JP2022144505A - Linearly variable differential transformer - Google Patents

Linearly variable differential transformer Download PDF

Info

Publication number
JP2022144505A
JP2022144505A JP2021045550A JP2021045550A JP2022144505A JP 2022144505 A JP2022144505 A JP 2022144505A JP 2021045550 A JP2021045550 A JP 2021045550A JP 2021045550 A JP2021045550 A JP 2021045550A JP 2022144505 A JP2022144505 A JP 2022144505A
Authority
JP
Japan
Prior art keywords
differential transformer
variable differential
magnetic
linear variable
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021045550A
Other languages
Japanese (ja)
Inventor
哲也 木村
Tetsuya Kimura
道史 杉目
Michifumi Sugime
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ydk Technologies Co Ltd
Original Assignee
Ydk Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ydk Technologies Co Ltd filed Critical Ydk Technologies Co Ltd
Priority to JP2021045550A priority Critical patent/JP2022144505A/en
Publication of JP2022144505A publication Critical patent/JP2022144505A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a linearly variable differential transformer with which it is possible to suppress a disturbance magnetic field in the movable direction of a probe from being mixed in.SOLUTION: The linearly variable differential transformer comprises: a straight tube-like primary coil; a pair of secondary coils provided coaxially with the primary coil; probes provided in the inside of the primary and the secondary coils and capable of moving in the center axial direction of the primary and the secondary coils, with a magnetic core mounted to the probes; and a housing for accommodating some of the probes, the primary and the secondary coils and the magnetic core, which one end or both ends of a probe are put through, or which is provided with a pair of open holes, with a shield member provided that electrically shields the inside of the housing.SELECTED DRAWING: Figure 1

Description

本発明は、線形可変差動変圧器に関する。 The present invention relates to linear variable differential transformers.

下記特許文献1には、航空機エンジンの測定に使用される線形可変作動変圧器(LVDT)が記載されている。この線形可変作動変圧器は、可変ステータベーン等の対象物の直線変位を検出するための誘導型電気センサであり、1次コイルと一対の2次コイルとプローブに設けられた中央コアとを備え、中央コアの直線変位に依存する一対の2次コイルの差動電圧の変化に基づいてプローブの先端に係合する対象物の直線方向の位置を検出する。 US Pat. No. 6,200,000 describes a linear variable differential transformer (LVDT) used for measuring aircraft engines. The linear variable actuation transformer is an inductive electrical sensor for detecting linear displacement of an object, such as a variable stator vane, comprising a primary coil, a pair of secondary coils and a central core mounted on a probe. , detects the linear position of the object engaging the probe tip based on the change in the differential voltage of the pair of secondary coils, which depends on the linear displacement of the central core.

特表2015-521747号公報Japanese translation of PCT publication No. 2015-521747

ところで、上述した線形可変差動変圧器は、中央コアの可動方向を中心軸方向とし、かつ構造的に有限な長さを有する直線状コイルを1次コイルとして備える。この1次コイルの端部では、当該1次コイルの中心軸方向に貫通する磁束の磁束密度が急激に低下する。この中心軸方向に貫通する磁束は、差動電圧を支配する磁束である。したがって、線形可変差動変圧器は、1次コイルの中心軸方向に貫通する磁束に外乱磁界が混入した場合に直線変位の検出精度が悪化し易いという基本的な問題点を有する。 By the way, the linear variable differential transformer described above has a linear coil having a structurally finite length with the moving direction of the central core being the direction of the central axis as the primary coil. At the ends of the primary coil, the magnetic flux density of the magnetic flux penetrating through the primary coil in the direction of the center axis drops sharply. The magnetic flux penetrating in the central axis direction is the magnetic flux that dominates the differential voltage. Therefore, the linear variable differential transformer has a basic problem that the detection accuracy of the linear displacement tends to deteriorate when the magnetic flux penetrating the primary coil in the central axis direction is mixed with the disturbance magnetic field.

本発明は、上述した事情に鑑みてなされたものであり、プローブの可動方向への外乱磁界の混入を抑制することが可能な線形可変差動変圧器の提供を目的とするものである。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a linear variable differential transformer capable of suppressing the mixing of a disturbance magnetic field in the moving direction of a probe.

上記目的を達成するために、本発明では、線形可変差動変圧器に係る第1の解決手段として、直管状の一次コイルと、当該一次コイルと同軸状に設けられる一対の二次コイルと、前記一次コイル及び前記二次コイルの内側に設けられ、前記一次コイル及び前記二次コイルの中心軸方向に可動自在かつ磁気コアが装着されるプローブと、前記プローブの一部、前記一次コイル、前記二次コイル及び前記磁気コアを収容し、前記プローブの一端が貫通する貫通孔が設けられた筐体とを備え、前記筐体の内部を電磁気的に遮蔽するシールド部材が設けられる、という手段を採用する。 In order to achieve the above object, in the present invention, as a first solution related to a linear variable differential transformer, a straight tubular primary coil, a pair of secondary coils provided coaxially with the primary coil, a probe provided inside the primary coil and the secondary coil, movable in a central axis direction of the primary coil and the secondary coil, and having a magnetic core mounted thereon; a part of the probe, the primary coil, and the A means comprising a housing containing a secondary coil and the magnetic core and provided with a through hole through which one end of the probe penetrates, and a shield member for electromagnetically shielding the inside of the housing. adopt.

本発明では、線形可変差動変圧器に係る第2の解決手段として、上記第1の解決手段において、前記シールド部材は、前記筐体における前記中心軸方向に直交する側に設けられる、という手段を採用する。 According to the present invention, as a second solution to the linear variable differential transformer, in the first solution, the shield member is provided on a side of the housing perpendicular to the central axis direction. to adopt.

