JP2022138906A - Pump device - Google Patents

Pump device Download PDF

Info

Publication number
JP2022138906A
JP2022138906A JP2021039052A JP2021039052A JP2022138906A JP 2022138906 A JP2022138906 A JP 2022138906A JP 2021039052 A JP2021039052 A JP 2021039052A JP 2021039052 A JP2021039052 A JP 2021039052A JP 2022138906 A JP2022138906 A JP 2022138906A
Authority
JP
Japan
Prior art keywords
membrane
linear
film
spring
control units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021039052A
Other languages
Japanese (ja)
Inventor
史善 吉岡
Fumiyoshi Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2021039052A priority Critical patent/JP2022138906A/en
Publication of JP2022138906A publication Critical patent/JP2022138906A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

To provide a small pump device having good responsiveness.SOLUTION: A pump device 1 includes: a base member 40 extending along a flow direction F; a flexible film member 50 having flexibility; a fixed frame 31A located at the opposite side of the base member 40 with respect to the film member 50; and multiple film control units 60 arranged along the flow direction F. The film member 50 forms a passage 15 with the base member 40 along the flow direction F. Each of the multiple film control units 60 includes: a linear member 70 formed of a shape memory alloy which contracts by heating; and a spring member 80 disposed between the fixed frame 31A and the film member 50. The linear member 70 connects the fixed frame 31A with the film member 50. The spring member 80 is configured to bias a portion of the film member 50, which is deformed by contraction of the linear member 70, toward the base member 40. The pump device 1 further includes a current control unit 100 configured to supply electric current to the linear members 70 of the multiple film control units 60 along the flow direction F sequentially.SELECTED DRAWING: Figure 1

Description

本発明は、ポンプ装置に係り、特に形状記憶合金を用いた小型のポンプ装置に関するものである。 The present invention relates to a pump device, and more particularly to a small pump device using shape memory alloys.

従来から様々な種類のポンプが開発されているが、近年では、ポンプを小型化するために、簡素な構造でエネルギーを生じさせることが可能な形状記憶合金を利用することも行われている(例えば、特許文献1参照)。このような形状記憶合金を用いたポンプにおいては応答性を改善することが課題となっている。 Various types of pumps have been developed in the past, but in recent years, in order to make the pumps more compact, shape memory alloys that can generate energy with a simple structure have also been used ( For example, see Patent Document 1). Improving the responsiveness of pumps using such shape memory alloys is a problem.

特開2011-226358号公報JP 2011-226358 A

本発明は、このような従来技術の問題点に鑑みてなされたもので、応答性の良い小型のポンプ装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a highly responsive, compact pump device.

本発明の一態様によれば、応答性の良い小型のポンプ装置が提供される。このポンプ装置は、流れ方向に沿って延びるベース部材と、柔軟性を有する膜部材と、上記膜部材に対して上記ベース部材とは反対側に位置する固定フレームと、上記流れ方向に沿って配置される複数の膜制御部とを備える。上記膜部材は、上記流れ方向に沿って上記ベース部材との間に流路を形成する。上記複数の膜制御部のそれぞれは、加熱によって収縮する形状記憶合金から形成される線状部材と、上記固定フレームと上記膜部材との間に配置されるバネ部材とを含む。上記線状部材は、上記固定フレームと上記膜部材とを連結する。上記バネ部材は、上記線状部材の収縮によって変形した上記膜部材の部分を上記ベース部材に向けて付勢するように構成される。上記ポンプ装置は、上記流れ方向に沿って上記複数の膜制御部の上記線状部材に順番に電流を供給するように構成された電流制御部をさらに備える。 According to one aspect of the present invention, a compact pump device with good responsiveness is provided. This pump device includes a base member extending along the flow direction, a flexible membrane member, a fixed frame located on the opposite side of the membrane member from the base member, and arranged along the flow direction. and a plurality of membrane controllers. The membrane member forms a channel with the base member along the flow direction. Each of the plurality of membrane controllers includes a linear member made of a shape memory alloy that contracts when heated, and a spring member arranged between the fixed frame and the membrane member. The linear member connects the fixed frame and the film member. The spring member is configured to bias the portion of the membrane member deformed by the contraction of the linear member toward the base member. The pump device further includes a current control section configured to sequentially supply a current to the linear members of the plurality of membrane control sections along the flow direction.

