value α and allowable current value β according to the SOC and temperature of battery 110 during charging. In FIG. 3B, two infinite rated current values α are indicated as infinite rated current values α1 and α2, and two allowable current values β are indicated as allowable current values β1 and β2, respectively. In FIG. 3B, the allowable current value β1 is indicated by a solid line, the allowable current value β2 is indicated by a dotted line, the infinite rated current value α1 is indicated by a one-dot chain line, and the infinite rated current value α2 is indicated by a two-dot chain line. Infinite rated current value α1 and allowable current value β1 indicate the case where battery 110 is at a predetermined temperature. The infinite rated current value α2 and the allowable current value β2 indicate the case where the temperature of the battery 110 is lower than the temperature of the battery 110 at the infinite rated current value α1 and the allowable current value β1. The infinite rated current value α1 when the temperature of the battery 110 is high is higher than the infinite rated current value α2 when the temperature is low, and the allowable current values β1 and β2 are the same. That is, the lower the temperature of the battery 110 is, the more likely it is that the performance of the battery 110 is degraded.

また、SOCが増大するほど無限定格電流値α1及びα2、及び許容電流値β1及びβ2は低下する。詳細には、無限定格電流値α1及び許容電流値β1は、SOCが所定値未満の場合には一定値をとり、SOCが所定値以上の場合に徐々に低下する。無限定格電流値α2及び許容電流値β2は、SOCが低い値から増大するにつれて徐々に低下する。従って、SOCが増大するほど、バッテリ110の性能の低下に影響を与える可能性がある。 Also, as the SOC increases, the infinite rated current values α1 and α2 and the allowable current values β1 and β2 decrease. Specifically, the infinite rated current value α1 and the allowable current value β1 take constant values when the SOC is less than a predetermined value, and gradually decrease when the SOC is greater than or equal to the predetermined value. The infinite rated current value α2 and the allowable current value β2 gradually decrease as the SOC increases from a low value. Therefore, as the SOC increases, the performance of battery 110 may deteriorate.

図3Bのマップには、2つの異なる温度の無限定格電流値α1及びα2と許容電流値β1及びβ2のみを示しているが、実際にはさらに詳細な温度毎の無限定格電流値α及び許容電流値βが規定されており、ECU160のメモリ164に予め記憶されている。 The map in FIG. 3B shows only the infinite rated current values α1 and α2 and the allowable current values β1 and β2 at two different temperatures, but in reality the infinite rated current values α and allowable current values for each temperature are more detailed. A value β is defined and stored in memory 164 of ECU 160 in advance.

[ECU160が実行する制御]
次にECU160が実行する急速充電の許可又は制限を決定する制御について説明する。図4Aは、急速充電の許可又は制限を決定する制御の一例を示したフローチャートである。ECU160は、温度センサ112の検出結果に基づいてバッテリ110の温度が所定温度T以上であるか否かを判定する(ステップS1)。所定温度Tは、バッテリ110を急速充電可能な最低温度よりも所定のマージンだけ高い温度である。
[Control executed by ECU 160]
Next, the control for determining permission or restriction of rapid charging executed by ECU 160 will be described. FIG. 4A is a flowchart showing an example of control for determining permission or restriction of quick charging. ECU 160 determines whether the temperature of battery 110 is equal to or higher than a predetermined temperature T based on the detection result of temperature sensor 112 (step S1). Predetermined temperature T is a temperature that is higher than the minimum temperature at which battery 110 can be rapidly charged by a predetermined margin.

ステップS1でYesの場合、ECU160はダメージ蓄積量QCdが閾値R未満であるか否かを判定する(ステップS2)。閾値Rは、急速充電によるバッテリ110の性能の低下に影響を与えないダメージ蓄積量QCdの最大値に所定のマージンだけ低い値である。閾値Rは例えば3600であるがこれに限定されない。ステップS2でYesの場合、ECU160は急速充電を許可し(ステップS3)、本制御を終了する。急速充電が許可された状態では、充電電流値Inを許容電流値β以下に制御してバッテリ110への急速充電を実行することができる。充電電流値Inを許容電流値β以下の範囲で高い値に維持することにより、短時間でバッテリ110の充電を完了させることができる。 If Yes in step S1, the ECU 160 determines whether or not the accumulated damage amount QCd is less than the threshold value R (step S2). The threshold value R is a value that is lower than the maximum value of the accumulated damage amount QCd by a predetermined margin so as not to affect deterioration of the performance of the battery 110 due to rapid charging. The threshold R is, for example, 3600, but is not limited to this. In the case of Yes in step S2, the ECU 160 permits rapid charging (step S3) and terminates this control. In a state in which rapid charging is permitted, charging current value In can be controlled to be equal to or less than allowable current value β to quickly charge battery 110 . By maintaining the charging current value In at a high value within the range of the allowable current value β or less, the charging of the battery 110 can be completed in a short time.

