JP2022142383A - Method for manufacturing heating hot forming material - Google Patents

Method for manufacturing heating hot forming material Download PDF

Info

Publication number
JP2022142383A
JP2022142383A JP2021042535A JP2021042535A JP2022142383A JP 2022142383 A JP2022142383 A JP 2022142383A JP 2021042535 A JP2021042535 A JP 2021042535A JP 2021042535 A JP2021042535 A JP 2021042535A JP 2022142383 A JP2022142383 A JP 2022142383A
Authority
JP
Japan
Prior art keywords
diameter portion
forging
heating
hole
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021042535A
Other languages
Japanese (ja)
Inventor
陽司 山下
Yoji Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2021042535A priority Critical patent/JP2022142383A/en
Publication of JP2022142383A publication Critical patent/JP2022142383A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for manufacturing a hot forging material, which can increase productivity while suppressing bending of a forging blank at the time of heating during hot forging.SOLUTION: This method for manufacturing the hot forging material, which hot-forges a large diameter part of a rod-like forging blank having large and small diameter parts, includes: inserting the small diameter part of the forging blank into a hole of a blank holding tool having the hole for inserting the forging blank; heating the large diameter part to a heated temperature to form a heated material; after pulling-out of the heated material from the blank holding tool, inserting the small diameter part of the heated material into a hole of a hot forging mold having the hole for inserting the heated material; and executing hot forging for pressing the large diameter part in an axial direction to form a hot forging material.SELECTED DRAWING: Figure 1

Description

本発明は、熱間鍛造材の製造方法に関するものである。 The present invention relates to a method for manufacturing hot forged materials.

例えば、航空機のエンジン部品や発電用部品のうち、長尺の棒材を加工してシャフト形状とするものがある。これらを製造するには、所定の成分に調整されたインゴットを用いて、熱間鍛造によってビレットや荒地を成形し、最終製品形状に熱間鍛造されることになる。例えば、特許文献1(特開平6-238387号公報)には、長さL1と外径Dの比L1/Dが1~3である一端据込部と軸部とを有する棒材の前記一端据込部を据込比1/2u以上に据込み鍛造を行った後、再結晶温度以下に再加熱し、四面鍛造機を用いて前記軸部を鍛練比2s以上で、鍛伸した軸部の長さL2が2000mm以上とする、航空機用大型エンジンの長尺シャフト等の製造に好適に適用される長尺鋼材の鍛造方法の発明がある。 For example, among aircraft engine parts and power generation parts, there are some that are formed into a shaft shape by processing a long bar material. In order to manufacture these products, an ingot adjusted to a predetermined composition is used to form a billet or rough ground by hot forging, which is then hot forged into the final product shape. For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 6-238387), the one end of a bar having a swaged portion and a shaft portion having a ratio L1/D of length L1 to outer diameter D of 1 to 3 After upset forging the swaged portion to a swage ratio of 1/2u or more, the shaft portion is reheated to a recrystallization temperature or less, and the shaft portion is forged and stretched with a forging ratio of 2s or more using a four-sided forging machine. There is an invention of a long steel forging method that is suitably applied to the manufacture of long shafts for large aircraft engines, etc., in which the length L2 is 2000 mm or more.

特開平6-238387号公報JP-A-6-238387

前述の特許文献1に記された長尺鋼材の鍛造方法によれば、フランジを成形するための据込鍛造時に用いる鍛造素材は、円柱状の丸棒形状のものである。そして、前記鍛造素材を所定の温度に加熱して熱間鍛造用下型に設けられた穴に挿入し、前記穴で拘束されていない部分を熱間鍛造用上型で鍛造素材端面を押圧して据込鍛造を行うものである。
この素材の一部を熱間鍛造する場合、熱間鍛造に供する鍛造素材全体を加熱温度に加熱すると、熱間鍛造しない部分も高温下で加熱されることになる。特に、γ’(ガンマプライム)相等の析出物で強化するようなNi基超耐熱合金等の難加工性材料においては、加熱温度が高くなる。
According to the long steel forging method described in Patent Document 1, the forging material used in the upset forging for forming the flange is in the form of a cylindrical round bar. Then, the forging material is heated to a predetermined temperature and inserted into the hole provided in the lower hot forging die, and the end face of the forging material is pressed against the portion not restrained by the hole with the upper hot forging die. It is intended to perform upsetting forging.
When hot forging a portion of this material, if the entire forging material to be hot forged is heated to the heating temperature, the portion not hot forged is also heated at a high temperature. In particular, the heating temperature is high in hard-to-work materials such as Ni-base superalloys that are strengthened by precipitates such as the γ' (gamma prime) phase.