本発明では、線形可変差動変圧器に係る第3の解決手段として、上記第2の解決手段において、前記シールド部材は、前記筐体を構成している、という手段を採用する。 In the present invention, as a third solution to the linear variable differential transformer, in the second solution, the shield member constitutes the housing.

本発明では、線形可変差動変圧器に係る第4の解決手段として、上記第1~第3のいずれかの解決手段において、前記シールド部材は、磁性部材及び導電性部材を備え、前記磁性部材が内側、前記導電性部材が外側に配置される、という手段を採用する。 In the present invention, as a fourth solution to the linear variable differential transformer, in any one of the first to third solutions, the shield member includes a magnetic member and a conductive member, and the magnetic member is arranged on the inside and the conductive member is arranged on the outside.

本発明では、線形可変差動変圧器に係る第5の解決手段として、上記第4の解決手段において、前記磁性部材及び前記導電性部材は、各々に板材であり、重ね合うように配置されている、という手段を採用する。 In the present invention, as a fifth solution related to the linear variable differential transformer, in the above fourth solution, the magnetic member and the conductive member are plate members and are arranged so as to overlap each other. adopt the means of

本発明では、線形可変差動変圧器に係る第6の解決手段として、上記第1~第5のいずれかの解決手段において、回転電機のロータ内において回転軸と同軸状に配置される、という手段を採用する。 In the present invention, as a sixth solution to the linear variable differential transformer, in any one of the first to fifth solutions, the linear variable differential transformer is arranged coaxially with the rotating shaft in the rotor of the rotary electric machine. adopt means.

本発明によれば、1次コイルの中心軸方向への外乱磁界の混入を抑制することが可能な線形可変差動変圧器を提供することが可能である。 ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the linear variable differential transformer which can suppress mixing of the disturbance magnetic field to the central axis direction of a primary coil.

本発明の一実施形態に係る線形可変差動変圧器の全体構成を示す斜視図である。1 is a perspective view showing the overall configuration of a linear variable differential transformer according to one embodiment of the present invention; FIG. 本発明の一実施形態に係る線形可変差動変圧器の内部構成を示す斜視図である。1 is a perspective view showing an internal configuration of a linear variable differential transformer according to one embodiment of the present invention; FIG. 本発明の一実施形態に係る線形可変差動変圧器の内部構成を示す断面図である。1 is a cross-sectional view showing an internal configuration of a linear variable differential transformer according to one embodiment of the present invention; FIG. 本発明の一実施形態に係る線形可変差動変圧器の位置検出精度を示す特性図である。FIG. 4 is a characteristic diagram showing the position detection accuracy of the linear variable differential transformer according to one embodiment of the present invention;

以下、図面を参照して、本発明の一実施形態について説明する。
本実施形態に係る線形可変差動変圧器Aは、図1に示すように電動機Bに装着され、端部に係合する対象物の位置を検出する略円筒状の変位センサである。
An embodiment of the present invention will be described below with reference to the drawings.
A linear variable differential transformer A according to this embodiment is a substantially cylindrical displacement sensor that is attached to an electric motor B as shown in FIG.

なお、この電動機Bは、本発明の回転電機に相当する。また、図1及び図2では、X軸、Y軸及びZ軸からなる直交三軸を付記している。この線形可変差動変圧器Aにおいて、中心軸方向はZ軸に平行な方向である。 Note that this electric motor B corresponds to the rotating electric machine of the present invention. In addition, in FIGS. 1 and 2, three orthogonal axes consisting of the X-axis, Y-axis and Z-axis are added. In this linear variable differential transformer A, the central axis direction is parallel to the Z-axis.

電動機Bから先に説明すると、この電動機Bは、周知の構成のものであり、ステータb1、ロータb2及び回転軸b3を備えている。ステータb1は、円環状に配置された所定数のスロットを備えている。各スロットは、ステータコア及びステータ巻線を備えており、回転磁界を発生する複数の電磁石として機能する。 The electric motor B will be described first. This electric motor B has a well-known configuration and includes a stator b1, a rotor b2 and a rotating shaft b3. The stator b1 has a predetermined number of slots arranged in an annular shape. Each slot has a stator core and stator windings and functions as a plurality of electromagnets that generate a rotating magnetic field.

ロータb2は、回転軸b3に固定された円環状の部材であり、上記ステータb1の内側に配置されている。このロータb2は、外周部が上記スロットの先端部と微小ギャップを隔てて対向しており、外周部には所定の電気角毎に磁極を構成する永久磁石が配置されている。このようなロータb2には、上記ステータb1との電磁気的な結合によって回転力が作用する。 The rotor b2 is an annular member fixed to the rotating shaft b3 and arranged inside the stator b1. The outer peripheral portion of the rotor b2 faces the tip portion of the slot with a small gap therebetween, and permanent magnets that form magnetic poles at predetermined electrical angles are arranged on the outer peripheral portion. Rotational force acts on the rotor b2 due to electromagnetic coupling with the stator b1.

回転軸b3は、棒状金属部材であり、電動機Bの出力軸である。すなわち、この回転軸b3は、上記ロータb2に作用する回転力によって回転する棒状金属部材であり、中心軸方向に貫通孔b4が形成されている。本実施形態に係る線形可変差動変圧器Aは、図示するように、この貫通孔b4内に一定の間隔を空けた状態で挿通される略棒状の部材である。 The rotary shaft b3 is a rod-shaped metal member and is the output shaft of the electric motor B. As shown in FIG. That is, the rotating shaft b3 is a rod-shaped metal member that rotates by the torque acting on the rotor b2, and has a through hole b4 formed in the central axis direction. The linear variable differential transformer A according to the present embodiment is, as shown in the figure, a substantially rod-shaped member that is inserted into the through hole b4 at regular intervals.