ステップS1及びS2の何れか一方でNoの場合には、ECU160は急速充電を制限し(ステップS4)、本制御を終了する。本実施例では、急速充電が制限された状態では、充電電流値Inは無限定格電流値α以下に制限されて急速充電を実行することができる。充電電流値Inが無限定格電流値α以下に制限されることにより、このような制限がない場合と比較して充電完了までに時間を要するが、バッテリ110の性能の低下に影響を与えずに充電をすることができる。例えば、急速充電中にダメージ蓄積量QCdが閾値R以上に増大して急速充電が制限されると、ECU160は充電装置180を制御して充電電流値Inを無限定格電流値α以下に制限して充電を継続する。ステップS3及びS4の処理は、充電制御部が実行する処理の一例である。 If No in either one of steps S1 and S2, the ECU 160 limits rapid charging (step S4) and ends this control. In the present embodiment, when rapid charging is restricted, the charging current value In is limited to the infinite rated current value α or less so that rapid charging can be performed. Since the charging current value In is limited to the infinite rated current value α or less, it takes more time to complete charging than when there is no such limitation. can be charged. For example, when the damage accumulation amount QCd increases to the threshold value R or more during rapid charging and rapid charging is restricted, the ECU 160 controls the charging device 180 to limit the charging current value In to an infinite rated current value α or less. Continue charging. The processing of steps S3 and S4 is an example of processing executed by the charging control unit.

次にECU160が実行するダメージ蓄積量QCdの算出制御について説明する。図4Bは、ダメージ蓄積量QCdの算出制御の一例を示したフローチャートである。ECU160は、バッテリ110の急速充電中であるか否かを判定する(ステップS11)。例えば、電流センサ113が示す電流値が所定値以上の場合にバッテリ110は急速充電中であると判定できる。ステップS11でYesの場合には、ECU160は現在の充電電流値Inを取得し(ステップS12)、充電電流値Inが無限定格電流値αより大きいか否かを判定する(ステップS13)。 Next, calculation control of the accumulated damage amount QCd executed by the ECU 160 will be described. FIG. 4B is a flowchart showing an example of calculation control of the accumulated damage amount QCd. The ECU 160 determines whether or not the battery 110 is being rapidly charged (step S11). For example, when the current value indicated by the current sensor 113 is equal to or greater than a predetermined value, it can be determined that the battery 110 is being rapidly charged. If Yes in step S11, the ECU 160 acquires the current charging current value In (step S12), and determines whether or not the charging current value In is greater than the infinite rated current value α (step S13).

ステップS13でYesの場合には、ECU160は上述した式(1)及び(2)によりダメージ蓄積量QCdを増加させ(ステップS14)、本制御を終了する。ステップS11及びS13の何れかでNoの場合には、上述した式(1)及び(3)によりダメージ蓄積量QCdを低下させ(ステップS15)、本制御を終了する。尚、図4A及び図4Bの制御は所定の時間ごとに繰り返し実行されるため、随時ダメージ蓄積量QCdが算出され、ダメージ蓄積量QCdの大きさに応じて急速充電の許可、制限が随時判断される。ステップS14及びS15の処理は、算出部が実行する処理の一例である。 In the case of Yes in step S13, the ECU 160 increases the accumulated damage amount QCd according to the above-described equations (1) and (2) (step S14), and ends this control. If No in either step S11 or S13, the accumulated damage amount QCd is decreased by the above-described equations (1) and (3) (step S15), and this control ends. Since the control shown in FIGS. 4A and 4B is repeatedly executed at predetermined time intervals, the accumulated damage amount QCd is calculated at any time, and whether or not to permit rapid charging is determined at any time according to the amount of accumulated damage QCd. be. The processing of steps S14 and S15 is an example of processing executed by the calculation unit.

