JP2022143868A - Fiber-reinforced resin molding and method for producing the same - Google Patents

Fiber-reinforced resin molding and method for producing the same Download PDF

Info

Publication number
JP2022143868A
JP2022143868A JP2021044617A JP2021044617A JP2022143868A JP 2022143868 A JP2022143868 A JP 2022143868A JP 2021044617 A JP2021044617 A JP 2021044617A JP 2021044617 A JP2021044617 A JP 2021044617A JP 2022143868 A JP2022143868 A JP 2022143868A
Authority
JP
Japan
Prior art keywords
fiber
reinforced resin
resin composition
molded article
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021044617A
Other languages
Japanese (ja)
Inventor
良輔 成沢
Ryosuke Narusawa
秀武 鈴木
Hidetake Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuvi Chemical Industry Co Ltd
Original Assignee
Fukuvi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuvi Chemical Industry Co Ltd filed Critical Fukuvi Chemical Industry Co Ltd
Priority to JP2021044617A priority Critical patent/JP2022143868A/en
Publication of JP2022143868A publication Critical patent/JP2022143868A/en
Pending legal-status Critical Current

Links

Abstract

To provide a fiber-reinforced resin molding having flame retardancy and good moldability.SOLUTION: A fiber-reinforced resin molding is a fiber-reinforced resin molding obtained by impregnating a reinforcement fiber with a resin composition containing a brominated bisphenol A type vinyl ester resin and a curing agent, and curing the reinforcement fiber, wherein the resin composition contains 0.5-4 pts.mass of an organic peroxide as the curing agent with respect to 100 pts.mass of the brominated bisphenol A type vinyl ester resin, a percentage content of bromine in the fiber-reinforced resin molding is 5.0 vol.% or more, and the resin composition has V-0 flame retardant performance according to UL 94 standard.SELECTED DRAWING: None

Description

本発明は、繊維強化樹脂成形体に関し、特に難燃性を有し、かつ成形性に優れた繊維強化樹脂成形体、および繊維強化樹脂成形体の製造方法に関する。 TECHNICAL FIELD The present invention relates to a fiber-reinforced resin molded article, and more particularly to a fiber-reinforced resin molded article having flame retardancy and excellent moldability, and a method for producing a fiber-reinforced resin molded article.

繊維強化樹脂複合材は、軽量で、高強度、高剛性を有するため、スポーツ、レジャー用途から、車両や航空機、建築、土木等の産業用途まで、幅広い用途を有する。このような繊維強化樹脂複合材の成形体(以下「繊維強化樹脂成形体」ともいう。)として、金型を用いて成形され、かつ樹脂組成物に水酸化アルミニウム等の無機難燃剤を配合し、難燃性を付与したものがある(例えば特許文献1~3)。 Fiber-reinforced resin composite materials are lightweight, have high strength, and high rigidity, and thus have a wide range of uses, from sports and leisure uses to industrial uses such as vehicles, aircraft, construction, and civil engineering. A molded body of such a fiber-reinforced resin composite (hereinafter also referred to as a "fiber-reinforced resin molded body") is molded using a mold, and the resin composition is blended with an inorganic flame retardant such as aluminum hydroxide. , and flame-retardant materials (for example, Patent Documents 1 to 3).

樹脂組成物に無機難燃剤を配合した場合、樹脂組成物の粘度が高くなり、金型を用いた繊維強化樹脂成形体の成形性が低下するという問題がある。この問題に対して、上記特許文献1~3には、無機難燃剤の配合量に応じて成形体の厚さの範囲を規定したり、平均粒径の異なる無機難燃剤粉末を配合したり、難燃性を有する有機化合物を無機難燃剤に対して所定の割合で配合したりすることが開示されている。 When an inorganic flame retardant is blended into a resin composition, the viscosity of the resin composition increases, and there is a problem that moldability of a fiber-reinforced resin molded article using a mold decreases. In response to this problem, the above Patent Documents 1 to 3 specify the range of the thickness of the molded body according to the blending amount of the inorganic flame retardant, mix inorganic flame retardant powders with different average particle diameters, It is disclosed that an organic compound having flame retardancy is blended with an inorganic flame retardant in a predetermined ratio.

特開2019-6852号公報JP 2019-6852 A 特開平8-27355号公報JP-A-8-27355 特開平6-270276号公報JP-A-6-270276

しかし、本発明者らが検討したところ、特許文献1~3に開示された繊維強化樹脂成形体には、無機難燃剤が配合されているため成形性は不充分であった。 However, as a result of investigation by the present inventors, the fiber-reinforced resin molded articles disclosed in Patent Documents 1 to 3 have insufficient moldability because inorganic flame retardants are blended therein.

本発明は、このような問題に鑑みてなされたものであり、難燃性を有するとともに、良好な成形性を有する繊維強化樹脂成形体、およびこのような繊維強化樹脂成形体の製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and provides a fiber-reinforced resin molded article having flame retardancy and good moldability, and a method for producing such a fiber-reinforced resin molded article. intended to

本発明者らは、種々検討した結果、上記目的は、以下の構成により達成されることを見出した。 As a result of various studies, the inventors of the present invention have found that the above objects are achieved by the following configuration.

本発明の一局面に係る繊維強化樹脂成形体は、臭素化ビスフェノールA型ビニルエステル樹脂と硬化剤とを含む樹脂組成物を、強化繊維に含浸させ、硬化させた繊維強化樹脂成形体であり、前記樹脂組成物は、前記臭素化ビスフェノールA型ビニルエステル樹脂100質量部に対して、前記硬化剤として有機過酸化物を0.5~4質量部含み、前記繊維強化樹脂成形体中の臭素の含有率が5.0体積%以上であり、UL94規格においてV-0の難燃性能を有する。 A fiber-reinforced resin molded article according to one aspect of the present invention is a fiber-reinforced resin molded article obtained by impregnating reinforcing fibers with a resin composition containing a brominated bisphenol A vinyl ester resin and a curing agent and curing the resin composition. The resin composition contains 0.5 to 4 parts by mass of an organic peroxide as the curing agent with respect to 100 parts by mass of the brominated bisphenol A vinyl ester resin. The content is 5.0% by volume or more, and it has a flame retardancy of V-0 in the UL94 standard.

本発明の他の局面に係る繊維強化樹脂成形体の製造方法は、前記強化繊維に含浸された前記樹脂組成物を、65~300℃の金型温度で15分以内に硬化させて、成形体を得ることを含む。 In the method for producing a fiber-reinforced resin molded article according to another aspect of the present invention, the resin composition impregnated in the reinforcing fibers is cured at a mold temperature of 65 to 300 ° C. within 15 minutes, and the molded article is obtained. including obtaining

本発明によれば、難燃性を有するとともに、良好な成形性を有する繊維強化樹脂成形体、およびこのような繊維強化樹脂成形体の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, while having a flame retardance, the fiber reinforced resin molded object which has favorable moldability, and the manufacturing method of such a fiber reinforced resin molded object can be provided.

