JP2022143469A - Metal 3d molding method by directed energy deposition method - Google Patents

Metal 3d molding method by directed energy deposition method Download PDF

Info

Publication number
JP2022143469A
JP2022143469A JP2021043995A JP2021043995A JP2022143469A JP 2022143469 A JP2022143469 A JP 2022143469A JP 2021043995 A JP2021043995 A JP 2021043995A JP 2021043995 A JP2021043995 A JP 2021043995A JP 2022143469 A JP2022143469 A JP 2022143469A
Authority
JP
Japan
Prior art keywords
metal
modeling
ready
energy deposition
hexagonal nut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021043995A
Other languages
Japanese (ja)
Inventor
俊治 小原
Toshiharu Obara
嘉徳 下村
Yoshinori Shimomura
達也 鈴木
Tatsuya Suzuki
雄太 鈴木
Yuta Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Fujikin Inc
Original Assignee
Nikon Corp
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Fujikin Inc filed Critical Nikon Corp
Priority to JP2021043995A priority Critical patent/JP2022143469A/en
Publication of JP2022143469A publication Critical patent/JP2022143469A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a female thread by packing a hexagonal nut as a ready-made product into a metal 3D molded object.SOLUTION: When an engaging recessed part 8 to be buried with a ready-made product at the inside is molded, the molding of a metal 3D molded object 4 is temporarily stopped, a hexagonal nut 1 as the ready-made product is engaged and held to the engaging recessed part 8, and thereafter, the molding of the metal 3D molded object 4 is restarted, so that the hexagonal nut 1 is packed therein to form a female thread 1a. In this way, the metal 3D molded object by a directed energy deposition method having the correct female thread 1a formed can be obtained.SELECTED DRAWING: Figure 12

Description

本発明は、指向性エネルギー堆積法による金属3D造形方法に関するものである。 The present invention relates to a metal 3D fabrication method by directed energy deposition.

金属3D造形方法としては、一般に、粉末床溶融結合法(Powder Bed Fusion)によるものと、指向性エネルギー堆積法(Directed Energy Deposition)(例えば、特許文献1又は特許文献2)とが知られている。 As a metal 3D modeling method, generally, a powder bed fusion method (Powder Bed Fusion) and a directed energy deposition method (Directed Energy Deposition) (for example, Patent Document 1 or Patent Document 2) are known. .

すなわち、粉末床溶融結合法による金属3D造形方法では、ベッド上に粉末金属を薄く積層して、レーザビームが当たった部分を溶融、固化させる。そして、1層分の厚さだけベッドが下降して、再度粉末金属を1層分だけ積層し、以降同様の操作を繰り返して、金属3D造形物を造形する。 That is, in the metal 3D modeling method by the powder bed fusion method, powdered metal is thinly layered on the bed, and the portion hit by the laser beam is melted and solidified. Then, the bed is lowered by the thickness of one layer, and one layer of powdered metal is laminated again, and the same operation is repeated thereafter to form a metal 3D modeled object.

一方、指向性エネルギー堆積法による金属3D造形方法では、造形ヘッドから噴射した金属材料を造形ヘッドから照射したレーザビームにより溶融、固化して、造形物を造形する。その後、造形ヘッドが移動して、造形物が1層形成されると、当該造形物上に同様に、造形ヘッドから噴射した金属材料を造形ヘッドから噴射したレーザビームにより溶融し新たな造形物を形成する。以降同様の操作により金属3D造形物を造形する。 On the other hand, in the metal 3D modeling method based on the directional energy deposition method, a metal material ejected from a modeling head is melted and solidified by a laser beam emitted from the modeling head to form a modeled object. After that, when the modeling head moves and one layer of the modeled object is formed, the metal material ejected from the modeling head is similarly melted on the modeled object by the laser beam ejected from the modeling head to form a new modeled object. Form. Thereafter, a metal 3D-modeled object is modeled by the same operation.

特表2018-527484号公報Japanese Patent Publication No. 2018-527484 米国特許出願公開2003/0206820号公報U.S. Patent Application Publication No. 2003/0206820

而して、例えば、ボルト等の雄ネジを螺合させる雌ネジを形成する場合には、粉末床溶融結合法による金属3D造形方法では、雌ネジを形成する部分に下孔を形成した金属3D造形物を一旦造形し、この造形物に形成された下孔にタップ等により雌ネジを形成するといった二次加工が必要であった。 Thus, for example, when forming a female screw into which a male screw such as a bolt is to be screwed, the metal 3D modeling method based on the powder bed fusion method uses a metal 3D model in which a pilot hole is formed in the portion where the female screw is to be formed. Secondary processing was required, such as forming a model once and forming a female screw in a prepared hole formed in the model using a tap or the like.

