JP2022145472A - Cathode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, battery module, and battery system - Google Patents

Cathode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, battery module, and battery system Download PDF

Info

Publication number
JP2022145472A
JP2022145472A JP2021197167A JP2021197167A JP2022145472A JP 2022145472 A JP2022145472 A JP 2022145472A JP 2021197167 A JP2021197167 A JP 2021197167A JP 2021197167 A JP2021197167 A JP 2021197167A JP 2022145472 A JP2022145472 A JP 2022145472A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
material layer
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021197167A
Other languages
Japanese (ja)
Other versions
JP7197669B2 (en
Inventor
裕一 佐飛
Yuichi Satobi
輝 吉川
Teru Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2021197167A priority Critical patent/JP7197669B2/en
Publication of JP2022145472A publication Critical patent/JP2022145472A/en
Application granted granted Critical
Publication of JP7197669B2 publication Critical patent/JP7197669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cathode for a nonaqueous electrolyte secondary battery, small in the percentage of a component making no contribution to lithium ion conduction, and superior in discharge characteristic in a low-temperature region, a nonaqueous electrolyte secondary battery using the cathod, a battery module, and a battery system.
SOLUTION: A cathode 1 for a nonaqueous electrolyte secondary battery comprises: a cathode collector 11; and a cathode active material layer 12 present on the cathode collector 11. The cathode active material layer 12 has a thickness of 10 μm or more, and the cathode active material layer 12 contains a cathode active material. The cathode active material layer 12 has a surface reflectance of 5.5% or more in a wavelength region of 200-850 nm, which is equal to or smaller than a reflectance specific to a cathode active material included in the cathode active material layer 12.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、および電池システムに関する。 TECHNICAL FIELD The present invention relates to positive electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, battery modules, and battery systems using the same.

非水電解質二次電池は、一般的に、正極、非水電解質、負極、および正極と負極との間に設置される分離膜(セパレータ)により構成される。
非水電解質二次電池の正極としては、リチウムイオンを含む正極活物質、導電助剤、および結着材からなる組成物を、金属箔(集電体)の表面に固着させたものが知られている。
A non-aqueous electrolyte secondary battery is generally composed of a positive electrode, a non-aqueous electrolyte, a negative electrode, and a separation membrane (separator) placed between the positive electrode and the negative electrode.
As a positive electrode for non-aqueous electrolyte secondary batteries, there is known one in which a composition comprising a positive electrode active material containing lithium ions, a conductive aid, and a binder is adhered to the surface of a metal foil (current collector). ing.

リチウムイオンを含む正極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等のリチウム遷移金属複合酸化物や、リン酸鉄リチウム(LiFePO)等のリチウムリン酸化合物が実用化されている。 Examples of positive electrode active materials containing lithium ions include lithium transition metal composite oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and lithium iron phosphate ( LiFePO 4 ) and other lithium phosphate compounds have been put to practical use.

非水電解質二次電池は、低温下における電池特性の要求があった。例えば、特許文献1には、バッテリ内部抵抗(IR)の関数としてバッテリCCAのアルゴリズムを計算して記憶するステップと、検査においてバッテリのIRを測定するステップと、前記測定されたIRを使用して前記記憶されたアルゴリズムから前記検査におけるバッテリのCCA値を決定するステップと、を含む検査においてバッテリのコールドクランキングアンペア(CCA)値を決定するCCA決定方法が記載されている。この方法により、特許文献1では、CCAの向上を図っている。 Non-aqueous electrolyte secondary batteries are required to have battery characteristics at low temperatures. For example, in US Pat. No. 5,300,000, the steps of calculating and storing a battery CCA algorithm as a function of battery internal resistance (IR), measuring the IR of the battery in a test, and using the measured IR, determining a CCA value for a battery under test from the stored algorithm. By this method, Patent Document 1 attempts to improve CCA.

特開2007-525354号公報JP 2007-525354 A

しかしながら、特許文献1に記載された発明では、非水電解質二次電池の低温下における電池特性をさらに向上するという要求を満足することができなかった。 However, the invention described in Patent Document 1 cannot satisfy the demand for further improving the battery characteristics of non-aqueous electrolyte secondary batteries at low temperatures.

本発明は、上記事情に鑑みてなされたものであって、リチウムイオンの伝導に寄与しない成分の割合が少なく、低温域における放電特性に優れる非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、および電池システムを提供することを目的とする。 The present invention has been made in view of the above circumstances, a positive electrode for a non-aqueous electrolyte secondary battery having a low proportion of components that do not contribute to lithium ion conduction and excellent discharge characteristics in a low temperature range, and a positive electrode using the same An object of the present invention is to provide a non-aqueous electrolyte secondary battery, a battery module, and a battery system.

本発明は以下の態様を有する。
[1]正極集電体と、前記正極集電体上に存在する正極活物質層とを有し、前記正極活物質層の厚さは、10μm以上であり、前記正極活物質層が正極活物質を含み、前記正極活物質層の表面の反射率が、200nm~850nmの波長域で5.5%以上、前記正極活物質層に含まれる正極活物質固有の反射率以下である、非水電解質二次電池用正極。
[2]前記正極活物質は、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、TiまたはZrである。)で表される化合物であり、前記正極活物質層の表面の反射率が、250nm~300nmの波長域で9%以上、前記正極活物質固有の反射率以下である、[1]に記載の非水電解質二次電池用正極。
[3]前記正極活物質は、LiFePOで表されるリン酸鉄リチウムである、[2]に記載の非水電解質二次電池用正極。
[4]前記正極活物質層の表面の反射率が、400nm~450nmの波長域で8%以上、前記正極活物質固有の反射率以下である、[1]~[3]のいずれかに記載の非水電解質二次電池用正極。
[5]前記正極活物質層は、導電助剤を含まない、[1]~[4]のいずれかに記載の非水電解質二次電池用正極。
[6]前記正極集電体は、正極集電体本体と、前記正極集電体本体の前記正極活物質層側の表面に存在する集電体被覆層とを有する、[1]~[5]のいずれかに記載の非水電解質二次電池用正極。
[7]下記試験方法により測定される電位が7.5V以上である、[1]~[6]のいずれかに記載の非水電解質二次電池用正極。
(試験方法)
定格容量1Ahの非水電解質二次電池とし、これを4個直列に接続し、満充電より1Cレートで30秒間放電した後の電位を測定する。
[8][1]~[7]のいずれかに記載の非水電解質二次電池用正極と、負極と、前記非水電解質二次電池用正極と前記負極との間に存在する非水電解質とを備える、非水電解質二次電池。
[9][8]に記載の非水電解質二次電池の複数個を備える、電池モジュールまたは電池システム。
The present invention has the following aspects.
[1] A positive electrode current collector and a positive electrode active material layer present on the positive electrode current collector, wherein the positive electrode active material layer has a thickness of 10 μm or more, and the positive electrode active material layer is a positive electrode active material layer. a non-aqueous substance containing a substance, wherein the reflectance of the surface of the positive electrode active material layer is 5.5% or more in a wavelength range of 200 nm to 850 nm and is equal to or less than the reflectance specific to the positive electrode active material contained in the positive electrode active material layer. Positive electrode for electrolyte secondary batteries.
[2] The positive electrode active material is represented by the general formula LiFe x M (1-x) PO 4 (where 0≦x≦1 and M is Co, Ni, Mn, Al, Ti or Zr). and the reflectance of the surface of the positive electrode active material layer is 9% or more in the wavelength range of 250 nm to 300 nm and is equal to or less than the reflectance specific to the positive electrode active material. A positive electrode for secondary batteries.
[3] The positive electrode for a nonaqueous electrolyte secondary battery according to [2], wherein the positive electrode active material is lithium iron phosphate represented by LiFePO4 .
[4] Any one of [1] to [3], wherein the reflectance of the surface of the positive electrode active material layer is 8% or more in a wavelength range of 400 nm to 450 nm and is equal to or less than the reflectance specific to the positive electrode active material. positive electrode for non-aqueous electrolyte secondary batteries.
[5] The positive electrode for a nonaqueous electrolyte secondary battery according to any one of [1] to [4], wherein the positive electrode active material layer does not contain a conductive aid.
[6] The positive electrode current collector has a positive electrode current collector main body and a current collector coating layer present on the surface of the positive electrode current collector main body on the positive electrode active material layer side, [1] to [5] ] The positive electrode for non-aqueous electrolyte secondary batteries according to any one of the above.
[7] The positive electrode for a nonaqueous electrolyte secondary battery according to any one of [1] to [6], which has a potential of 7.5 V or more as measured by the following test method.
(Test method)
Four non-aqueous electrolyte secondary batteries having a rated capacity of 1 Ah are connected in series, and the potential is measured after discharging at a 1 C rate for 30 seconds from full charge.
[8] The positive electrode for the non-aqueous electrolyte secondary battery according to any one of [1] to [7], the negative electrode, and the non-aqueous electrolyte present between the positive electrode for the non-aqueous electrolyte secondary battery and the negative electrode and a non-aqueous electrolyte secondary battery.
[9] A battery module or battery system comprising a plurality of non-aqueous electrolyte secondary batteries according to [8].

本発明によれば、リチウムイオンの伝導に寄与しない成分の割合が少なく、低温域における放電特性に優れる非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、および電池システムを提供することができる。 According to the present invention, a positive electrode for a non-aqueous electrolyte secondary battery having a low proportion of components that do not contribute to lithium ion conduction and excellent discharge characteristics in a low temperature range, a non-aqueous electrolyte secondary battery using the same, a battery module, and battery system can be provided.

本発明に係る非水電解質二次電池用正極の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a positive electrode for a non-aqueous electrolyte secondary battery according to the present invention; FIG. 本発明に係る非水電解質二次電池の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a non-aqueous electrolyte secondary battery according to the present invention; FIG. 実施例1および比較例において、正極活物質層の表面の分光反射率を測定した結果を示す図である。FIG. 3 is a diagram showing the results of measuring the spectral reflectance of the surface of the positive electrode active material layer in Example 1 and Comparative Example.

本明細書および特許請求の範囲において、数値範囲を示す「~」は、その前後に記載した数値を下限値および上限値として含むことを意味する。
図1は、本発明の非水電解質二次電池用正極の一実施形態を示す模式断面図であり、図2は本発明の非水電解質二次電池の一実施形態を示す模式断面図である。
なお、図1、2は、その構成をわかりやすく説明するための模式図であり、各構成要素の寸法比率等は、実際とは異なる場合もある。
In the present specification and claims, "-" indicating a numerical range means that the numerical values before and after it are included as lower and upper limits.
FIG. 1 is a schematic cross-sectional view showing one embodiment of a positive electrode for a non-aqueous electrolyte secondary battery of the present invention, and FIG. 2 is a schematic cross-sectional view showing one embodiment of a non-aqueous electrolyte secondary battery of the present invention. .
1 and 2 are schematic diagrams for explaining the configuration in an easy-to-understand manner, and the dimensional ratios and the like of each component may differ from the actual ones.

<非水電解質二次電池用正極>
本実施形態の非水電解質二次電池用正極(単に「正極」ともいう。)1は、正極集電体11と正極活物質層12を有する。
正極活物質層12は正極集電体11の少なくとも一面上に存在する。正極集電体11の両面上に正極活物質層12が存在してもよい。
図1の例において、正極集電体11は、正極集電体本体14と、正極集電体本体14の正極活物質層12側の表面を被覆する集電体被覆層15とを有する。正極集電体本体14のみを正極集電体11としてもよい。
<Positive electrode for non-aqueous electrolyte secondary battery>
A positive electrode for a non-aqueous electrolyte secondary battery (also simply referred to as “positive electrode”) 1 of this embodiment has a positive electrode current collector 11 and a positive electrode active material layer 12 .
The positive electrode active material layer 12 exists on at least one surface of the positive electrode current collector 11 . A positive electrode active material layer 12 may be present on both surfaces of the positive electrode current collector 11 .
In the example of FIG. 1, the positive electrode current collector 11 has a positive electrode current collector main body 14 and a current collector coating layer 15 that covers the surface of the positive electrode current collector main body 14 on the positive electrode active material layer 12 side. Only the positive electrode current collector main body 14 may be used as the positive electrode current collector 11 .