以下、本発明の一実施形態に係る繊維強化樹脂成形体について説明する。 A fiber-reinforced resin molded article according to one embodiment of the present invention will be described below.

本実施形態に係る繊維強化樹脂成形体は、臭素化ビスフェノールA型ビニルエステル樹脂と硬化剤とを含む樹脂組成物を、強化繊維に含浸させ、硬化させた繊維強化樹脂成形体であり、樹脂組成物は、臭素化ビスフェノールA型ビニルエステル樹脂100質量部に対して、硬化剤として有機過酸化物を0.5~4質量部含み、繊維強化樹脂成形体中の臭素の含有率が5.0体積%以上であり、UL94規格においてV-0の難燃性能を有する。 The fiber-reinforced resin molded article according to the present embodiment is a fiber-reinforced resin molded article obtained by impregnating reinforcing fibers with a resin composition containing a brominated bisphenol A-type vinyl ester resin and a curing agent and curing the resin composition. The product contains 0.5 to 4 parts by mass of an organic peroxide as a curing agent with respect to 100 parts by mass of brominated bisphenol A type vinyl ester resin, and the bromine content in the fiber reinforced resin molding is 5.0. % by volume or more, and has a flame retardancy of V-0 in the UL94 standard.

以下では、繊維強化樹脂成形体の各構成要素について説明する。 Each component of the fiber-reinforced resin molding will be described below.

(樹脂組成物)
本実施形態に係る繊維強化樹脂成形体を構成する樹脂組成物は、臭素化ビスフェノールA型ビニルエステル樹脂と硬化剤とを含む。
(resin composition)
The resin composition constituting the fiber-reinforced resin molded article according to the present embodiment contains a brominated bisphenol A-type vinyl ester resin and a curing agent.

(臭素化ビスフェノールA型ビニルエステル樹脂)
臭素化ビスフェノールA型ビニルエステル樹脂としては、市販されているものを使用することができる。使用可能な市販品は、例えば、リポキシS-510(昭和電工株式会社製)、ネオポール8197(日本ユピカ株式会社製)、ETERSET2967(Etemal Materials Co.,Ltd.)等である。
(Brominated bisphenol A type vinyl ester resin)
Commercially available products can be used as the brominated bisphenol A-type vinyl ester resin. Usable commercial products are, for example, Lipoxy S-510 (manufactured by Showa Denko KK), Neopol 8197 (manufactured by Nippon U-Pica Co., Ltd.), ETERSET 2967 (Etemal Materials Co., Ltd.) and the like.

(硬化剤)
硬化剤は、臭素化ビスフェノールA型ビニルエステル樹脂を硬化させるために樹脂組成物に含有させる。本実施形態の硬化剤は、有機過酸化物を含む。
(curing agent)
The curing agent is contained in the resin composition to cure the brominated bisphenol A vinyl ester resin. The curing agent of this embodiment contains an organic peroxide.

樹脂組成物において、臭素化ビスフェノールA型ビニルエステル樹脂100質量部に対する有機過酸化物の含有量(以下単に「有機過酸化物の含有量」ともいう。)は、0.5~4質量部とする。有機過酸化物の含有量を0.5質量部以上とすることによって、樹脂組成物の硬化不良の発生を抑制することができる。また、有機過酸化物の含有量を4質量部以下とすることによって、繊維強化樹脂成形体においてクラックなどの成形不良の発生を抑制することができる。有機過酸化物の含有量は、1.0質量部以上が好ましく、2.0質量部以上がより好ましい。また、有機過酸化物の含有量は、4.0質量部以下が好ましく、3.0質量部以下がより好ましい。 In the resin composition, the content of the organic peroxide with respect to 100 parts by mass of the brominated bisphenol A vinyl ester resin (hereinafter simply referred to as the "content of the organic peroxide") is 0.5 to 4 parts by mass. do. By setting the content of the organic peroxide to 0.5 parts by mass or more, it is possible to suppress the occurrence of poor curing of the resin composition. Also, by setting the content of the organic peroxide to 4 parts by mass or less, it is possible to suppress the occurrence of molding defects such as cracks in the fiber-reinforced resin molded product. The content of the organic peroxide is preferably 1.0 parts by mass or more, more preferably 2.0 parts by mass or more. Moreover, the content of the organic peroxide is preferably 4.0 parts by mass or less, more preferably 3.0 parts by mass or less.

有機過酸化物としては、パーオキシエステル、パーオキシカーボネート、ハイドロパーオキシエステル、ジアシルパーオキサイド、パーオキシケタール、パーオキシジカーボネート等を使用することができ、これらの1種を使用してもよく、反応時間の調整のため2種以上を使用することが好ましい。 As organic peroxides, peroxyesters, peroxycarbonates, hydroperoxyesters, diacyl peroxides, peroxyketals, peroxydicarbonates and the like can be used, and one of these may be used. , it is preferable to use two or more of them for adjusting the reaction time.

本実施形態では、有機過酸化物は、パーオキシエステル、パーオキシカーボネート、ハイドロパーオキシエステルおよびジアシルパーオキサイドからなる群から選択される少なくとも1種が好ましい。また、当該有機過酸化物の群を構成するパーオキシエステルおよびパーオキシカーボネートは、t-アミル基またはt-ブチル基を有することが好ましい。 In this embodiment, the organic peroxide is preferably at least one selected from the group consisting of peroxyesters, peroxycarbonates, hydroperoxyesters and diacyl peroxides. Further, peroxyesters and peroxycarbonates constituting the group of organic peroxides preferably have a t-amyl group or a t-butyl group.

また、本実施形態に係る樹脂組成物は、有機過酸化物以外の硬化剤を含んでいてもよい。 Moreover, the resin composition according to the present embodiment may contain a curing agent other than the organic peroxide.

(その他の成分)
本実施形態に係る樹脂組成物は、臭素化ビスフェノールA型ビニルエステル樹脂および硬化剤に加えて、離型剤等の添加剤を含んでもよい。
(other ingredients)
The resin composition according to the present embodiment may contain additives such as a release agent in addition to the brominated bisphenol A vinyl ester resin and the curing agent.