一方、指向性エネルギー堆積法による金属3D造形方法では、軸線が造形面(X-Y面)に直交する雌ネジを形成することは可能であるが、雌ネジのピッチ等に制限があり、雌ネジ部分に溶融粉末のカスが残り易い。しかも、軸線が造形面に平行する雌ネジについては、粉末床溶融結合法による金属3D造形方法と同様、形成することができず、タップ等による二次加工が必要であった。 On the other hand, in the metal 3D modeling method by the directional energy deposition method, it is possible to form a female screw whose axis is perpendicular to the modeling surface (XY plane), but there are restrictions on the pitch of the female screw, etc. Residues of molten powder tend to remain on the screw part. In addition, the female screw whose axis is parallel to the molding surface cannot be formed, as in the metal 3D molding method by the powder bed fusion method, and secondary processing such as tapping is required.

また、何れの金属3D造形方法によっても、造形物のIC情報を埋め込んだRFタグを貼り付ける等、造形物が出来上がった後、貼り付け等の二次加工が必要な場合があり、甚だ面倒であった。 In addition, with any metal 3D modeling method, secondary processing such as pasting may be required after the model is completed, such as attaching an RF tag embedded with the IC information of the model, which is extremely troublesome. there were.

そこで、本発明は、このような問題を有さず、雌ネジを有する六角ナットやRFタグ等の既成品を金属3D造形物に内装して、二次加工を必要としない指向性エネルギー堆積法による金属3D造形方法を提供することを目的とするものである。 Therefore, the present invention does not have such a problem, and a directional energy deposition method that does not require secondary processing by embedding ready-made products such as hexagonal nuts having female threads and RF tags in metal 3D models. The purpose is to provide a metal 3D modeling method by.

この課題を解決した本発明は、係合凹部を造形した時点で金属3D造形物の造形を一旦停止して、当該係合凹部に既製品を係合保持させ、その後、当該金属3D造形物の造形を再開させることにより、当該既製品を内装させることを特徴とする指向性エネルギー堆積法による金属3D造形方法を提供する。 In the present invention, which solves this problem, the molding of the metal 3D model is temporarily stopped when the engagement recess is modeled, and the ready-made product is engaged and held in the engagement recess, and then the metal 3D model is manufactured. Provided is a metal 3D modeling method using a directed energy deposition method characterized in that the ready-made product is incorporated by restarting modeling.

かかる本発明の実施の形態にあっては、前記係合凹部は、これに係合させる前記既製品の容積と同一又は略同一の形状をなすものであり、或は前記既製品の容積の一部と同一又は略同一の形状をなすものであることが好ましい。前記既成品が複数種ある場合には、各種の既製品を係合させる係合凹部が形成された時点で金属3D造形物の造形を一旦停止することが好ましい。また、前記既成品は、多角ナット、例えば六角ナットや四角ナットであることが好ましく、軸線が金属3D造形物の造形面(X-Y面)に直交する六角ナット又は四角ナットであり、或は軸線が当該造形面と平行である六角ナット又は四角ナットであることが好ましい。また、前記既成品はRFタグであることも好ましい。 In such an embodiment of the present invention, the engaging recess has the same or substantially the same shape as the volume of the ready-made product to be engaged with it, or has a volume of one of the volumes of the ready-made product. It preferably has the same or substantially the same shape as the part. When there are a plurality of types of ready-made products, it is preferable to temporarily stop modeling of the metal 3D-modeled object when the engagement recesses for engaging various ready-made products are formed. In addition, the ready-made product is preferably a polygonal nut, such as a hexagonal nut or a square nut, and is a hexagonal nut or a square nut whose axis is orthogonal to the modeling surface (XY plane) of the metal 3D model, or Preferably, it is a hexagonal nut or a square nut whose axis is parallel to the modeling surface. It is also preferable that the ready-made product is an RF tag.