[正極活物質層]
正極活物質層12は正極活物質を含む。正極活物質層12は、さらに結着材を含むことが好ましい。正極活物質層12は、さらに導電助剤を含んでもよい。
正極活物質粒子は、正極活物質を含む。正極活物質粒子は、正極活物質のみからなる粒子でもよいし、正極活物質の芯部と、芯部を被複する被覆部(活物質被覆部)とを有してもよい(いわゆる被覆粒子)。正極活物質層12に含まれる正極活物質粒子の群の少なくとも一部は、被覆粒子であることが好ましい。
正極活物質層12の総質量に対して、正極活物質の含有量は80.0質量%~99.9質量%が好ましく、90.0質量%~99.5質量%がより好ましい。
[Positive electrode active material layer]
The positive electrode active material layer 12 contains a positive electrode active material. The positive electrode active material layer 12 preferably further contains a binder. The positive electrode active material layer 12 may further contain a conductive aid.
The positive electrode active material particles contain a positive electrode active material. The positive electrode active material particles may be particles composed only of the positive electrode active material, or may have a core portion of the positive electrode active material and a coating portion (active material coating portion) covering the core portion (so-called coated particles ). At least part of the group of positive electrode active material particles contained in the positive electrode active material layer 12 is preferably coated particles.
The content of the positive electrode active material is preferably 80.0% by mass to 99.9% by mass, more preferably 90.0% by mass to 99.5% by mass, based on the total mass of the positive electrode active material layer 12 .

正極活物質は、オリビン型結晶構造を有する化合物を含むことが好ましい。
オリビン型結晶構造を有する化合物は、一般式LiFe(1-x)POで(以下「一般式(1)」ともいう。)表される化合物が好ましい。一般式(1)において0≦x≦1である。MはCo、Ni、Mn、Al、Ti又はZrである。物性値に変化がない程度に微小量の、FeおよびM(Co、Ni、Mn、Al、Ti又はZr)の一部を他の元素に置換することもできる。一般式(1)で表される化合物は、微量の金属不純物が含まれていても本発明の効果が損なわれるものではない。
一般式(1)で表される化合物は、LiFePOで表されるリン酸鉄リチウム(以下、単に「リン酸鉄リチウム」ともいう。)が好ましい。
The positive electrode active material preferably contains a compound having an olivine crystal structure.
A compound having an olivine-type crystal structure is preferably a compound represented by the general formula LiFe x M (1-x) PO 4 (hereinafter also referred to as “general formula (1)”). 0≦x≦1 in the general formula (1). M is Co, Ni, Mn, Al, Ti or Zr. A small amount of Fe and M (Co, Ni, Mn, Al, Ti or Zr) can be substituted with other elements to the extent that the physical properties are not changed. Even if the compound represented by the general formula (1) contains a trace amount of metal impurities, the effect of the present invention is not impaired.
The compound represented by the general formula (1) is preferably lithium iron phosphate represented by LiFePO 4 (hereinafter also simply referred to as “lithium iron phosphate”).

正極活物質は、オリビン型結晶構造を有する化合物以外の他の正極活物質を含んでもよい。
他の正極活物質は、リチウム遷移金属複合酸化物が好ましい。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルコバルト酸リチウム(LiNiCoAl、ただしx+y+z=1)、ニッケルコバルトマンガン酸リチウム(LiNiCoMn、ただしx+y+z=1)、マンガン酸リチウム(LiMn)、コバルトマンガン酸リチウム(LiMnCoO)、クロム酸マンガンリチウム(LiMnCrO)、バナジウムニッケル酸リチウム(LiNiVO)、ニッケル置換マンガン酸リチウム(例えば、LiMn1.5Ni0.5)、およびバナジウムコバルト酸リチウム(LiCoVO)、これらの化合物の一部を金属元素で置換した非化学量論的化合物等が挙げられる。前記金属元素としては、Mn、Mg、Ni、Co、Cu、ZnおよびGeからなる群から選択される1種以上が挙げられる。
他の正極活物質は1種でもよく、2種以上でもよい。
The positive electrode active material may contain a positive electrode active material other than the compound having an olivine crystal structure.
Another positive electrode active material is preferably a lithium transition metal composite oxide. For example, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium nickel cobalt oxide ( LiNixCoyAlzO2 , where x + y + z = 1), lithium nickel cobalt manganate ( LiNixCoyMnz O2 , where x+y+z= 1 ), lithium manganate ( LiMn2O4), lithium cobalt manganate (LiMnCoO4), lithium manganese chromate ( LiMnCrO4 ), lithium vanadium nickelate ( LiNiVO4 ), nickel - substituted manganates Lithium (for example, LiMn 1.5 Ni 0.5 O 4 ), lithium vanadium cobaltate (LiCoVO 4 ), non-stoichiometric compounds obtained by substituting a part of these compounds with metal elements, and the like. Examples of the metal element include one or more selected from the group consisting of Mn, Mg, Ni, Co, Cu, Zn and Ge.
1 type may be sufficient as another positive electrode active material, and 2 or more types may be sufficient as it.

本実施形態の正極活物質粒子としては、正極活物質の表面の少なくとも一部が導電材料で被覆された被覆粒子が好ましい。被覆粒子を正極活物質粒子として用いることで、電池容量、高レートサイクル特性をより高められる。 The positive electrode active material particles of the present embodiment are preferably coated particles in which at least part of the surface of the positive electrode active material is coated with a conductive material. By using the coated particles as the positive electrode active material particles, the battery capacity and high rate cycle characteristics can be further enhanced.

活物質被覆部の導電材料は、炭素を含むことが好ましい。導電材料は、炭素のみからなってもよいし、炭素と炭素以外の他の元素とを含む導電性有機化合物でもよい。他の元素としては、窒素、水素、酸素等が例示できる。前記導電性有機化合物において、他の元素は10原子%以下が好ましく、5原子%以下がより好ましい。
活物質被覆部を構成する導電材料は、炭素のみからなることがさらに好ましい。
The conductive material of the active material coating preferably contains carbon. The conductive material may consist of carbon only, or may be a conductive organic compound containing carbon and other elements than carbon. Nitrogen, hydrogen, oxygen and the like can be exemplified as other elements. In the conductive organic compound, the content of other elements is preferably 10 atomic % or less, more preferably 5 atomic % or less.
It is more preferable that the conductive material forming the active material coating portion consist of carbon only.

活物質被覆部を構成する導電材料は、炭素のみからなることがさらに好ましい。
活物質被覆部を有する正極活物質の総質量に対して、導電材料の含有量は0.1~3.0質量%が好ましく、0.5~1.5質量%がより好ましく、0.7~1.3質量%がさらに好ましい。
It is more preferable that the conductive material forming the active material coating portion consist of carbon only.
The content of the conductive material is preferably 0.1 to 3.0% by mass, more preferably 0.5 to 1.5% by mass, and 0.7 based on the total mass of the positive electrode active material having the active material coating. ~1.3% by mass is more preferred.

被覆粒子としては、オリビン型結晶構造を有する化合物を芯部とする被覆粒子が好ましく、一般式(1)で表される化合物を芯部とする被覆粒子がより好ましく、リン酸鉄リチウムを芯部とする被覆粒子(以下「被覆リン酸鉄リチウム」ともいう。)がさらに好ましい。これらの被覆粒子であれば、電池容量、サイクル特性により高められる。
加えて、被覆粒子は、芯部の表面全体が導電材料で被覆されていることが、特に好ましい。
As the coated particles, coated particles having a core composed of a compound having an olivine-type crystal structure are preferable, and coated particles having a core composed of a compound represented by the general formula (1) are more preferable, and lithium iron phosphate is used as a core. Coated particles (hereinafter also referred to as “coated lithium iron phosphate”) are more preferable. These coated particles can improve battery capacity and cycle characteristics.
In addition, it is particularly preferable for the coated particles that the entire surface of the core is coated with a conductive material.

被覆粒子は、公知の方法で製造できる。以下に、被覆リン酸鉄リチウムを例にして、被覆粒子の製造方法を説明する。
例えば、特許第5098146号公報に記載の方法を用いてリン酸鉄リチウム粉末を作製し、GS Yuasa Technical Report、2008年6月、第5巻、第1号、第27~31頁等に記載の方法を用いて、リン酸鉄リチウム粉末の表面の少なくとも一部を炭素で被覆できる。
具体的には、まず、シュウ酸鉄二水和物、リン酸二水素アンモニウム、及び炭酸リチウムを、特定のモル比で計り、これらを不活性雰囲気下で粉砕及び混合する。次に、得られた混合物を窒素雰囲気下で加熱処理することによってリン酸鉄リチウム粉末を作製する。次いで、リン酸鉄リチウム粉末をロータリーキルンに入れ、窒素をキャリアガスとしたメタノール蒸気を供給しながら加熱処理することによって、表面の少なくとも一部を炭素で被覆したリン酸鉄リチウム粉末を得る。
例えば、粉砕工程における粉砕時間によってリン酸鉄リチウム粉末の粒子径を調整できる。メタノール蒸気を供給しながら加熱処理する工程における加熱時間及び温度等によって、リン酸鉄リチウム粉末を被覆する炭素の量を調整できる。被覆されなかった炭素粒子はその後の分級や洗浄などの工程などにより取り除くことが望ましい。
他の正極活物質は、表面の少なくとも一部に前記活物質被覆部が存在してもよい。
Coated particles can be produced by known methods. A method for producing coated particles will be described below using coated lithium iron phosphate as an example.
For example, lithium iron phosphate powder is prepared using the method described in Japanese Patent No. 5098146, and described in GS Yuasa Technical Report, June 2008, Vol. 5, No. 1, pp. 27-31. The method can be used to coat at least a portion of the surface of the lithium iron phosphate powder with carbon.
Specifically, first, iron oxalate dihydrate, ammonium dihydrogen phosphate, and lithium carbonate are weighed in a specific molar ratio, and these are pulverized and mixed under an inert atmosphere. Next, a lithium iron phosphate powder is produced by heat-treating the obtained mixture in a nitrogen atmosphere. Next, the lithium iron phosphate powder is placed in a rotary kiln and heat-treated while supplying methanol vapor using nitrogen as a carrier gas to obtain a lithium iron phosphate powder having at least a portion of the surface coated with carbon.
For example, the particle size of the lithium iron phosphate powder can be adjusted by adjusting the pulverization time in the pulverization step. The amount of carbon covering the lithium iron phosphate powder can be adjusted by the heating time and temperature in the step of heat-treating while supplying methanol vapor. It is desirable to remove uncoated carbon particles by subsequent steps such as classification and washing.
Other positive electrode active materials may have the active material coating on at least part of the surface.

正極活物質粒子の総質量に対して、被覆粒子の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。 The content of the coated particles is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, relative to the total mass of the positive electrode active material particles. 100 mass % may be sufficient.

正極活物質粒子の総質量に対して、オリビン型結晶構造を有する化合物の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。
被覆リン酸鉄リチウムを用いる場合、正極活物質粒子の総質量に対して、被覆リン酸鉄リチウムの含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。
The content of the compound having an olivine crystal structure is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, relative to the total mass of the positive electrode active material particles. 100 mass % may be sufficient.
When coated lithium iron phosphate is used, the content of coated lithium iron phosphate is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more, relative to the total mass of the positive electrode active material particles. preferable. 100 mass % may be sufficient.

正極活物質層12の総質量に対して、正極活物質粒子の含有量は、90質量%以上が好ましく、95質量%以上がより好ましく、99質量%超がさらに好ましく、99.5質量%以上が特に好ましく、100質量%でもよい。正極活物質粒子の含有量が上記下限値以上であれば、電池容量、サイクル特性により高められる。 The content of the positive electrode active material particles is preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably over 99% by mass, and 99.5% by mass or more with respect to the total mass of the positive electrode active material layer 12. is particularly preferred, and may be 100% by mass. When the content of the positive electrode active material particles is at least the above lower limit, the battery capacity and cycle characteristics are improved.

正極活物質粒子の群(即ち、正極活物質粒子の粉体)の平均粒子径は、例えば0.1~20.0μmが好ましく、0.2~10.0μmがより好ましい。正極活物質粒子を2種以上用いる場合、それぞれの平均粒子径が上記の範囲内であればよい。
本明細書における正極活物質の平均粒子径は、レーザー回折・散乱法による粒度分布測定器を用いて測定した体積基準のメジアン径である。
The group of positive electrode active material particles (that is, the powder of positive electrode active material particles) preferably has an average particle size of, for example, 0.1 to 20.0 μm, more preferably 0.2 to 10.0 μm. When two or more kinds of positive electrode active material particles are used, each average particle size should be within the above range.
The average particle size of the positive electrode active material in the present specification is a volume-based median size measured using a particle size distribution analyzer based on a laser diffraction/scattering method.