ところで、鍛造素材全体を加熱することにより、鍛造素材または熱間鍛造後の熱間鍛造材には曲りの不良が発生したり、熱間鍛造後の熱間鍛造材が熱間鍛造用下型に設けられた穴から抜けにくくなって生産性を低下させる問題がある。曲りの不良は、機械加工による加工代が大きくなるだけでなく、製品そのものの不良につながる。
例えば、丸棒状の鍛造素材であっても、大径部分と小径部分とが一体成形されたような直径が異なる長尺で段付きの鍛造素材においては、熱間鍛造前の加熱工程において、鍛造素材を横置きすると小径部分に曲りが生じる場合がある。そうなると、次工程の熱間鍛造において、熱間鍛造用下型に形成される穴への小径部分の挿入が難しくなる。
また、前記小径部分を前記熱間鍛造用下型に形成された穴で拘束しつつ、大径部分を押圧して熱間鍛造する場合、小径部分が熱膨張して前記の穴に挿入しにくくなったり、熱間鍛造により大径部分を所定の形状に成形後には、熱間鍛造の押圧によって大径部分と下型のキャビティ部分とが密着するため、小径部分の下側端面側をノックアウトピンで抜去する場合がある。この場合、小径部分へノックアウトピンの衝撃が加わることから、小径部分に変形が生じるおそれがある。これを防止するには、小径部分の直径と、前記の穴の直径が近似していれば、変形する空間が狭くなるが、前記のように加熱された小径部分は熱膨張を生じているため、過度に穴の直径を小さくすることができない。そのため、熱間鍛造用下型や小径部の温度を再度調整して抜去することがあり、生産性を低下させていた。
本発明の目的は、熱間鍛造時の加熱時において、鍛造素材の曲りを抑制しつつ、生産性を高めることが可能な熱間鍛造材の製造方法を提供する。
By the way, by heating the entire forging material, the forging material or the hot forged material after hot forging may have poor bending, and the hot forged material after hot forging may be damaged by the lower die for hot forging. There is a problem that it becomes difficult to get out of the provided hole and the productivity is lowered. Defective bending not only increases machining costs, but also leads to defects in the product itself.
For example, even if it is a round bar-shaped forging material, in a long and stepped forging material with different diameters such that a large diameter portion and a small diameter portion are integrally molded, in the heating process before hot forging, forging If the material is placed horizontally, the small diameter portion may be bent. As a result, it becomes difficult to insert the small-diameter portion into the hole formed in the hot forging lower die in the subsequent hot forging step.
Further, when hot forging is performed by pressing the large diameter portion while constraining the small diameter portion with a hole formed in the lower hot forging die, the small diameter portion thermally expands and is difficult to insert into the hole. After forming the large diameter portion into a predetermined shape by hot forging, the large diameter portion and the cavity portion of the lower mold are brought into close contact with each other due to the pressing force of the hot forging. may be removed with In this case, the impact of the knockout pin is applied to the small-diameter portion, which may cause deformation of the small-diameter portion. In order to prevent this, if the diameter of the small-diameter portion and the diameter of the hole are close to each other, the space for deformation will be narrowed. , the hole diameter cannot be reduced excessively. Therefore, the temperature of the lower die for hot forging and the small-diameter portion may be readjusted before removal, which reduces productivity.
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a hot forged material capable of increasing productivity while suppressing bending of a forging material during heating during hot forging.

本発明は上述した課題に鑑みてなされたものである。
すなわち本発明は、大径部分と小径部分とを有する棒状の鍛造素材の前記大径部分を熱間鍛造する熱間鍛造材の製造方法であって、前記鍛造素材を挿入する穴を有する素材保持治具の前記穴に、前記鍛造素材の小径部分を挿入し、前記大径部分を加熱温度まで加熱して加熱材とし、前記加熱材を前記素材保持治具から抜去した後、前記加熱材を挿入する穴を有する熱間鍛造用下型の前記穴に前記加熱材の小径部分を挿入し、熱間鍛造用上型により前記大径部分を軸方向に押圧する熱間鍛造を行って熱間鍛鍛造材とする熱間鍛造材の製造方法である。
The present invention has been made in view of the problems described above.
That is, the present invention relates to a method for manufacturing a hot forged material by hot forging the large diameter portion of a rod-shaped forging material having a large diameter portion and a small diameter portion, wherein the material holder has a hole into which the forging material is inserted. The small-diameter portion of the forging material is inserted into the hole of the jig, the large-diameter portion is heated to a heating temperature as a heating material, and the heating material is removed from the material holding jig, and then the heating material is removed. The small-diameter portion of the heating material is inserted into the hole of the hot forging lower die having a hole for insertion, and hot forging is performed by pressing the large-diameter portion in the axial direction with the hot forging upper die. This is a method for producing a hot forged material as a forged material.

本発明によれば、熱間鍛造時の加熱時において、鍛造素材の曲りを抑制し、更に、生産性を高めることが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to suppress the bending of a forging material at the time of heating at the time of hot forging, and also to improve productivity.

段付きの棒状鍛造素材と、前記鍛造素材を加熱するための加熱治具の模式図である。1 is a schematic diagram of a stepped rod-shaped forging material and a heating jig for heating the forging material; FIG. 段付きの棒状鍛造素材を加熱治具の貫通孔内に挿入したときの断面模式図である。It is a cross-sectional schematic diagram when inserting a stepped rod-shaped forging material into the through-hole of the heating jig. 段付きの棒状鍛造素材を加熱治具に非貫通の穴に挿入したときの断面模式図である。It is a cross-sectional schematic diagram when inserting a stepped rod-shaped forging material into a non-penetrating hole in a heating jig. 下型内に挿入した加熱材の大径部分を上型の押圧によって熱間鍛造したときの断面模式図である。It is a cross-sectional schematic diagram when the large-diameter portion of the heating material inserted into the lower mold is hot forged by pressing the upper mold.