離型剤に特に制限はなく、脂肪酸エステル系、例えばリン酸系エステル誘導体、ステアリン酸亜鉛等の脂肪酸金属塩系、ジアルキルスルホコハク酸ナトリウム等の界面活性剤系等の公知の内部離型剤が挙げられる。これらの離型剤は1種を単独使用してもよく、複数種を併用してもよい。離型剤は市販品を使用してもよく、例えば、MoldWiz(登録商標) INT-PUL-24、INT-PUL34、INT-1846N2、INT-524M、INT-542WT、INT-PS125(アクセルプラスチックスリサーチラボラトリーズ製)等を使用してもよい。臭素化ビスフェノールA型ビニルエステル樹脂100質量部に対する離型剤の含有量は、0.1質量部以上が好ましく、0.5質量部以上が好ましい。また、離型剤の含有量は、3.0質量部以下が好ましく、2.5質量部以下が好ましい。 The release agent is not particularly limited, and includes known internal release agents such as fatty acid ester-based, e.g., phosphoric acid ester derivatives, fatty acid metal salt-based such as zinc stearate, and surfactant-based such as sodium dialkylsulfosuccinate. be done. One of these release agents may be used alone, or two or more of them may be used in combination. Commercially available release agents may be used. Laboratories) or the like may be used. The content of the release agent relative to 100 parts by mass of the brominated bisphenol A vinyl ester resin is preferably 0.1 parts by mass or more, and preferably 0.5 parts by mass or more. Moreover, the content of the release agent is preferably 3.0 parts by mass or less, and preferably 2.5 parts by mass or less.

離型剤以外の添加剤としては、充填剤、顔料、硬化促進剤、紫外線吸収剤、酸化防止剤等を使用することができる。 As additives other than the release agent, fillers, pigments, curing accelerators, ultraviolet absorbers, antioxidants, and the like can be used.

(強化繊維)
強化繊維は、繊維強化樹脂成形体を強化するためのものである。上述の樹脂組成物を強化繊維に含浸させ、硬化させることにより、強化繊維と樹脂組成物とを一体化させ、繊維強化樹脂成形体を強化することができる。
(reinforced fiber)
The reinforcing fibers are for reinforcing the fiber-reinforced resin molding. By impregnating the reinforcing fibers with the resin composition described above and curing the resin composition, the reinforcing fibers and the resin composition can be integrated to strengthen the fiber-reinforced resin molding.

強化繊維は、特に限定されないが、繊維強化樹脂成形体を構成する強化繊維として公知であり、かつ繊維強化樹脂成形体を構成した際に当該樹脂成形体が後述する難燃性能を満たすような繊維を用途等に応じて適宜選択すればよい。 The reinforcing fiber is not particularly limited, but it is known as a reinforcing fiber that constitutes a fiber-reinforced resin molded article, and when the fiber-reinforced resin molded article is constructed, the resin molded article satisfies the flame retardancy described later. may be appropriately selected according to the application.

強化繊維の具体例としては、炭素繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維、バサルト繊維等の各種の繊維を用いることができる。これらの繊維の2種以上を適宜組み合わせて使用してもよい。これらの繊維のうち、比強度および比弾性の観点から、炭素繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維が好ましい。さらに、繊維強化樹脂成形体の強度および耐食性等をより向上させることができるため、炭素繊維がより好ましい。 Specific examples of reinforcing fibers that can be used include various fibers such as carbon fibers, glass fibers, boron fibers, alumina fibers, silicon nitride fibers, and basalt fibers. Two or more of these fibers may be used in appropriate combination. Among these fibers, carbon fiber, glass fiber, boron fiber, alumina fiber, and silicon nitride fiber are preferred from the viewpoint of specific strength and specific elasticity. Furthermore, carbon fiber is more preferable because it can further improve the strength, corrosion resistance, etc. of the fiber-reinforced resin molded product.

炭素繊維としては、強度が特に高いPAN(ポリアクリロニトリル)系の炭素繊維を用いることが好ましい。強化繊維として炭素繊維を用いる場合、炭素繊維に金属による表面処理を施してもよい。 As the carbon fiber, it is preferable to use PAN (polyacrylonitrile)-based carbon fiber, which has particularly high strength. When carbon fibers are used as reinforcing fibers, the carbon fibers may be surface-treated with a metal.

本実施形態に係る繊維強化樹脂成形体では、繊維強化樹脂成形体の全体に対する強化繊維の体積含有率Vfは、50%以上80%以下が好ましい。強化繊維の体積含有率Vfを50%以上とすることによって、繊維強化樹脂成形体は強化繊維によって十分に補強されるため、より優れた強度、特に優れた引張強度を有する繊維強化樹脂成形体を得ることができる。一方で、強化繊維の体積含有率Vfを80%以下にすることによって、ビニルエステル樹脂による繊維強化樹脂成形体の成形加工性をより良好に保つことができる。強化繊維の体積含有率Vfは、より好ましくは55%以上である。また、強化繊維の体積含有率Vfは、より好ましくは75%以下である。 In the fiber-reinforced resin molded article according to the present embodiment, the volume content Vf of the reinforcing fibers with respect to the entire fiber-reinforced resin molded article is preferably 50% or more and 80% or less. By setting the volume content Vf of the reinforcing fibers to 50% or more, the fiber-reinforced resin molded article is sufficiently reinforced by the reinforcing fibers, so that a fiber-reinforced resin molded article having superior strength, particularly excellent tensile strength, can be obtained. Obtainable. On the other hand, by setting the volume content Vf of the reinforcing fibers to 80% or less, it is possible to maintain better moldability of the fiber-reinforced resin molded article made of the vinyl ester resin. The volume content Vf of the reinforcing fibers is more preferably 55% or more. Further, the volume content Vf of the reinforcing fibers is more preferably 75% or less.

なお、繊維強化樹脂成形体における強化繊維の体積含有率Vfは、強化繊維の種類および太さ等だけでなく、繊維強化樹脂成形体の製造時に加える温度および圧力等を適宜制御することによって上記範囲内に調整することができる。強化繊維の体積含有率Vfは、燃焼法、硝酸分解法および硫酸分解法等によって測定することができるが、本明細書における強化繊維の体積含有率Vf(体積%)は下記の式(1)に基づいて算出する。 Note that the volume content Vf of the reinforcing fibers in the fiber-reinforced resin molded product is within the above range by appropriately controlling not only the type and thickness of the reinforcing fibers, but also the temperature and pressure applied during the production of the fiber-reinforced resin molded product. can be adjusted within The volume content Vf of reinforcing fibers can be measured by a combustion method, a nitric acid decomposition method, a sulfuric acid decomposition method, or the like. Calculated based on

Vf=(Tf/ρf)/(1000×H)×100 …(1)
式(1)において、Tf:繊維強化樹脂成形体に用いた強化繊維の基材1mあたりの質量(g/m)、ρf:用いた繊維基材の密度(g/cm)、H:繊維強化樹脂成形体の厚み(mm)である。
Vf=(Tf/ρf)/(1000×H)×100 (1)
In the formula (1), Tf: the mass of the reinforcing fiber used in the fiber-reinforced resin molding per 1 m 2 of the substrate (g/m 2 ), ρf: the density of the fiber substrate used (g/cm 3 ), H : Thickness (mm) of the fiber-reinforced resin molding.