以上のように、急速充電の許可、不許可を決定するためのダメージ蓄積量QCdは、充電電流値Inの大きさに基づいて算出されるため、例えば充電電流値Inを比較的低い値で急速充電する場合には急速充電が制限されにくく、急速充電の機会が過度に制限されることを回避できる。また、ダメージ蓄積量QCdは、充電電流値Inの大きさに加えてバッテリ110のSOCや温度も考慮されて算出されるため、より精度よくダメージ蓄積量QCdを算出することができ、急速充電の機会が過度に制限されることを回避できる。更にダメージ蓄積量QCdは、充電電流値Inが無限定格電流値α未満の場合や急速充電が行われていない場合では低下するため、バッテリ110の性能の回復がダメージ蓄積量QCdに反映され、これによっても急速充電の機会が過度に制限されることを回避できる。 As described above, the accumulated damage amount QCd for determining whether or not to permit rapid charging is calculated based on the magnitude of the charging current value In. In the case of charging, rapid charging is less likely to be restricted, and it is possible to avoid excessively restricting opportunities for rapid charging. In addition, since the accumulated damage amount QCd is calculated in consideration of the SOC and the temperature of the battery 110 in addition to the magnitude of the charging current value In, the accumulated damage amount QCd can be calculated more accurately. Opportunities can be avoided from being overly limited. Furthermore, the accumulated damage amount QCd decreases when the charging current value In is less than the infinite rated current value α or when rapid charging is not performed. It is also possible to avoid excessively restricting opportunities for quick charging.

次に、充電電流値Inとダメージ蓄積量QCdの推移について具体的に説明する。図5は、充電電流値Inを許容電流値βに維持して急速充電を実行しその後に急速充電を休止する場合のダメージ蓄積量QCdの推移を示したタイミングチャートである。図5には、充電電流値In、無限定格電流値α、許容電流値β、及びダメージ蓄積量QCdの推移を示している。図3Bに示したように無限定格電流値α及び許容電流値βは、SOCに応じて変化する。時刻t0から充電を開始すると、充電電流値Inは許容電流値βに維持されているため、ダメージ蓄積量QCdは急速に増大する。時刻t1で充電が完了すると、ダメージ蓄積量QCdは徐々に低下し、時刻t2でダメージ蓄積量QCdはゼロにまで低下する。 Next, transitions of the charging current value In and the amount of accumulated damage QCd will be specifically described. FIG. 5 is a timing chart showing changes in the amount of accumulated damage QCd when rapid charging is performed while maintaining the charging current value In at the allowable current value β, and then the rapid charging is suspended. FIG. 5 shows changes in the charging current value In, the infinite rated current value α, the allowable current value β, and the accumulated damage amount QCd. As shown in FIG. 3B, the infinite rated current value α and allowable current value β change according to the SOC. When charging starts at time t0, the charge current value In is maintained at the allowable current value β, so the accumulated damage amount QCd rapidly increases. When charging is completed at time t1, the damage accumulation amount QCd gradually decreases, and at time t2, the damage accumulation amount QCd decreases to zero.

図6は、充電電流値Inを無限定格電流値α以下で充電を開始してその後に急速充電を休止する場合のダメージ蓄積量QCdの推移を示したタイミングチャートである。時刻t0から充電を開始すると、充電電流値Inは無限定格電流値α以下の所定値に維持されているため、ダメージ蓄積量QCdはゼロのままである。時刻t1で無限定格電流値αが低下して充電電流値Inが無限定格電流値α以上となると、ダメージ蓄積量QCdが増大し始める。その後に許容電流値βが低下して充電電流値Inが許容電流値βに維持されて、時刻t2で急速充電が完了すると、ダメージ蓄積量QCdは徐々に低下し、時刻t3でダメージ蓄積量QCdはゼロにまで低下する。 FIG. 6 is a timing chart showing changes in the amount of accumulated damage QCd when charging is started at a charging current value In equal to or lower than the infinite rated current value α and then rapid charging is suspended. When charging is started at time t0, the charge current value In is maintained at a predetermined value equal to or lower than the infinite rated current value α, so the accumulated damage amount QCd remains zero. When the infinite rated current value α decreases and the charging current value In becomes equal to or greater than the infinite rated current value α at time t1, the accumulated damage amount QCd starts to increase. After that, when the allowable current value β decreases and the charging current value In is maintained at the allowable current value β, and the rapid charging is completed at time t2, the damage accumulation amount QCd gradually decreases, and at time t3, the damage accumulation amount QCd. drops to zero.

