JP2022136412A - 性能予測装置、性能予測方法及び性能予測プログラム - Google Patents

性能予測装置、性能予測方法及び性能予測プログラム Download PDF

Info

Publication number
JP2022136412A
JP2022136412A JP2021036005A JP2021036005A JP2022136412A JP 2022136412 A JP2022136412 A JP 2022136412A JP 2021036005 A JP2021036005 A JP 2021036005A JP 2021036005 A JP2021036005 A JP 2021036005A JP 2022136412 A JP2022136412 A JP 2022136412A
Authority
JP
Japan
Prior art keywords
data
unit
performance
value
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021036005A
Other languages
English (en)
Inventor
真史 ▲桑▼野
Masashi Kuwano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2021036005A priority Critical patent/JP2022136412A/ja
Publication of JP2022136412A publication Critical patent/JP2022136412A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

【課題】製品又は部品の性能値をその製品又は部品の3次元形状に基づいて効率よく予測することが可能である性能予測装置、性能予測方法及び性能予測プログラムを提供する。【解決手段】性能予測装置は、所定の物体に関する解析条件及び解析結果又は試験条件及び試験結果の少なくともいずれか一方の情報を記憶する記憶部と、性能値の予測対象である物体の形状データを取得する取得部と、記憶部に記憶された情報と取得された形状データとに基づいて性能値の予測値を導出する予測部と、導出された予測値を出力する出力部とを備える。【選択図】図1