(臭素含有率)
本実施形態に係る繊維強化樹脂成形体は、臭素の含有率が5.0体積%以上である。これにより、繊維強化樹脂成形体を、優れた難燃性を有するものとすることができる。本明細書における繊維強化樹脂成形体の臭素の体積含有率VBr(体積%)は、繊維強化樹脂成形体を構成する樹脂の臭素の含有率を用いて、下記の式(2)に基づいて算出する。
(Bromine content)
The fiber-reinforced resin molded article according to the present embodiment has a bromine content of 5.0% by volume or more. Thereby, the fiber-reinforced resin molded article can have excellent flame retardancy. The bromine volume content VBr (% by volume) of the fiber-reinforced resin molded article in the present specification is calculated based on the following formula (2) using the bromine content of the resin constituting the fiber-reinforced resin molded article. do.

VBr=(X/100)×(1-Vf/100)×(ρr/ρB)×100 …(2)
式(2)において、X:繊維強化樹脂成形体を構成する樹脂の臭素の含有率(質量%)、Vf:繊維強化樹脂成形体の強化繊維の含有率(体積%)、ρr:樹脂の密度(g/cm)、ρB:臭素の密度(g/cm)である。
VBr=(X/100)×(1−Vf/100)×(ρr/ρB)×100 (2)
In formula (2), X: content of bromine in the resin constituting the fiber-reinforced resin molded product (% by mass), Vf: content of reinforcing fibers in the fiber-reinforced resin molded product (% by volume), ρr: density of the resin. (g/cm 3 ), ρB: Density of bromine (g/cm 3 ).

繊維強化樹脂成形体の臭素の含有率は、好ましくは7.0体積%以上である。また、繊維強化樹脂成形体の臭素の含有率は、好ましくは15.0体積%以下、より好ましくは13.0体積%以下である。臭素の含有率が5.0体積%未満であると、十分な難燃性を得ることが困難となる。また、臭素の含有率が15.0体積%を超えると、繊維強化樹脂成形体の強化繊維の体積含有率Vfが50%以下となるおそれがあるため好ましくない。 The bromine content in the fiber-reinforced resin molding is preferably 7.0% by volume or more. Also, the bromine content in the fiber-reinforced resin molded product is preferably 15.0% by volume or less, more preferably 13.0% by volume or less. If the bromine content is less than 5.0% by volume, it will be difficult to obtain sufficient flame retardancy. Moreover, if the bromine content exceeds 15.0% by volume, the volume content Vf of the reinforcing fibers in the fiber-reinforced resin molding may become 50% or less, which is not preferable.

繊維強化樹脂成形体の臭素の含有率は、繊維強化樹脂成形体に占める臭素化ビスフェノールA型ビニルエステル樹脂の割合を調整すること、または樹脂組成物における臭素化ビスフェノールA型ビニルエステル樹脂の含有量を調整することによって上記範囲とすることができる。 The content of bromine in the fiber-reinforced resin molded article can be adjusted by adjusting the ratio of the brominated bisphenol A-type vinyl ester resin in the fiber-reinforced resin molded article, or by adjusting the content of the brominated bisphenol A-type vinyl ester resin in the resin composition. The above range can be obtained by adjusting the

(難燃性能)
本実施形態に係る繊維強化樹脂成形体は、UL94規格においてV-0の難燃性能を有する。繊維強化樹脂成形体の難燃性能の調整は、繊維強化樹脂成形体に占める臭素化ビスフェノールA型ビニルエステル樹脂の割合を調整すること、または樹脂組成物における臭素化ビスフェノールA型ビニルエステル樹脂の含有量を調整することによって行うことができる。
(Flame retardant performance)
The fiber-reinforced resin molding according to this embodiment has a flame retardancy of V-0 in the UL94 standard. The flame retardant performance of the fiber-reinforced resin molded article can be adjusted by adjusting the proportion of the brominated bisphenol A vinyl ester resin in the fiber reinforced resin molded article, or by including the brominated bisphenol A vinyl ester resin in the resin composition. It can be done by adjusting the amount.

本実施形態に係る繊維強化樹脂成形体のUL94規格における難燃性能は、ASTM D3801に準拠する垂直燃焼試験により評価する。具体的な評価方法については、後述の実施例で説明する。 The flame-retardant performance of the fiber-reinforced resin molded product according to the present embodiment according to UL94 standard is evaluated by a vertical combustion test conforming to ASTM D3801. A specific evaluation method will be described in Examples below.

(繊維強化樹脂成形体の形状、大きさ、用途)
本実施形態に係る繊維強化樹脂成形体は、任意の形状、大きさとしてよいが、例えば、板状、棒状等の形状とすることができる。棒状とする場合には、断面の形状を長方形、円形、中空、L字型、V字型、H字型、コの字型等とし、任意の長さとすることができる。断面の形状を長方形とする場合、寸法は特に限定されないが、厚さ1~20mm程度、幅10~600mm程度とすることができる。
(Shape, size and use of fiber reinforced resin molding)
The fiber-reinforced resin molded article according to the present embodiment may have any shape and size, and may have, for example, a plate-like shape or a bar-like shape. When it is rod-shaped, the shape of the cross section can be rectangular, circular, hollow, L-shaped, V-shaped, H-shaped, U-shaped, etc., and can be of any length. When the shape of the cross section is rectangular, the dimensions are not particularly limited, but the thickness can be about 1 to 20 mm and the width can be about 10 to 600 mm.

本実施形態に係る繊維強化樹脂成形体は、例えば、スポーツ、レジャー用の機材、車両、航空機用の部品や構造体、建築構造物、土木構造物の構造体に使用することかできる。 The fiber-reinforced resin molded article according to the present embodiment can be used for, for example, parts and structures for sports and leisure equipment, vehicles and aircraft, building structures, and civil engineering structures.

(製造方法)
本実施形態に係る繊維強化樹脂成形体の製造方法は、上述の強化繊維に含浸された上述の樹脂組成物を、65~300℃の金型温度で15分以内に硬化させて、成形体を得ることを含む。
(Production method)
In the method for producing a fiber-reinforced resin molded article according to the present embodiment, the resin composition impregnated with the reinforcing fiber is cured at a mold temperature of 65 to 300 ° C. within 15 minutes to obtain a molded article. Including getting.

本実施形態に係る繊維強化樹脂成形体の製造方法によれば、上述の樹脂組成物を使用することにより、15分以内に硬化反応を終えることができ、繊維強化樹脂成形体を迅速に製造することができる。 According to the method for producing a fiber-reinforced resin molded article according to the present embodiment, by using the resin composition described above, the curing reaction can be completed within 15 minutes, and the fiber-reinforced resin molded article can be rapidly produced. be able to.