本発明の指向性エネルギー堆積法による金属3D造形方法によれば、係合凹部に、既製品が係合された状態の造形物が得られ、当該係合凹部に既成品が係合可能な状態となった時点で造形物の造形を一旦停止し、しかる後、係合凹部に既製品が係合し、造形を再開することにより、既成品を内装した金属3D造形物を造形することができる。したがって、内装された既製品が六角ナットや四角ナットである場合は、ネジ穴加工のための二次加工を必要とすることなく、雌ネジにピッチ等の制限もなく、雌ネジ部分に溶融粉末のカスが残ったりすることもなく、雌ネジを容易且つ正確に得ることできる。しかも、雌ネジの軸線が金属3D造形物の造形面(X-Y面)に直交する場合は勿論、従来の指向性エネルギー堆積法による金属3D造形方法では二次加工なしには得ることができなかった軸線が当該造形面に平行する雌ネジであっても容易に得ることができる。さらに、ナット以外にも、製品情報等を記憶したRFタグを始め、種々の既製品を内装しておくことができ、これらを、二次加工を要することなく金属3D造形物の一部として造形することができる。このように、本発明の指向性エネルギー堆積法による金属3D造形方法は、種々の既成品を内装することができ、その実用的価値は極めて大なるものである。 According to the metal 3D modeling method by the directed energy deposition method of the present invention, a modeled object is obtained in which the ready-made product is engaged with the engaging recess, and the ready-made product can be engaged with the engaging recess. When the modeled object becomes , the modeled object is temporarily stopped, and after that, the ready-made product is engaged with the engagement recess, and the model is restarted, so that the metal 3D modeled object with the ready-made product inside can be modeled. . Therefore, if the ready-made product to be installed is a hexagonal nut or a square nut, there is no need for secondary processing for screw hole processing, and there is no restriction on the pitch of the female screw, and the molten powder can be applied to the female screw. A female screw can be easily and accurately obtained without leaving any residue. Moreover, in the case where the axis of the female screw is orthogonal to the modeling surface (XY plane) of the metal 3D model, it is possible to obtain it without secondary processing in the conventional metal 3D modeling method using the directed energy deposition method. Even a female screw whose axis line is parallel to the molding surface can be easily obtained. In addition to nuts, various ready-made products such as RF tags that store product information can be stored inside, and these can be molded as part of a metal 3D model without the need for secondary processing. can do. As described above, the metal 3D modeling method by the directed energy deposition method of the present invention can be used for interior of various existing products, and its practical value is extremely large.

図1は本発明の指向性エネルギー堆積法による金属3D造形方法の一実施例を示す造形開始状態の断面図である。FIG. 1 is a cross-sectional view of a modeling start state showing an embodiment of the metal 3D modeling method by the directed energy deposition method of the present invention. 図2はその後の造形が一旦停止された第1造形停止状態の断面図である。FIG. 2 is a cross-sectional view of a first modeling stop state in which subsequent modeling is temporarily stopped. 図3は係合凹部に六角ナットが係合された同第1造形停止状態の断面図である。FIG. 3 is a cross-sectional view of the first modeling stop state in which the hexagonal nut is engaged with the engaging recess. 図4は図3のIV-IV線に沿う断面図である。FIG. 4 is a cross-sectional view taken along line IV--IV of FIG. 図5はその後に造形が再開された状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which modeling is resumed thereafter. 図6は図5のVI-VI線に沿う断面図である。FIG. 6 is a cross-sectional view taken along line VI--VI of FIG. 図7はその後の造形が一旦停止された第2造形停止状態の断面図である。FIG. 7 is a cross-sectional view of a second modeling stop state in which subsequent modeling is temporarily stopped. 図8は係合凹部に六角ナットが係合された同第2造形停止状態の断面図である。FIG. 8 is a cross-sectional view of the second forming stop state in which the hexagonal nut is engaged with the engaging recess. 図9は図8のIX-IX線に沿う断面図である。9 is a cross-sectional view along line IX-IX of FIG. 8. FIG. 図10はその後に造形が再開された状態を示す断面図である。FIG. 10 is a cross-sectional view showing a state in which modeling is resumed thereafter. 図11は図10のXI-XI線に沿う断面図である。FIG. 11 is a cross-sectional view along line XI-XI of FIG. 、図12は最終的に得られた金属3D造形物を示す断面図である。, and FIG. 12 is a cross-sectional view showing the metal 3D model finally obtained.