正極活物質層12に含まれる結着材は有機物であり、例えば、ポリアクリル酸、ポリアクリル酸リチウム、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレンブタジエンゴム、ポリビニルアルコール、ポリビニルアセタール、ポリエチレンオキサイド、ポリエチレングリコール、カルボキシメチルセルロース、ポリアクリルニトリル、ポリイミド等が挙げられる。結着材は1種でもよく、2種以上を併用してもよい。
正極活物質層12における結着材の含有量は、例えば、正極活物質層12の総質量に対して、1質量%以下が好ましく、0.5質量%以下がより好ましい。結着材の含有量が上記上限値以下であれば、正極活物質層12において、リチウムイオンの伝導に寄与しない物質の割合が少なくなり、正極活物質層12の真密度を高めて、さらに、正極1の表面を覆う結着材の割合が少なくなり、リチウムの伝導性をより高めることで、高レートサイクル特性のさらなる向上を図れる。
正極活物質層12が結着材を含有する場合、結着材の含有量の下限値は、正極活物質層12の総質量に対して0.1質量%以上が好ましい。
The binder contained in the positive electrode active material layer 12 is an organic substance, and examples thereof include polyacrylic acid, lithium polyacrylate, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyvinyl alcohol, and polyvinylidene. Acetal, polyethylene oxide, polyethylene glycol, carboxymethyl cellulose, polyacrylonitrile, polyimide and the like can be mentioned. One type of binder may be used, or two or more types may be used in combination.
The content of the binder in the positive electrode active material layer 12 is, for example, preferably 1% by mass or less, more preferably 0.5% by mass or less, relative to the total mass of the positive electrode active material layer 12 . If the content of the binder is equal to or less than the above upper limit, the proportion of the material that does not contribute to the conduction of lithium ions in the positive electrode active material layer 12 is reduced, the true density of the positive electrode active material layer 12 is increased, and furthermore, By reducing the ratio of the binder covering the surface of the positive electrode 1 and increasing the conductivity of lithium, the high rate cycle characteristics can be further improved.
When the positive electrode active material layer 12 contains a binder, the lower limit of the content of the binder is preferably 0.1% by mass or more with respect to the total mass of the positive electrode active material layer 12 .

正極活物質層12に含まれる導電助剤としては、例えば、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等の炭素材料が挙げられる。導電助剤は1種でもよく、2種以上を併用してもよい。
正極活物質層12における導電助剤の含有量は、例えば、正極活物質層12の総質量に対して、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.2質量%以下がさらに好ましく、0質量%(すなわち、導電助剤を含まない)が特に好ましい。導電助剤の含有量が上記上限値以下であれば、正極活物質層12において、リチウムイオンの伝導に寄与しない物質の割合が少なくなり、正極活物質層12の真密度を高めて、高レートサイクル特性のさらなる向上を図れる。
正極活物質層12に導電助剤を配合する場合、導電助剤の下限値は、導電助剤の種類に応じて適宜決定され、例えば、正極活物質層12の総質量に対して0.1質量%超とされる。
なお、正極活物質層12が「導電助剤を含まない」とは、実質的に含まないことを意味し、本発明の効果に影響を及ぼさない程度に含むものを排除するものではない。例えば、導電助剤の含有量が正極活物質層12の総質量に対して0.1質量%以下であれば、実質的に含まれないと判断できる。
Examples of conductive aids contained in the positive electrode active material layer 12 include carbon materials such as graphite, graphene, hard carbon, ketjen black, acetylene black, and carbon nanotubes (CNT). One type of conductive aid may be used, or two or more types may be used in combination.
The content of the conductive aid in the positive electrode active material layer 12 is, for example, preferably 1% by mass or less, more preferably 0.5% by mass or less, and 0.2% by mass with respect to the total mass of the positive electrode active material layer 12. The following are more preferable, and 0% by mass (that is, containing no conductive aid) is particularly preferable. If the content of the conductive aid is equal to or less than the above upper limit, the ratio of the material that does not contribute to the conduction of lithium ions in the positive electrode active material layer 12 is reduced, the true density of the positive electrode active material layer 12 is increased, and the rate is increased. Cycle characteristics can be further improved.
When the positive electrode active material layer 12 is blended with the conductive aid, the lower limit of the conductive aid is appropriately determined according to the type of the conductive aid. % by mass.
It should be noted that the fact that the positive electrode active material layer 12 "does not contain a conductive aid" means that it does not substantially contain any conductive aid, and does not exclude substances contained to such an extent that the effect of the present invention is not affected. For example, if the content of the conductive aid is 0.1% by mass or less with respect to the total mass of the positive electrode active material layer 12, it can be determined that it is not substantially contained.

[正極集電体]
集電体本体14を構成する材料としては、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が例示できる。
集電体本体14の厚みは、例えば、8μm~40μmが好ましく、10μm~25μmがより好ましい。
集電体本体14の厚みおよび正極集電体11の厚みは、マイクロメータを用いて測定できる。測定器の一例としてはミツトヨ社製品名「MDH-25M」が挙げられる。
[Positive collector]
Examples of the material forming the current collector main body 14 include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel.
The thickness of the current collector main body 14 is, for example, preferably 8 μm to 40 μm, more preferably 10 μm to 25 μm.
The thickness of current collector main body 14 and the thickness of positive electrode current collector 11 can be measured using a micrometer. An example of the measuring instrument is Mitutoyo's product name "MDH-25M".

[集電体被覆層]
集電体被覆層15は導電材料を含む。
集電体被覆層15中の導電材料は、炭素を含むことが好ましく、炭素のみからなる導電材料がより好ましい。
集電体被覆層15は、例えばカーボンブラック等の炭素粒子と結着材を含むコーティング層が好ましい。集電体被覆層15の結着材は、正極活物質層12の結着材と同様のものを例示できる。
集電体本体14の表面を集電体被覆層15で被覆した正極集電体11は、例えば、導電材料、結着材、および溶媒を含むスラリーを、グラビア法等の公知の塗工方法を用いて集電体本体14の表面に塗工し、乾燥して溶媒を除去する方法で製造できる。
[Current collector coating layer]
Current collector coating layer 15 includes a conductive material.
The conductive material in the current collector coating layer 15 preferably contains carbon, and more preferably a conductive material consisting only of carbon.
The current collector coating layer 15 is preferably a coating layer containing carbon particles such as carbon black and a binder. The binder for the current collector coating layer 15 can be exemplified by the same binder as the binder for the positive electrode active material layer 12 .
The positive electrode current collector 11 in which the surface of the current collector main body 14 is coated with the current collector coating layer 15 is prepared by applying a slurry containing a conductive material, a binder, and a solvent by a known coating method such as gravure. It can be manufactured by a method of coating the surface of the current collector main body 14 using a solvent and drying it to remove the solvent.

集電体被覆層15の厚さは、0.1~4.0μmが好ましい。
集電体被覆層の厚さは、集電体被覆層の断面の電子顕微鏡(SEM、TEM)像における被覆層の厚さを計測する方法で測定できる。集電体被覆層の厚さは均一でなくてもよい。正極集電体本体14の表面の少なくとも一部に厚さ0.1μm以上の集電体被覆層が存在し、集電体被覆層の厚さの最大値が4.0μm以下であることが好ましい。
The thickness of the current collector coating layer 15 is preferably 0.1 to 4.0 μm.
The thickness of the current collector coating layer can be measured by measuring the thickness of the coating layer in a cross-sectional electron microscope (SEM, TEM) image of the current collector coating layer. The thickness of the current collector coating layer may not be uniform. A current collector coating layer having a thickness of 0.1 μm or more is present on at least a portion of the surface of the positive electrode current collector main body 14, and the maximum thickness of the current collector coating layer is preferably 4.0 μm or less. .

[正極の製造方法]
本実施形態の正極1は、例えば、正極活物質、結着材、および溶媒を含む正極製造用組成物を、正極集電体11上に塗工し、乾燥し溶媒を除去して正極活物質層12を形成する方法で製造できる。正極製造用組成物は導電助剤を含んでもよい。
正極集電体11上に正極活物質層12を形成した積層物を、2枚の平板状冶具の間に挟み、厚み方向に均一に加圧する方法で、正極活物質層12の厚みを調整できる。例えば、ロールプレス機を用いて加圧する方法を使用できる。
[Manufacturing method of positive electrode]
The positive electrode 1 of the present embodiment is produced by, for example, applying a positive electrode manufacturing composition containing a positive electrode active material, a binder, and a solvent onto a positive electrode current collector 11, drying the solvent, and removing the solvent to obtain a positive electrode active material. It can be manufactured by the method of forming layer 12 . The composition for positive electrode production may contain a conductive aid.
The thickness of the positive electrode active material layer 12 can be adjusted by a method in which a laminate in which the positive electrode active material layer 12 is formed on the positive electrode current collector 11 is sandwiched between two flat jigs and is evenly pressed in the thickness direction. . For example, a method of applying pressure using a roll press can be used.

正極製造用組成物の溶媒は非水系溶媒が好ましい。例えば、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン、N,N-ジメチルホルムアミド等の鎖状または環状アミド;アセトン等のケトンが挙げられる。溶媒は1種でもよく、2種以上を併用してもよい。 A non-aqueous solvent is preferable as the solvent for the positive electrode-manufacturing composition. Examples include alcohols such as methanol, ethanol, 1-propanol and 2-propanol; linear or cyclic amides such as N-methylpyrrolidone and N,N-dimethylformamide; and ketones such as acetone. One type of solvent may be used, or two or more types may be used in combination.

正極活物質層12は、分散剤を含んでもよい。分散剤としては、例えば、ポリビニルピロリドン(PVP)、ワンショットワニス(トーヨーカラー社製)等が挙げられる。 The positive electrode active material layer 12 may contain a dispersant. Dispersants include, for example, polyvinylpyrrolidone (PVP) and one-shot varnish (manufactured by Toyocolor Co., Ltd.).

正極活物質を被覆する導電材料および導電助剤の少なくとも一方が炭素を含む場合、正極1から正極集電体本体14を除いた残部の質量に対して、導電性炭素の含有量は0.5~3.5質量%が好ましく、1.5~3.0質量%がより好ましい。
正極1が正極集電体本体14と正極活物質層12とからなる場合、正極1から正極集電体本体14を除いた残部の質量は、正極活物質層12の質量である。
正極1が正極集電体本体14と集電体被覆層15と正極活物質層12とからなる場合、正極1から正極集電体本体14を除いた残部の質量は、集電体被覆層15と正極活物質層12の合計質量である。
正極活物質層12の総質量に対して、導電性炭素の含有量が上記の範囲内であると、電池容量をより改善し、より優れたサイクル特性を有する非水電解質二次電池を実現できる。
正極1から正極集電体本体14を除いた残部の質量に対する導電性炭素の含有量は、正極集電体本体14上に存在する層の全量を剥がして120℃環境で真空乾燥させた乾燥物(粉体)を測定対象として、下記≪導電性炭素含有量の測定方法≫で測定できる。
下記≪導電性炭素含有量の測定方法≫で測定した導電性炭素の含有量は、活物質被覆部中の炭素と、導電助剤中の炭素と、集電体被覆層15中の炭素を含む。結着材中の炭素は含まれない。
When at least one of the conductive material covering the positive electrode active material and the conductive aid contains carbon, the content of conductive carbon is 0.5 with respect to the mass of the remainder of the positive electrode 1 excluding the positive electrode current collector main body 14. ~3.5% by mass is preferable, and 1.5 to 3.0% by mass is more preferable.
When the positive electrode 1 is composed of the positive electrode current collector main body 14 and the positive electrode active material layer 12 , the mass of the positive electrode 1 excluding the positive electrode current collector main body 14 is the mass of the positive electrode active material layer 12 .
When the positive electrode 1 is composed of the positive electrode current collector main body 14, the current collector coating layer 15, and the positive electrode active material layer 12, the mass of the remainder after removing the positive electrode current collector main body 14 from the positive electrode 1 is the current collector coating layer 15. and the total mass of the positive electrode active material layer 12 .
When the content of the conductive carbon is within the above range with respect to the total mass of the positive electrode active material layer 12, the battery capacity can be further improved, and a non-aqueous electrolyte secondary battery having better cycle characteristics can be realized. .
The content of conductive carbon with respect to the mass of the remainder of the positive electrode 1 excluding the positive electrode current collector main body 14 is obtained by removing the entire amount of the layer existing on the positive electrode current collector main body 14 and vacuum-drying it in a 120 ° C. environment. (Powder) can be measured by the following <<Method for measuring conductive carbon content>>.
The content of conductive carbon measured by the following «Method for measuring conductive carbon content» includes carbon in the active material coating portion, carbon in the conductive aid, and carbon in the current collector coating layer 15. . Carbon in the binder is not included.