樹脂組成物を強化繊維に含浸させる方法は、任意の方法を採用することができる。例えば、樹脂組成物を収容する容器に強化繊維の束を浸漬させてもよく、強化繊維の束に樹脂組成物を塗布してもよい。この含浸は、必要に応じて複数回繰り返し行ってもよい。 Any method can be adopted as a method for impregnating the reinforcing fibers with the resin composition. For example, the reinforcing fiber bundle may be immersed in a container containing the resin composition, or the resin composition may be applied to the reinforcing fiber bundle. This impregnation may be repeated multiple times as required.

また、使用可能な金型は特に限定されない。例えば、樹脂組成物を含浸させた強化繊維の束を通過させることが可能な貫通孔を有するダイや、強化繊維および樹脂繊維を流し込むことができる射出成形型、その他の金型を使用することができる。 Moreover, the mold that can be used is not particularly limited. For example, it is possible to use a die having a through hole through which a bundle of reinforcing fibers impregnated with a resin composition can pass, an injection mold into which reinforcing fibers and resin fibers can be poured, or other molds. can.

より具体的には、本実施形態に係る繊維強化樹脂成形体の製造方法には、引抜成形法や、VaRTM(Vacuum assisted Resin Transfer Molding:真空含侵)成形法を適用することができる。 More specifically, a pultrusion molding method or a VaRTM (Vacuum Assisted Resin Transfer Molding) molding method can be applied to the method for producing the fiber-reinforced resin molded article according to the present embodiment.

引抜成形法とは、基材である強化繊維に樹脂組成物を含浸させたものを金型の内部に引き込み、または金型内で強化繊維に樹脂組成物を含浸させ、金型内もしくは金型を出た所で樹脂組成物が加熱硬化して、硬化物を金型から引き出す成形方法である。本実施形態に係る製造方法を引抜成形法に適用する場合、金型温度を65~300℃とする。これにより、強化繊維に樹脂組成物を含浸させたものが金型に入ってから15分以内に樹脂組成物の硬化を完了させる。 The pultrusion method is a method in which a reinforcing fiber that is a base material impregnated with a resin composition is pulled into a mold, or a reinforcing fiber is impregnated with a resin composition in the mold, and the resin composition is formed in the mold or in the mold. This is a molding method in which the resin composition is cured by heating at the point where it exits, and the cured product is pulled out from the mold. When the manufacturing method according to this embodiment is applied to the pultrusion method, the mold temperature is set to 65 to 300°C. As a result, the curing of the resin composition is completed within 15 minutes after the reinforcing fiber impregnated with the resin composition enters the mold.

VaRTM成形法とは、プラスチックフィルムが取り付けられた成形型を用いる成形方法である。積層した強化繊維を成形型とプラスチックフィルムの間に封入して、成形型とプラスチックフィルムとの間の空気を真空ポンプで排出する。この空気を排出した空間に、負圧を利用して樹脂組成物を注入して強化繊維に含浸させ、さらに強化繊維と樹脂組成物を成形型とプラスチックフィルムとによって挟み付けて所望の形状に硬化させる。本実施形態に係る製造方法をVaRTM成形法に適用する場合、成形型温度(金型温度)を65~300℃とする。また、強化繊維に樹脂組成物を含浸させてから15分以内に樹脂組成物の硬化を完了させる。 The VaRTM molding method is a molding method using a mold to which a plastic film is attached. The laminated reinforcing fibers are enclosed between the mold and the plastic film, and the air between the mold and the plastic film is discharged with a vacuum pump. A resin composition is injected into the air-exhausted space using negative pressure to impregnate the reinforcing fibers, and the reinforcing fibers and the resin composition are sandwiched between a mold and a plastic film to harden into a desired shape. Let When the manufacturing method according to this embodiment is applied to the VaRTM molding method, the mold temperature (mold temperature) is set to 65 to 300.degree. In addition, the curing of the resin composition is completed within 15 minutes after the reinforcing fibers are impregnated with the resin composition.

本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下にまとめる。 As described above, this specification discloses technologies of various aspects, and the main technologies thereof are summarized below.

上述したように、本発明の一局面に係る繊維強化樹脂成形体は、臭素化ビスフェノールA型ビニルエステル樹脂と硬化剤とを含む樹脂組成物を、強化繊維に含浸させ、硬化させた繊維強化樹脂成形体であり、前記樹脂組成物は、前記臭素化ビスフェノールA型ビニルエステル樹脂100質量部に対して、前記硬化剤として有機過酸化物を0.5~4質量部含み、前記繊維強化樹脂成形体中の臭素の含有率が5.0体積%以上であり、UL94規格においてV-0の難燃性能を有する。 As described above, the fiber-reinforced resin molded product according to one aspect of the present invention is a fiber-reinforced resin obtained by impregnating reinforcing fibers with a resin composition containing a brominated bisphenol A vinyl ester resin and a curing agent and curing the resin composition. It is a molded article, and the resin composition contains 0.5 to 4 parts by mass of an organic peroxide as the curing agent with respect to 100 parts by mass of the brominated bisphenol A vinyl ester resin, and the fiber reinforced resin molding is performed. The content of bromine in the body is 5.0% by volume or more, and the flame retardant performance is V-0 in the UL94 standard.

この構成によれば、難燃性を有するとともに、良好な成形性を有する繊維強化樹脂成形体を得ることができる。 According to this configuration, it is possible to obtain a fiber-reinforced resin molded article having flame retardancy and good moldability.

上記構成の繊維強化樹脂成形体において、前記有機過酸化物を、パーオキシエステル、パーオキシカーボネート、ハイドロパーオキシエステルおよびジアシルパーオキサイドからなる群から選択される少なくとも1つとしてもよい。 In the fiber-reinforced resin molded article having the above configuration, the organic peroxide may be at least one selected from the group consisting of peroxyesters, peroxycarbonates, hydroperoxyesters and diacyl peroxides.

この構成によれば、より良好な成形性を有する繊維強化樹脂成形体を得ることができる。 According to this configuration, it is possible to obtain a fiber-reinforced resin molded article having better moldability.

上記構成の繊維強化樹脂成形体において、前記パーオキシエステルおよび前記パーオキシカーボネートを、t-アミル基またはt-ブチル基を有するものとしてもよい。 In the fiber-reinforced resin molding having the above structure, the peroxyester and the peroxycarbonate may have a t-amyl group or a t-butyl group.

この構成によれば、さらにより良好な成形性を有する繊維強化樹脂成形体を得ることができる。 According to this configuration, it is possible to obtain a fiber-reinforced resin molded article having even better moldability.