以下に、本発明の指向性エネルギー堆積法による金属3D造形方法を実施するための形態を図面に基づいて具体的に説明する。 Below, the form for enforcing the metal 3D modeling method by the directed energy deposition method of this invention is demonstrated concretely based on drawing.

図1は本発明の指向性エネルギー堆積法による金属3D造形方法の一実施例を示す造形開始状態の断面図であり、図2はその後の造形が一旦停止された第1造形停止状態の断面図であり、図3は係合凹部に六角ナットが係合された同第1造形停止状態の断面図であり、図4は図3のIV-IV線に沿う断面図であり、図5はその後に造形が再開された状態を示す断面図であり、図6は図5のVI-VI線に沿う断面図であり、図7は更にその後の造形が一旦停止された第2造形停止状態の断面図であり、図8は係合凹部に六角ナットが係合された同第2造形停止状態の断面図であり、図9は図8のIX-IX線に沿う断面図であり、図
10はその後に造形が再開された状態を示す断面図であり、図11は図10のXI-XI線に沿う断面図であり、図12は最終的に得られた金属3D造形物を示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of the metal 3D forming method by the directed energy deposition method of the present invention, showing a starting state of forming, and FIG. 3 is a cross-sectional view of the first forming stop state in which the hexagonal nut is engaged with the engaging recess, FIG. 4 is a cross-sectional view along line IV-IV of FIG. 3, and FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. 5, and FIG. 7 is a cross-sectional view showing a second modeling stop state in which the subsequent modeling is temporarily stopped. 8 is a cross-sectional view of the second molding stop state in which the hexagonal nut is engaged with the engaging recess, FIG. 9 is a cross-sectional view along line IX-IX in FIG. 8, and FIG. FIG. 11 is a cross-sectional view showing a state in which modeling is restarted after that, FIG. 11 is a cross-sectional view along line XI-XI in FIG. 10, and FIG. 12 is a cross-sectional view showing the metal 3D model finally obtained be.

この実施例は、図12に示す如く、既成物として六角ナット1,2及びRFタグ(図示せず)を選択し、これら六角ナット1、2及びRFタグを内装した金属3D造形物4を指向性エネルギー堆積法による金属3D造形方法によって造形するものである。なお、各六角ナット1、2は、複数個埋設されているが、便宜上、1個のみ図示している。 In this embodiment, as shown in FIG. 12, hexagonal nuts 1 and 2 and an RF tag (not shown) are selected as off-the-shelf products, and a metal 3D model 4 with these hexagonal nuts 1 and 2 and the RF tag inside is oriented. It is modeled by a metal 3D modeling method based on a sexual energy deposition method. Although a plurality of hexagonal nuts 1 and 2 are embedded, only one is shown for convenience.

すなわち、指向性エネルギー堆積法による金属3D造形方法の実施装置は、図1~図11に示す如く、レーザビーム5a及び金属材料(金属粉末、金属ワイヤ等)5bの噴射口を有する造形ヘッド5、上面を造形基盤6aとするベッド6及びこれらの駆動装置(図示せず)を備えるもので、造形基盤6a上でレーザビーム5aを局所的に照射し、溶融池形成部分に集中的に金属材料5bを投入し、金属3D造形物4をX-Y面上で溶融堆積していく。 That is, as shown in FIGS. 1 to 11, the apparatus for implementing the metal 3D modeling method by the directional energy deposition method includes a modeling head 5 having injection ports for a laser beam 5a and a metal material (metal powder, metal wire, etc.) 5b, It is equipped with a bed 6 having a modeling base 6a on its upper surface and a driving device (not shown) for these, and locally irradiates a laser beam 5a on the modeling base 6a to concentrate the metal material 5b on the molten pool formation portion. is put in, and the metal 3D-modeled object 4 is melted and deposited on the XY plane.

まず、図1に示す如く、造形ヘッド5により、X-Y面において造形基盤5a上にボルト挿通孔7を形成し、引き続きボルト挿通孔7と同心状に係合凹部8を造形していく。 First, as shown in FIG. 1, the forming head 5 forms the bolt insertion hole 7 on the forming base 5a on the XY plane, and then forms the engaging recess 8 concentrically with the bolt insertion hole 7. As shown in FIG.