以下に、本発明を詳しく説明する。なお、以下で記す「加熱素材」とは、加熱炉に装入する前の素材を言い、「加熱材」とは、加熱炉で所定の温度に加熱された素材を言い、「熱間鍛造材」とは、熱間鍛造装置によって所定の形状に成形された成形材を言う。
また、本発明で言う「熱間鍛造」とは、前述の加熱材を用いて、熱間鍛造用下型(単に「下型」と記すときがある)と熱間鍛造用上型(単に「上型」と記すときがある)とによって、前記加熱材を押圧により熱間塑性加工を行うものである。
<鍛造素材>
本発明で用いる鍛造素材1は、図1に示すように大径部分11と小径部分12とを有する段付きの棒状のものである。この鍛造素材1の形状への成形は、鍛造素材となる棒状の素材を、周方向に間欠回転しつつ、全長にわたって4方向から押圧することで全長を伸長する操作を繰り返して鍛伸にて成形する四面鍛造機によるラジアル鍛造を行うと良い。なお、鍛造素材の大径部分の端面は上型によって押圧することから、鍛造素材の長さは、座屈を生じないように大径部分の直径Dの3倍以下の長さとしておくのが好ましい。また、本発明で言う「大径」及び「小径」には、円形の他、例えば、六角形以上の多角形の場合も含むものである。多角形の場合の直径Dは、その外接円から直径Dを求めると良い。
また、本発明で用いる鍛造素材の材質は、航空機のエンジン部品や発電用部品に好適なγ’(ガンマプライム)相等の析出物で強化し、Niを最も多く含有するNi基超耐熱合金やマルエージング鋼等への適用を想定するものである。
The present invention will be described in detail below. In addition, the "heating material" described below refers to the material before being charged into the heating furnace, the "heating material" refers to the material heated to a predetermined temperature in the heating furnace, and the "hot forging material "" means a formed material formed into a predetermined shape by a hot forging device.
In addition, the "hot forging" referred to in the present invention means that a lower die for hot forging (sometimes simply referred to as "lower die") and an upper die for hot forging (simply referred to as " (sometimes referred to as "upper die") presses the heating material to carry out hot plastic working.
<Forged material>
The forging material 1 used in the present invention is a stepped bar having a large diameter portion 11 and a small diameter portion 12 as shown in FIG. Forming into the shape of the forging material 1 is performed by forging and stretching a rod-shaped material, which is the forging material, by repeating the operation of extending the entire length by pressing from four directions over the entire length while rotating it intermittently in the circumferential direction. It is better to perform radial forging with a four-sided forging machine. Since the end face of the large-diameter portion of the forging material is pressed by the upper die, the length of the forging material should be three times or less the diameter D of the large-diameter portion so as not to cause buckling. preferable. In addition, the "large diameter" and "small diameter" referred to in the present invention include, for example, a polygonal shape of hexagon or more in addition to the circular shape. For the diameter D in the case of a polygon, it is preferable to obtain the diameter D from its circumscribed circle.
In addition, the material of the forging material used in the present invention is strengthened with precipitates such as γ' (gamma prime) phase suitable for aircraft engine parts and power generation parts, Ni-based super heat-resistant alloys containing the most Ni, and It is assumed to be applied to aging steel.

<素材保持治具>
本発明においては、前述の鍛造素材1の大径部分11を加熱するための治具として、図1に示すような素材保持治具2を用いる。素材保持治具2を用いる目的は、できるだけ大径部分11のみを加熱し、小径部分12の直接の加熱領域を少なくすることで、小径部分の熱膨張を抑制し、下型への挿入、抜去を行いやすくできるものである。
図1に示す素材保持治具2には複数個の穴21が形成されており、この穴21に鍛造素材1の小径部分12を挿入して、大径部分11を露出させる。素材保持治具2に形成する穴21の個数は1つでも良いが、複数個としておけば鍛造素材1の大径部分を同時に複数個加熱することができるため、2つ以上の穴を設けておくのが良い。なお、素材保持治具の材質は断熱効果を有する、例えば、耐熱レンガやモルタルのような断熱材料であれば良い。素材保持治具2に形成する穴21の穴径は、鍛造素材1の大径部分11の直径Dよりも、小さくすることができる。
また、図1に示すに、鍛造素材1を素材保持治具2の穴21に挿入する場合は、側面方向から挿入できるようにすることが好ましく、前記穴の深さ(長さ)は鍛造素材の小径部分よりも深い(長い)ことが好ましい。この構造とするのは、例えば、複数個の鍛造素材1の大径部分11を同時に加熱しようとする場合、鍛造素材1の小径部分12の長さに多少のばらつきがあったとしても、大径部分11を加熱することができ、小径部分12の加熱による熱膨張を抑制できるからである。また、側面方向から挿入する構造とすると、マニピュレータで鍛造素材の挿入、抜去が容易であり、生産性を高めることが可能である。上方向からの挿入、抜去はクレーンが必要になる場合があり、抜去から熱間鍛造開始までの時間がかかり過ぎてしまうことになる。
<Material holding jig>
In the present invention, a material holding jig 2 as shown in FIG. 1 is used as a jig for heating the large diameter portion 11 of the forging material 1 described above. The purpose of using the material holding jig 2 is to heat only the large diameter portion 11 as much as possible and reduce the direct heating area of the small diameter portion 12, thereby suppressing the thermal expansion of the small diameter portion. can be easily performed.
A plurality of holes 21 are formed in the material holding jig 2 shown in FIG. The number of holes 21 formed in the material holding jig 2 may be one. It is better to leave It should be noted that the material of the material holding jig may be a heat insulating material having a heat insulating effect, such as a heat-resistant brick or mortar. The hole diameter of the hole 21 formed in the material holding jig 2 can be made smaller than the diameter D of the large diameter portion 11 of the forging material 1 .
Further, as shown in FIG. 1, when the forging material 1 is inserted into the hole 21 of the material holding jig 2, it is preferable to insert it from the side direction. is preferably deeper (longer) than the small diameter portion of the This structure is used because, for example, when the large-diameter portions 11 of a plurality of forging materials 1 are to be heated at the same time, even if there is some variation in the length of the small-diameter portions 12 of the forging materials 1, the large-diameter This is because the portion 11 can be heated, and thermal expansion due to heating of the small-diameter portion 12 can be suppressed. Further, if the structure is such that it is inserted from the lateral direction, the forging material can be easily inserted and removed by the manipulator, and productivity can be improved. Insertion and withdrawal from above may require a crane, and it takes too much time from withdrawal to the start of hot forging.