また、本発明の他の局面に係る繊維強化樹脂成形体の製造方法は、上記の繊維強化樹脂成形体の製造方法であって、前記強化繊維に含浸された前記樹脂組成物を、65~300℃の金型温度で15分以内に硬化させて、成形体を得ることを含む。 Further, a method for producing a fiber-reinforced resin molded article according to another aspect of the present invention is the above-described method for producing a fiber-reinforced resin molded article, wherein the resin composition impregnated in the reinforcing fibers is C. mold temperature within 15 minutes to obtain a compact.

この構成によれば、難燃性を有するとともに、良好な成形性を有する繊維強化樹脂成形体を製造することができる。 According to this configuration, it is possible to manufacture a fiber-reinforced resin molded article having flame retardancy and good moldability.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前記、後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含有される。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples, and it is also possible to implement it by adding changes within the scope that can conform to the gist of the above and below. All of them are included in the technical scope of the present invention.

〈繊維強化樹脂成形体の作製条件〉
実施例1~9および比較例1、2の繊維強化樹脂成形体の作製条件は以下の通りとした。
<Conditions for producing fiber-reinforced resin molding>
The conditions for producing the fiber-reinforced resin moldings of Examples 1 to 9 and Comparative Examples 1 and 2 were as follows.

(実施例1)
繊維強化樹脂成形体を作製するために、臭素化ビスフェノールA型ビニルエステル(昭和電工株式会社製、「リポキシ(登録商標)S-510」)を100質量部、t-アミルパーオキシ-2-エチルヘキサノエート(化薬ヌーリオン株式会社製、「トリゴノックス(登録商標)121-50E」)を0.5質量部、「MoldWiz(登録商標) INT-PUL-24」(アクセルプラスチックスリサーチラボラトリーズ製)を0.5質量部含有する樹脂組成物を調製した。表1、表2では、臭素化ビスフェノールA型ビニルエステルを「樹脂」、t-アミルパーオキシ-2-エチルヘキサノエートを「硬化剤1」、MoldWiz(登録商標) INT-PUL-24を「離型剤」と記載している。
(Example 1)
In order to produce a fiber-reinforced resin molded product, 100 parts by mass of brominated bisphenol A vinyl ester (manufactured by Showa Denko KK, "Lipoxy (registered trademark) S-510"), t-amylperoxy-2-ethyl 0.5 parts by mass of hexanoate (manufactured by Kayaku Nourion Co., Ltd., "Trigonox (registered trademark) 121-50E") and "MoldWiz (registered trademark) INT-PUL-24" (manufactured by Axel Plastics Research Laboratories). A resin composition containing 0.5 parts by mass was prepared. In Tables 1 and 2, brominated bisphenol A type vinyl ester is "resin", t-amylperoxy-2-ethylhexanoate is "curing agent 1", and MoldWiz (registered trademark) INT-PUL-24 is " Release agent".

また、強化繊維として、炭素繊維(東レ株式会社製、「トレカ(登録商標)」、グレード:T-700S、繊維径7μm、繊度:1650tex)を使用した。 Carbon fibers (“Torayca (registered trademark)” manufactured by Toray Industries, Inc., grade: T-700S, fiber diameter: 7 μm, fineness: 1650 tex) were used as reinforcing fibers.

調製した樹脂組成物を強化繊維に含浸させ、樹脂組成物および強化繊維を金型に充填し、所定時間保持し、樹脂組成物を硬化させた後引き抜いて繊維強化樹脂成形体を作製した(引抜成形法)。金型の温度は180℃とし、金型内での保持時間は5分とした。繊維強化樹脂成形体の断面の形状は長方形、断面の寸法は、縦2mm、横30mmとした。 The reinforcing fibers were impregnated with the prepared resin composition, the resin composition and the reinforcing fibers were filled in a mold, held for a predetermined time, the resin composition was cured, and then pulled out to produce a fiber-reinforced resin molded body (pulled out molding method). The temperature of the mold was set to 180° C., and the retention time within the mold was set to 5 minutes. The cross-sectional shape of the fiber-reinforced resin molding was rectangular, and the cross-sectional dimensions were 2 mm long and 30 mm wide.

作製された繊維強化樹脂成形体に占める強化繊維の体積含有率Vfは、70%であり、臭素の体積含有率VBrは8.0%であった。強化繊維の体積含有率Vfは、上述の式(1)に基づいて算出し、臭素の体積含有率VBrは、上述の式(2)に基づいて算出した。 The volume content Vf of the reinforcing fibers in the fiber-reinforced resin molded product was 70%, and the volume content VBr of bromine was 8.0%. The volume content Vf of reinforcing fibers was calculated based on the above formula (1), and the volume content of bromine VBr was calculated based on the above formula (2).

(実施例2)
実施例2では、樹脂組成物として、実施例1の樹脂組成物のt-アミルパーオキシ-2-エチルヘキサノエート(硬化剤1)の含有量を2質量部に替えたものを使用した。作製された維強化樹脂成形体に占める強化繊維の体積含有率Vfは60%、臭素の体積含有率VBrは10.4%であった。
(Example 2)
In Example 2, a resin composition was used in which the content of t-amylperoxy-2-ethylhexanoate (curing agent 1) in the resin composition of Example 1 was changed to 2 parts by mass. The volume content Vf of reinforcing fibers in the manufactured fiber-reinforced resin molding was 60%, and the volume content VBr of bromine was 10.4%.

(実施例3)
実施例3では、樹脂組成物として、実施例1の樹脂組成物のt-アミルパーオキシ-2-エチルヘキサノエート(硬化剤1)の含有量を4質量部に替えたものを使用した。作製された維強化樹脂成形体に占める強化繊維の体積含有率Vfは55%、臭素の体積含有率VBrは11.4%であった。
(Example 3)
In Example 3, the resin composition used was the resin composition of Example 1 in which the content of t-amylperoxy-2-ethylhexanoate (curing agent 1) was changed to 4 parts by mass. The volume content Vf of the reinforcing fibers in the fiber-reinforced resin molded article was 55%, and the volume content VBr of bromine was 11.4%.

(実施例4~6)
実施例4~6では、樹脂組成物として、それぞれ実施例1~3の樹脂組成物のt-アミルパーオキシ-2-エチルヘキサノエート(硬化剤1)をt-アミルパーオキシイソプロピルカーボネート(化薬ヌーリオン株式会社製、「トリゴノックス(登録商標)129-75」)に替えたものを使用した。表1、表2では、t-アミルパーオキシイソプロピルカーボネートを「硬化剤2」と記載している。
(Examples 4-6)
In Examples 4 to 6, t-amylperoxy-2-ethylhexanoate (curing agent 1) of the resin compositions of Examples 1 to 3 was replaced with t-amylperoxyisopropyl carbonate (chemical (Nourion Co., Ltd., Trigonox (registered trademark) 129-75)) was used instead. In Tables 1 and 2, t-amylperoxyisopropyl carbonate is described as "curing agent 2".