この線形可変差動変圧器Aは、図1並びに図2及び図3に示すように、電動機B(回転電機)のロータ内において回転軸b3と同軸状に配置されおり、筐体1、ブラケット2、プローブ3、ボビン4、一次コイル5、一対の二次コイル6A、6B、磁気コア7及び案内部材8を備えている。なお、このような線形可変差動変圧器Aの構成要素のうち、筐体1は、本発明のシールド部材に相当する。 As shown in FIGS. 1, 2 and 3, the linear variable differential transformer A is arranged coaxially with a rotating shaft b3 in the rotor of an electric motor B (rotating electric machine). , a probe 3 , a bobbin 4 , a primary coil 5 , a pair of secondary coils 6 A, 6 B, a magnetic core 7 and a guide member 8 . Among the components of such a linear variable differential transformer A, the housing 1 corresponds to the shield member of the present invention.

筐体1は、本実施形態において最も特徴的な構成要素であり、図示するように有底円筒状部材である。この筐体1は、円筒形状の側部1aと円板形状の底部1b、1cを備えており、プローブ3の一部、一次コイル5、一対の二次コイル6A、6B、磁気コア7及び案内部材8を収容する。上記側部1aは、円筒状磁性部材1d、円筒状導電性部材1e及び円筒状薄肉磁性部材1fから構成されている。 The housing 1 is the most characteristic component in this embodiment, and is a bottomed cylindrical member as illustrated. The housing 1 comprises a cylindrical side 1a and a disk-shaped bottom 1b, 1c and includes a portion of a probe 3, a primary coil 5, a pair of secondary coils 6A, 6B, a magnetic core 7 and guides. The member 8 is accommodated. The side portion 1a is composed of a cylindrical magnetic member 1d, a cylindrical conductive member 1e and a thin cylindrical magnetic member 1f.

すなわち、この側部1aは、外側に円筒状磁性部材1dが配置され、中間に円筒状導電性部材1eが配置され、内側に円筒状薄肉磁性部材1fが配置された三層構造を備える。円筒状磁性部材1d、円筒状導電性部材1e及び円筒状薄肉磁性部材1fは、各々に円筒形状かつ所定厚の板状部材(板材)であり、お互いが接した状態つまり重ね合うように隣接配置されている。 That is, the side portion 1a has a three-layer structure in which a cylindrical magnetic member 1d is arranged outside, a cylindrical conductive member 1e is arranged in the middle, and a thin cylindrical magnetic member 1f is arranged inside. The cylindrical magnetic member 1d, the cylindrical conductive member 1e, and the cylindrical thin magnetic member 1f are plate members (plate members) each having a cylindrical shape and a predetermined thickness, and are arranged adjacent to each other so as to be in contact with each other, that is, overlap. ing.

ここで、円筒状磁性部材1d及び円筒状薄肉磁性部材1fは、同一の磁性材料によって形成されているが、円筒状薄肉磁性部材1fは、厚さが円筒状磁性部材1dよりも小さく設定されている。円筒状薄肉磁性部材1fと円筒状磁性部材1dとの厚さ比率は、例えば1:8.76である。なお、円筒状磁性部材1d及び円筒状薄肉磁性部材1fは、磁性材料として周知の材料から形成されており、例えばパーマロイである。 Here, the cylindrical thin magnetic member 1d and the cylindrical thin magnetic member 1f are made of the same magnetic material, but the thickness of the cylindrical thin magnetic member 1f is set smaller than that of the cylindrical magnetic member 1d. there is The thickness ratio between the cylindrical thin magnetic member 1f and the cylindrical magnetic member 1d is, for example, 1:8.76. In addition, the cylindrical magnetic member 1d and the cylindrical thin magnetic member 1f are made of a material known as a magnetic material, such as permalloy.

一方、円筒状導電性部材1eは、導電性及び加工性に優れた金属材料から形成されている。この円筒状導電性部材1eは、上述した円筒状磁性部材1dと円筒状薄肉磁性部材1fとの間に挟まれた状態で側部1aを構成する。また、この円筒状導電性部材1eは、上述した円筒状磁性部材1dと円筒状薄肉磁性部材1fのうち、厚さが比較的大きい円筒状磁性部材1dの内側に配置されている。このような円筒状導電性部材1eを形成する金属材料は、例えば純銅である。 On the other hand, the cylindrical conductive member 1e is made of a metal material with excellent conductivity and workability. The cylindrical conductive member 1e constitutes the side portion 1a while being sandwiched between the cylindrical magnetic member 1d and the cylindrical thin magnetic member 1f. The cylindrical conductive member 1e is arranged inside the cylindrical magnetic member 1d, which has a relatively large thickness, out of the cylindrical magnetic member 1d and the cylindrical thin magnetic member 1f. A metal material forming such a cylindrical conductive member 1e is, for example, pure copper.

一方の底部1bは、図1に示すように、中心を貫く貫通孔hが形成されている。すなわち、本実施形態における筐体1は、上述したようにプローブ3の一部、一次コイル5、一対の二次コイル6A、6B、磁気コア7及び案内部材8を収容することに加え、プローブ3の一端が貫通する貫通孔hが設けられている。 As shown in FIG. 1, one bottom portion 1b is formed with a through hole h penetrating through the center. That is, the housing 1 in this embodiment accommodates a portion of the probe 3, the primary coil 5, the pair of secondary coils 6A and 6B, the magnetic core 7, and the guide member 8 as described above. is provided with a through hole h through which one end of the is passed.