図2及び図3は、鍛造素材1の小径部分12を素材保持治具2に挿入したときの断面模式図である。素材保持治具2は、図2に示すような貫通孔(穴21)としても良いし、図3に示すように底部分22を有した非貫通の穴21としても良い。大径部分を加熱する場合に、不可避的に温度上昇する小径部分において、小径部分の温度上昇を抑制する効果が高いのは図3に示す底部分22を有した非貫通の穴21とした場合である。そのため、本発明においては底部分22を備える非貫通の穴21を有する素材保持治具の使用が好ましい。
本発明において、最も好ましい素材保持治具の構成を示すと以下のようになる。
大径部分と小径部分とを有する棒状の鍛造素材の前記大径部分を加熱するための素材保持治具であって、前記保持治具は、その側面に前記鍛造素材の小径部分を挿入する複数個の非貫通の穴が設けられており、前記穴の長さは前記小径部分の長さよりも長いことを特徴とする素材保持治具。
2 and 3 are schematic cross-sectional views when the small diameter portion 12 of the forging material 1 is inserted into the material holding jig 2. FIG. The material holding jig 2 may be a through hole (hole 21) as shown in FIG. 2, or a non-through hole 21 having a bottom portion 22 as shown in FIG. In the case of heating the large-diameter portion, the effect of suppressing the temperature rise of the small-diameter portion inevitably increases when the non-through hole 21 having the bottom portion 22 shown in FIG. 3 is used. is. Therefore, it is preferred in the present invention to use a blank holding jig having a blind hole 21 with a bottom portion 22 .
In the present invention, the construction of the most preferable material holding jig is as follows.
A material holding jig for heating the large-diameter portion of a rod-shaped forging material having a large-diameter portion and a small-diameter portion, wherein the holding jig has a plurality of small-diameter portions of the forging material inserted into the side surfaces of the holding jig. A material holding jig, comprising a plurality of non-penetrating holes, the length of the holes being longer than the length of the small-diameter portion.

<大径部分加熱工程>
本発明においては、鍛造素材1の小径部分12を素材保持治具2に設けられた穴21に挿入し、鍛造素材1の大径部分11を加熱温度まで加熱して加熱材とする。
鍛造素材1を部分的に加熱して、大径部分12を所定の加熱温度とするには、例えば、高周波加熱等を使用する方法があるが、この場合、鍛造素材毎に加熱を行うことになる。また、大径部分全体を十分に昇温させるにも時間が必要になることから、一度に複数本の鍛造素材を加熱可能な方法を選択することが好ましい。そのため、本発明においては、この大径部分の加熱工程を行う場合、素材保持治具を予め加熱炉内(図示しない)に設置しておき、加熱炉が所定の温度に昇温した後に、鍛造素材1の小径部分12を素材保持治具2に設けられた穴21に挿入する方法を選択するのが好ましい。
加熱炉内に設置する素材保持治具2においては、図3のような底部22を有した非貫通の穴21とするのが好ましい。例えば、鍛造素材の材質が難加工性材料のNi基超耐熱合金とすると、その加熱温度は850~1050℃となる場合がある。このとき、図2で示すような貫通孔(穴21)とした場合、小径部分の中央部の温度は、大径部分の温度より50~180℃程度低下した温度となる。これに対して、図3のような底部分22を有した非貫通の穴21とする構造の場合では、大径部分の温度マイナス300℃以上低下した500℃以下の温度に保たれており、小径部分の熱膨張を確実に抑制することができるとともに、加熱による小径部分の曲り不良を抑制することができる。
<Large-diameter portion heating process>
In the present invention, the small-diameter portion 12 of the forging material 1 is inserted into the hole 21 provided in the material holding jig 2, and the large-diameter portion 11 of the forging material 1 is heated to the heating temperature to form a heating material.
In order to partially heat the forging material 1 and set the large diameter portion 12 to a predetermined heating temperature, for example, there is a method of using high frequency heating. In this case, each forging material is heated. Become. Further, since it takes time to sufficiently raise the temperature of the entire large-diameter portion, it is preferable to select a method capable of heating a plurality of forging materials at once. Therefore, in the present invention, when performing the heating process for the large diameter portion, the material holding jig is installed in advance in the heating furnace (not shown), and after the heating furnace is heated to a predetermined temperature, the forging is performed. It is preferable to select the method of inserting the small diameter portion 12 of the material 1 into the hole 21 provided in the material holding jig 2 .
The material holding jig 2 installed in the heating furnace preferably has a non-through hole 21 having a bottom portion 22 as shown in FIG. For example, if the material of the forging material is a Ni-based super heat-resistant alloy, which is a difficult-to-work material, the heating temperature may be 850 to 1050°C. At this time, when the through hole (hole 21) as shown in FIG. 2 is used, the temperature of the central portion of the small diameter portion is about 50 to 180° C. lower than the temperature of the large diameter portion. On the other hand, in the case of the non-through hole 21 structure having the bottom portion 22 as shown in FIG. The thermal expansion of the small-diameter portion can be reliably suppressed, and bending failure of the small-diameter portion due to heating can be suppressed.