前記測定対象物を得る方法としては、例えば、以下の方法を用いることができる。
まず、正極1を任意の大きさに打ち抜き、溶剤(例えば、N-メチルピロリドン)に浸漬して攪拌する方法で、正極集電体本体14上に存在する層(粉体)を完全に剥がす。次いで、正極集電体本体14に粉体が付着していないことを確認し、正極集電体本体14を溶剤から取り出し、剥がした粉体と溶剤を含む懸濁液(スラリー)を得る。得られた懸濁液を120℃で乾燥して溶剤を完全に揮発させ、目的の測定対象物(粉体)を得る。
As a method for obtaining the measurement object, for example, the following method can be used.
First, the positive electrode 1 is punched out to an arbitrary size, immersed in a solvent (for example, N-methylpyrrolidone) and stirred to completely peel off the layer (powder) present on the positive electrode current collector body 14 . After confirming that no powder adheres to the positive electrode current collector main body 14, the positive electrode current collector main body 14 is removed from the solvent to obtain a suspension (slurry) containing the removed powder and the solvent. The suspension thus obtained is dried at 120° C. to completely volatilize the solvent to obtain the target measurement object (powder).

≪導電性炭素含有量の測定方法≫
[測定方法A]
測定対象物を均一に混合して試料(質量w1)を量りとり、下記の工程A1、工程A2の手順で熱重量示唆熱(TG-DTA)測定を行い、TG曲線を得る。得られたTG曲線から下記第1の重量減少量M1(単位:質量%)及び第2の重量減少量M2(単位:質量%)を求める。M2からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
工程A1:300mL/分のアルゴン気流中において、10℃/分の昇温速度で30℃から600℃まで昇温し、600℃で10分間保持したときの質量w2から、下記式(a1)により第1の重量減少量M1を求める。
M1=(w1-w2)/w1×100 (a1)
工程A2:前記工程A1の直後に600℃から10℃/分の降温速度で降温し、200℃で10分間保持した後に、測定ガスをアルゴンから酸素へ完全に置換し、100mL/分の酸素気流中において、10℃/分の昇温速度で200℃から1000℃まで昇温し、1000℃にて10分間保持したときの質量w3から、下記式(a2)により第2の重量減少量M2(単位:質量%)を求める。
M2=(w1-w3)/w1×100 (a2)
<<Method for measuring conductive carbon content>>
[Measurement method A]
The object to be measured is uniformly mixed, a sample (mass w1) is weighed, and thermogravimetric suggestive heat (TG-DTA) measurement is performed in the following steps A1 and A2 to obtain a TG curve. From the obtained TG curve, the following first weight reduction amount M1 (unit: mass %) and second weight reduction amount M2 (unit: mass %) are determined. Subtract M1 from M2 to obtain the content of conductive carbon (unit: % by mass).
Step A1: In an argon stream of 300 mL/min, the temperature is raised from 30° C. to 600° C. at a rate of temperature increase of 10° C./min and held at 600° C. for 10 minutes. A first weight reduction amount M1 is obtained.
M1=(w1-w2)/w1×100 (a1)
Step A2: Immediately after step A1, the temperature is lowered from 600° C. at a rate of 10° C./min, held at 200° C. for 10 minutes, and then the measurement gas is completely replaced from argon to oxygen with an oxygen flow of 100 mL/min. Inside, the temperature is increased from 200 ° C. to 1000 ° C. at a temperature increase rate of 10 ° C./min, and the mass w3 when held at 1000 ° C. for 10 minutes is calculated by the following formula (a2) to obtain the second weight reduction amount M2 ( Unit: % by mass).
M2=(w1-w3)/w1×100 (a2)

[測定方法B]
測定対象物を均一に混合して試料を0.0001mg精秤し、下記の燃焼条件で試料を燃焼し、発生した二酸化炭素をCHN元素分析装置により定量し、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、前記測定方法Aの工程A1の手順で第1の重量減少量M1を求める。M3からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
[燃焼条件]
燃焼炉:1150℃
還元炉:850℃
ヘリウム流量:200mL/分
酸素流量:25~30mL/分
[Measurement method B]
The object to be measured is uniformly mixed and 0.0001 mg of the sample is precisely weighed, the sample is burned under the following combustion conditions, the carbon dioxide generated is quantified by a CHN elemental analyzer, and the total carbon content M3 ( Unit: % by mass). In addition, the first weight reduction amount M1 is obtained by the procedure of step A1 of the measuring method A described above. Subtract M1 from M3 to obtain the conductive carbon content (unit: % by mass).
[Combustion conditions]
Combustion furnace: 1150°C
Reduction furnace: 850°C
Helium flow rate: 200 mL/min Oxygen flow rate: 25-30 mL/min

[測定方法C]
上記測定方法Bと同様にして、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、下記の方法で結着材由来の炭素の含有量M4(単位:質量%)を求める。M3からM4を減算して導電性炭素の含有量(単位:質量%)を得る。
結着材がポリフッ化ビニリデン(PVDF:モノマー(CHCF)の分子量64)である場合は、管状式燃焼法による燃焼イオンクロマトグラフィーにより測定されたフッ化物イオン(F)の含有量(単位:質量%)、PVDFを構成するモノマーのフッ素の原子量(19)、およびPVDFを構成する炭素の原子量(12)から以下の式で計算することができる。
PVDFの含有量(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×64/38
PVDF由来の炭素の含有量M4(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×12/19
結着材がポリフッ化ビニリデンであることは、試料、又は試料をN-Nジメチルホルムアミド(DMF)溶媒により抽出した液体をフーリエ変換赤外スペクトル(FT-IR)測定し、C-F結合由来の吸収を確認する方法で確かめることができる。同様に19F-NMR測定でも確かめることができる。
結着材がPVDF以外と同定された場合は、その分子量に相当する結着材の含有量(単位:質量%)および炭素の含有量(単位:質量%)を求めることで、結着材由来の炭素量M4を算出できる。
これらの手法は下記複数の公知文献に記載されている。
東レリサーチセンター The TRC News No.117 (Sep.2013)第34~37頁、[2021年2月10日検索]、インターネット<https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34-37).pdf>。
東ソー分析センター 技術レポート No.T1019 2017.09.20、[2021年2月10日検索]、インターネット<http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>。
[Measurement method C]
The total carbon content M3 (unit: % by mass) contained in the sample is measured in the same manner as in the measurement method B above. Also, the binder-derived carbon content M4 (unit: % by mass) is determined by the following method. Subtract M4 from M3 to obtain the conductive carbon content (unit: % by mass).
When the binder is polyvinylidene fluoride (PVDF: monomer (CH 2 CF 2 ) molecular weight 64), the content of fluoride ions (F ) measured by combustion ion chromatography using a tubular combustion method ( Unit: % by mass), the fluorine atomic weight (19) of the monomer constituting PVDF, and the atomic weight (12) of carbon constituting PVDF by the following formula.
PVDF content (unit: mass%) = fluoride ion content (unit: mass%) x 64/38
PVDF-derived carbon content M4 (unit: mass%) = fluoride ion content (unit: mass%) x 12/19
The fact that the binder is polyvinylidene fluoride is confirmed by Fourier transform infrared spectrum (FT-IR) measurement of the sample or the liquid obtained by extracting the sample with N-N dimethylformamide (DMF) solvent, and the C-F bond derived It can be confirmed by a method for confirming absorption. It can also be confirmed by 19 F-NMR measurement.
If the binder is identified to be other than PVDF, the content of the binder (unit: mass %) corresponding to the molecular weight and the content of carbon (unit: mass %) of carbon content M4 can be calculated.
These techniques are described in the following publications.
Toray Research Center The TRC News No. 117 (Sep.2013) pp. 34-37, [searched on February 10, 2021], Internet <https://www. toray-research. co. jp/technical-info/trcnews/pdf/TRC117(34-37). pdf>.
Tosoh Analysis Center Technical Report No. T1019 2017.09.20, [retrieved on February 10, 2021], Internet <http://www. tosoh-arc. co. jp/techrepo/files/tarc00522/T1719N. pdf>.

≪導電性炭素の分析方法≫
正極活物質の活物質被覆部を構成する導電性炭素と、導電助剤である導電性炭素は、以下の分析方法で区別できる。
例えば、正極活物質層中の粒子を透過電子顕微鏡電子エネルギー損失分光法(TEM-EELS)により分析し、粒子表面近傍にのみ290eV付近の炭素由来のピークが存在する粒子は正極活物質であり、粒子内部にまで炭素由来のピークが存在する粒子は導電助剤と判定することができる。
他の方法としては、正極活物質層中の粒子をラマン分光によりマッピング解析し、炭素由来のG-bandとD-band、及び正極活物質由来の酸化物結晶のピークが同時に観測された粒子は正極活物質であり、G-bandとD-bandのみが観測された粒子は導電助剤と判定することができる。なお、不純物として考えられる微量な炭素や、製造時に正極活物質の表面から意図せず剥がれた微量な炭素等は、導電助剤と判定しない。
これらの方法を用いて、炭素材料からなる導電助剤が正極活物質層に含まれるか否かを確認することができる。
<<Method for analyzing conductive carbon>>
The conductive carbon that constitutes the active material coating portion of the positive electrode active material and the conductive carbon that is the conductive aid can be distinguished by the following analysis method.
For example, the particles in the positive electrode active material layer are analyzed by transmission electron microscope electron energy loss spectroscopy (TEM-EELS), and particles having a carbon-derived peak near 290 eV only in the vicinity of the particle surface are positive electrode active materials, Particles in which carbon-derived peaks are present even inside the particles can be determined to be conductive aids.
As another method, the particles in the positive electrode active material layer are subjected to mapping analysis by Raman spectroscopy. Particles that are positive electrode active materials and in which only the G-band and D-band are observed can be determined as conductive aids. A small amount of carbon considered as an impurity, a small amount of carbon unintentionally peeled off from the surface of the positive electrode active material during production, and the like are not determined to be conductive aids.
Using these methods, it is possible to confirm whether or not the positive electrode active material layer contains a conductive aid made of a carbon material.

[正極活物質層の厚さ]
本実施形態の正極1では、正極活物質層12の厚さは、10μm以上であることが好ましい。正極活物質層12の厚さが10μm以上であれば、集電体の厚さと比較して十分厚く形成することができるため電池のエネルギー密度を高めることができる。正極活物質層12の厚さが10μm以上である場合、正極活物質層12が多孔質であっても、正極集電体11の反射率の影響を受けることなく、正極活物質層12の表面の反射率を測定することができる。
[Thickness of positive electrode active material layer]
In the positive electrode 1 of this embodiment, the thickness of the positive electrode active material layer 12 is preferably 10 μm or more. If the thickness of the positive electrode active material layer 12 is 10 μm or more, it can be formed sufficiently thicker than the current collector, so that the energy density of the battery can be increased. When the thickness of the positive electrode active material layer 12 is 10 μm or more, the surface of the positive electrode active material layer 12 is not affected by the reflectance of the positive electrode current collector 11 even if the positive electrode active material layer 12 is porous. can be measured.

[正極活物質層の表面の反射率]
本実施形態の正極1では、正極活物質層12の表面の反射率が、200nm~850nmの波長域で5.5%以上、正極活物質層12に含まれる正極活物質固有の反射率以下である。前記反射率は、5.8%以上であることが好ましく、6.0%以上であることがより好ましい。前記反射率が5.5%以上であれば、正極活物質層12の表面において、リチウムイオンの伝導に寄与しない成分の割合が少なくなるため、リチウムイオンの伝導が妨げられることを抑制することができる。その結果、正極1は、低温域における放電特性に優れるものとなる。また、正極活物質層12の表面において、リチウムイオンの伝導に寄与しない成分の割合が少なくなると、正極活物質層12の表面において正極活物質の割合が多くなるため、前記反射率が正極活物質層12に含まれる正極活物質固有の反射率以下となる。
なお、本実施形態の正極1では、正極活物質層12の表面の反射率を上記の範囲内とするには、正極活物質層12における正極活物質の配合量を高める。
[Reflectance of Surface of Positive Electrode Active Material Layer]
In the positive electrode 1 of the present embodiment, the reflectance of the surface of the positive electrode active material layer 12 is 5.5% or more in the wavelength range of 200 nm to 850 nm, and the reflectance specific to the positive electrode active material contained in the positive electrode active material layer 12 or less. be. The reflectance is preferably 5.8% or more, more preferably 6.0% or more. If the reflectance is 5.5% or more, the proportion of components that do not contribute to lithium ion conduction on the surface of the positive electrode active material layer 12 is reduced, so that hindrance to lithium ion conduction can be suppressed. can. As a result, the positive electrode 1 has excellent discharge characteristics in a low temperature range. In addition, when the proportion of components that do not contribute to the conduction of lithium ions on the surface of the positive electrode active material layer 12 decreases, the proportion of the positive electrode active material on the surface of the positive electrode active material layer 12 increases. The reflectance is equal to or less than the reflectance specific to the positive electrode active material contained in the layer 12 .
In the positive electrode 1 of the present embodiment, the blending amount of the positive electrode active material in the positive electrode active material layer 12 is increased in order to keep the reflectance of the surface of the positive electrode active material layer 12 within the above range.