図5及び図6に示すように、充電電流値Inを許容電流値βに維持する場合の方が短時間で急速充電を完了させることができるが、ダメージ蓄積量QCdが大きく算出されるため、ダメージ蓄積量QCdがゼロに戻るまでに時間を要する。 As shown in FIGS. 5 and 6, when the charging current value In is maintained at the allowable current value β, rapid charging can be completed in a short time. It takes time for the accumulated damage amount QCd to return to zero.

[変形例]
上記実施例では、急速充電の制限として充電電流値Inが無限定格電流値α以下に制限される場合を例に説明した。本変形例では、急速充電の制限として、ダメージ蓄積量QCdがゼロになるまで充電を停止する場合を例に説明する。
[Modification]
In the above embodiment, the case where the charging current value In is limited to the infinite rated current value α or less as the limitation of the rapid charging is explained as an example. In this modified example, a case where charging is stopped until the accumulated damage amount QCd becomes zero will be described as an example of limiting rapid charging.

最初に、急速充電の制限として充電電流値Inが無限定格電流値α以下に制限される場合において、短時間で急速充電と放電を繰り返す場合について説明する。図7は、充電電流値Inを許容電流値βに維持する急速充電と放電を繰り返す場合のダメージ蓄積量QCdの推移を示したタイミングチャートである。時刻t0から時刻t1まで急速充電を実行し、時刻t1から時刻t2までバッテリ110を放電させる。放電中ではダメージ蓄積量QCdは徐々に低下するが、時刻t2で再び急速充電を開始し、これによりダメージ蓄積量QCdが十分に低下する前に増大し始める。これを繰り返すことにより、時刻t3で急速充電中にダメージ蓄積量QCdが閾値R以上となり、急速充電が制限され充電電流値Inが無限定格電流値αに維持される。この状態でダメージ蓄積量QCdが低下して閾値R未満となると、急速充電の制限が解除され、再び充電電流値Inは許容電流値βに維持される。充電電流値Inが許容電流値βに維持されているとダメージ蓄積量QCdは再び閾値R以上となり、急速充電が再度制限される。このようにして充電中は充電電流値Inがハンチングし、バッテリ110の性能の低下に影響を与えるおそれがある。 First, a case where rapid charging and discharging are repeated in a short time when the charging current value In is limited to an infinite rated current value α or less as a limitation of rapid charging will be described. FIG. 7 is a timing chart showing changes in the amount of accumulated damage QCd when rapid charging and discharging are repeated while maintaining the charging current value In at the allowable current value β. Rapid charging is performed from time t0 to time t1, and battery 110 is discharged from time t1 to time t2. The accumulated damage amount QCd gradually decreases during discharging, but at time t2, rapid charging is started again, and as a result, the accumulated damage amount QCd starts increasing before it sufficiently decreases. By repeating this, at time t3, the accumulated damage amount QCd becomes equal to or greater than the threshold value R during rapid charging, and the rapid charging is limited, and the charging current value In is maintained at the infinite rated current value α. In this state, when the damage accumulation amount QCd decreases and becomes less than the threshold value R, the restriction on rapid charging is lifted, and the charging current value In is maintained at the allowable current value β again. When the charging current value In is maintained at the allowable current value β, the accumulated damage amount QCd becomes equal to or greater than the threshold value R again, and rapid charging is restricted again. In this way, the charging current value In may hunt during charging, which may affect the deterioration of the performance of the battery 110 .

図8は、充電電流値Inを無限定格電流値αに維持して急速充電と放電を繰り返す場合のダメージ蓄積量QCdの推移を示したタイミングチャートである。時刻t0から時刻t1まで急速充電を実行し、時刻t1から時刻t2までバッテリ110を放電させる。このように急速充電と放電とを繰り返すと、時刻t3でダメージ蓄積量QCdが閾値R以上となって急速充電が制限される。その後の放電中にダメージ蓄積量QCdが閾値R未満となって急速充電の制限が解除されるが、再度急速充電が行われることにより再び急速充電が制限される。これによりダメージ蓄積量QCdが常に高い値に維持され、バッテリ110の性能の低下に影響を与えるおそれがある。 FIG. 8 is a timing chart showing changes in the amount of accumulated damage QCd when rapid charging and discharging are repeated while the charging current value In is maintained at the infinite rated current value α. Rapid charging is performed from time t0 to time t1, and battery 110 is discharged from time t1 to time t2. When rapid charging and discharging are repeated in this manner, the accumulated damage amount QCd becomes equal to or greater than the threshold value R at time t3, and rapid charging is restricted. During subsequent discharge, the accumulated damage amount QCd becomes less than the threshold value R, and the restriction on rapid charging is lifted. As a result, the accumulated damage amount QCd is always maintained at a high value, which may affect the deterioration of the performance of the battery 110 .