<熱間鍛造工程>
前記大径部分加熱工程において、所定の温度に加熱した加熱材を前記素材保持治具から抜去した後、前記加熱材を挿入する穴を有する下型に設けられた前記穴に前記加熱材の小径部分を挿入し、上型により前記大径部分を軸方向に押圧する熱間鍛造を行って熱間鍛鍛造材とする。
図4に示すのは、鍛造素材1を所定の温度に加熱した加熱材3の小径部分を下型4に設けられた穴41に挿入したときの断面模式図である。前述のように、大径部分加熱工程において、小径部分12の温度上昇の抑制によって小径部分の熱膨張も抑制されていることから、下型4に設けられた穴41への小径部分の挿入も容易となる。
また、本発明で大径部分と小径部分とを有する段付きの棒状形状とした加熱材3であることから、加熱材3の大径部分の直径が下型4に設けられた穴41の穴径よりも大きいことで、大径部分の段付き部分31の段差を利用し、その段差部分31と下型とを接触させ(段差部分31を下型により支持し)、小径部分の端面が下型の底部と非接触で宙に浮いたような構成とすることができる。しかも、小径部分は大径部分よりも温度が低く、熱膨張も抑制されていることから、例えば、下型3に設けられた穴41の直径と小径部分12の外接円の直径との隙間を過度に大きくする必要がなくなる。また、加熱材3と下型4に設けられた穴41との中心軸を一致させれば、下型4の穴41に挿入した加熱材3の小径部分と穴41の内周面と非接触とすることも可能である。
<Hot forging process>
In the large-diameter portion heating step, after the heating material heated to a predetermined temperature is removed from the material holding jig, the small diameter heating material is inserted into the hole provided in the lower mold having a hole for inserting the heating material. A hot forged material is obtained by inserting a portion into the forged portion and pressing the large-diameter portion in the axial direction with an upper die.
FIG. 4 is a schematic cross-sectional view when the small-diameter portion of the heating material 3 obtained by heating the forging material 1 to a predetermined temperature is inserted into the hole 41 provided in the lower die 4 . As described above, in the large-diameter portion heating step, the thermal expansion of the small-diameter portion is suppressed by suppressing the temperature rise of the small-diameter portion 12, so that the insertion of the small-diameter portion into the hole 41 provided in the lower die 4 is also possible. easier.
In addition, since the heating material 3 has a stepped rod shape having a large diameter portion and a small diameter portion in the present invention, the diameter of the large diameter portion of the heating material 3 is the same as the hole 41 provided in the lower die 4. By being larger than the diameter, the stepped portion 31 of the large diameter portion is utilized to bring the stepped portion 31 into contact with the lower die (the stepped portion 31 is supported by the lower die) so that the end face of the small diameter portion is downward. It can be configured as if it is floating in the air without contact with the bottom of the mold. Moreover, since the temperature of the small-diameter portion is lower than that of the large-diameter portion and thermal expansion is suppressed, for example, the gap between the diameter of the hole 41 provided in the lower mold 3 and the diameter of the circumscribed circle of the small-diameter portion 12 is No need to make it too big. Also, if the central axes of the heating material 3 and the hole 41 provided in the lower mold 4 are aligned, the small diameter portion of the heating material 3 inserted into the hole 41 of the lower mold 4 does not contact the inner peripheral surface of the hole 41. It is also possible to