そして、図2に示す如く、係合凹部8(以下「第1係合凹部8」という)が、六角ナット1(以下「第1六角ナット1」という)をその軸線が造形面(X-Y面)に直交する状態で全面的に係合する形状となった時点で、一旦、造形を停止しする(第1造形停止状態)。そして、第1造形停止状態において、図3及び図4(A)に示す如く、第1係合凹部8に第1六角ナット1を全面的に密に係合させる。第1係合凹部8は、図4(A)のように第1六角ナット1の容積と同一の形状になり、第1六角ナット1が全面的に密に係合する形状となることが好ましいが、図4(B)に示す如く、第1六角ナット1の容積の一部と同一又は略同一の形状になり、第1六角ナット1の一部を回転しないように係合する場合、或は図4(C)に示す如く、第1六角ナット1の容積と略同一となり、第1六角ナット1の容積よりその膨張を考慮した少し大きめの形状であってもよい。 As shown in FIG. 2, the engaging recess 8 (hereinafter referred to as "first engaging recess 8") engages the hexagonal nut 1 (hereinafter referred to as "first hexagonal nut 1") with its axis aligned with the forming surface (XY At the time when the shape becomes a shape that fully engages in a state orthogonal to the surface), the modeling is temporarily stopped (first modeling stop state). Then, in the first modeling stop state, as shown in FIGS. 3 and 4A, the first hexagonal nut 1 is tightly engaged with the first engaging recess 8 over the entire surface. As shown in FIG. 4A, the first engaging recess 8 preferably has the same shape as the volume of the first hexagonal nut 1, so that the first hexagonal nut 1 is tightly engaged over the entire surface. However, as shown in FIG. 4(B), when it becomes the same or substantially the same shape as a part of the volume of the first hexagonal nut 1 and engages a part of the first hexagonal nut 1 so as not to rotate, or is substantially the same as the volume of the first hexagonal nut 1, as shown in FIG.

第1係合凹部8に第1六角ナット1を係合させると、造形ヘッド5による造形を再開し、図5及び図6に示す如く、第1係合凹部8に係合させた第1六角ナット1が造形物4に内装されると共に第1係合凹部8と同心状であり且つボルト挿通孔7と同径であるボルト端導入孔9が形成される。ボルト挿通孔7及びボルト端導入孔9は、第1六角ナット1の雌ネジ1aよりやや大径とされている。なお、第1六角ナット1、ボルト挿通孔7、第1係合凹部8及びボルト端導入孔9は、図示したものと同様に、必要に応じた1個又は複数個を同一高さ位置に同一形態で設置される。図例では、ボルト端導入孔9の上部に、円錐状の覆部を形成し、外部と内部とを遮断する構成としているが、特に遮断の必要がない造形物にあってはボルト端導入孔9の上部を造形する必要はない。 When the first hexagonal nut 1 is engaged with the first engagement recess 8, modeling by the shaping head 5 is resumed, and as shown in FIGS. The nut 1 is embedded in the model 4, and a bolt end introduction hole 9 which is concentric with the first engaging recess 8 and has the same diameter as the bolt insertion hole 7 is formed. The bolt insertion hole 7 and the bolt end introduction hole 9 are slightly larger in diameter than the female thread 1 a of the first hexagonal nut 1 . The first hexagonal nut 1, the bolt insertion hole 7, the first engaging recess 8, and the bolt end introduction hole 9 may be arranged at the same height position, one or a plurality of them, as shown in the figure. installed in the form. In the figure, a conical cover is formed on the top of the bolt end introduction hole 9 to block the outside from the inside. There is no need to shape the top of 9.