Description

本発明は、性能予測装置、性能予測方法及び性能予測プログラムに関する。
機械学習技術(人工知能技術)の発達によって、様々な予測に機械学習が利用可能となった。非特許文献1には、航空機の空力と構造とを最適するための設計システムが開示されている。非特許文献1では、空力と構造とを最適するための空力モデル及び構造モデルが生成される。
森野裕行 外5名,「環境適応型高性能小型航空機設計における他分野統合最適化技術(MDO)の適用」,2005 三菱重工技法,Vol.42,No.5,pp.216-219
物体(構造物)に対して試験を行うことで得られた試験データ(試験結果)を機械学習の手法を用いてモデルに学習させる場合、実施可能な試験(例えば、剛性試験、応力試験、振動試験)と、試験データのサンプル数とには制限がある。これに対して、物体に対する有限要素法(Finite Element Method : FEM)及び数値流体力学(Computational Fluid Dynamics : CFD)等のシミュレーションでは、試験データよりも多くのサンプル数の解析結果がコンピュータ上での解析によって得られる。しかしながら、解析結果の精度は、試験結果の精度よりも低い場合がある。
また、製品(物体)の3次元形状に応じて定まる性能値の導出には、コンピュータの性能にもよるが、数日から数週間程度の時間を要する場合がある。このため、製品の性能値を事前評価することの効率化が、製品開発における大きな課題である。シミュレーションの効率化は製品開発の効率に直結する。しかしながら、製品又は部品の性能値をその製品又は部品の3次元形状に基づいて効率よく予測することは難しかった。
上記事情に鑑み、本発明は、製品又は部品の性能値をその製品又は部品の3次元形状に基づいて効率よく予測することが可能である性能予測装置、性能予測方法及び性能予測プログラムを提供することを目的としている。
本発明の一態様は、所定の物体に関する解析条件及び解析結果又は試験条件及び試験結果の少なくともいずれか一方の情報を記憶する記憶部と、性能値の予測対象である物体の形状データを取得する取得部と、前記記憶部に記憶された情報と前記取得部によって取得された前記形状データとに基づいて前記性能値の予測値を導出する予測部と、導出された前記予測値を出力する出力部とを備える性能予測装置である。
上記の性能予測装置は、製品又は部品の性能値をその製品又は部品の3次元形状に基づいて効率よく予測することが可能である。
本発明の一態様は、性能値が予測される対象である物体の形状データを取得する取得ステップと、所定の物体に関する解析条件及び解析結果又は試験条件及び試験結果の少なくともいずれか一方の情報と取得された前記形状データとに基づいて前記性能値の予測値を導出する予測ステップと、導出された前記予測値を出力する出力ステップとを含む性能予測方法である。
本発明の一態様は、コンピュータに、性能値が予測される対象である物体の形状データを取得する取得手順と、所定の物体に関する解析条件及び解析結果又は試験条件及び試験結果の少なくともいずれか一方の情報と取得された前記形状データとに基づいて前記性能値の予測値を導出する予測手順と、導出された前記予測値を出力する出力手順とを実行させるための性能予測プログラムである。
本発明により、製品又は部品の性能値をその製品又は部品の3次元形状に基づいて効率よく予測することが可能である。
第1実施形態における、性能予測装置の構成例を示す図である。 第1実施形態における、第2教師データが補間されていない場合における性能値の予測値の信頼度の例を示す図である。 第1実施形態における、第2教師データが補間された場合における性能値の予測値の信頼度の例を示す図である。 第1実施形態における、学習装置の動作例を示すフローチャートである。 第1実施形態における、予測装置の動作例を示すフローチャートである。 第2実施形態における、学習装置の構成例を示す図である。 第2実施形態における、学習装置の動作例を示すフローチャートである。 第3実施形態における、予測装置の構成例を示す図である。
本発明の実施形態について、図面を参照して詳細に説明する。
(第1実施形態)
図1は、性能予測装置1の構成例を示す図である。性能予測装置1は、予測対象の物体の3次元形状データに基づいて、その物体の性能値の予測値を導出する装置である。性能予測装置1は、学習装置2と、予測装置3とを備える。
学習装置2は、取得部20と、記憶部21と、制御部22と、モデル生成部23と、出力部24とを備える。モデル生成部23は、固体解析部230と、流体解析部231と、試験データ導出部232と、信頼度付与部233とを備える。予測装置3は、取得部30と、予測部31と、信頼度付与部32と、出力部33とを備える。
まず、学習装置2の概要について説明する。
学習段階において、学習装置2には、教師データが入力される。教師データには3次元形状データが含まれている。この3次元形状データは、例えば、CAD(Computer Aided Design)における仮想物体の形状データ(設計寸法データ)と、現実物体の形状を表す計測点群(ポイントクラウド)データとのうちの少なくとも一方である。計測点群は、例えば、レーザー測定器等を用いて得られる。
物体は、例えば、製品又は部品である。製品は、特定の製品に限定されないが、例えば、減速機、油圧バルブ、コンプレッサ又はドアである。製品の用途は、特定の用途に限定されないが、例えば、風車用、船舶用、建機用又はロボット用である。部品は、特定の部品に限定されないが、例えば、ボルト、バネ、ハウジング、ブラケット、歯車又はフレームである。例えば、物体は、風車と船舶と建機とロボットのうちの少なくともいずれか一つに搭載される機器又は部品である。
学習装置2は、教師データに含まれている3次元形状データに基づいて、物体の性能値の予測値を導出する。性能値の予測値とは、例えば、剛性データ、応力データ、圧力損失データ、流れデータ及び試験データの予測値である。圧力損失データとは、物体の周囲における流体の圧力損失を表すデータである。流れデータとは、物体の周囲における流体の流路及び流量(流速)を表すデータである。試験データとは、試験結果を表すデータである。試験結果とは、特定の試験における計測値に限定されないが、例えば、物体に加えられた力に対する物体の変位計測値、所定の変形下で歪ゲージを用いて得られる応力計測値、時系列の振動入力に対する物体の加速度若しくは変位の計測値、管路に定められた位置間の圧力差の計測値、又は、作動油が流れる際に物体に対して作動油から加えられる力の計測値である。