本変形例では、急速充電の制限としてダメージ蓄積量QCdがゼロになるまで充電を停止する場合を例に説明する。図9は、充電電流値Inを許容電流値βに維持して急速充電と放電を繰り返して充電が停止される場合のダメージ蓄積量QCdの推移を示したタイミングチャートである。図10は、充電電流値Inを無限定格電流値αに維持して急速充電と放電を繰り返して充電が停止される場合のダメージ蓄積量QCdの推移を示したタイミングチャートである。いずれの場合も、時刻t0から急速充電、及び放電が繰り替えされ時刻t1でダメージ蓄積量QCdが閾値Rとなると、ダメージ蓄積量QCdがゼロとなるまで充電が停止される。具体的には、ダメージ蓄積量QCdがゼロとなるまでECU160は充電リレーRYをOFFに維持する。これにより、上述した充電中での充電電流値Inのハンチングや、ダメージ蓄積量QCdが常に高い値に維持されることを回避でき、バッテリ110の性能の低下を抑制できる。 In this modification, an example will be described in which charging is stopped until the accumulated damage amount QCd becomes zero as a restriction on rapid charging. FIG. 9 is a timing chart showing changes in the amount of accumulated damage QCd when charging is stopped after repeating rapid charging and discharging while maintaining the charging current value In at the allowable current value β. FIG. 10 is a timing chart showing changes in the amount of accumulated damage QCd when charging is stopped after repeating rapid charging and discharging while maintaining the charging current value In at the infinite rated current value α. In either case, rapid charging and discharging are repeated from time t0, and when the accumulated damage amount QCd reaches the threshold value R at time t1, charging is stopped until the accumulated damage amount QCd becomes zero. Specifically, the ECU 160 keeps the charging relay RY OFF until the accumulated damage amount QCd becomes zero. As a result, the aforementioned hunting of the charging current value In during charging and the maintenance of the accumulated damage amount QCd at a high value can be avoided, and deterioration of the performance of the battery 110 can be suppressed.

[その他]
急速充電の制限の一例として、充電電流値Inが無限定格電流値α以下に制限しつつ充電が許容される場合と、ダメージ蓄積量QCdがゼロとなるまで充電を停止する場合とを説明したがこれに限定されない。例えば、急速充電が制限されない場合と比較して、充電電流値Inを所定値だけ低い値に維持して充電を実行してもよい。
[others]
As an example of rapid charging limitation, the case where charging is allowed while limiting the charging current value In to the infinite rated current value α or less, and the case where charging is stopped until the accumulated damage amount QCd becomes zero have been described. It is not limited to this. For example, charging may be performed while maintaining the charging current value In at a value lower by a predetermined value than when rapid charging is not limited.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and variations can be made within the scope of the gist of the present invention described in the scope of claims. Change is possible.

100 車両
110 バッテリ
120 PCU
130 MG
140 駆動輪
150 インレット
160 ECU(充電制御装置)
162 CPU
164 メモリ
170 HMI装置
180 充電装置
SMR システムメインリレー
RY 充電リレー
100 vehicle 110 battery 120 PCU
130MG
140 drive wheel 150 inlet 160 ECU (charging control device)
162 CPUs
164 memory 170 HMI device 180 charging device SMR system main relay RY charging relay

Claims (1)