(実施例7)
実施例7では、実施例2の樹脂組成物のt-アミルパーオキシ-2-エチルヘキサノエート(硬化剤1)2質量部を、t-アミルパーオキシ-2-エチルヘキサノエート(硬化剤1)1質量部およびt-アミルパーオキシイソプロピルカーボネート(硬化剤2)1質量部に替えたものを使用した。
(Example 7)
In Example 7, 2 parts by mass of t-amylperoxy-2-ethylhexanoate (curing agent 1) of the resin composition of Example 2 was added to t-amylperoxy-2-ethylhexanoate (curing agent 1) 1 part by mass and 1 part by mass of t-amylperoxyisopropyl carbonate (curing agent 2) were used.

(実施例8、9)
実施例8、9では、強化繊維として、実施例7の炭素繊維を、それぞれガラス繊維またはバサルト繊維に替えたものを使用した。ガラス繊維は、日東紡株式会社製のガラスロービング材「RS 440 RR-520」、繊維径10~13μm、繊度:4400texのものを使用した。バサルト繊維は、HG GBF BasaltFiber Co.,LTD.製、「BCR16-4800」、繊維径16μm、繊度:4800texのものを使用した。
(Examples 8 and 9)
In Examples 8 and 9, the carbon fibers of Example 7 were replaced with glass fibers or basalt fibers as reinforcing fibers. As the glass fiber, a glass roving material “RS 440 RR-520” manufactured by Nittobo Co., Ltd., having a fiber diameter of 10 to 13 μm and a fineness of 4400 tex was used. Basalt fibers are available from HG GBF Basalt Fiber Co. , LTD. ``BCR16-4800'' manufactured by the company, with a fiber diameter of 16 μm and a fineness of 4800 tex.

(比較例1)
比較例1では、樹脂組成物として、実施例1の樹脂組成物のt-アミルパーオキシ-2-エチルヘキサノエート(硬化剤1)の含有量を0.3質量部に替えたものを使用した。維強化樹脂成形体に占める強化繊維の体積含有率Vfは60%、臭素の体積含有率VBrは10.6%であった。
(Comparative example 1)
In Comparative Example 1, as the resin composition, the content of t-amylperoxy-2-ethylhexanoate (curing agent 1) in the resin composition of Example 1 was changed to 0.3 parts by mass. did. The volume content Vf of reinforcing fibers in the fiber-reinforced resin molding was 60%, and the volume content VBr of bromine was 10.6%.

(比較例2)
比較例2では、樹脂組成物として、実施例1の樹脂組成物のt-アミルパーオキシ-2-エチルヘキサノエート(硬化剤1)の含有量を5質量部に替えたものを使用した。維強化樹脂成形体に占める強化繊維の体積含有率Vfは60%、臭素の体積含有率VBrは10.0%であった。
(Comparative example 2)
In Comparative Example 2, a resin composition was used in which the content of t-amylperoxy-2-ethylhexanoate (curing agent 1) in the resin composition of Example 1 was changed to 5 parts by mass. The volume content Vf of reinforcing fibers in the fiber-reinforced resin molding was 60%, and the volume content VBr of bromine was 10.0%.

Figure 2022143868000001
Figure 2022143868000001

Figure 2022143868000002
Figure 2022143868000002

〈評価試験〉
これらの繊維強化樹脂成形体について、UL94規格における難燃性能および成形性の評価を行った。
<Evaluation test>
These fiber-reinforced resin moldings were evaluated for flame retardancy and moldability according to the UL94 standard.

(難燃性能の評価方法)
難燃性能は、ASTM D3801に準拠する垂直燃焼試験により評価した。燃焼試験に使用した試料は、作製した繊維強化樹脂成形体から切り出した。試料の寸法は、長さ125±5mm、幅13.0±0.5mm、厚さ2mmとした。なお、規定では、試料の厚さは0.025mm~13mmである。
(Evaluation method for flame retardant performance)
Flame retardant performance was evaluated by a vertical burning test according to ASTM D3801. A sample used for the combustion test was cut from the fiber-reinforced resin molded body produced. The dimensions of the sample were 125±5 mm in length, 13.0±0.5 mm in width, and 2 mm in thickness. In addition, the thickness of the sample is specified to be 0.025 mm to 13 mm.

試料の長手方向が鉛直方向となるように、試料をクランプで保持し、試料の下方に所定の寸法の綿を配置した。試料の下端に長さ20mmの炎を10秒間当て(1回目の接炎)、残炎時間t1を測定した。燃焼停止後、再度炎を10秒間当て(2回目の接炎)、残炎時間t2およびアフターグロー時間(赤熱している時間)t3を測定した。また、試料からの滴下物による綿の着火の有無、および試料のクランプまでの燃焼の有無を確認した。5本の試料について上記試験を行い、各項目の結果を総合して当該試料の難燃性能を表3に示すように評価した。 The sample was held with a clamp so that the longitudinal direction of the sample was vertical, and cotton of a predetermined size was placed under the sample. A flame having a length of 20 mm was applied to the lower end of the sample for 10 seconds (first flame contact), and afterflame time t1 was measured. After the combustion was stopped, the flame was applied again for 10 seconds (second flame contact), and afterflame time t2 and afterglow time (red-hot time) t3 were measured. In addition, it was confirmed whether or not the cotton was ignited by dripping from the sample, and whether or not the sample was burned up to the clamp. Five samples were subjected to the above test, and the results of each item were combined to evaluate the flame retardant performance of the samples as shown in Table 3.

Figure 2022143868000003
Figure 2022143868000003

(成形性の評価方法)
作製された繊維強化樹脂成形体の表面を目視により観察し、クラック等の欠陥の発生の有無を確認した。欠陥の発生が確認されない場合、当該繊維強化樹脂成形体の成形性は良好であると評価し、欠陥の発生が確認された場合、当該繊維強化樹脂成形体の成形性は良好ではないと評価した。
(Evaluation method for moldability)
The surface of the produced fiber-reinforced resin molding was visually observed to confirm the presence or absence of defects such as cracks. When no defects were confirmed, the moldability of the fiber-reinforced resin molded product was evaluated as good, and when defects were confirmed, the moldability of the fiber-reinforced resin molded product was evaluated as not good. .

〈評価結果〉
表1、2に示すように、本発明で規定する要件を満足する繊維強化樹脂成形体(実施例1~9)は、UL94規格におけるV-0の難燃性能を有していた。また、樹脂組成物は金型内でいずれも15分以内に硬化し、成形された繊維強化樹脂成形体の表面にはクラック等の欠陥がなく、良好な成形性を有していた。
<Evaluation results>
As shown in Tables 1 and 2, the fiber-reinforced resin moldings (Examples 1 to 9) satisfying the requirements defined in the present invention had V-0 flame retardancy according to the UL94 standard. All of the resin compositions were cured in the mold within 15 minutes, and the surface of the molded fiber-reinforced resin molding had no defects such as cracks and had good moldability.