また、この底部1bは、図2に示すように、円板状磁性部材1g及び円板状導電性部材1hから構成されている。これら円板状磁性部材1g及び円板状導電性部材1hは、各々に所定厚の板状部材(板材)であり、お互いが接した状態つまり重ね合うように隣接配置されている。 Also, as shown in FIG. 2, the bottom portion 1b is composed of a disk-shaped magnetic member 1g and a disk-shaped conductive member 1h. The disc-shaped magnetic member 1g and the disc-shaped conductive member 1h are plate members (plate members) each having a predetermined thickness, and are arranged adjacent to each other so as to be in contact with each other, that is, overlap.

すなわち、この側部1aは、外側に円板状磁性部材1gが配置され、内側に円板状導電性部材1hが配置された二層構造を備える。円板状磁性部材1gは、上述した円筒状磁性部材1d及び円筒状薄肉磁性部材1fと同一の磁性材料によって形成されているが、厚さが円筒状磁性部材1dよりも大きく設定されている。このような円板状磁性部材1gと円筒状磁性部材1dとの厚さ比率は、例えば1:0.8である。 That is, the side portion 1a has a two-layer structure in which the disk-shaped magnetic member 1g is arranged on the outside and the disk-shaped conductive member 1h is arranged on the inside. The disk-shaped magnetic member 1g is made of the same magnetic material as the cylindrical magnetic member 1d and the cylindrical thin-walled magnetic member 1f described above, but its thickness is set larger than that of the cylindrical magnetic member 1d. The thickness ratio between the disk-shaped magnetic member 1g and the cylindrical magnetic member 1d is, for example, 1:0.8.

円板状導電性部材1hは、上述した円筒状導電性部材1eと同一の導電性材料によって形成されているが、厚さあるいは/及び導電率が円筒状導電性部材1eよりも大きく設定されている。円板状導電性部材1hと円筒状導電性部材1eとの厚さあるいは/及び導電率の比率は、例えば1:0.89である。 The disk-shaped conductive member 1h is made of the same conductive material as that of the cylindrical conductive member 1e described above, but is set larger in thickness and/or conductivity than the cylindrical conductive member 1e. there is The thickness and/or conductivity ratio of the disk-shaped conductive member 1h and the cylindrical conductive member 1e is, for example, 1:0.89.

他方の底部1cは、図2に示すように、円板状磁性部材1i及び円板状導電性部材1jから構成されている。これら円板状磁性部材1i及び円板状導電性部材1jは、各々に所定厚の板材であり、お互いが接した状態つまり重ね合うように配置されている。 The other bottom portion 1c, as shown in FIG. 2, is composed of a disk-shaped magnetic member 1i and a disk-shaped conductive member 1j. The disk-shaped magnetic member 1i and the disk-shaped conductive member 1j are plate members each having a predetermined thickness, and are arranged so as to be in contact with each other, that is, overlap each other.

すなわち、この側部1aは、外側に円板状磁性部材1iが配置され、内側に円板状導電性部材1jが配置された二層構造を備える。円板状磁性部材1iは、上述した円筒状磁性部材1d及び円筒状薄肉磁性部材1fと同一の磁性材料によって形成されているが、厚さが円筒状磁性部材1dよりも小さく設定されている。このような円板状磁性部材1iと円筒状磁性部材1dとの厚さ比率は、例えば1:1.23である。 That is, the side portion 1a has a two-layer structure in which the disk-shaped magnetic member 1i is arranged on the outside and the disk-shaped conductive member 1j is arranged on the inside. The disk-shaped magnetic member 1i is made of the same magnetic material as the cylindrical magnetic member 1d and the cylindrical thin-walled magnetic member 1f described above, but its thickness is set smaller than that of the cylindrical magnetic member 1d. The thickness ratio between the disk-shaped magnetic member 1i and the cylindrical magnetic member 1d is, for example, 1:1.23.

円板状導電性部材1jは、上述した円筒状導電性部材1eと同一の導電性材料によって形成されているが、厚さあるいは/及び導電率が円筒状導電性部材1eよりも大きく設定されている。円板状導電性部材1jと円筒状導電性部材1eとの厚さあるいは/及び導電率の比率は、例えば1:0.89である。 The disk-shaped conductive member 1j is made of the same conductive material as the cylindrical conductive member 1e described above, but is set larger in thickness and/or conductivity than the cylindrical conductive member 1e. there is The thickness and/or conductivity ratio of the disk-shaped conductive member 1j and the cylindrical conductive member 1e is, for example, 1:0.89.

ブラケット2は、このような筐体1の側部1aに外接する金属部材であり、図2に示すように筒部2aとフランジ部2bとを備える。筒部2aは、内周面が筐体1の側部1aに当接する円筒状部位である。フランジ部2bは、筒部2aの外側に設けられた所定厚さの板部であり、複数の取付孔が形成されている。これら複数の取付孔は、線形可変差動変圧器Aを固定するためのネジ穴である。 The bracket 2 is a metal member circumscribing the side portion 1a of the housing 1, and includes a tubular portion 2a and a flange portion 2b as shown in FIG. The cylindrical portion 2 a is a cylindrical portion whose inner peripheral surface contacts the side portion 1 a of the housing 1 . The flange portion 2b is a plate portion having a predetermined thickness provided outside the tubular portion 2a, and is formed with a plurality of mounting holes. These mounting holes are screw holes for fixing the linear variable differential transformer A. As shown in FIG.