正極活物質層12の表面の反射率の測定方法は、正極活物質層12の表面の分光反射率の測定によって評価する。
分光反射率の測定には、例えば、日立製作所社製、分光光度計U-4100(5°正反射付属装置付き)を用いる。光源としては、紫外域 重水素ランプ、可視・近赤外域 50Wハロゲンランプを用いる。検出器としては、紫外・可視域 光電子増倍管、近赤外域 冷却型PbSを用いる。測定範囲は、200nm-850nmとする。サンプルサイズを15mm×15mmとする。
正極活物質層12の表面の分光反射率は、正極を完全放電状態で測定する。もしくは、正極を2.0V vs Li/Liまで放電する。
導電性炭素材料のみの反射率は、正極集電体本体14上に、カーボンブラック100質量部と、結着材であるポリフッ化ビニリデン40質量部と、溶媒であるN-メチルピロリドン(NMP)とを混合したスラリーを塗工し、乾燥して得た薄膜の反射率を測定することにより評価する。NMPの使用量はスラリーを塗工するのに必要な量とする。
正極活物質層12の表面反射は、表面粗さによって影響を受けるが、一般に電極はプレス処理をすることにより表面は平滑性を持ち、乱反射の影響が低い状態となっている。さらに、本測定では、入射角を5°とし、入射角がほぼ垂直であるため、安定して材料固有の反射率を測定することができる。
また、正極活物質層12の厚みが数μmを下回ると、正極集電体本体14の反射光が含まれることがあるが、本実施形態では、正極活物質層12の厚みが10μm以上の正極を対象とするため、正極活物質層12の表面反射は、正極活物質層12の表面の反射光のスペクトルのみを反映する。
The method for measuring the reflectance of the surface of the positive electrode active material layer 12 is evaluated by measuring the spectral reflectance of the surface of the positive electrode active material layer 12 .
For measuring the spectral reflectance, for example, a spectrophotometer U-4100 (with a 5° specular reflection accessory) manufactured by Hitachi, Ltd. is used. As a light source, a deuterium lamp in the ultraviolet region and a 50 W halogen lamp in the visible/near infrared region are used. As a detector, an ultraviolet/visible photomultiplier tube and a near-infrared cooled PbS are used. The measurement range is 200 nm-850 nm. Let the sample size be 15 mm×15 mm.
The spectral reflectance of the surface of the positive electrode active material layer 12 is measured while the positive electrode is fully discharged. Alternatively, the positive electrode is discharged to 2.0 V vs Li/Li + .
The reflectance of the conductive carbon material alone was obtained by adding 100 parts by mass of carbon black, 40 parts by mass of polyvinylidene fluoride as a binder, and N-methylpyrrolidone (NMP) as a solvent on the positive electrode current collector main body 14. is applied, and the reflectance of the obtained thin film is measured for evaluation. The amount of NMP used is the amount necessary to coat the slurry.
The surface reflection of the positive electrode active material layer 12 is affected by the surface roughness. In general, the electrode has a smooth surface by press treatment, and the effect of irregular reflection is low. Furthermore, in this measurement, the incident angle is 5°, and the incident angle is almost vertical, so that the material-specific reflectance can be stably measured.
In addition, when the thickness of the positive electrode active material layer 12 is less than several μm, reflected light from the positive electrode current collector main body 14 may be included. , the surface reflection of the positive electrode active material layer 12 reflects only the spectrum of the reflected light from the surface of the positive electrode active material layer 12 .

正極活物質層12に含まれる正極活物質固有の反射率の測定方法は以下の通りである。
正極集電体本体上に、正極活物質のみを含むスラリーを塗工し、乾燥して得た薄膜の反射率を測定することにより、正極活物質固有の反射率を評価する。
正極活物質固有の反射率の測定は、正極活物質層12の表面の反射率の測定と同様に行う。
A method for measuring the reflectance specific to the positive electrode active material contained in the positive electrode active material layer 12 is as follows.
A slurry containing only the positive electrode active material is applied onto the main body of the positive electrode current collector, and the reflectance of the thin film obtained by drying is measured to evaluate the reflectance specific to the positive electrode active material.
The reflectance specific to the positive electrode active material is measured in the same manner as the reflectance of the surface of the positive electrode active material layer 12 is measured.

本実施形態の正極1では、正極活物質層12の表面の反射率が、250nm~300nmの波長域で9%以上、正極活物質層12に含まれる正極活物質固有の反射率以下であることが好ましい。前記反射率が9%以上であると、リチウムイオンの伝導に寄与しない成分の割合がより少なくなるため、リチウムイオンの伝導が妨げられることをより抑制することができる。また、正極活物質層12の表面において、リチウムイオンの伝導に寄与しない成分の割合が少なくなると、正極活物質層12の表面において正極活物質の割合が多くなるため、前記反射率が正極活物質層12に含まれる正極活物質固有の反射率以下となる。 In the positive electrode 1 of the present embodiment, the reflectance of the surface of the positive electrode active material layer 12 is 9% or more in the wavelength range of 250 nm to 300 nm, and the reflectance specific to the positive electrode active material contained in the positive electrode active material layer 12 or less. is preferred. When the reflectance is 9% or more, the proportion of the components that do not contribute to the conduction of lithium ions is smaller, so that the hindrance to the conduction of lithium ions can be further suppressed. In addition, when the proportion of components that do not contribute to the conduction of lithium ions on the surface of the positive electrode active material layer 12 decreases, the proportion of the positive electrode active material on the surface of the positive electrode active material layer 12 increases. The reflectance is equal to or less than the reflectance specific to the positive electrode active material contained in the layer 12 .

本実施形態の正極1では、正極活物質層12の表面の反射率が、400nm~450nmの波長域で8%以上、正極活物質層12に含まれる正極活物質固有の反射率以下であることが好ましい。正極活物質層12に含まれる正極活物質固有の反射率以下であることが好ましい。前記反射率が8%以上であると、リチウムイオンの伝導に寄与しない成分の割合がより少なくなるため、リチウムイオンの伝導が妨げられることをより抑制することができる。また、正極活物質層12の表面において、リチウムイオンの伝導に寄与しない成分の割合が少なくなると、正極活物質層12の表面において正極活物質の割合が多くなるため、前記反射率が正極活物質層12に含まれる正極活物質固有の反射率以下となる。 In the positive electrode 1 of the present embodiment, the reflectance of the surface of the positive electrode active material layer 12 is 8% or more in the wavelength range of 400 nm to 450 nm, and the reflectance specific to the positive electrode active material contained in the positive electrode active material layer 12 or less. is preferred. The reflectance is preferably equal to or lower than the reflectance specific to the positive electrode active material contained in the positive electrode active material layer 12 . When the reflectance is 8% or more, the ratio of the components that do not contribute to the conduction of lithium ions is smaller, so that the hindrance to the conduction of lithium ions can be further suppressed. In addition, when the proportion of components that do not contribute to the conduction of lithium ions on the surface of the positive electrode active material layer 12 decreases, the proportion of the positive electrode active material on the surface of the positive electrode active material layer 12 increases. It becomes equal to or less than the reflectance specific to the positive electrode active material contained in the layer 12 .

本実施形態の正極1では、下記試験方法により測定される電位が7.5V以上である。
(試験方法)
定格容量1Ahの非水電解質二次電池とし、これを4個直列に接続し、満充電より1Cレートで30秒間放電した後の電位を測定する。
正極1において、上記試験方法により測定される電位が7.5V以上であると、鉛蓄電池用途としてのコールドクランキング特性を満たすことができる。
In the positive electrode 1 of this embodiment, the potential measured by the following test method is 7.5 V or higher.
(Test method)
Four non-aqueous electrolyte secondary batteries having a rated capacity of 1 Ah are connected in series, and the potential is measured after discharging at a 1 C rate for 30 seconds from full charge.
When the positive electrode 1 has a potential of 7.5 V or higher as measured by the above test method, the cold cranking characteristics for use in a lead-acid battery can be satisfied.

本実施形態の正極1によれば、正極活物質層12の表面の反射率が、200nm~850nmの波長域で5.5%以上、正極活物質層12に含まれる正極活物質固有の反射率以下であるため、正極活物質層12の表面にリチウムイオンの伝導に寄与しない成分の割合が少なく、低温域における放電特性に優れる。すなわち、本実施形態の正極1は、低温域におけるコールドクランキング特性が良好であり、特に使用を開始した後の抵抗上昇が抑えられ、長期間安定して使用することができる。
従来、正極を構成する正極活物質層の表面には、通常、正極活物質の表面を被覆する炭素等の導電材料、導電助剤、バインダー、その他添加物が偏析している。正極活物質層の表面に導電材料やバインダーが偏析していると、界面抵抗が上昇し、電池特性に悪影響を与える。特に、低温域における放電特性では、負極側に最も近い、正極活物質層の表面付近に存在する正極活物質のイオン伝導が妨げられると特性に悪影響が生じ、放電初期の電位低下(直流抵抗によるIRドロップ)が問題となる。本実施形態の正極1は、正極活物質層12の表面の反射率を、200nm~850nmの波長域で5.5%以上、正極活物質層12に含まれる正極活物質固有の反射率以下とすることにより、正極活物質層12の表面におけるリチウムイオンの伝導に寄与しない成分の割合を少なくして、上記の課題を解決した。
According to the positive electrode 1 of the present embodiment, the reflectance of the surface of the positive electrode active material layer 12 is 5.5% or more in the wavelength range of 200 nm to 850 nm, and the reflectance specific to the positive electrode active material contained in the positive electrode active material layer 12. Therefore, the proportion of components that do not contribute to the conduction of lithium ions on the surface of the positive electrode active material layer 12 is small, and discharge characteristics in a low temperature range are excellent. That is, the positive electrode 1 of the present embodiment has good cold cranking characteristics in a low temperature range, suppresses an increase in resistance particularly after starting use, and can be used stably for a long period of time.
Conventionally, a conductive material such as carbon, a conductive aid, a binder, and other additives that cover the surface of the positive electrode active material usually segregate on the surface of the positive electrode active material layer that constitutes the positive electrode. Segregation of the conductive material and the binder on the surface of the positive electrode active material layer increases interfacial resistance and adversely affects battery characteristics. In particular, in the discharge characteristics in the low temperature range, if the ion conduction of the positive electrode active material existing near the surface of the positive electrode active material layer, which is closest to the negative electrode side, is hindered, the characteristics are adversely affected, resulting in a decrease in potential at the beginning of discharge (due to DC resistance IR drop) is a problem. In the positive electrode 1 of the present embodiment, the reflectance of the surface of the positive electrode active material layer 12 is 5.5% or more in the wavelength range of 200 nm to 850 nm, and the reflectance specific to the positive electrode active material contained in the positive electrode active material layer 12 or less. By doing so, the ratio of components that do not contribute to the conduction of lithium ions on the surface of the positive electrode active material layer 12 is reduced, thereby solving the above problem.

<非水電解質二次電池>
図2に示す本実施形態の非水電解質二次電池10は、本実施形態の非水電解質二次電池用正極1と、負極3と、非水電解質とを備える。さらにセパレータ2を備えてもよい。図中符号5は外装体である。
本実施形態において、正極1は、板状の正極集電体11と、その両面上に設けられた正極活物質層12と有する。正極活物質層12は正極集電体11の表面の一部に存在する。正極集電体11の表面の縁部は、正極活物質層12が存在しない正極集電体露出部13である。正極集電体露出部13の任意の箇所に、図示しない端子用タブが電気的に接続する。
負極3は、板状の負極集電体31と、その両面上に設けられた負極活物質層32とを有する。負極活物質層32は負極集電体31の表面の一部に存在する。負極集電体31の表面の縁部は、負極活物質層32が存在しない負極集電体露出部33である。負極集電体露出部33の任意の箇所に、図示しない端子用タブが電気的に接続する。
正極1、負極3およびセパレータ2の形状は特に限定されない。例えば平面視矩形状でもよい。
<Non-aqueous electrolyte secondary battery>
A non-aqueous electrolyte secondary battery 10 of the present embodiment shown in FIG. 2 includes the positive electrode 1 for non-aqueous electrolyte secondary batteries of the present embodiment, a negative electrode 3, and a non-aqueous electrolyte. Further, a separator 2 may be provided. Reference numeral 5 in the figure is an exterior body.
In this embodiment, the positive electrode 1 has a plate-like positive electrode current collector 11 and positive electrode active material layers 12 provided on both sides thereof. The positive electrode active material layer 12 exists on part of the surface of the positive electrode current collector 11 . An edge portion of the surface of the positive electrode current collector 11 is a positive electrode current collector exposed portion 13 where the positive electrode active material layer 12 does not exist. A terminal tab (not shown) is electrically connected to an arbitrary portion of the positive electrode current collector exposed portion 13 .
The negative electrode 3 has a plate-like negative electrode current collector 31 and negative electrode active material layers 32 provided on both sides thereof. The negative electrode active material layer 32 exists on part of the surface of the negative electrode current collector 31 . An edge portion of the surface of the negative electrode current collector 31 is a negative electrode current collector exposed portion 33 where the negative electrode active material layer 32 does not exist. A terminal tab (not shown) is electrically connected to an arbitrary portion of the negative electrode current collector exposed portion 33 .
The shapes of the positive electrode 1, the negative electrode 3 and the separator 2 are not particularly limited. For example, it may be rectangular in plan view.