一方、表2に示すように、硬化剤の含有量が本発明の規定よりも少ない比較例1では、樹脂組成物は金型内で15分を経過しても硬化しなかったため、繊維強化樹脂成形体を成形することができず、難燃性能の評価も行うことができなかった。 On the other hand, as shown in Table 2, in Comparative Example 1, in which the content of the curing agent was less than the specification of the present invention, the resin composition did not cure even after 15 minutes passed in the mold. A molded article could not be molded, and the flame retardant performance could not be evaluated.

硬化剤の含有量が本発明の規定よりも多い比較例2では、樹脂組成物は金型内で15分以内に硬化したものの、繊維強化樹脂成形体の表面にクラックが生じ、成形性に劣っていた。比較例2の繊維強化樹脂成形体は、UL94規格におけるV-0の難燃性能を有していた。 In Comparative Example 2, in which the content of the curing agent was higher than that specified in the present invention, the resin composition cured within 15 minutes in the mold, but cracks occurred on the surface of the fiber-reinforced resin molding, resulting in inferior moldability. was The fiber-reinforced resin molding of Comparative Example 2 had flame retardancy of V-0 in the UL94 standard.

Claims (4)

臭素化ビスフェノールA型ビニルエステル樹脂と硬化剤とを含む樹脂組成物を、強化繊維に含浸させ、硬化させた繊維強化樹脂成形体であり、
前記樹脂組成物は、前記臭素化ビスフェノールA型ビニルエステル樹脂100質量部に対して、前記硬化剤として有機過酸化物を0.5~4質量部含み、
前記繊維強化樹脂成形体中の臭素の含有率が5.0体積%以上であり、
UL94規格においてV-0の難燃性能を有する、繊維強化樹脂成形体。
A fiber-reinforced resin molded article obtained by impregnating reinforcing fibers with a resin composition containing a brominated bisphenol A-type vinyl ester resin and a curing agent and curing the resin composition,
The resin composition contains 0.5 to 4 parts by mass of an organic peroxide as the curing agent with respect to 100 parts by mass of the brominated bisphenol A vinyl ester resin,
The content of bromine in the fiber-reinforced resin molded article is 5.0% by volume or more,
A fiber-reinforced resin molding having flame retardancy of V-0 in the UL94 standard.
前記有機過酸化物が、パーオキシエステル、パーオキシカーボネート、ハイドロパーオキシエステルおよびジアシルパーオキサイドからなる群から選択される少なくとも1つである、請求項1に記載の繊維強化樹脂成形体。 2. The fiber-reinforced resin molding according to claim 1, wherein said organic peroxide is at least one selected from the group consisting of peroxyesters, peroxycarbonates, hydroperoxyesters and diacylperoxides. 前記パーオキシエステルおよび前記パーオキシカーボネートが、t-アミル基またはt-ブチル基を有する、請求項2に記載の繊維強化樹脂成形体。 3. The fiber-reinforced resin molded article according to claim 2, wherein said peroxyester and said peroxycarbonate have a t-amyl group or a t-butyl group. 前記強化繊維に含浸された前記樹脂組成物を、65~300℃の金型温度で15分以内に硬化させて、成形体を得ることを含む、請求項1から請求項3のいずれか1項に記載の繊維強化樹脂成形体の製造方法。 The resin composition impregnated in the reinforcing fibers is cured at a mold temperature of 65 to 300° C. within 15 minutes to obtain a molded product according to any one of claims 1 to 3. The method for producing the fiber-reinforced resin molded product according to 1.
JP2021044617A 2021-03-18 2021-03-18 Fiber-reinforced resin molding and method for producing the same Pending JP2022143868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021044617A JP2022143868A (en) 2021-03-18 2021-03-18 Fiber-reinforced resin molding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021044617A JP2022143868A (en) 2021-03-18 2021-03-18 Fiber-reinforced resin molding and method for producing the same

Publications (1)

Publication Number Publication Date
JP2022143868A true JP2022143868A (en) 2022-10-03

Family

ID=83454387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021044617A Pending JP2022143868A (en) 2021-03-18 2021-03-18 Fiber-reinforced resin molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP2022143868A (en)

Similar Documents

Publication Publication Date Title
KR101860696B1 (en) Epoxy resin composition, molded article, prepreg, fiber reinforced composite material and structure
KR101843220B1 (en) Carbon-fiber reinforced polypropylene resin composition, molding material, and molded articles
WO2005092961A2 (en) Filled fiber reinforced thermoplastic composite
KR20160090805A (en) Heat-curable resin composition, prepreg, and method for producing fiber-reinforced composite using each of same
Prabhu et al. Thermal degradation of HDPE short fibers reinforced epoxy composites
KR101947743B1 (en) Method for Manufacturing Incombustible Fiberglass Reinforced Plastic for outlet duct and pipe of in factory of manufacturing semiconductor
JP2006272773A (en) Heat-treated, long carbon-fiber-reinforced resin pellet, its manufacturing method and molded product
JP2022143868A (en) Fiber-reinforced resin molding and method for producing the same
Zhamu et al. Properties of a reactive‐graphitic‐carbon‐nanofibers‐reinforced epoxy
JP5972721B2 (en) Thermoplastic resin composition
CN111574665A (en) Thermosetting resin composition, bulk molding compound, and molded article
JP2022158205A (en) Fiber-reinforced resin molding and method for manufacturing the same
CN111117060A (en) Continuous basalt fiber reinforced polypropylene composite material, preparation method and application
KR101425975B1 (en) Polymer resin blend composition for automotive exterior, article for automotive exterior and preparing method of the same
US20220220309A1 (en) High-rigidity and high-heat resistance thermoplastic composite material composition and molded product manufactured therefrom
KR20200078754A (en) Polypropylene resin composition reinforced with along glass fiber and method for preparing polypropylene resin foam using the same
JP3754166B2 (en) Method for producing fiber-reinforced phenolic resin molded product
Ku et al. Tensile tests of phenol formaldehyde SLG reinforced composites: Pilot study
JP2006077202A (en) Flame-retardant prepreg
Gupta et al. Effect of Montmorillonite Clay Content on the Mechanical and Thermal Properties of Flame Retardant Epoxy Nanocomposites
JP6493633B1 (en) Thermosetting resin composition for fiber reinforced composite material, preform, fiber reinforced composite material and method for producing fiber reinforced composite material
US20240067802A1 (en) Graphene enhanced sheet molding compound
KR102358401B1 (en) Coating agents for carbon fibers and carbon fiber reinforced composites using the same
KR102391576B1 (en) Polypropylene-based Resin Composition with Excellent Thermal Conductivity and Mechanical Properties and Article Molded Therefrom
RU2770071C1 (en) Low-combustible polymer composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230901