プローブ3は、図示するように有底円筒状の筐体1と同軸に設けられた棒状部材である。すなわち、このプローブ3は、筐体1の中心を貫く貫通孔hに挿通された状態で設けられており、筐体1の中心軸方向(Z軸方向)つまり自身の中心軸方向に可動自在である。このようなプローブ3には、中心軸方向つまり可動方向(Z軸方向)の片端(先端部)に対象物と係合する係合部材2aが設けられている。また、このプローブ3は、可動方向(Z軸方向)の途中部位に円筒形状の磁気コア7が固定されている。 The probe 3 is a rod-like member provided coaxially with the bottomed cylindrical housing 1 as shown. That is, the probe 3 is provided in a state of being inserted through a through hole h that penetrates the center of the housing 1, and is movable in the central axis direction (Z-axis direction) of the housing 1, that is, in the central axis direction of itself. be. Such a probe 3 is provided with an engaging member 2a that engages with an object at one end (tip) in the direction of the central axis, that is, in the direction of movement (Z-axis direction). Further, the probe 3 has a cylindrical magnetic core 7 fixed in the middle of the movable direction (Z-axis direction).

ボビン4は、筐体1内に当該筐体1及びプローブ3と同軸に設けられた円筒状部材である。このボビン4は、非磁性材料から形成された所定長さの円筒状部材である。すなわち、このボビン4は、内面(円筒面)がプローブ3に固定された磁気コア7の周面(円筒面)に対して一定のギャップを形成するように筐体1内に収容されている。 The bobbin 4 is a cylindrical member provided coaxially with the housing 1 and the probe 3 within the housing 1 . The bobbin 4 is a cylindrical member having a predetermined length and made of a non-magnetic material. That is, the bobbin 4 is accommodated in the housing 1 so that the inner surface (cylindrical surface) forms a constant gap with respect to the peripheral surface (cylindrical surface) of the magnetic core 7 fixed to the probe 3 .

一次コイル5は、所定長さを有するボビン4の外周部において、上記中心軸方向に所定の長さで巻回された直管状の巻線である。この一次コイル5には、一対の二次コイル6A、6Bを励磁するための交流電流(励磁電流)が外部電源(図示略)から供給される。この一次コイル5には、上記励磁電流に基づいて周囲に励磁磁界を発生する。 The primary coil 5 is a straight tube-like winding wound in the central axis direction with a predetermined length around the outer periphery of the bobbin 4 having a predetermined length. An alternating current (excitation current) for exciting the pair of secondary coils 6A and 6B is supplied to the primary coil 5 from an external power source (not shown). An exciting magnetic field is generated around the primary coil 5 based on the exciting current.

一対の二次コイル6A、6Bは、上述した一次コイル5と同軸状かつ所定長さでテーパ巻きされた直管状の巻線である。すなわち、一対の二次コイル6A、6Bのうち、一方の二次コイル6Aは、上記中心軸方向において一次コイル5の表面に所定長さでテーパ状に巻回され、他方の二次コイル6Bは、上記中心軸方向において一次コイル5の表面に所定長さでテーパ状に巻回されている。 The pair of secondary coils 6A and 6B are straight tubular windings coaxial with the primary coil 5 and tapered to a predetermined length. That is, of the pair of secondary coils 6A and 6B, one secondary coil 6A is tapered to a predetermined length on the surface of the primary coil 5 in the direction of the central axis, and the other secondary coil 6B is , is tapered to a predetermined length on the surface of the primary coil 5 in the direction of the central axis.

このような一対の二次コイル6A、6Bは、各々に一次コイル5が発生する励磁磁界に基づく誘起電圧を出力する。すなわち、一次コイル5と一方の二次コイル6Aとは、また一次コイル5と他方の二次コイル6Aとは、各々にトランスを構成する。一次コイル5と一方の二次コイル6Aとは第1トランスを構成し、一次コイル5と他方の二次コイル6Aとは第2トランスを構成する。 Such a pair of secondary coils 6A, 6B outputs an induced voltage based on the exciting magnetic field generated by the primary coil 5, respectively. That is, the primary coil 5 and one secondary coil 6A, and the primary coil 5 and the other secondary coil 6A respectively constitute a transformer. The primary coil 5 and one secondary coil 6A constitute a first transformer, and the primary coil 5 and the other secondary coil 6A constitute a second transformer.

磁気コア7は、プローブ3の途中部位にプローブ3と同軸状に固定された円筒状の磁性部材である。この磁気コア7は、プローブ3及び筐体1の中心軸方向における長さつまり自身の中心軸方向における長さが所定長さに設定されている。このような磁気コア7は、第1トランス及び第2トランスの各結合係数を中心軸方向の位置に応じて可変する。 The magnetic core 7 is a cylindrical magnetic member fixed coaxially with the probe 3 in the middle of the probe 3 . The length of the magnetic core 7 in the central axis direction of the probe 3 and the housing 1, that is, the length in the central axis direction of itself is set to a predetermined length. Such a magnetic core 7 varies each coupling coefficient of the first transformer and the second transformer according to the position in the central axis direction.

ここで、上述した第1、第2トランスは、ボビン4内を中心軸方向に可動自在な磁気コア7の位置に応じて結合係数が変化する。この結果として、一方の二次コイル6Aが出力する誘起電圧(第1誘起電圧)の磁気コア7の位置に応じた変化特性は、他方の二次コイル6Bが出力する誘起電圧(第2誘起電圧)の磁気コア7の位置に応じた変化特性に対して逆特性となる。 Here, in the first and second transformers described above, the coupling coefficient changes according to the position of the magnetic core 7 which is movable inside the bobbin 4 in the central axis direction. As a result, the change characteristic of the induced voltage (first induced voltage) output by one secondary coil 6A according to the position of the magnetic core 7 is the induced voltage (second induced voltage) output by the other secondary coil 6B. ) depending on the position of the magnetic core 7, the characteristics are reverse.