さらに造形ヘッド5による造形を進行し、図7に示す如く、軸線がX-Y面に平行するボルト挿通孔10、係合凹部11及びボルト端導入孔12がそれらの一部を形成した時点で、一旦造形を停止する(第2造形停止状態)。第2造形停止状態においては、図8及び図9(A)又は図8及び図9(B)に示す如く、係合凹部11(以下「第2係合凹部11」という)が、軸線がY-Z面に直交する六角ナット2(以下「第2六角ナット2」という)の容積の一部と同一となる形状、つまり第2六角ナット2の下半部を。第2係合凹部11に抜き差しできる状態で、密に係合しうる形状となる。ボルト挿通孔10、係合凹部11及びボルト端導入孔12は同心をなすもので、ボルト挿通孔10及びボルト端導入孔12は第2六角ナット2の雌ネジ2aよりやや大径とされている。第2係合凹部11は、図9(C)又は図9(D)に示す如く、第2六角ナット2を全面的に係合する形状となり、第2六角ナット2の上半分との間には空間12a、12bが形成されるようにしてもよい。なお、第2六角ナット2、ボルト挿通孔10、第2係合凹部11及びボルト端導入孔12は、図示したものと同様に、必要に応じた1個又は複数個を同一高さ位置に同一形態で設置される。 Further, the modeling by the modeling head 5 proceeds, and as shown in FIG. 7, when the bolt insertion hole 10, the engagement recess 11 and the bolt end introduction hole 12 whose axes are parallel to the XY plane are partially formed. , temporarily stops modeling (second modeling stop state). In the second modeling stop state, as shown in FIGS. 8 and 9A or 8 and 9B, the engagement recess 11 (hereinafter referred to as the "second engagement recess 11") has an axis Y - a shape that is the same as a part of the volume of the hex nut 2 perpendicular to the Z plane (hereinafter referred to as the "second hex nut 2"), ie the lower half of the second hex nut 2; It has a shape that enables close engagement in a state in which it can be inserted into and removed from the second engaging recess 11 . The bolt insertion hole 10, the engaging recess 11, and the bolt end introduction hole 12 are concentric, and the diameter of the bolt insertion hole 10 and the bolt end introduction hole 12 is slightly larger than the female thread 2a of the second hexagonal nut 2. . As shown in FIG. 9(C) or 9(D), the second engaging recess 11 has a shape that fully engages the second hexagonal nut 2, and is between the upper half of the second hexagonal nut 2. may form spaces 12a and 12b. The second hexagonal nut 2, the bolt insertion hole 10, the second engaging recess 11, and the bolt end introduction hole 12 may be arranged at the same height and position, as shown in the figure. installed in the form.

第2係合凹部11に第2六角ナット2が係合されると、造形ヘッド5による造形が再開され、図10に示す如く、ボルト導入孔10及びボルト端導入孔12が完成され、第2係合凹部11に第2六角ナット2が内装される。第2六角ナット2は、図10及び図11(A)又は図10及び図l1(B)に示す如く、完全に埋設される。第2係合凹部11が図9(C)又は図9(D)に示すように第2六角ボルト2の上半部が空間12a、12bを持って係合するものである場合には、図11(C)又は図11(D)に示す如く、第2六角ナット2には空間12a、12bを有して内装される。 When the second hexagonal nut 2 is engaged with the second engaging recess 11, modeling by the shaping head 5 is resumed, and as shown in FIG. A second hexagonal nut 2 is fitted inside the engaging recess 11 . The second hexagonal nut 2 is completely embedded as shown in FIGS. 10 and 11(A) or 10 and 11(B). When the second engaging recess 11 engages with the upper half of the second hexagonal bolt 2 with spaces 12a and 12b as shown in FIG. 9(C) or FIG. 9(D), As shown in 11(C) or FIG. 11(D), the second hexagonal nut 2 is internally provided with spaces 12a and 12b.

そして、引き続き造形ヘッド5による造形が進行して、得られた金属3D造形物4は、図12に示す如く、互いに直交する各第1六角ナット1の雌ネジ1aと各第2六角ナット2の雌ネジ2aとにボルト14、15を螺着させることができ、ボルト14、15が挿通された他の部材又はボルト14、15が内装されて一体化された他の部材を取り付けることができる。また、RFタグにより造形物4の情報等を知得することができる。 Then, the modeling head 5 continues to proceed with the modeling, and the obtained metal 3D model 4 is, as shown in FIG. Bolts 14 and 15 can be screwed into the female screw 2a, and another member through which the bolts 14 and 15 are inserted or another member integrated with the bolts 14 and 15 can be attached. In addition, the RF tag can be used to obtain information about the modeled object 4 and the like.