図1は、本発明の一実施形態におけるポンプ装置の構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the configuration of a pump device according to one embodiment of the present invention. 図2Aは、図1のポンプ装置の動作を説明するための断面図である。2A is a cross-sectional view for explaining the operation of the pump device of FIG. 1. FIG. 図2Bは、図1のポンプ装置の動作を説明するための断面図である。2B is a cross-sectional view for explaining the operation of the pump device of FIG. 1. FIG. 図2Cは、図1のポンプ装置の動作を説明するための断面図である。2C is a cross-sectional view for explaining the operation of the pump device of FIG. 1. FIG. 図3は、図1のポンプ装置における膜制御部の構成の一例を模式的に示す平面図である。3 is a plan view schematically showing an example of the configuration of a membrane control unit in the pump device of FIG. 1. FIG.

以下、本発明に係るポンプ装置の実施形態について図1から図3を参照して詳細に説明する。図1から図3において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。また、図1から図3においては、各構成要素の縮尺や寸法が誇張されて示されている場合や一部の構成要素が省略されている場合がある。以下の説明では、特に言及がない場合には、「第1」や「第2」などの用語は、構成要素を互いに区別するために使用されているだけであり、特定の順位や順番を表すものではない。 An embodiment of a pump device according to the present invention will be described in detail below with reference to FIGS. 1 to 3. FIG. In FIGS. 1 to 3, the same or corresponding constituent elements are given the same reference numerals, and overlapping explanations are omitted. In addition, in FIGS. 1 to 3, the scale and dimensions of each component may be exaggerated, and some components may be omitted. In the following description, unless otherwise specified, terms such as "first" and "second" are used only to distinguish components from each other and indicate a particular rank or order. not a thing

図1は、本発明の一実施形態におけるポンプ装置1の構成を模式的に示す断面図である。このようなポンプ装置1としては、例えば薬の投与のために用いられるような携帯用の小型のポンプ装置が考えられるが、これに限られるものではない。図1に示すように、ポンプ装置1は、移送する流体(例えば薬剤)を貯留する貯留部10と、貯留部10からの流体が移送される出力部20と、貯留部10内の流体を流れ方向Fに沿って出力部20に移送するポンプ本体30とを含んでいる。 FIG. 1 is a cross-sectional view schematically showing the configuration of a pump device 1 according to one embodiment of the present invention. Such a pump device 1 may be, for example, a small portable pump device used for administering medicine, but is not limited to this. As shown in FIG. 1, the pump device 1 includes a storage portion 10 that stores a fluid to be transferred (for example, a drug), an output portion 20 to which the fluid from the storage portion 10 is transferred, and a fluid flow inside the storage portion 10. and a pump body 30 that conveys along direction F to the output 20 .

ポンプ本体30は、筐体31と、筐体31の内部に収容されたベース部材40と、筐体31の内部にベース部材40から離間して配置される膜部材50と、膜部材50の変形を制御する複数の膜制御部60(60A~60C)とを含んでいる。膜部材50は例えばゴムなどの柔軟性を有する材料から形成される。ベース部材40及び膜部材50はいずれも流れ方向Fに沿って延びており、これによりベース部材40と膜部材50との間に流れ方向Fに沿った流路15が形成されている。 The pump body 30 includes a housing 31, a base member 40 housed inside the housing 31, a membrane member 50 arranged inside the housing 31 apart from the base member 40, and a deformation of the membrane member 50. and a plurality of membrane controllers 60 (60A to 60C) for controlling the The membrane member 50 is made of a flexible material such as rubber. Both the base member 40 and the membrane member 50 extend along the flow direction F, thereby forming the channel 15 along the flow direction F between the base member 40 and the membrane member 50 .