案内部材8は、図2に示すように、筐体1内において他方の底部1cの近傍部位に設けられている。この案内部材8は、同軸状に設けられた複数の円板状部材の集合体であり、一次コイル5のリード線及び一対の二次コイル6A、6Bのリード線を案内する。図示していないが、一次コイル5のリード線及び一対の二次コイル6A、6Bのリード線は、案内部材8を経由して筐体1内から筐体1外に引き出される。 As shown in FIG. 2, the guide member 8 is provided inside the housing 1 in the vicinity of the other bottom portion 1c. The guide member 8 is an assembly of a plurality of disk-shaped members provided coaxially, and guides the lead wire of the primary coil 5 and the lead wires of the pair of secondary coils 6A and 6B. Although not shown, the lead wire of the primary coil 5 and the lead wires of the pair of secondary coils 6A and 6B are led out of the housing 1 from inside the housing 1 via the guide member 8. FIG.

次に、本実施形態に係る線形可変差動変圧器Aの作用効果について、図4をも参照して詳しく説明する。 Next, the effects of the linear variable differential transformer A according to this embodiment will be described in detail with reference to FIG. 4 as well.

この線形可変差動変圧器Aでは、一次コイル5が発生する励磁磁界が磁気コア7を介して一対の二次コイル6A、6Bに作用することによって、一方の二次コイル6Aに第1の誘起電圧を発生させ、また他方の二次コイル6Bに第2の誘起電圧を発生させる。上記励磁磁界は、一次コイル5、一対の二次コイル6A、6B及び磁気コア7を主に中心軸方向に通過する。 In this linear variable differential transformer A, the excitation magnetic field generated by the primary coil 5 acts on the pair of secondary coils 6A and 6B via the magnetic core 7, thereby causing a first induction in one of the secondary coils 6A. A voltage is generated, and a second induced voltage is generated in the other secondary coil 6B. The excitation magnetic field passes through the primary coil 5, the pair of secondary coils 6A and 6B, and the magnetic core 7 mainly in the central axis direction.

一対の二次コイル6A、6Bは、主に可動方向(Z軸方向)に通過する励磁磁界に基づいて第1の誘起電圧及び第2の誘起電圧を発生させる。すなわち、一方の二次コイル6Aは、可動方向に通過する励磁磁界に基づいて第1の誘起電圧を発生させ、他方の二次コイル6Bは、可動方向に通過する励磁磁界に基づいて第2の誘起電圧を発生させる。 A pair of secondary coils 6A and 6B generate a first induced voltage and a second induced voltage mainly based on the excitation magnetic field passing in the movable direction (Z-axis direction). That is, one secondary coil 6A generates a first induced voltage based on an exciting magnetic field passing in the moving direction, and the other secondary coil 6B generates a second induced voltage based on an exciting magnetic field passing in the moving direction. Generate an induced voltage.

線形可変差動変圧器Aは、可動方向に通過する励磁磁界が作用することによって、検出対象物の中心軸方向の位置を検出する変位センサである。磁気コア7はプローブ3に固定されており、また当該プローブ3は検出対象物に係合しているので、磁気コア7の可動方向(Z軸方向)の位置は、検出対象物の中心軸方向の位置に応じて変化する。すなわち、第1の誘起電圧及び第2の誘起電圧は、磁気コア7の可動方向の位置に応じて変化する。 The linear variable differential transformer A is a displacement sensor that detects the position of the object to be detected in the central axis direction by the action of an exciting magnetic field passing through it in the moving direction. The magnetic core 7 is fixed to the probe 3, and since the probe 3 is engaged with the object to be detected, the position of the magnetic core 7 in the moving direction (Z-axis direction) is changes depending on the position of That is, the first induced voltage and the second induced voltage change according to the position of the magnetic core 7 in the movable direction.

このような線形可変差動変圧器Aは、対象物の中心軸方向における位置に応じて変化する第1の誘起電圧と第2の誘起電圧との差分つまり差動電圧を対象物の可動方向における位置を示す検出信号として出力する。 Such a linear variable differential transformer A converts the difference between the first induced voltage and the second induced voltage, that is, the differential voltage, which changes according to the position in the central axis direction of the object, to the moving direction of the object. Output as a detection signal indicating the position.

一方、電動機Bは、作動を開始すると、ステータb1の各スロットとロータb2の各磁極とを通過するループ状の磁束が発生する。この磁束は、回転軸b3内をZ軸方向通過する。すなわち、電動機Bが発生する磁界は、線形可変差動変圧器Aを中心軸方向に通過する磁束であり、線形可変差動変圧器Aに対して外乱磁界として作用する。 On the other hand, when the electric motor B starts operating, a loop-shaped magnetic flux is generated that passes through each slot of the stator b1 and each magnetic pole of the rotor b2. This magnetic flux passes through the rotating shaft b3 in the Z-axis direction. That is, the magnetic field generated by the electric motor B is magnetic flux that passes through the linear variable differential transformer A in the central axis direction, and acts on the linear variable differential transformer A as a disturbance magnetic field.

このような電動機Bの外乱磁界に対して、線形可変差動変圧器Aの内部は、筐体1によって磁気的及び電気的に遮蔽されている。すなわち、筐体1は、上述したように磁性材料と導電性材料から形成された側部1a及び底部1b、1cを備えており、電動機Bの外乱磁界の筐体1の内部への影響を防止あるいは大幅に抑制する。 The interior of the linear variable differential transformer A is magnetically and electrically shielded by the housing 1 against the disturbance magnetic field of the electric motor B as described above. That is, the housing 1 has the side portion 1a and the bottom portions 1b and 1c formed of the magnetic material and the conductive material as described above, and prevents the disturbance magnetic field of the electric motor B from affecting the inside of the housing 1. or significantly suppressed.