前述のように、下型4に設けられた穴41に加熱材3の小径部分を挿入し、大径部分の段付き部分31を下型4に接触させ(段差部分31を下型4の穴41の縁により支持し)、小径部分の端面を下型底部とは非接触とした状態で上型5を降下させ、加熱材3の大径部分を軸方向に押圧して熱間鍛造材6とする。また、小径部分が下型4の底部と非接触とすることが可能であることから、大径部分11を上型で押圧したとき、小径部分の曲りなどの変形が抑制できる。熱間鍛造材6に成形した後においても、小径部分の熱膨張は抑制されたままであり、下型4から熱間鍛造材6をスムーズに抜去することができる。
この本発明の熱間鍛造方法によると、熱間鍛造を行う大径部分を優先的に加熱し、小径部分の温度上昇を抑制可能なため、加熱工程における小径部分の曲がりを防止できる。また、小径部分の温度上昇による熱膨張も抑制可能なため、下型への加熱材の挿入、抜去がスムーズに行えることから、生産性を高めることができる。
As described above, the small-diameter portion of the heating material 3 is inserted into the hole 41 provided in the lower mold 4, and the stepped portion 31 of the large-diameter portion is brought into contact with the lower mold 4 (the stepped portion 31 is brought into contact with the hole of the lower mold 4). 41), the upper die 5 is lowered while the end face of the small diameter portion is kept out of contact with the bottom of the lower die, and the hot forged material 6 is pressed axially against the large diameter portion of the heating material 3. and Further, since the small-diameter portion can be kept out of contact with the bottom of the lower die 4, deformation such as bending of the small-diameter portion can be suppressed when the large-diameter portion 11 is pressed by the upper die. Even after forming the hot forged material 6 , the thermal expansion of the small-diameter portion remains suppressed, and the hot forged material 6 can be smoothly removed from the lower die 4 .
According to the hot forging method of the present invention, the large-diameter portion to be hot-forged is preferentially heated, and the temperature rise of the small-diameter portion can be suppressed, so that the small-diameter portion can be prevented from bending during the heating process. In addition, since thermal expansion due to temperature rise in the small diameter portion can be suppressed, the heating material can be smoothly inserted into and removed from the lower die, thereby improving productivity.

(実施例1)
航空機のエンジン部品に成形するための鍛造素材として、18%Niマルエージング鋼(クラス250)の段付きの棒状材を準備した。前記鍛造素材は、周方向に間欠回転しつつ、全長にわたって4方向から押圧することで全長を伸長する操作を繰り返して鍛伸にて成形する四面鍛造機によるラジアル鍛造により、大径部分の外接円が180~205mm、大径部分の長さが440~550mm、小径部分の外接円が118~139mm、小径部分の長さが1380~2150mmに仕上げたものである。
前記鍛造素材を用いて大径部分加熱時の曲り発生不良を確認した。大径部分加熱工程に用いた素材保持治具は図2に示す貫通孔(穴21)を有するものと、図3に示す底部分22を備える非貫通の穴21を有するものとした。本発明例の図3に示す底部分22を備える非貫通の穴21を有するものを本発明例A、図2に示す貫通孔(穴21)を有するものを用いたものを本発明例Bとして記す。
(Example 1)
A stepped rod material of 18% Ni maraging steel (class 250) was prepared as a forging material for molding into aircraft engine parts. The forging material is radially forged by a four-sided forging machine that repeats the operation of extending the entire length by pressing from four directions over the entire length while intermittently rotating in the circumferential direction to form the circumscribed circle of the large diameter portion. is 180 to 205 mm, the length of the large diameter portion is 440 to 550 mm, the circumscribed circle of the small diameter portion is 118 to 139 mm, and the length of the small diameter portion is 1380 to 2150 mm.
Using the above-mentioned forging material, defects in bending during heating of the large-diameter portion were confirmed. The material holding jig used in the large-diameter portion heating step had a through hole (hole 21) shown in FIG. 2 and a non-through hole 21 having a bottom portion 22 shown in FIG. Inventive example A having a non-penetrating hole 21 having a bottom portion 22 shown in FIG. Write down.

鍛造素材1の本発明A及びBの小径部分12を挿入する素材保持治具2の穴21の直径はおおよそ200mm、穴21の深さ(長さ)は非貫通孔の場合でおおよそ2500mmであり、素材保持治具2には4つの穴が設けられていた。なお、貫通孔を有する素材保持治具2の穴21の個数も同じである。
前記の素材保持治具については、図1に示すように、鍛造素材1を素材保持治具2の穴21に挿入する場合に側面方向から挿入できるように加熱炉に設置して、前記加熱炉を所定の温度に昇温・保持を行い、前記素材保持治具2の穴21に鍛造素材1の大径部分11をマニピュレータで把持して、小径部分12を前記穴21に順次挿入した。
熱間鍛造を行うための炉内加熱温度をおおよそ900℃に設定し、本発明A及び本発明Bの鍛造素材1は大径部分11を選択的に部分加熱した。
前記大径部分11の加熱を十分に行ったとき、小径部分12の長さの中央部付近の温度を加熱炉から抽出後測定した。その結果を表1に示す。温度の測定は放射温度計を用いてとして行った。なお、表1に示す温度は、それぞれ4本の測定結果であり、比較例は同形状素材を本発明加熱治具使用せず、炉内加熱した結果である。
The diameter of the hole 21 of the material holding jig 2 into which the small diameter portion 12 of the present inventions A and B of the forging material 1 is inserted is approximately 200 mm, and the depth (length) of the hole 21 is approximately 2500 mm in the case of a non-through hole. , the material holding jig 2 was provided with four holes. The number of holes 21 in the material holding jig 2 having through holes is also the same.
As shown in FIG. 1, the material holding jig is installed in a heating furnace so that the forging material 1 can be inserted from the side when inserting the forging material 1 into the hole 21 of the material holding jig 2. was heated and held at a predetermined temperature, the large diameter portion 11 of the forging material 1 was held in the hole 21 of the material holding jig 2 with a manipulator, and the small diameter portion 12 was sequentially inserted into the hole 21 .
The heating temperature in the furnace for hot forging was set to approximately 900° C., and the large diameter portions 11 of the forging materials 1 of the present invention A and the present invention B were selectively partially heated.
When the large-diameter portion 11 was sufficiently heated, the temperature near the center of the length of the small-diameter portion 12 was measured after extraction from the heating furnace. Table 1 shows the results. Temperature was measured using a radiation thermometer. The temperatures shown in Table 1 are the results of measurement of four samples, and the comparative example is the result of heating in a furnace without using the heating jig of the present invention.