このように、本発明に係る指向性エネルギー堆積法による金属3D造形方法によれば、係合凹部8、11が係合され、これに第1六角ナット1、第2六角ナット2及びRFタグを係合させる都度、金属3D造形物の造形を一旦停止することにより、第1六角ナット1、第2六角ナット2及びRFタグを内装することができる。したがって、内装された第1六角ナット1、第2六角ナット2により、タップ等による二次加工を必要とすることなく、雌ネジ1a、2aを正確に形成することができ、特に従来ではできなかった軸線が造形面(X-Y面)に平行する雌ネジ2aを第2六角ナット2の内装で実現することができる。また、RFタグを内装したことにより、二次加工を必要とすることなく金属3D造形物4の情報等が得られる。 Thus, according to the metal 3D modeling method by the directed energy deposition method according to the present invention, the engaging recesses 8 and 11 are engaged, and the first hexagonal nut 1, the second hexagonal nut 2 and the RF tag are attached thereto. The first hexagonal nut 1, the second hexagonal nut 2, and the RF tag can be embedded by temporarily stopping the modeling of the metal 3D model each time they are engaged. Therefore, by using the first hexagonal nut 1 and the second hexagonal nut 2 that are internally mounted, the female threads 1a and 2a can be accurately formed without the need for secondary processing such as tapping. A female screw 2a whose axis is parallel to the modeling surface (XY plane) can be realized by the interior of the second hexagonal nut 2. In addition, by embedding the RF tag, the information of the metal 3D modeled object 4 can be obtained without the need for secondary processing.

なお、本発明の構成は上記した実施の形態に限定されるものではなく、本発明の基本原理を逸脱しない範囲で適宜に改良、変更することができる。 The configuration of the present invention is not limited to the above-described embodiment, and can be improved and changed as appropriate without departing from the basic principle of the present invention.

例えば、上記した実施の形態では第1六角ナット1、第2六角ナット2を使用したが、雌ネジ1a、2aを有するものとしては、他に、造形物4に内装することによって自転しない四角ナット(外形が四角をなすナット)を使用することができる。 For example, in the above embodiment, the first hexagonal nut 1 and the second hexagonal nut 2 are used. (a nut with a square outer shape) can be used.

また、係合凹部に係合する既製品としては、造形品の情報(造形後の製品情報等)を記録した種々の形状の各種RFダグとすることもできる。この場合、RFダグを係合させた係合凹部の上面の厚みは電波到達が可能な厚み、例えば1mm~2mm程度とすることが好ましい。 Further, ready-made products to be engaged with the engaging recesses may be various RF tags of various shapes in which information on the molded product (product information after molding, etc.) is recorded. In this case, the thickness of the upper surface of the engagement recess with which the RF tag is engaged is preferably set to a thickness that allows radio waves to reach, for example, about 1 mm to 2 mm.

また、上記した実施の形態では、第1六角ナット1、第2六角ナット2及びRFタグを金属3D造形物4に内装するために3度の造形停止を必要としたが、内装させる既成物が1種である場合には造形の停止は一度でよく、2種又は4種以上である場合には、造形の停止を2度又は4度以上とすればよい。 In addition, in the above-described embodiment, it was necessary to stop modeling three times in order to incorporate the first hexagonal nut 1, the second hexagonal nut 2, and the RF tag into the metal 3D modeled object 4. In the case of one kind, the modeling may be stopped once, and in the case of two kinds or four or more kinds, the modeling may be stopped two times or four times or more.

1 第1六角ナット(六角ナット)
1a 雌ネジ
2 第2六角ナット(六角ナット)
2a 雌ネジ
4 金属3D造形物
5 造形へッド
5a レーザビーム
5b 金属材料
6 ベッド
8 第1係合凹部(係合凹部)
11 第2係合凹部(係合凹部)
1 First hex nut (hex nut)
1a Female screw 2 Second hexagonal nut (hexagonal nut)
2a Female screw 4 Metal 3D model 5 Modeling head 5a Laser beam 5b Metal material 6 Bed 8 First engaging recess (engaging recess)
11 second engagement recess (engagement recess)

Claims (6)