複数の膜制御部60は、流れ方向Fに沿って互いに離間して配置されている。本実施形態においては3つの膜制御部60が流れ方向Fに沿って互いに離間して配置されているが、膜制御部60の数はこれに限られるものではない。それぞれの膜制御部60は、加熱によって収縮する形状記憶合金から形成される線状部材70(70A~70C)と、線状部材70と対になって配置されるバネ部材80(80A~80C)と、膜部材50よりも硬い材料から形成され、膜部材50上に固定される硬質部材90(90A~90C)とを含んでいる。 A plurality of membrane controllers 60 are arranged apart from each other along the flow direction F. As shown in FIG. In this embodiment, three film control units 60 are arranged apart from each other along the flow direction F, but the number of film control units 60 is not limited to this. Each film control unit 60 includes linear members 70 (70A to 70C) made of a shape memory alloy that shrinks when heated, and spring members 80 (80A to 80C) that are arranged in pairs with the linear members 70. , and hard members 90 ( 90 A to 90 C) made of a material harder than the membrane member 50 and fixed on the membrane member 50 .

線状部材70としては、例えばニッケルとチタンの合金からなる形状記憶合金を直径0.05mm~0.5mm程度の細線状にしたものを用いることができる。線状部材70の一端は、筐体31を構成する部分のうち膜部材50に対してベース部材40とは反対側に位置する部分31A(以下、固定フレームという)に連結され、他端は硬質部材90に連結されている。この線状部材70に通電すると、線状部材70が加熱され、この加熱に伴って収縮する。例えば、線状部材70の加熱によって線状部材70の長さが5%程度収縮する。これにより、線状部材70が連結されている膜部材50の部分が持ち上げられるようになっている。 As the linear member 70, for example, a thin wire having a diameter of about 0.05 mm to 0.5 mm made of a shape memory alloy made of an alloy of nickel and titanium can be used. One end of the linear member 70 is connected to a portion 31A (hereinafter referred to as a fixed frame) located on the side opposite to the base member 40 with respect to the film member 50 among the portions constituting the housing 31, and the other end is rigid. It is connected to member 90 . When the linear member 70 is energized, the linear member 70 is heated and shrinks due to the heating. For example, heating the linear member 70 causes the length of the linear member 70 to shrink by about 5%. As a result, the portion of the film member 50 to which the linear member 70 is connected is lifted.

また、バネ部材80の一端は筐体31の固定フレーム31Aに連結され、他端は硬質部材90に連結されている。図1に示す状態ではバネ部材80は圧縮されて力を蓄えている状態となっている。すなわち、膜部材50は、バネ部材80によってベース部材40に押し付けられている。線状部材70及びバネ部材80は、加熱により線状部材70が収縮する力がバネ部材80の弾性力よりも大きくなるように構成されている。本実施形態におけるバネ部材80は導電性を有する金属から形成されており、硬質部材90も同様に導電性を有する金属から形成されている。なお、他の実施形態では、図1に示す状態のバネ部材80は自然長であってもよい。 One end of the spring member 80 is connected to the fixed frame 31A of the housing 31, and the other end is connected to the rigid member 90. As shown in FIG. In the state shown in FIG. 1, the spring member 80 is in a state of being compressed and storing force. That is, the membrane member 50 is pressed against the base member 40 by the spring member 80 . The linear member 70 and the spring member 80 are configured such that the contraction force of the linear member 70 due to heating is greater than the elastic force of the spring member 80 . The spring member 80 in this embodiment is made of an electrically conductive metal, and the hard member 90 is similarly made of an electrically conductive metal. Note that in other embodiments, the spring member 80 in the state shown in FIG. 1 may have a natural length.