本実施形態の非水電解質二次電池10は、例えば、正極1と負極3を、セパレータ2を介して交互に積層した電極積層体を作製し、電極積層体をアルミラミネート袋等の外装体(筐体)5に封入し、非水電解質(図示せず)を注入して密閉する方法で製造できる。
図2では、代表的に、負極/セパレータ/正極/セパレータ/負極の順に積層した構造を示しているが、電極の数は適宜変更できる。正極1は1枚以上あればよく、得ようとする電池容量に応じて任意の数の正極1を用いることができる。負極3およびセパレータ2は、正極1の数より1枚多く用い、最外層が負極3となるように積層する。
The non-aqueous electrolyte secondary battery 10 of the present embodiment is produced, for example, by fabricating an electrode laminate in which the positive electrode 1 and the negative electrode 3 are alternately laminated with the separator 2 interposed therebetween, and the electrode laminate is packaged in an outer package such as an aluminum laminate bag ( It can be manufactured by a method of enclosing in a housing 5, injecting a non-aqueous electrolyte (not shown), and sealing.
FIG. 2 typically shows a structure in which negative electrodes/separators/positive electrodes/separators/negative electrodes are laminated in this order, but the number of electrodes can be changed as appropriate. One or more positive electrodes 1 are sufficient, and any number of positive electrodes 1 can be used according to the battery capacity to be obtained. The negative electrode 3 and the separator 2 are used one more than the number of the positive electrodes 1, and are laminated so that the negative electrode 3 is the outermost layer.

[負極]
負極活物質層32は負極活物質を含む。さらに結着材を含んでもよい。さらに導電助剤を含んでもよい。負極活物質の形状は、粒子状が好ましい。
負極3は、例えば、負極活物質、結着材、および溶媒を含む負極製造用組成物を調製し、これを負極集電体31上に塗工し、乾燥し溶媒を除去して負極活物質層32を形成する方法で製造できる。負極製造用組成物は導電助剤を含んでもよい。
[Negative electrode]
The negative electrode active material layer 32 contains a negative electrode active material. Furthermore, a binding material may be included. Further, it may contain a conductive aid. The shape of the negative electrode active material is preferably particulate.
For the negative electrode 3, for example, a negative electrode manufacturing composition containing a negative electrode active material, a binder, and a solvent is prepared, the negative electrode current collector 31 is coated with the composition, and the negative electrode active material is dried to remove the solvent. It can be manufactured by any method that forms layer 32 . The negative electrode production composition may contain a conductive aid.

負極活物質および導電助剤としては、例えばグラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等の炭素材料が挙げられる。負極活物質および導電助剤は、それぞれ1種でもよく2種以上を併用してもよい。 Examples of negative electrode active materials and conductive aids include carbon materials such as graphite, graphene, hard carbon, ketjen black, acetylene black, and carbon nanotubes (CNT). Each of the negative electrode active material and the conductive aid may be used alone or in combination of two or more.

負極集電体31の材料、負極製造用組成物中の結着材、溶媒としては、上記した正極集電体11の材料、正極製造用組成物中の結着材、溶媒と同様のものを例示できる。負極製造用組成物中の結着材、溶媒は、それぞれ1種でもよく2種以上を併用してもよい。 As the material of the negative electrode current collector 31 and the binder and solvent in the composition for manufacturing the negative electrode, the same materials as the material of the positive electrode current collector 11 and the binder and solvent in the composition for manufacturing the positive electrode are used. I can give an example. The binder and the solvent in the negative electrode-producing composition may be used alone or in combination of two or more.

負極活物質層32の総質量に対して、負極活物質および導電助剤の合計の含有量は80.0質量%~99.9質量%が好ましく、85.0質量%~98.0質量%がより好ましい。 The total content of the negative electrode active material and the conductive aid is preferably 80.0% to 99.9% by mass, more preferably 85.0% to 98.0% by mass, relative to the total mass of the negative electrode active material layer 32. is more preferred.

[セパレータ]
セパレータ2を負極3と正極1との間に配置して短絡等を防止する。セパレータ2は、後述する非水電解質を保持してもよい。
セパレータ2としては、特に限定されず、多孔性の高分子膜、不織布、ガラスファイバー等が例示できる。
セパレータ2の一方または両方の表面上に絶縁層を設けてもよい。絶縁層は、絶縁性微粒子を絶縁層用結着材で結着した多孔質構造を有する層が好ましい。
[Separator]
A separator 2 is arranged between the negative electrode 3 and the positive electrode 1 to prevent short circuit or the like. The separator 2 may hold a non-aqueous electrolyte, which will be described later.
The separator 2 is not particularly limited, and can be exemplified by porous polymer membranes, non-woven fabrics, glass fibers, and the like.
An insulating layer may be provided on one or both surfaces of the separator 2 . The insulating layer is preferably a layer having a porous structure in which insulating fine particles are bound with an insulating layer binder.

セパレータ2は、各種可塑剤、酸化防止剤、難燃剤を含んでもよい。
酸化防止剤としては、ヒンダードフェノール系酸化防止剤、モノフェノール系酸化防止剤、ビスフェノール系酸化防止剤、ポリフェノール系酸化防止剤等のフェノール系酸化防止剤;ヒンダードアミン系酸化防止剤;リン系酸化防止剤;イオウ系酸化防止剤;ベンゾトリアゾール系酸化防止剤;ベンゾフェノン系酸化防止剤;トリアジン系酸化防止剤;サルチル酸エステル系酸化防止剤等が例示できる。フェノール系酸化防止剤、リン系酸化防止剤が好ましい。
The separator 2 may contain various plasticizers, antioxidants and flame retardants.
Antioxidants include phenolic antioxidants such as hindered phenolic antioxidants, monophenolic antioxidants, bisphenolic antioxidants, and polyphenolic antioxidants; hindered amine antioxidants; phosphorus antioxidants. benzotriazole-based antioxidants; benzophenone-based antioxidants; triazine-based antioxidants; salicylic acid ester-based antioxidants, and the like. Phenolic antioxidants and phosphorus antioxidants are preferred.

[非水電解質]
非水電解質は正極1と負極3との間を満たす。例えば、リチウムイオン二次電池、電気二重層キャパシタ等において公知の非水電解質を使用できる。
非水電解質として、有機溶媒に電解質塩を溶解した非水電解液が好ましい。
[Non-aqueous electrolyte]
A non-aqueous electrolyte fills between the positive electrode 1 and the negative electrode 3 . For example, known nonaqueous electrolytes can be used in lithium ion secondary batteries, electric double layer capacitors and the like.
As the non-aqueous electrolyte, a non-aqueous electrolytic solution obtained by dissolving an electrolyte salt in an organic solvent is preferable.

有機溶媒は、高電圧に対する耐性を有するものが好ましい。例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトロヒドラフラン、2-メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、またはこれら極性溶媒の2種類以上の混合物が挙げられる。 The organic solvent preferably has resistance to high voltage. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, γ-butyrolactone, sulfolane, dimethylsulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrohydrafuran, 2-methyl Polar solvents such as tetrahydrofuran, dioxolane, methyl acetate, or mixtures of two or more of these polar solvents are included.

電解質塩は、特に限定されず、例えばLiClO、LiPF、LiBF、LiAsF、LiCF、LiCFCO、LiPFSO、LiN(SOF)、LiN(SOCF、Li(SOCFCF、LiN(COCF、LiN(COCFCF等のリチウムを含む塩、またはこれら塩の2種以上の混合物が挙げられる。 The electrolyte salt is not particularly limited, and examples thereof include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 6 , LiCF 3 CO 2 , LiPF 6 SO 3 , LiN(SO 2 F) 2 and LiN(SO 2 CF 3 ). 2 , Li( SO2CF2CF3 ) 2 , LiN( COCF3 ) 2 , LiN ( COCF2CF3 ) 2 , or a mixture of two or more of these salts.

本実施形態の非水電解質二次電池は、産業用、民生用、自動車用、住宅用等、各種用途のリチウムイオン二次電池として使用できる。
本実施形態の非水電解質二次電池の使用形態は特に限定されない。例えば、複数個の非水電解質二次電池を直列または並列に接続して構成した電池モジュール、電気的に接続した複数個の電池モジュールと電池制御システムとを備える電池パック、電気的に接続した複数個の電池モジュールと電池制御システムとを備える蓄電池システム等に用いることができる。
The non-aqueous electrolyte secondary battery of the present embodiment can be used as a lithium ion secondary battery for various uses such as industrial use, consumer use, automobile use, and residential use.
The mode of use of the non-aqueous electrolyte secondary battery of this embodiment is not particularly limited. For example, a battery module configured by connecting a plurality of non-aqueous electrolyte secondary batteries in series or in parallel, a battery pack comprising a plurality of electrically connected battery modules and a battery control system, and a plurality of electrically connected It can be used for a storage battery system or the like that includes individual battery modules and a battery control system.

以下に実施例および比較例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。 EXAMPLES The present invention will be described in more detail below using Examples and Comparative Examples, but the present invention is not limited to these Examples.

<測定方法>
[分光反射率の測定方法]
(測定条件)
測定装置:日立製作所社製、分光光度計U-4100(5°正反射付属装置付き)
光源:紫外域 重水素ランプ、可視・近赤外域 50Wハロゲンランプ
検出器:紫外・可視域 光電子増倍管、近赤外域 冷却型PbS
測定範囲:200-850nm
サンプルサイズ:15mm×15mm
<Measurement method>
[Method for measuring spectral reflectance]
(Measurement condition)
Measuring device: Spectrophotometer U-4100 manufactured by Hitachi, Ltd. (with 5° specular reflection accessory)
Light source: UV deuterium lamp, visible/near infrared 50W halogen lamp Detector: UV/visible photomultiplier tube, near infrared cooled PbS
Measurement range: 200-850nm
Sample size: 15mm x 15mm

(分光反射率の測定)
正極活物質層の分光反射率は、正極を完全放電状態で測定する。もしくは、正極を2.0V vs Li/Liまで放電する。
導電性炭素材料のみの反射率は、正極集電体本体であるアルミニウム箔(厚さ15μm)上に、カーボンブラック100質量部と、結着材であるポリフッ化ビニリデン40質量部と、溶媒であるN-メチルピロリドン(NMP)とを混合したスラリーを塗工し、乾燥して得た薄膜の反射率を測定することにより評価した。NMPの使用量はスラリーを塗工するのに必要な量とした。
正極活物質層の表面反射は、表面粗さによって影響を受けるが、一般に電極はプレス処理をすることにより表面は平滑性を持ち、乱反射の影響が低い状態となっている。さらに、本測定では、入射角を5°とし、入射角がほぼ垂直であるため、安定して材料固有の反射率を測定することができる。
また、正極活物質層の厚みが数μmを下回ると、正極集電体本体の反射光が含まれることがあるが、本発明では、正極活物質層の厚みが10μm以上の正極を対象とするため、正極活物質層の表面反射は、正極活物質層の表面の反射光のスペクトルのみを反映する。
(Measurement of spectral reflectance)
The spectral reflectance of the positive electrode active material layer is measured while the positive electrode is fully discharged. Alternatively, the positive electrode is discharged to 2.0 V vs Li/Li + .
The reflectance of the conductive carbon material alone is obtained by adding 100 parts by mass of carbon black, 40 parts by mass of polyvinylidene fluoride as a binder, and a solvent on an aluminum foil (thickness of 15 μm) that is the main body of the positive electrode current collector. A slurry mixed with N-methylpyrrolidone (NMP) was applied, dried, and the reflectance of the obtained thin film was measured for evaluation. The amount of NMP used was the amount necessary for coating the slurry.
The surface reflection of the positive electrode active material layer is affected by the surface roughness. In general, the electrode has a smooth surface by press treatment, and the effect of irregular reflection is low. Furthermore, in this measurement, the incident angle is 5°, and the incident angle is almost vertical, so that the material-specific reflectance can be stably measured.
In addition, when the thickness of the positive electrode active material layer is less than several μm, the reflected light of the positive electrode current collector body may be included. Therefore, the surface reflection of the positive electrode active material layer reflects only the spectrum of light reflected from the surface of the positive electrode active material layer.