バッテリを急速充電することによる前記バッテリへのダメージの蓄積量を示すダメージ蓄積量を算出する算出部と、
前記ダメージ蓄積量が閾値未満の場合には前記バッテリへの急速充電を許可し、前記ダメージ蓄積量が前記閾値以上の場合には、前記ダメージ蓄積量が前記閾値未満の場合よりも前記バッテリへの急速充電を制限する充電制御部と、を備え、
前記算出部は、急速充電時での前記バッテリの電流値である充電電流値が所定値より大きい期間が長くなるほど前記ダメージ蓄積量が増大し、前記充電電流値が前記所定値以下である期間が長くなるほど、及び前記バッテリの非充電の期間が長くなるほど前記ダメージ蓄積量が低下するように、前記ダメージ蓄積量を算出する、充電制御装置。
a calculation unit that calculates a damage accumulation amount indicating an accumulation amount of damage to the battery due to rapid charging of the battery;
rapid charging of the battery is permitted when the accumulated damage amount is less than a threshold; and a charging control unit that limits rapid charging,
The calculation unit calculates that the longer the period in which the charging current value, which is the current value of the battery during rapid charging, is greater than a predetermined value, the greater the amount of accumulated damage, and the longer the period in which the charging current value is equal to or less than the predetermined value. A charging control device that calculates the amount of accumulated damage so that the amount of accumulated damage decreases as the non-charging period of the battery increases.
JP2021048516A 2021-03-23 2021-03-23 Charging control device Active JP7414761B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021048516A JP7414761B2 (en) 2021-03-23 2021-03-23 Charging control device
CN202210268522.4A CN115117957A (en) 2021-03-23 2022-03-18 Charging control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021048516A JP7414761B2 (en) 2021-03-23 2021-03-23 Charging control device

Publications (2)

Publication Number Publication Date
JP2022147323A true JP2022147323A (en) 2022-10-06
JP7414761B2 JP7414761B2 (en) 2024-01-16

Family

ID=83325280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021048516A Active JP7414761B2 (en) 2021-03-23 2021-03-23 Charging control device

Country Status (2)

Country Link
JP (1) JP7414761B2 (en)
CN (1) CN115117957A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189768A (en) * 2010-03-12 2011-09-29 Hitachi Ltd Control apparatus for hybrid vehicle
JP2013125607A (en) * 2011-12-13 2013-06-24 Toyota Motor Corp Nonaqueous secondary battery controlling device and controlling method
US20130234664A1 (en) * 2012-03-09 2013-09-12 GM Global Technology Operations LLC Method for charging a plug-in electric vehicle
WO2019230130A1 (en) * 2018-05-31 2019-12-05 本田技研工業株式会社 Charging control device, transportation equipment, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189768A (en) * 2010-03-12 2011-09-29 Hitachi Ltd Control apparatus for hybrid vehicle
JP2013125607A (en) * 2011-12-13 2013-06-24 Toyota Motor Corp Nonaqueous secondary battery controlling device and controlling method
US20130234664A1 (en) * 2012-03-09 2013-09-12 GM Global Technology Operations LLC Method for charging a plug-in electric vehicle
WO2019230130A1 (en) * 2018-05-31 2019-12-05 本田技研工業株式会社 Charging control device, transportation equipment, and program

Also Published As

Publication number Publication date
JP7414761B2 (en) 2024-01-16
CN115117957A (en) 2022-09-27

Similar Documents

Publication Publication Date Title
JP5293773B2 (en) Charging device for power storage device, vehicle equipped with the same, and method for controlling charging device
JP6901414B2 (en) Secondary battery system and vehicles equipped with it and how to control the battery
JP2015076958A (en) Power storage system
JP2006136101A (en) Power controller, electric vehicle and battery control unit
JP5515897B2 (en) Vehicle control device and vehicle equipped with the same
JP5720620B2 (en) vehicle
JP2020099160A (en) Vehicle charging system
JP2009296820A (en) Charge controller and charge controlling method for secondary battery, and electric vehicle
JP2015057009A (en) Vehicle
JP5803518B2 (en) Vehicle and vehicle control method
JP2013198179A (en) Vehicle controller and vehicle
JP2015201915A (en) vehicle
JP2017103950A (en) Power supply device
JP2019208338A (en) Electric vehicle
US9106091B2 (en) Vehicle and vehicle control method
JP2018098954A (en) Controller for electric vehicle
WO2020001265A1 (en) External charging method and device for vehicle
JP2022147323A (en) charging controller
JP6753332B2 (en) Battery system
JP2020068568A (en) Secondary battery system and charge control method of secondary battery
CN115848201A (en) Vehicle and charging method for vehicle
JP2020149880A (en) Secondary battery system
JP2013121212A (en) Equalization discharger of battery pack
JP2022160873A (en) Charge control device
US20220185128A1 (en) Charging control device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231228

R151 Written notification of patent or utility model registration

Ref document number: 7414761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151