図1に示すように、ポンプ装置1は、それぞれの線状部材70A~70Cに供給する電源を制御する電流制御部100を有している。固定フレーム31Aに連結されている線状部材70は電線102を介して電流制御部100に接続されており、固定フレーム31Aに連結されているバネ部材80は電線104を介して電流制御部100に接続されている。本実施形態では硬質部材90及び線状部材70が導電性を有するため、電線102、線状部材70、硬質部材90、バネ部材80、及び電線104により電気回路が構成され、電流制御部100によってそれぞれの膜制御部60の線状部材70に電流を供給できるようになっている。このように、硬質部材90及びバネ部材80を電気回路の一部としても兼用することで、ポンプ装置1の部品点数を減らすことができる。 As shown in FIG. 1, the pump device 1 has a current control section 100 that controls the power supplied to each of the linear members 70A-70C. A linear member 70 connected to the fixed frame 31A is connected to the current control unit 100 via an electric wire 102, and a spring member 80 connected to the fixed frame 31A is connected to the current control unit 100 via an electric wire 104. It is connected. In this embodiment, since the hard member 90 and the linear member 70 are conductive, an electric circuit is configured by the electric wire 102, the linear member 70, the hard member 90, the spring member 80, and the electric wire 104. Current can be supplied to the linear member 70 of each film control unit 60 . By using the hard member 90 and the spring member 80 also as part of the electric circuit in this way, the number of parts of the pump device 1 can be reduced.

次に、このような構成のポンプ装置1の動作について説明する。まず、図2Aに示すように、電流制御部100によって膜制御部60Aの線状部材70Aに電流を流すと、線状部材70Aが加熱されて収縮する。この線状部材70Aの収縮に伴って、線状部材70Aが連結されている膜部材50の部分50Aが持ち上げられ、その部分の流路15Aが広がる。これによって、貯留部10内の流体の一部が流路15Aに流れ込む。 Next, the operation of the pump device 1 having such a configuration will be described. First, as shown in FIG. 2A, when current is passed through the linear member 70A of the membrane control unit 60A by the current control unit 100, the linear member 70A is heated and contracts. Along with the contraction of the linear member 70A, the portion 50A of the membrane member 50 to which the linear member 70A is connected is lifted, and the flow path 15A at that portion expands. As a result, part of the fluid in reservoir 10 flows into channel 15A.

次に、図2Bに示すように、電流制御部100によって膜制御部60Bの線状部材70Bに電流を流すと同時に、膜制御部60Aの線状部材70Aに流していた電流を止めると、線状部材70Aが、その形状記憶作用に加えてバネ部材80Aの付勢力を受けて短時間で元の長さに戻り、流路15Aが元の大きさに戻る。また、線状部材70Bへの通電によって線状部材70Bが加熱されて収縮し、線状部材70Bが連結されている膜部材50の部分50Bが持ち上げられ、その部分の流路15Bが広がる。このように、広がっていた流路15Aが元に戻るとともにこの流路15Aに隣接する流路15Bが広がるため、流路15Aに存在していた流体が流路15Bに移動する。 Next, as shown in FIG. 2B, when the current control unit 100 applies a current to the linear member 70B of the film control unit 60B and simultaneously stops the current flowing to the linear member 70A of the film control unit 60A, the line The shaped member 70A returns to its original length in a short period of time by receiving the biasing force of the spring member 80A in addition to its shape memory effect, and the flow path 15A returns to its original size. Also, the linear member 70B is heated and contracted by the energization of the linear member 70B, the portion 50B of the film member 50 to which the linear member 70B is connected is lifted, and the channel 15B of that portion is widened. In this way, the widened flow path 15A returns to its original state and the flow path 15B adjacent to this flow path 15A widens, so that the fluid existing in the flow path 15A moves to the flow path 15B.

さらに、図2Cに示すように、電流制御部100によって膜制御部60Cの線状部材70Cに電流を流すと同時に、膜制御部60Bの線状部材70Bに流していた電流を止めると、線状部材70Bが、その形状記憶作用に加えてバネ部材80Bの付勢力を受けて短時間で元の長さに戻り、流路15Bが元の大きさに戻る。また、線状部材70Cへの通電によって線状部材70Cが加熱されて収縮し、線状部材70Cが連結されている膜部材50の部分50Cが持ち上げられ、その部分の流路15Cが広がる。このように、広がっていた流路15Bが元に戻るとともにこの流路15Bに隣接する流路15Cが広がるため、流路15Bに存在していた流体が流路15Cに移動する。 Furthermore, as shown in FIG. 2C, when the current control unit 100 causes the current to flow through the linear member 70C of the film control unit 60C and simultaneously stops the current flowing through the linear member 70B of the film control unit 60B, the linear The member 70B receives the biasing force of the spring member 80B in addition to its shape memory action, and returns to its original length in a short period of time, and the flow path 15B returns to its original size. Also, the linear member 70C is heated and contracted by the energization of the linear member 70C, and the portion 50C of the film member 50 to which the linear member 70C is connected is lifted, and the flow path 15C of that portion is widened. In this way, the widened flow path 15B returns to its original state and the flow path 15C adjacent to this flow path 15B widens, so that the fluid existing in the flow path 15B moves to the flow path 15C.