<製造例:負極の製造>
負極活物質である人造黒鉛100質量部と、結着材であるスチレンブタジエンゴム1.5質量部と、増粘材であるカルボキシメチルセルロースNa1.5質量部と、溶媒である水とを混合し、固形分50質量%の負極製造用組成物を得た。
得られた負極製造用組成物を、銅箔(厚さ8μm)の両面上にそれぞれ塗工し、100℃で真空乾燥した後、2kNの荷重で加圧プレスして負極シートを得た。得られた負極シートを、42mm角の電極形状に打ち抜き、負極とした。
<Production example: production of negative electrode>
100 parts by mass of artificial graphite as a negative electrode active material, 1.5 parts by mass of styrene-butadiene rubber as a binder, 1.5 parts by mass of carboxymethyl cellulose Na as a thickener, and water as a solvent are mixed, A composition for manufacturing a negative electrode having a solid content of 50% by mass was obtained.
The obtained composition for manufacturing a negative electrode was coated on both sides of a copper foil (thickness: 8 μm), dried in vacuum at 100° C., and then pressed under a load of 2 kN to obtain a negative electrode sheet. The obtained negative electrode sheet was punched into a 42 mm square electrode shape to obtain a negative electrode.

[実施例1]
正極活物質としては、炭素で被覆されたリン酸鉄リチウム(以下「カーボンコート活物質」ともいう。平均粒子径1.0μm)を用いた。炭素の被覆量を1.0質量%とした。
導電助剤を用いなかった。
まず、以下の方法で正極集電体本体の表裏両面を集電体被覆層で被覆して正極集電体を作製した。正極集電体本体としてはアルミニウム箔(厚さ15μm)を用いた。
次いで、以下の方法で正極活物質層を形成した。
カーボンコート活物質100質量部と、結着材であるポリフッ化ビニリデン0.5質量部と、溶媒であるNMPとを、ミキサーにて混合して正極製造用組成物を得た。溶媒の使用量は、正極製造用組成物を塗工するのに必要な量とした。
正極集電体の両面上に、それぞれ正極製造用組成物を塗工し、予備乾燥後、120℃で真空乾燥して、厚み70μmの正極活物質層を形成した。
得られた積層物を10kNの荷重で加圧プレスして正極シートを得た。
得られた正極シートを、40mm角の電極形状に打ち抜き、正極とした。
[Example 1]
As the positive electrode active material, carbon-coated lithium iron phosphate (hereinafter also referred to as “carbon-coated active material”; average particle size: 1.0 μm) was used. The coating amount of carbon was set to 1.0% by mass.
No conductive aid was used.
First, a positive electrode current collector was produced by coating both the front and back surfaces of a positive electrode current collector body with a current collector coating layer by the following method. An aluminum foil (thickness: 15 μm) was used as the main body of the positive electrode current collector.
Next, a positive electrode active material layer was formed by the following method.
100 parts by mass of the carbon-coated active material, 0.5 parts by mass of polyvinylidene fluoride as a binder, and NMP as a solvent were mixed in a mixer to obtain a composition for manufacturing a positive electrode. The amount of the solvent used was the amount necessary for coating the composition for manufacturing a positive electrode.
The composition for manufacturing a positive electrode was coated on both sides of the positive electrode current collector, pre-dried, and then vacuum-dried at 120° C. to form a positive electrode active material layer having a thickness of 70 μm.
The resulting laminate was pressed under a load of 10 kN to obtain a positive electrode sheet.
The obtained positive electrode sheet was punched into a 40 mm square electrode shape to obtain a positive electrode.

得られた正極の正極活物質層の表面の分光反射率を測定した。結果を図3に示す。図3に示す結果から、200nm~850nmの波長域で反射率が6.5%以上であり、250nm~300nmの波長域では正極活物質層に含まれるリン酸鉄リチウム固有の反射スペクトルを反映して、反射率が11%であった。また、400nm~450nmの波長域ではカーボンブラック量が少ないことを反映して、反射率が8.9%以上であった。長波長ほど反射率が低下する傾向が認められ、850nmでの反射率は6.6%であった。
導電助剤(カーボンブラック)のみの反射光量を測定したところ、200nm~300nmの波長域で反射率が3%~5%、300nm~850nmの波長域で反射率が3%以下であった。本実施例における正極活物質層と比較して、カーボンブラックは非常に光吸収が大きいことが分かった。カーボンブラックの添加量が少ないことにより、正極活物質層の表面にはリン酸鉄リチウム粒子固有の反射が観測され、リチウム伝導に寄与しない材料が少ない状態が実現できたと考えられる。
The spectral reflectance of the surface of the positive electrode active material layer of the obtained positive electrode was measured. The results are shown in FIG. From the results shown in FIG. 3, the reflectance is 6.5% or more in the wavelength range of 200 nm to 850 nm, and the reflection spectrum specific to lithium iron phosphate contained in the positive electrode active material layer is reflected in the wavelength range of 250 nm to 300 nm. , the reflectance was 11%. In addition, the reflectance was 8.9% or more in the wavelength region of 400 nm to 450 nm, reflecting the small amount of carbon black. The reflectance tended to decrease as the wavelength became longer, and the reflectance at 850 nm was 6.6%.
When the amount of reflected light of only the conductive aid (carbon black) was measured, the reflectance was 3% to 5% in the wavelength range of 200 nm to 300 nm, and the reflectance was 3% or less in the wavelength range of 300 nm to 850 nm. It was found that carbon black has a much higher light absorption than the positive electrode active material layer in this example. Since the amount of carbon black added was small, reflection specific to the lithium iron phosphate particles was observed on the surface of the positive electrode active material layer, and it is considered that a state in which the amount of material that does not contribute to lithium conduction was small was achieved.

以下の方法で、図2に示す構成の非水電解質二次電池を製造した。
エチレンカーボネート(EC)とプロピレンカーボネート(PC)とジエチルカーボネート(DEC)を、EC:PC:DECの体積比が30:5:65となるように混合した溶媒に、電解質としてLiPFを1モル/リットルとなるように溶解して、非水電解液を調製した。
本例で得た正極と、製造例1で得た負極とを、セパレータを介して交互に積層し、最外層が負極である電極積層体を作製した。セパレータとしては、ポリオレフィンフィルム(厚さ15μm)を用いた。
電極積層体を作製する工程では、まず、セパレータと正極とを積層し、その後、セパレータ上に負極を積層した。
電極積層体の正極集電体露出部および負極集電体露出部のそれぞれに、端子用タブを電気的に接続し、端子用タブが外部に突出するように、アルミラミネートフィルムで電極積層体を挟み、三辺をラミネート加工して封止した。
続いて、封止せずに残した一辺から非水電解液を注入し、真空封止して非水電解質二次電池(ラミネートセル)を製造した。得られた非水電解質二次電池の容量は1.0Ahであった。
A non-aqueous electrolyte secondary battery having the configuration shown in FIG. 2 was manufactured by the following method.
Ethylene carbonate (EC), propylene carbonate (PC), and diethyl carbonate (DEC) were mixed so that the volume ratio of EC:PC:DEC was 30: 5 :65. A non-aqueous electrolytic solution was prepared by dissolving so as to obtain 1 liter.
The positive electrode obtained in this example and the negative electrode obtained in Production Example 1 were alternately laminated via a separator to prepare an electrode laminate having the negative electrode as the outermost layer. A polyolefin film (thickness: 15 μm) was used as the separator.
In the process of producing the electrode laminate, first, the separator and the positive electrode were laminated, and then the negative electrode was laminated on the separator.
A terminal tab was electrically connected to each of the positive electrode current collector exposed portion and the negative electrode current collector exposed portion of the electrode laminate, and the electrode laminate was wrapped with an aluminum laminate film so that the terminal tab protruded outside. It was sandwiched and sealed by laminating three sides.
Subsequently, a non-aqueous electrolyte was injected from one side that was left unsealed, and vacuum-sealed to manufacture a non-aqueous electrolyte secondary battery (laminate cell). The capacity of the obtained non-aqueous electrolyte secondary battery was 1.0 Ah.

得られた非水電解質二次電池を25℃にて満充電(100%SOC)した後、-30℃にて、満充電状態から1Cで放電し、放電開始から30秒後(8mAh相当)での電位を観測した。
その結果、本実施例の非水電解質二次電池の電位は2.52Vであった。このセル(非水電解質二次電池)を4個直列にして得られる電池モジュールの電位は10.08Vであり、鉛蓄電池用途としてのコールドクランキング特性を満たしていた。
After the obtained non-aqueous electrolyte secondary battery was fully charged (100% SOC) at 25 ° C., it was discharged at -30 ° C. from the fully charged state at 1 C, and 30 seconds after the start of discharge (equivalent to 8 mAh) was observed.
As a result, the potential of the non-aqueous electrolyte secondary battery of this example was 2.52V. A battery module obtained by connecting four cells (non-aqueous electrolyte secondary batteries) in series had a potential of 10.08 V, which satisfied the cold cranking characteristics for a lead-acid battery.

さらに、本実施例の非水電解質二次電池について、40℃にて、1C充電/1C放電を1サイクルとする充放電サイクルを1000サイクル繰り返した。その後、非水電解質二次電池を25℃にて満充電(100%SOC)した後、-30℃にて、満充電状態から1Cで放電したところ、放電開始から30秒後の電位は2.45Vであった。このセル(非水電解質二次電池)を4個直列にして得られる電池の電位は9.8Vであり、鉛蓄電池用途としてのコールドクランキング特性を満たしていた。
これらの結果を表1に示す。
Further, the non-aqueous electrolyte secondary battery of this example was subjected to 1000 charge/discharge cycles at 40° C., one cycle of 1C charge/1C discharge. After that, the non-aqueous electrolyte secondary battery was fully charged (100% SOC) at 25° C., and then discharged at 1 C from the fully charged state at −30° C. The potential after 30 seconds from the start of discharge was 2.0. It was 45V. The electric potential of the battery obtained by connecting four cells (non-aqueous electrolyte secondary batteries) in series was 9.8 V, which satisfied the cold cranking characteristics for lead-acid battery applications.
These results are shown in Table 1.

[実施例2]
導電助剤としてのカーボンブラックを1.0質量%添加したこと以外は、実施例1と同様にして、実施例2の正極を作製した。
得られた正極の正極活物質層の表面の分光反射率を測定した。その結果、200nm~850nmの波長域で反射率が6.2%以上であり、250nm~300nmの波長域では正極活物質層に含まれるリン酸鉄リチウム固有の反射スペクトルを反映して、反射率が9.5%であった。また、400nm~450nmの波長域では、反射率が8.9%以上であった。実施例1よりも反射率が低いのは、カーボンブラックを少量添加したためである。
[Example 2]
A positive electrode of Example 2 was produced in the same manner as in Example 1, except that 1.0% by mass of carbon black as a conductive aid was added.
The spectral reflectance of the surface of the positive electrode active material layer of the obtained positive electrode was measured. As a result, the reflectance was 6.2% or more in the wavelength range of 200 nm to 850 nm, and in the wavelength range of 250 nm to 300 nm, the reflectance was was 9.5%. Moreover, the reflectance was 8.9% or more in the wavelength range of 400 nm to 450 nm. The reason why the reflectance is lower than that of Example 1 is that a small amount of carbon black is added.

得られた正極を用いて、非水電解質二次電池(ラミネートセル)を製造した。得られた非水電解質二次電池の容量は1.0Ahであった。
得られた非水電解質二次電池を25℃にて満充電(100%SOC)した後、-30℃にて、満充電状態から1Cで放電し、放電開始から30秒後(8mAh相当)での電位を観測したところ、電位は2.5Vであった。実施例1よりも電位が若干低下したのは、カーボンブラックを少量含むためにリチウム伝導パスが若干妨げられたことが要因と考えられる。
A non-aqueous electrolyte secondary battery (laminate cell) was manufactured using the obtained positive electrode. The capacity of the obtained non-aqueous electrolyte secondary battery was 1.0 Ah.
After the obtained non-aqueous electrolyte secondary battery was fully charged (100% SOC) at 25 ° C., it was discharged at -30 ° C. from the fully charged state at 1 C, and 30 seconds after the start of discharge (equivalent to 8 mAh) When the potential of was observed, the potential was 2.5V. The reason why the potential was slightly lower than in Example 1 is considered to be that the small amount of carbon black contained slightly hindered the lithium conduction path.