電動機Bの外乱磁界のうち、周波数が比較的低い低周波磁界は、線形可変差動変圧器Aの内部が最外装の円筒状磁性部材1d及び円板状磁性部材1g、1iで覆われているため、プローブ3の可動方向に通過する励磁磁界に対して外乱として作用することがない。 Among the disturbance magnetic fields of the electric motor B, the low-frequency magnetic field with a relatively low frequency is covered inside the linear variable differential transformer A with the outermost cylindrical magnetic member 1d and disk-shaped magnetic members 1g and 1i. Therefore, it does not act as a disturbance to the excitation magnetic field passing in the moving direction of the probe 3 .

また、電動機Bの外乱磁界のうち、周波数が比較的高い高周波磁界は、線形可変差動変圧器Aの内部が円筒状導電性部材1e及び円板状導電性部材1h、1jで覆われているため、当該円筒状導電性部材1e及び円板状導電性部材1h、1jに渦電流を発生させる。この渦電流は、高周波磁界を打ち消す方向の磁界を発生させるため、プローブ3の可動方向(Z軸方向)に通過する励磁磁界に対して外乱として作用することがない。 Among the disturbance magnetic fields of the electric motor B, the high-frequency magnetic field with a relatively high frequency is covered by the cylindrical conductive member 1e and the disk-shaped conductive members 1h and 1j inside the linear variable differential transformer A. Therefore, an eddy current is generated in the cylindrical conductive member 1e and the disk-shaped conductive members 1h and 1j. Since this eddy current generates a magnetic field in the direction of canceling the high-frequency magnetic field, it does not act as a disturbance on the excitation magnetic field passing in the moving direction (Z-axis direction) of the probe 3 .

このような本実施形態によれば、シールド部材として機能する筐体1によって筐体1の内部が磁気的及び電気的に遮蔽されているので、プローブ3の可動方向への外乱磁界の混入を十分に抑制することが可能な線形可変差動変圧器Aを提供することが可能である。 According to this embodiment, since the inside of the housing 1 is magnetically and electrically shielded by the housing 1 functioning as a shield member, the stray magnetic field is sufficiently prevented from entering in the moving direction of the probe 3. It is possible to provide a linear variable differential transformer A capable of suppressing to

図4は、本実施形態に係る線形可変差動変圧器Aの位置検出精度の一例を示す特性図である。この図4に示すように、本実施形態に係る線形可変差動変圧器Aでは、電動機Bの外乱磁界が外乱として作用することを大幅に抑制するので、プローブ3の可動方向における検出対象物の位置を従来(シールド部材を備えない場合)よりも高精度に検出することが可能である。 FIG. 4 is a characteristic diagram showing an example of the position detection accuracy of the linear variable differential transformer A according to this embodiment. As shown in FIG. 4, in the linear variable differential transformer A according to this embodiment, the disturbance magnetic field of the electric motor B is greatly suppressed from acting as a disturbance. It is possible to detect the position with higher accuracy than conventionally (when no shield member is provided).

また、本実施形態では、筐体1をシールド部材として構成しているので、シールド部材を別途設ける場合に比較して、線形可変差動変圧器Aのサイズを小型したり、あるいは筐体1内に収容する一次コイル5、一対の二次コイル6A、6B及び磁気コア7等を大型化することが可能である。 Further, in the present embodiment, the housing 1 is configured as a shield member, so the size of the linear variable differential transformer A can be reduced, or the size of the linear variable differential transformer A can be reduced or It is possible to increase the size of the primary coil 5, the pair of secondary coils 6A and 6B, the magnetic core 7, and the like, which are housed in the coil.

なお、本発明は上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態では、筐体1をシールド部材として構成したが、本発明はこれに限定されない。筐体1とは別に筐体1の内部を電磁気的に遮蔽するシールド部材を設けてもよい。
It should be noted that the present invention is not limited to the above-described embodiments, and for example, the following modifications are conceivable.
(1) In the above embodiment, the housing 1 is configured as a shield member, but the present invention is not limited to this. A shield member for electromagnetically shielding the inside of the housing 1 may be provided separately from the housing 1 .

(2)上記実施形態では、筐体1の内部を全方位的にシールド部材で覆ったが、本発明はこれに限定れない。外乱磁界が侵入して来る方向のみをシールド部材で覆ってもよい。例えば、図1に示す線形可変差動変圧器Aと電動機Bとの配置状態では、筐体1の側部1aから電動機Bの外乱磁界が筐体1の内部に侵入し易いので、筐体1における中心軸方向に直交する側つまり筐体1の側部1aのみにシールド部材を設けてもよい。 (2) In the above embodiment, the inside of the housing 1 is covered in all directions with the shield member, but the present invention is not limited to this. The shield member may cover only the direction from which the disturbance magnetic field enters. For example, in the arrangement state of the linear variable differential transformer A and the electric motor B shown in FIG. , the shield member may be provided only on the side perpendicular to the central axis direction, that is, only on the side portion 1a of the housing 1. FIG.

(3)上記実施形態では、電動機B(回転電機)のロータb2内において回転軸b3と同軸状に線形可変差動変圧器Aを配置したが、本発明はこれに限定されない。すなわち、本発明の回転電機は、電動機Bに限定されず、例えば発電機であってもよい。 (3) In the above embodiment, the linear variable differential transformer A is arranged coaxially with the rotary shaft b3 in the rotor b2 of the electric motor B (rotating electric machine), but the present invention is not limited to this. That is, the rotating electric machine of the present invention is not limited to the electric motor B, and may be, for example, a generator.