そして、膜制御部60Cの線状部材70Cに流していた電流を止めると、線状部材70Cが、その形状記憶作用に加えてバネ部材80Cの付勢力を受けて短時間で元の長さに戻り、流路15Cが元の大きさに戻る(図1に示す状態)。これにより流路15C内の流体が出力部20に押し出され、流体が出力部20に移送される。 Then, when the current flowing through the linear member 70C of the membrane control unit 60C is stopped, the linear member 70C receives the biasing force of the spring member 80C in addition to the shape memory effect, and returns to its original length in a short time. Then, the channel 15C returns to its original size (the state shown in FIG. 1). As a result, the fluid in the flow path 15C is pushed out to the output section 20, and the fluid is transferred to the output section 20. As shown in FIG.

このように、電流制御部100によって膜制御部60A,60B,60Cの線状部材70A,70B,70Cに順番に電流を供給することを繰り返すことにより、膜部材50を脈動させて貯留部10内の流体を出力部20に移送することができる。このとき、線状部材70A,70B,70Cに順番に供給する電流のサイクルの周波数を調整することで、貯留部10から出力部20に移送される流体の流量を調整することができる。 In this manner, the current control unit 100 repeats the sequential supply of current to the linear members 70A, 70B, and 70C of the membrane control units 60A, 60B, and 60C, thereby pulsating the membrane member 50 and of fluid can be transferred to the output 20 . At this time, the flow rate of the fluid transferred from the storage section 10 to the output section 20 can be adjusted by adjusting the cycle frequency of the electric currents that are sequentially supplied to the linear members 70A, 70B, and 70C.

また、電流制御部100により電流が供給されて収縮した線状部材70は、電流が供給されなくなると、その形状記憶作用に加えてバネ部材80の付勢力を受けるため、線状部材70が元の長さに戻る時間が早くなり、ポンプ装置1の応答性が向上する。 In addition, when the current is no longer supplied, the linear member 70 contracted by the current supplied by the current control unit 100 receives the biasing force of the spring member 80 in addition to the shape memory effect, so that the linear member 70 returns to its original state. The time to return to the length of is shortened, and the response of the pump device 1 is improved.

本実施形態では、線状部材70及びバネ部材80が硬質部材90を介して膜部材50に連結されているが、硬質部材90を省略し、線状部材70及びバネ部材80が膜部材50に直接連結されていてもよい。ただし、硬質部材90を介して線状部材70及びバネ部材80を膜部材50に連結すれば、線状部材70及びバネ部材80から膜部材50に力が作用する領域を硬質部材90が固定された領域に広げることができ、膜部材50を変形させて流体を移送する空間を増やすことができる。 In this embodiment, the linear member 70 and the spring member 80 are connected to the film member 50 via the hard member 90. They may be directly linked. However, if the linear member 70 and the spring member 80 are connected to the film member 50 via the hard member 90, the hard member 90 is fixed to the region where the force acts on the film member 50 from the linear member 70 and the spring member 80. The membrane member 50 can be deformed to increase the space for transferring the fluid.

図1に示す例では、理解を容易にするために、それぞれの膜制御部60が1つの線状部材70と1つのバネ部材80を有するものとして図示されているが、例えば、図3の平面図に示すように、それぞれの膜制御部60が、矩形平板状の硬質部材90と、硬質部材90に固定された複数の線状部材70及び複数のバネ部材80とを含んでいてもよい。図3に示す例では、それぞれの硬質部材90の中央部に3つの線状部材70が配置され、これらの線状部材70を挟むように2つのバネ部材80が配置されている。 In the example shown in FIG. 1, each membrane control part 60 is illustrated as having one linear member 70 and one spring member 80 for easy understanding. As shown in the figure, each film control unit 60 may include a rectangular plate-shaped rigid member 90 and a plurality of linear members 70 and a plurality of spring members 80 fixed to the rigid member 90 . In the example shown in FIG. 3, three linear members 70 are arranged in the central portion of each hard member 90, and two spring members 80 are arranged so as to sandwich these linear members 70 therebetween.