既製品を内部に埋め込む係合凹部を造形した時点で金属3D造形物の造形を一旦停止して、当該係合凹部に当該既製品を係合保持させ、その後、当該金属3D造形物の造形を再開させることにより、当該既製品を内装させることを特徴とする指向性エネルギー堆積法による金属3D造形方法。 When the engagement recess for embedding the ready-made product inside is shaped, the modeling of the metal 3D model is temporarily stopped, the ready-made product is engaged and held in the engagement recess, and then the shaping of the metal 3D model is started. A metal 3D modeling method by a directed energy deposition method, characterized in that the ready-made product is incorporated by restarting it. 前記係合凹部は、これに係合させる前記既製品の容積と同一又は略同一の形状をなすことを特徴とする、請求項1に記載する指向性エネルギー堆積法による金属3D造形方法。 2. The metal 3D modeling method by directed energy deposition according to claim 1, wherein the engaging recess has the same or substantially the same shape as the volume of the ready-made product to be engaged therewith. 前記係合凹部は、これに係合させる前記既製品の容積の一部と同一又は略同一の形状をなすことを特徴とする、請求項1に記載する指向性エネルギー堆積法による金属3D造形方法。 2. The metal 3D modeling method by the directed energy deposition method according to claim 1, wherein the engaging recess has the same or substantially the same shape as a part of the volume of the ready-made product to be engaged therewith. . 前記既成品が複数種ある場合に、各種の既製品を係合させる係合凹部が形成された時点で金属3D造形物の造形を一旦停止することを特徴とする、請求項1~3の何れかに記載する指向性エネルギー堆積法による金属3D造形方法。 Any of claims 1 to 3, characterized in that, when there are a plurality of types of the ready-made products, the molding of the metal 3D-modeled object is temporarily stopped at the time when the engaging recesses for engaging the various ready-made products are formed. 3. Metal 3D modeling method by directed energy deposition method as described above. 前記既成品が多角ナットであることを特徴とする、請求項1~4の何れかに記載する指向性エネルギー堆積法による金属3D造形方法。 The metal 3D modeling method by directed energy deposition according to any one of claims 1 to 4, wherein the ready-made product is a polygonal nut. 前記既成品がRFタグであることを特徴とする、請求項1~4の何れかに記載する指向性エネルギー堆積法による金属3D造形方法。 The metal 3D modeling method by directed energy deposition according to any one of claims 1 to 4, characterized in that said ready-made product is an RF tag.
JP2021043995A 2021-03-17 2021-03-17 Metal 3d molding method by directed energy deposition method Pending JP2022143469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021043995A JP2022143469A (en) 2021-03-17 2021-03-17 Metal 3d molding method by directed energy deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021043995A JP2022143469A (en) 2021-03-17 2021-03-17 Metal 3d molding method by directed energy deposition method

Publications (1)

Publication Number Publication Date
JP2022143469A true JP2022143469A (en) 2022-10-03

Family

ID=83454138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021043995A Pending JP2022143469A (en) 2021-03-17 2021-03-17 Metal 3d molding method by directed energy deposition method

Country Status (1)

Country Link
JP (1) JP2022143469A (en)

Similar Documents

Publication Publication Date Title
US11548211B2 (en) Joiners, methods of joining, and related systems for additive manufacturing
CN103567912B (en) Method for manufacturing adsorption table and the adsorption table
CN104708820B (en) Metal insert resin parts method for fast mfg based on photocuring 3D printing
CN105246669B (en) Fastening structure
JP2015512816A (en) Molding encapsulation method
CN107466258A (en) For the method by thermal jet manufacture component and the equipment for manufacturing component with thermal jet device
JP2006200030A (en) Method and device for producing cubic molding
WO2005014216A3 (en) Methods for manufacture of multilayered multifunctional truss structures and related structures there from
JPS62275734A (en) Method for forming solid
US10821663B2 (en) Method for manufacturing three-dimensional shaped object
US7846357B2 (en) Method and arrangement for supplying a dental product
KR101722979B1 (en) An Manufacturing Method of 3 Dimensional Shape
EP3600138B1 (en) System and method for manufacturing dental workpiece
JP2022143469A (en) Metal 3d molding method by directed energy deposition method
CN101032849B (en) Method of forming locating curing tool
US20150102523A1 (en) Consecutive piecewise molding system and method
CN109483918A (en) A kind of process of positioning and fixing composite material metal embedded part
CN102452163A (en) Container body blow molding processing technology and special mold thereof
CN106671399A (en) Method for obtaining structural design parameters
ITMI20132131A1 (en) STRATIFICATION PROCEDURE ABOVE A SHAPED INTERFACE FOR THE IMPROVEMENT OF STRUCTURING TYPES OF SUPERSTRUCTURE FOR PROSTHESIS AND SUPERSTRUCTURE FOR DENTAL PROSTHESIS MADE WITH THIS PROCEDURE
US9327343B2 (en) Laser assisted casting of surface texture and related system
KR101577148B1 (en) Manufacturing Method and Apparatus of Pattern for Mold
US20210031443A1 (en) Additive manufacturing of connectors and fasteners
WO2017130834A1 (en) Method for manufacturing three-dimensionally shaped object
JP2007098822A (en) Method for shaping three dimensional formative article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241008