さらに、本実施例の非水電解質二次電池について、40℃にて、1C充電/1C放電を1サイクルとする充放電サイクルを1000サイクル繰り返した。その後、非水電解質二次電池を25℃にて満充電(100%SOC)した後、-30℃にて、満充電状態から1Cで放電したところ、放電開始から30秒後の電位は2.35Vであった。このセル(非水電解質二次電池)を4個直列にして得られる電池モジュールの電位は9.4Vであり、鉛蓄電池用途としてのコールドクランキング特性を満たしていた。
これらの結果を表1に示す。
実施例1と同様、長波長ほど反射率が低下する傾向が認められ、850nmでの反射率は6.2%であった。
Further, the non-aqueous electrolyte secondary battery of this example was subjected to 1000 charge/discharge cycles at 40° C., one cycle of 1C charge/1C discharge. After that, the non-aqueous electrolyte secondary battery was fully charged (100% SOC) at 25° C., and then discharged at 1 C from the fully charged state at −30° C. The potential after 30 seconds from the start of discharge was 2.0. It was 35V. A battery module obtained by connecting four cells (non-aqueous electrolyte secondary batteries) in series had a potential of 9.4 V, which satisfied the cold cranking characteristics for a lead-acid battery.
These results are shown in Table 1.
As in Example 1, the longer the wavelength, the lower the reflectance, and the reflectance at 850 nm was 6.2%.

[比較例]
導電助剤としてのカーボンブラックを5.0質量%添加したこと以外は、実施例1と同様にして、比較例の正極を作製した。
得られた正極の正極活物質層の表面の分光反射率を測定した。結果を図3に示す。その結果、200nm~850nmの波長域で反射率が5.0%であり、250nm~300nmの波長域では正極活物質層に含まれるリン酸鉄リチウム固有の反射スペクトルを反映して、反射率が6.2%であった。また、400nm~450nmの波長域では、反射率が5.0%以上であった。実施例1、2よりも反射率が低いのは、カーボンブラックの添加量が多いためである。カーボンブラックの影響により波長410nmで反射率は極小値をとり、410nmでの反射率は5.0%、200nmでの反射率は10.5%、850nmでの反射率は5.3%であった。
[Comparative example]
A positive electrode of a comparative example was produced in the same manner as in Example 1, except that 5.0% by mass of carbon black as a conductive aid was added.
The spectral reflectance of the surface of the positive electrode active material layer of the obtained positive electrode was measured. The results are shown in FIG. As a result, the reflectance was 5.0% in the wavelength range of 200 nm to 850 nm, and the reflectance was 5.0% in the wavelength range of 250 nm to 300 nm, reflecting the reflection spectrum specific to lithium iron phosphate contained in the positive electrode active material layer. It was 6.2%. In addition, the reflectance was 5.0% or more in the wavelength range of 400 nm to 450 nm. The reason why the reflectance is lower than that of Examples 1 and 2 is that the amount of carbon black added is large. Due to the influence of carbon black, the reflectance has a minimum value at a wavelength of 410 nm. rice field.

得られた正極を用いて、非水電解質二次電池(ラミネートセル)を製造した。得られた非水電解質二次電池の容量は1.0Ahであった。
得られた非水電解質二次電池を25℃にて満充電(100%SOC)した後、-30℃にて、満充電状態から1Cで放電し、放電開始から30秒後(8mAh相当)での電位を観測したところ、電位は2.4Vであった。実施例2よりも電位がさらに低下したのは、カーボンブラックの添加量が多いために電池特性に大きく影響する程度までリチウム伝導パスが妨げられたことが要因と考えられる。
A non-aqueous electrolyte secondary battery (laminate cell) was manufactured using the obtained positive electrode. The capacity of the obtained non-aqueous electrolyte secondary battery was 1.0 Ah.
After the obtained non-aqueous electrolyte secondary battery was fully charged (100% SOC) at 25 ° C., it was discharged at -30 ° C. from the fully charged state at 1 C, and 30 seconds after the start of discharge (equivalent to 8 mAh) When the potential of was observed, the potential was 2.4V. The reason why the potential was even lower than in Example 2 is considered to be that the large amount of carbon black added hindered the lithium conduction path to such an extent that the battery characteristics were greatly affected.

さらに、本実施例の非水電解質二次電池について、40℃にて、1C充電/1C放電を1サイクルとする充放電サイクルを1000サイクル繰り返した。その後、非水電解質二次電池を25℃にて満充電(100%SOC)した後、-30℃にて、満充電状態から1Cで放電したところ、放電開始から30秒後の電位は1.8Vであった。このセル(非水電解質二次電池)を4個直列にして得られる電池モジュールの電位は7.2Vであり、鉛蓄電池用途としてのコールドクランキング特性を満たしていなかった。サイクル後に抵抗上昇、電位低下を起こしているのは、カーボンブラックによる副反応によるものと考えられ、カーボンブラックの添加量が多く、正極活物質層の表面の反射率が低い状態では、電池特性の劣化が大きいことが分かった。
これらの結果を表1に示す。
Further, the non-aqueous electrolyte secondary battery of this example was subjected to 1000 charge/discharge cycles at 40° C., one cycle of 1C charge/1C discharge. After that, the non-aqueous electrolyte secondary battery was fully charged (100% SOC) at 25° C., and then discharged at 1 C from the fully charged state at −30° C. The potential after 30 seconds from the start of discharge was 1.0. It was 8V. A battery module obtained by connecting four cells (non-aqueous electrolyte secondary batteries) in series had a potential of 7.2 V, which did not satisfy the cold cranking characteristics for use in a lead-acid battery. The increase in resistance and the decrease in potential after cycling are thought to be due to side reactions caused by carbon black. It was found that the deterioration was significant.
These results are shown in Table 1.

Figure 2022145472000002
Figure 2022145472000002

1 正極
2 セパレータ
3 負極
5 外装体
10 二次電池
11 正極集電体
12 正極活物質層
13 正極集電体露出部
14 集電体本体
15 集電体被覆層
31 負極集電体
32 負極活物質層
33 負極集電体露出部
1 positive electrode 2 separator 3 negative electrode 5 outer package 10 secondary battery 11 positive electrode current collector 12 positive electrode active material layer 13 positive electrode current collector exposed portion 14 current collector main body 15 current collector coating layer 31 negative electrode current collector 32 negative electrode active material Layer 33 Negative electrode current collector exposed portion

Claims (9)

正極集電体と、前記正極集電体上に存在する正極活物質層とを有し、
前記正極活物質層の厚さは、10μm以上であり、
前記正極活物質層が正極活物質を含み、
前記正極活物質層の表面の反射率が、200nm~850nmの波長域で5.5%以上、前記正極活物質層に含まれる正極活物質固有の反射率以下である、非水電解質二次電池用正極。
Having a positive electrode current collector and a positive electrode active material layer present on the positive electrode current collector,
The thickness of the positive electrode active material layer is 10 μm or more,
The positive electrode active material layer contains a positive electrode active material,
The non-aqueous electrolyte secondary battery, wherein the reflectance of the surface of the positive electrode active material layer is 5.5% or more in a wavelength range of 200 nm to 850 nm and is equal to or less than the reflectance specific to the positive electrode active material contained in the positive electrode active material layer. positive electrode.
前記正極活物質は、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、TiまたはZrである。)で表される化合物であり、
前記正極活物質層の表面の反射率が、250nm~300nmの波長域で9%以上、前記正極活物質固有の反射率以下である、請求項1に記載の非水電解質二次電池用正極。
The positive electrode active material is a compound represented by the general formula LiFe x M (1-x) PO 4 (where 0≦x≦1 and M is Co, Ni, Mn, Al, Ti or Zr). and
2. The positive electrode for a non-aqueous electrolyte secondary battery in accordance with claim 1, wherein the surface reflectance of said positive electrode active material layer is 9% or more in a wavelength range of 250 nm to 300 nm and equal to or less than the reflectance specific to said positive electrode active material.
前記正極活物質は、LiFePOで表されるリン酸鉄リチウムである、請求項2に記載の非水電解質二次電池用正極。 3. The positive electrode for a non-aqueous electrolyte secondary battery according to claim 2, wherein said positive electrode active material is lithium iron phosphate represented by LiFePO4 . 前記正極活物質層の表面の反射率が、400nm~450nmの波長域で8%以上、前記正極活物質固有の反射率以下である、請求項1~3のいずれか1項に記載の非水電解質二次電池用正極。 The nonaqueous according to any one of claims 1 to 3, wherein the reflectance of the surface of the positive electrode active material layer is 8% or more in the wavelength range of 400 nm to 450 nm, and the reflectance specific to the positive electrode active material or less. Positive electrode for electrolyte secondary batteries. 前記正極活物質層は、導電助剤を含まない、請求項1~4のいずれか1項に記載の非水電解質二次電池用正極。 The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the positive electrode active material layer does not contain a conductive aid. 前記正極集電体は、正極集電体本体と、前記正極集電体本体の前記正極活物質層側の表面に存在する集電体被覆層とを有する、請求項1~5のいずれか1項に記載の非水電解質二次電池用正極。 6. Any one of claims 1 to 5, wherein the positive electrode current collector has a positive electrode current collector main body and a current collector coating layer present on the surface of the positive electrode current collector main body on the positive electrode active material layer side. The positive electrode for a non-aqueous electrolyte secondary battery according to Item 1. 下記試験方法により測定される電位が7.5V以上である、請求項1~6のいずれか1項に記載の非水電解質二次電池用正極。
(試験方法)
定格容量1Ahの非水電解質二次電池とし、これを4個直列に接続し、満充電より1Cレートで30秒間放電した後の電位を測定する。
The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the potential measured by the following test method is 7.5 V or higher.
(Test method)
Four non-aqueous electrolyte secondary batteries having a rated capacity of 1 Ah are connected in series, and the potential is measured after discharging at a 1 C rate for 30 seconds from full charge.
請求項1~7のいずれか1項に記載の非水電解質二次電池用正極と、負極と、前記非水電解質二次電池用正極と前記負極との間に存在する非水電解質とを備える、非水電解質二次電池。 A positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 7, a negative electrode, and a non-aqueous electrolyte present between the positive electrode for a non-aqueous electrolyte secondary battery and the negative electrode , non-aqueous electrolyte secondary battery. 請求項8に記載の非水電解質二次電池の複数個を備える、電池モジュールまたは電池システム。 A battery module or battery system comprising a plurality of non-aqueous electrolyte secondary batteries according to claim 8 .
JP2021197167A 2021-03-19 2021-12-03 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same Active JP7197669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021197167A JP7197669B2 (en) 2021-03-19 2021-12-03 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021046025 2021-03-19
JP2021197167A JP7197669B2 (en) 2021-03-19 2021-12-03 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021046025 Division 2021-03-19 2021-03-19

Publications (2)

Publication Number Publication Date
JP2022145472A true JP2022145472A (en) 2022-10-04
JP7197669B2 JP7197669B2 (en) 2022-12-27

Family

ID=87852967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021197167A Active JP7197669B2 (en) 2021-03-19 2021-12-03 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same

Country Status (1)

Country Link
JP (1) JP7197669B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059532A (en) * 2010-09-08 2012-03-22 Toyota Motor Corp Method for manufacturing secondary battery
JP2019160781A (en) * 2018-03-12 2019-09-19 Tdk株式会社 Positive electrode and lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059532A (en) * 2010-09-08 2012-03-22 Toyota Motor Corp Method for manufacturing secondary battery
JP2019160781A (en) * 2018-03-12 2019-09-19 Tdk株式会社 Positive electrode and lithium ion secondary battery

Also Published As

Publication number Publication date
JP7197669B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
JP2022144809A (en) Cathode for nonaqueous electrolyte secondary battery
WO2023176895A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using same, battery module, and battery system
US20230155128A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
JP7197668B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery module, and battery system
JP7138228B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7197669B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP7197670B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7316424B1 (en) NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, BATTERY MODULE, AND BATTERY SYSTEM
JP7181372B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7305012B1 (en) NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, BATTERY MODULE, AND BATTERY SYSTEM
JP7157863B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7193671B1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module, and battery system using the same, method for manufacturing positive electrode for non-aqueous electrolyte secondary battery
JP7149437B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7212130B2 (en) Positive electrode for bendable non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP7183464B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2023176929A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using same
JP2023029333A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system that employ the same
JP2022144968A (en) Method for evaluation of cathode for nonaqueous electrolyte secondary battery
JP2023141414A (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP2023141406A (en) Method for manufacturing positive electrode for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same, and composition for manufacturing positive electrode
JP2024006667A (en) Manufacturing method of positive electrode for nonaqueous electrolyte secondary battery, and manufacturing method of nonaqueous electrolyte secondary battery
CN115380406A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211203

A25B Request for examination refused [due to the absence of examination request for another application deemed to be identical]

Free format text: JAPANESE INTERMEDIATE CODE: A2522

Effective date: 20220201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221215

R151 Written notification of patent or utility model registration

Ref document number: 7197669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151