上述した実施形態では、バネ部材80及び硬質部材90を導電性材料から形成し、電線102、線状部材70、硬質部材90、バネ部材80、及び電線104により電気回路を形成しているが、バネ部材80及び硬質部材90は導電性材料から形成されていなくてもよい。例えば、バネ部材80のみを導電性材料から形成し、バネ部材80を線状部材70に電気的に接続することで、電線102、線状部材70、バネ部材80、及び電線104により電気回路を形成してもよい。バネ部材80及び硬質部材90のいずれも導電性材料から形成されていない場合には、線状部材70の硬質部材90側の端部に電線104が接続される。 In the above-described embodiment, the spring member 80 and the hard member 90 are made of a conductive material, and the electrical circuit is formed by the electric wire 102, the linear member 70, the hard member 90, the spring member 80, and the electric wire 104. Spring member 80 and rigid member 90 do not have to be made of an electrically conductive material. For example, by forming only the spring member 80 from a conductive material and electrically connecting the spring member 80 to the linear member 70, an electric circuit is formed by the electric wire 102, the linear member 70, the spring member 80, and the electric wire 104. may be formed. If neither the spring member 80 nor the hard member 90 is made of a conductive material, the electric wire 104 is connected to the end of the linear member 70 on the hard member 90 side.

また、図示した例では、硬質部材90は、膜部材50上に配置されているが、硬質部材90を膜部材50中に埋め込んで固定してもよい。 In the illustrated example, the hard member 90 is arranged on the membrane member 50, but the hard member 90 may be embedded in the membrane member 50 and fixed.

以上述べたように、本発明の一態様によれば、応答性の良い小型のポンプ装置が提供される。このポンプ装置は、流れ方向に沿って延びるベース部材と、柔軟性を有する膜部材と、上記膜部材に対して上記ベース部材とは反対側に位置する固定フレームと、上記流れ方向に沿って配置される複数の膜制御部とを備える。上記膜部材は、上記流れ方向に沿って上記ベース部材との間に流路を形成する。上記複数の膜制御部のそれぞれは、加熱によって収縮する形状記憶合金から形成される線状部材と、上記固定フレームと上記膜部材との間に配置されるバネ部材とを含む。上記線状部材は、上記固定フレームと上記膜部材とを連結する。上記バネ部材は、上記線状部材の収縮によって変形した上記膜部材の部分を上記ベース部材に向けて付勢するように構成される。上記ポンプ装置は、上記流れ方向に沿って上記複数の膜制御部の上記線状部材に順番に電流を供給するように構成された電流制御部をさらに備える。 As described above, according to one aspect of the present invention, a small-sized pump device with good responsiveness is provided. This pump device includes a base member extending along the flow direction, a flexible membrane member, a fixed frame located on the opposite side of the membrane member from the base member, and arranged along the flow direction. and a plurality of membrane controllers. The membrane member forms a channel with the base member along the flow direction. Each of the plurality of membrane controllers includes a linear member made of a shape memory alloy that contracts when heated, and a spring member arranged between the fixed frame and the membrane member. The linear member connects the fixed frame and the film member. The spring member is configured to bias the portion of the membrane member deformed by the contraction of the linear member toward the base member. The pump device further includes a current control section configured to sequentially supply a current to the linear members of the plurality of membrane control sections along the flow direction.