Figure 2022142383000002
Figure 2022142383000002

表1に示すように、本発明Aの小径部分の温度は、大径部分の温度よりも300℃以上低く、500℃以下の温度に抑制されている。本発明Bの小径部分の温度は、大径部分の温度よりも60~180℃低く、800℃以下の温度に抑制されている。このことから、特に本発明Aと本発明Bの方法を適用すれば、本発明の効果が達成できる。また、本発明Aについては、加熱後の小径部分の曲りも殆どないものであった。 As shown in Table 1, the temperature of the small-diameter portion of the present invention A is 300° C. or more lower than the temperature of the large-diameter portion, and is suppressed to a temperature of 500° C. or less. The temperature of the small-diameter portion of the present invention B is 60 to 180° C. lower than the temperature of the large-diameter portion, and is suppressed to 800° C. or less. From this fact, the effects of the present invention can be achieved by applying the methods of the present invention A and the present invention B in particular. In addition, in the case of the present invention A, there was almost no bending of the small-diameter portion after heating.

(実施例2)
前述の実施例1の結果を受けて、本発明Aと本発明Bに適用した大径部分加熱工程を適用して熱間鍛造を行った。用いた鍛造素材の材質、形状、寸法と素材保持治具は実施例1で示すものと同じとした。熱間鍛造を行うための加熱温度をおおよそ900℃に設定し、本発明A及び本発明Bの鍛造素材1は大径部分11を選択的に加熱する2~7時間の部分加熱とした。続いて、おおよそ900℃に加熱した加熱材を素材保持治具から抜去した後、前記加熱材を挿入する穴を有する下型に設けられた前記穴に前記加熱材の小径部分を挿入し、上型5により前記大径部分を軸方向に押圧する熱間鍛造を行って熱間鍛造材とした。
熱間鍛造は図4に示すように、加熱材3の小径部分を下型4に設けられた穴41に挿入して行った。加熱材3が大径部分と小径部分とを有する段付きの棒状形状とした加熱材3であることから、大径部分の段付き部分31の段差を利用し、その段差部分31と下型とを接触させ(段差部分31を下型により支持し)、小径部分の端面が下型の底部と非接触で宙に浮いたような構成とし、更に、加熱材3と下型4に設けられた穴41との中心軸を一致させるようにして、下型4の穴41に挿入した加熱材3の小径部分と穴41の内周面と非接触とするようにした。なお、大径部分加熱工程において、小径部分12の温度上昇の抑制によって小径部分の熱膨張も抑制され、曲りの発生も抑制できていることから、下型4に設けられた穴41への小径部分の挿入も容易であった。
また、小径部分が下型4の底部と非接触としたことから、大径部分11を上型で押圧したとき、小径部分の曲りなどの変形も抑制できた。熱間鍛造材6に成形した後においても、小径部分の熱膨張は抑制されたままであり、下型4から熱間鍛造材6をスムーズに抜去することができた。
(Example 2)
Based on the results of Example 1 described above, hot forging was performed by applying the large-diameter portion heating process applied to the present invention A and the present invention B. The material, shape and dimensions of the forging material used and the material holding jig were the same as those shown in the first embodiment. The heating temperature for hot forging was set to approximately 900° C., and the forging material 1 of the present invention A and the present invention B was partially heated for 2 to 7 hours by selectively heating the large diameter portion 11 . Subsequently, after removing the heating material heated to about 900° C. from the material holding jig, the small diameter portion of the heating material is inserted into the hole provided in the lower mold having a hole for inserting the heating material, and the upper Hot forging was performed by pressing the large-diameter portion in the axial direction with a die 5 to obtain a hot forged material.
Hot forging was performed by inserting the small-diameter portion of the heating material 3 into the hole 41 provided in the lower die 4, as shown in FIG. Since the heating material 3 is a stepped rod-shaped heating material 3 having a large-diameter portion and a small-diameter portion, the stepped portion 31 of the large-diameter portion is utilized to separate the stepped portion 31 and the lower die. (the stepped portion 31 is supported by the lower mold), the end surface of the small diameter portion is suspended in the air without contact with the bottom of the lower mold, and the heating material 3 and the lower mold 4 are provided with The small-diameter portion of the heating material 3 inserted into the hole 41 of the lower die 4 and the inner peripheral surface of the hole 41 are kept out of contact with each other by aligning the center axis with the hole 41 . In the large-diameter portion heating step, the thermal expansion of the small-diameter portion is suppressed by suppressing the temperature rise of the small-diameter portion 12, and the occurrence of bending is also suppressed. Insertion of the part was also easy.
Further, since the small diameter portion is not in contact with the bottom of the lower mold 4, deformation such as bending of the small diameter portion can be suppressed when the large diameter portion 11 is pressed by the upper mold. Even after forming the hot forged material 6 , the thermal expansion of the small-diameter portion was still suppressed, and the hot forged material 6 could be removed smoothly from the lower die 4 .