A 線形可変差動変圧器
B 電動機
b1 ステータ
b2 ロータ
b3 回転軸
b4 貫通孔
1 筐体(シールド部材)
2 ブラケット
3 プローブ
4 ボビン
5 一次コイル
6A、6B 二次コイル
7 磁気コア
8 案内部材
A linear variable differential transformer B electric motor b1 stator b2 rotor b3 rotating shaft b4 through hole 1 housing (shield member)
2 bracket 3 probe 4 bobbin 5 primary coil 6A, 6B secondary coil 7 magnetic core 8 guide member

Claims (6)

直管状の一次コイルと、
当該一次コイルと同軸状に設けられる一対の二次コイルと、
前記一次コイル及び前記二次コイルの内側に設けられ、前記一次コイル及び前記二次コイルの中心軸方向に可動自在かつ磁気コアが装着されるプローブと、
前記プローブの一部、前記一次コイル、前記二次コイル及び前記磁気コアを収容し、前記プローブの一端が貫通する貫通孔が設けられた筐体とを備え、
前記筐体の内部を電磁気的に遮蔽するシールド部材が設けられることを特徴とする線形可変差動変圧器。
a straight tubular primary coil;
a pair of secondary coils provided coaxially with the primary coil;
a probe provided inside the primary coil and the secondary coil, movable in the central axis direction of the primary coil and the secondary coil, and having a magnetic core mounted thereon;
A housing containing a part of the probe, the primary coil, the secondary coil and the magnetic core and provided with a through hole through which one end of the probe penetrates,
A linear variable differential transformer, comprising a shield member for electromagnetically shielding the interior of the housing.
前記シールド部材は、前記筐体における前記中心軸方向に直交する側に設けられることを特徴とする請求項1に記載の線形可変差動変圧器。 2. The linear variable differential transformer according to claim 1, wherein the shield member is provided on a side of the housing perpendicular to the direction of the central axis. 前記シールド部材は、前記筐体を構成していることを特徴とする請求項2に記載の線形可変差動変圧器。 3. The linear variable differential transformer according to claim 2, wherein said shield member constitutes said housing. 前記シールド部材は、磁性部材及び導電性部材を備え、前記磁性部材が内側、前記導電性部材が外側に配置されることを特徴とする請求項1~3のいずれか一項に記載の線形可変差動変圧器。 The linear variable according to any one of claims 1 to 3, wherein the shield member includes a magnetic member and a conductive member, wherein the magnetic member is arranged inside and the conductive member is arranged outside. Differential transformer. 前記磁性部材及び前記導電性部材は、各々に板材であり、重ね合うように配置されていることを特徴とする請求項4に記載の線形可変差動変圧器。 5. The linear variable differential transformer according to claim 4, wherein the magnetic member and the conductive member are plate members and are arranged so as to overlap each other. 回転電機のロータ内において回転軸と同軸状に配置されることを特徴とする請求項1~5のいずれか一項に記載の線形可変差動変圧器。

6. The linear variable differential transformer according to any one of claims 1 to 5, wherein the linear variable differential transformer is arranged coaxially with a rotating shaft in a rotor of a rotating electric machine.

JP2021045550A 2021-03-19 2021-03-19 Linearly variable differential transformer Pending JP2022144505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021045550A JP2022144505A (en) 2021-03-19 2021-03-19 Linearly variable differential transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021045550A JP2022144505A (en) 2021-03-19 2021-03-19 Linearly variable differential transformer

Publications (1)

Publication Number Publication Date
JP2022144505A true JP2022144505A (en) 2022-10-03

Family

ID=83453721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021045550A Pending JP2022144505A (en) 2021-03-19 2021-03-19 Linearly variable differential transformer

Country Status (1)

Country Link
JP (1) JP2022144505A (en)

Similar Documents

Publication Publication Date Title
US8564281B2 (en) Noncontact measuring of the position of an object with magnetic flux
US20050127905A1 (en) Eddy current sensors
JP6193856B2 (en) Miniature positioning assembly with an actuator and a sensor embedded in the yoke of the actuator
KR940704077A (en) LIGHTWEIGHT HIGH POWER ELECTROMOTIVE DEVICE
JPH1073570A (en) Eddy-current sensor and its using method
JPS6386507A (en) Instrument transformer for measurement of current through electrical conductor
JP2020101502A (en) Vehicle torque sensor
US6650106B2 (en) Device for eddy current measurement of a motion of a conducting body in a magnetic field
JP5886269B2 (en) Rotation detection device and motor
JP2022016380A (en) Encoder system for drive
EP0562775B1 (en) Inductive sensor
JP2022144505A (en) Linearly variable differential transformer
CN109687649B (en) Motor device
CA2593553C (en) Aerospace movement probe
JP2015152473A (en) Detector
JP6393692B2 (en) motor
JP7421459B2 (en) Magnetic detection device and rotation detection device
JP2022182430A (en) linear variable differential transformer
JPH09210610A (en) High-frequency excitation differential transformer for preventing influence of external magnetism and metal, etc.
CN213069016U (en) Annular coil structure for magnetic core parameter measurement
JP4189164B2 (en) Current measuring instrument
CN111458571A (en) Toroidal coil for magnetic core parameter measurement
WO2022230651A1 (en) Power-generating element, encoder, and method for producing magnetic member
JP2002372552A (en) Current measuring device
KR20190088350A (en) Displacement Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240115