このような構成によれば、電流制御部により複数の膜制御部の線状部材に順番に電流を供給することにより、複数の膜制御部の線状部材を順番に加熱して収縮させることができる。これにより、線状部材が連結された膜部材の部分を順番に変形させて膜部材を脈動させることができるので、流路内の流体を流れ方向に沿って移送することができる。また、収縮した線状部材は、電流が供給されなくなると、その形状記憶作用に加えてバネ部材の付勢力を受けるため、線状部材が元の長さに戻る時間が早くなり、ポンプ装置の応答性が向上する。 According to such a configuration, by sequentially supplying a current to the linear members of the plurality of membrane controllers by the current control section, the linear members of the plurality of membrane controllers can be heated and contracted in order. can. As a result, the portions of the membrane member to which the linear members are connected can be sequentially deformed to pulsate the membrane member, so that the fluid in the flow path can be transferred along the flow direction. In addition, when the current is no longer supplied to the contracted linear member, the linear member receives the biasing force of the spring member in addition to its shape memory effect. Improves responsiveness.

上記複数の膜制御部のそれぞれは、上記膜部材よりも硬い材料から形成される硬質部材をさらに含んでいてもよい。この硬質部材は、上記膜部材に固定され、上記線状部材及び上記バネ部材が接続される。このような硬質部材に線状部材とバネ部材を接続することにより、線状部材及びバネ部材から膜部材に力が作用する領域を硬質部材が固定された領域に広げることができ、膜部材を変形させて流体を移送する空間を増やすことができる。 Each of the plurality of film control units may further include a hard member made of a material harder than the film member. The rigid member is fixed to the film member and connected to the linear member and the spring member. By connecting the linear member and the spring member to such a hard member, the area where the linear member and the spring member exert force on the membrane member can be expanded to the area where the hard member is fixed, and the membrane member can be expanded. It can be deformed to increase the space for transferring fluid.

上記複数の膜制御部のそれぞれの上記バネ部材及び上記硬質部材は導電性を有していてもよい。この場合において、上記電流制御部は、上記複数の膜制御部のそれぞれの上記バネ部材及び上記硬質部材を介して上記線状部材に上記電流を供給するように構成されていてもよい。 The spring member and the hard member of each of the plurality of membrane control units may have electrical conductivity. In this case, the current control section may be configured to supply the current to the linear member via the spring member and the hard member of each of the plurality of film control sections.

上記複数の膜制御部のそれぞれの上記バネ部材は導電性を有していてもよい。この場合において、上記電流制御部は、上記複数の膜制御部のそれぞれの上記バネ部材を介して上記線状部材に上記電流を供給するように構成されていてもよい。 Each of the spring members of the plurality of membrane controllers may have electrical conductivity. In this case, the current control section may be configured to supply the current to the linear member via the respective spring members of the plurality of film control sections.

これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。 Although the preferred embodiments of the present invention have been described so far, it goes without saying that the present invention is not limited to the above-described embodiments and may be embodied in various forms within the scope of its technical concept.

1 ポンプ装置
10 貯留部
15 流路
20 出力部
30 ポンプ本体
31 筐体
31A 固定フレーム
40 ベース部材
50 膜部材
60 膜制御部
70 線状部材
80 バネ部材
90 硬質部材
100 電流制御部
F 流れ方向
Reference Signs List 1 pump device 10 reservoir 15 channel 20 output 30 pump body 31 housing 31A fixed frame 40 base member 50 membrane member 60 membrane control section 70 linear member 80 spring member 90 hard member 100 current control section F flow direction

Claims (4)