上記の熱間鍛造により、熱間鍛造材を100本以上作製したところ、曲りによる不良率は本発明Aのもので0%、本発明Bのもので1%未満に抑制することができた。
以上のことから、この本発明の熱間鍛造方法によると、熱間鍛造を行う大径部分を優先的に加熱し、小径部分の温度上昇を抑制可能なため、加熱工程における小径部分の曲がりを防止でき、更に、小径部分の温度上昇による熱膨張も抑制可能なため、下型への加熱材の挿入、抜去がスムーズに行えることから、生産性を高めることができた。
When 100 or more hot forged materials were produced by the above hot forging, the defect rate due to bending could be suppressed to 0% for the invention A and less than 1% for the invention B.
From the above, according to the hot forging method of the present invention, the large diameter portion to be hot forged can be preferentially heated and the temperature rise of the small diameter portion can be suppressed, so the bending of the small diameter portion in the heating process can be suppressed. Furthermore, since the thermal expansion due to the temperature rise of the small diameter portion can be suppressed, the heating material can be smoothly inserted into and removed from the lower mold, and the productivity can be improved.

1 鍛造素材
2 素材保持治具
3 加熱材
4 下型
5 上型
6 熱間鍛造材
11 大径部分
12 小径部分
21 穴
31 大径部分の段付き部分

REFERENCE SIGNS LIST 1 forging material 2 material holding jig 3 heating material 4 lower die 5 upper die 6 hot forged material 11 large diameter portion 12 small diameter portion 21 hole 31 stepped portion of large diameter portion

Claims (1)

大径部分と小径部分とを有する棒状の鍛造素材の前記大径部分を熱間鍛造する熱間鍛造材の製造方法であって、
前記鍛造素材を挿入する穴を有する素材保持治具の前記穴に、前記鍛造素材の小径部分を挿入し、前記大径部分を加熱温度まで加熱して加熱材とし、
前記加熱材を前記素材保持治具から抜去した後、前記加熱材を挿入する穴を有する熱間鍛造用下型の前記穴に前記加熱材の小径部分を挿入し、熱間鍛造用上型により前記大径部分を軸方向に押圧する熱間鍛造を行って熱間鍛鍛造材とすることを特徴とする熱間鍛造材の製造方法。

A hot forged material manufacturing method for hot forging the large diameter portion of a rod-shaped forging material having a large diameter portion and a small diameter portion,
inserting the small-diameter portion of the forging material into the hole of the material holding jig having a hole for inserting the forging material, and heating the large-diameter portion to a heating temperature to obtain a heating material;
After removing the heating material from the material holding jig, the small diameter portion of the heating material is inserted into the hole of the hot forging lower die having a hole for inserting the heating material, and the hot forging upper die A method for producing a hot forged material, characterized by performing hot forging in which the large diameter portion is axially pressed to obtain the hot forged material.

JP2021042535A 2021-03-16 2021-03-16 Method for manufacturing heating hot forming material Pending JP2022142383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021042535A JP2022142383A (en) 2021-03-16 2021-03-16 Method for manufacturing heating hot forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021042535A JP2022142383A (en) 2021-03-16 2021-03-16 Method for manufacturing heating hot forming material

Publications (1)

Publication Number Publication Date
JP2022142383A true JP2022142383A (en) 2022-09-30

Family

ID=83426595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021042535A Pending JP2022142383A (en) 2021-03-16 2021-03-16 Method for manufacturing heating hot forming material

Country Status (1)

Country Link
JP (1) JP2022142383A (en)

Similar Documents

Publication Publication Date Title
CN104607580B (en) Forging forming technology of aluminum alloy straight-flanked ring with extra-large specification
EP2659993B1 (en) Closed-die forging method and method of manufacturing forged article
EP2797705B1 (en) A method for manufacturing hollow shafts
CN109482796B (en) Beta forging and heat treatment method of TC4 titanium alloy disc forging
KR20140024407A (en) Thermo-mechanical processing of nickel-base alloys
JP2015519208A (en) Part hole treatment process and aerospace parts with treated holes
US10022769B2 (en) Method for producing a shaped part from an aluminum alloy sheet
US3958732A (en) Method for breaking steel rod into billets
US20210370372A1 (en) Method for producing a hollow part made of a metal material and use of this method for producing a landing gear rod or beam
US10603711B2 (en) Method for manufacturing alloy ingot
JP2022142383A (en) Method for manufacturing heating hot forming material
JP2016144814A (en) Hot forging mold device and hot forging method using the same
JP2000015381A (en) Formation of disk parts with shaft
JP2007301581A (en) Method for manufacturing forged product
JP2019512046A (en) Method of manufacturing bar from titanium alloy
JP6299344B2 (en) Method for forging disc-shaped products
CN109108584A (en) A kind of production technology of aluminium lithium alloy cone cylinder
KR20120065144A (en) Ring manufacturing method use round bloom become bore hole
JP6189314B2 (en) TA6Zr4DE titanium alloy part manufacturing method
JP6206739B2 (en) Turbine blade manufacturing method
JP2008238234A (en) Warm-forging press apparatus for manufacturing forge-ring and method for manufacturing forged-ring using this
JP4904115B2 (en) Forging method
JPH1080726A (en) Method for straightening metal cylindrical part
JP2017148813A (en) Hot forging mold and hot forging method
RU2792019C1 (en) Method for manufacturing large-sized circular profile products from corrosion-resistant heat-resistant steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240115