流れ方向に沿って延びるベース部材と、
柔軟性を有する膜部材であって、前記流れ方向に沿って前記ベース部材との間に流路を形成する膜部材と、
前記膜部材に対して前記ベース部材とは反対側に位置する固定フレームと、
前記流れ方向に沿って配置される複数の膜制御部であって、
加熱によって収縮する形状記憶合金から形成される線状部材であって、前記固定フレームと前記膜部材とを連結する線状部材と、
前記固定フレームと前記膜部材との間に配置され、前記線状部材の収縮によって変形した前記膜部材の部分を前記ベース部材に向けて付勢するように構成されるバネ部材と
をそれぞれ含む複数の膜制御部と、
前記流れ方向に沿って前記複数の膜制御部の前記線状部材に順番に電流を供給するように構成された電流制御部と
を備えた、ポンプ装置。
a base member extending along the direction of flow;
a membrane member having flexibility, the membrane member forming a channel between itself and the base member along the flow direction;
a fixed frame located on the side opposite to the base member with respect to the membrane member;
A plurality of membrane control units arranged along the flow direction,
a linear member formed of a shape memory alloy that shrinks when heated, the linear member connecting the fixed frame and the film member;
a plurality of spring members arranged between the fixed frame and the membrane member and configured to bias the portion of the membrane member deformed by the contraction of the linear member toward the base member. a membrane controller of
and a current control unit configured to sequentially supply a current to the linear members of the plurality of membrane control units along the flow direction.
前記複数の膜制御部のそれぞれは、前記膜部材よりも硬い材料から形成される硬質部材であって、前記膜部材に固定され、前記線状部材及び前記バネ部材が接続される硬質部材をさらに含む、請求項1に記載のポンプ装置。 Each of the plurality of film control units further includes a hard member formed of a material harder than the film member, fixed to the film member, and connected to the linear member and the spring member. 2. The pumping device of claim 1, comprising: 前記複数の膜制御部のそれぞれの前記バネ部材及び前記硬質部材は導電性を有し、
前記電流制御部は、前記複数の膜制御部のそれぞれの前記バネ部材及び前記硬質部材を介して前記線状部材に前記電流を供給するように構成される、
請求項2に記載のポンプ装置。
the spring member and the hard member of each of the plurality of membrane control units have electrical conductivity;
The current control unit is configured to supply the current to the linear member via the spring member and the hard member of each of the plurality of membrane control units.
3. Pumping device according to claim 2.
前記複数の膜制御部のそれぞれの前記バネ部材は導電性を有し、
前記電流制御部は、前記複数の膜制御部のそれぞれの前記バネ部材を介して前記線状部材に前記電流を供給するように構成される、
請求項1又は2に記載のポンプ装置。
each of the spring members of the plurality of membrane control units has conductivity,
The current control unit is configured to supply the current to the linear member via the spring member of each of the plurality of membrane control units.
3. Pumping device according to claim 1 or 2.
JP2021039052A 2021-03-11 2021-03-11 Pump device Pending JP2022138906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021039052A JP2022138906A (en) 2021-03-11 2021-03-11 Pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021039052A JP2022138906A (en) 2021-03-11 2021-03-11 Pump device

Publications (1)

Publication Number Publication Date
JP2022138906A true JP2022138906A (en) 2022-09-26

Family

ID=83400180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021039052A Pending JP2022138906A (en) 2021-03-11 2021-03-11 Pump device

Country Status (1)

Country Link
JP (1) JP2022138906A (en)

Similar Documents

Publication Publication Date Title
US7748405B2 (en) System, method and apparatus for reducing frictional forces and for compensating shape memory alloy-actuated valves and valve systems at high temperatures
US10072640B2 (en) Driving device of micropump and microvalve, and microfludic device using same
US6270326B1 (en) Transfusion device and liquid supply tube
JP6622188B2 (en) Electrical switch device with improved Lorentz force bias
JP6655733B2 (en) Variable stiffness actuator
EP2133566A2 (en) Shape memory alloy actuator
JPH0478932B2 (en)
JPH074075B2 (en) Actuator element
CN102804556A (en) Motor for a personal skin care appliance
JPS61229977A (en) Linear motion type actuator
US20180263468A1 (en) Variable-stiffness actuator
CA2920306A1 (en) Bionic muscle
JPH066991A (en) Actuator element
JP2022138906A (en) Pump device
JP2015206331A (en) Shape memory alloy actuator and pump, valve using the same
CN110520030B (en) Rigidity variable actuator and power supply method
CN109996482B (en) Rigidity variable device
JPH06159250A (en) Micropump
Swensen et al. Simple, scalable active cells for articulated robot structures
JP7066137B2 (en) Surgical training equipment
CN106952761A (en) The contactor of the switch module of bistable with Electromagnetically activatable
KR102651077B1 (en) Energy-efficient electromagnetic micro pump system
JPS61185082A (en) Electric signal/mechanical amount converter
JPS6386489A (en) Piezoelectric actuator
JP4344537B2 (en) Micro pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240208