学習装置2は、教師データに含まれている正解ラベルと、性能値の予測値との差が少なくなるように、例えば誤差逆伝搬法を用いて、学習中モデルのパラメータを更新する。学習中モデルが学習済となることによって、学習装置2は学習済モデルを得る。
学習装置2は、教師データに含まれている解析結果又は試験結果の精度に基づいて、性能値の予測値ごとの信頼度を導出してもよい。解析結果の信頼度は、同一の条件での試験結果の信頼度を基準として定められる。教師データに含まれている解析結果又は試験結果の精度は、例えば製品の用途(例えば、風車、船舶、建機又はロボット)ごとに予め定められてもよい。例えば、風などによる外乱の多い風車の解析結果又は試験結果の精度は、建機の解析結果又は試験結果の精度よりも低い場合がある。
次に、予測装置3の概要について説明する。
学習段階後の実行段階(予測段階)において、予測装置3は、学習済モデルを学習装置2から取得する。予測装置3は、予測対象の物体の3次元形状データを取得する。予測装置3は、予測対象の物体の3次元形状データを学習済モデルに入力する。これによって、予測装置3は、その物体の性能値の予測値を、学習済モデルの出力として得る。
予測装置3は、予測対象の物体の3次元形状データの精度データを取得してもよい。予測装置3は、3次元形状データの精度データを学習済モデルに入力する。これによって、予測装置3は、性能値の予測値の信頼度を、学習済モデルの出力として導出してもよい。
次に、学習装置2の詳細について説明する。
学習段階において、学習装置2は、教師データを用いて学習済モデルを生成する。学習済モデルは、統計処理等によって導出された係数を含む数式を用いて表されてもよいし、ニューラルネットワークを用いて表されてもよい。学習済モデルは、製品ごと、部品ごとに生成される。例えば、製品「A」用の学習済モデルのように、学習済モデルは生成される。
以下、物体の設計形状データ及び解析条件を入力データとし、物体の設計形状データ及び解析条件に基づく解析結果を正解ラベルとする教師データを、「第1教師データ」という。第1教師データは、例えば、物体の剛性データと、物体の応力データと、物体の周囲における流体の圧力損失データと、流体の流れデータとのうちの少なくとも一つの解析結果を、正解ラベルとして含む。
以下、物体の計測形状データ及び試験条件を入力データとし、物体の計測形状データ及び試験条件に基づく試験結果を正解ラベルとする教師データを、「第2教師データ」という。第2教師データは、例えば、物体の変位計測値と、物体の応力計測値と、時系列の振動入力に対する物体の加速度若しくは変位の計測値と、物体に定められた位置間の圧力差の計測値と、物体に対して作動油から加えられる力の計測値とうちの少なくとも一つの試験結果を、正解ラベルとして含む。
取得部20には、第1教師データセット(設計形状データ、解析条件、解析結果(正解ラベル)、精度データ)が入力される。第1教師データでは、例えば解析結果に精度データが予め付与されている。なお、仮想物体を用いる解析結果の精度は、現実物体を用いる試験結果の精度よりも低い場合がある。
設計形状データは、CADにおける仮想物体の3次元形状データである。解析条件は、解析処理(シミュレーション)において用いてられる条件であり、例えば、剛性、温度及び湿度等の連続データに関する条件である。解析結果は、解析によって得られた結果であり、第1教師データに含まれている正解ラベルである。取得部20は、取得された第1教師データを、固体解析部230と流体解析部231と記憶部21とに出力する。
取得部20には、第2教師データセット(計測形状データ、試験条件、試験結果(正解ラベル)、精度データ)が入力される。第2教師データでは、例えば試験結果に精度データが予め付与されている。なお、現実物体を用いる試験結果の精度は、仮想物体を用いる解析結果の精度よりも高い場合がある。
計測形状データは、現実物体の3次元の形状を表す計測点群(ポイントクラウド)データである。試験条件は、試験(計測)において用いてられる条件であり、例えば、剛性、温度及び湿度等の連続データに関する条件である。試験結果は、試験(計測)によって得られた結果であり、第2教師データに含まれている正解ラベルである。取得部20は、取得された第2教師データを、試験データ導出部232と記憶部21とに出力する。
取得部20は、第1教師データ(解析結果)の精度データと、第2教師データ(試験結果)の精度データと、第1教師データのサンプル数と、第2教師データのサンプル数とを、信頼度付与部233に出力してもよい。
記憶部21は、モデル生成部23からのアクセスに応じて、学習中モデルをモデル生成部23に出力する。記憶部21は、モデル生成部23によって学習中モデルから生成された学習済モデルを記憶する。記憶部21は、予測部31からのアクセスに応じて、学習済モデルを予測部31と信頼度付与部32とに出力する。記憶部21は、取得された第1教師データ及び第2教師データを記憶する。すなわち、記憶部21は、所定の物体に関する解析条件及び解析結果又は試験条件及び試験結果の少なくともいずれか一方の情報を記憶する。所定の物体とは、例えば、解析又は試験が一切行われていない物体でもよいし、解析又は試験が行われた物体に形状が類似する物体でもよい。
制御部22は、モデル生成部23における学習の動作を制御する。例えば、制御部22は、学習中モデルから出力された予測値と各教師データの正解ラベルとの差が少なくなるように、例えば誤差逆伝搬法を用いて学習中モデルのパラメータを更新するよう、モデル生成部23に対して指示を出力する。例えば、制御部22は、学習中モデルから出力された予測値と正解ラベルとの差が少なくなるように、学習中モデルを表す数式の係数を更新するよう、モデル生成部23に対して指示を出力してもよい。
制御部22は、学習中モデルに対して転移学習の手法を実行するよう、モデル生成部23に対して指示を出力してもよい。例えば、モデル生成部23は、指示に応じて、固体解析部230又は流体解析部231のニューラルネットワークのパラメータに対して転移学習の手法を用いて、試験データ導出部232のニューラルネットワークのパラメータを補間する。例えば、モデル生成部23は、指示に応じて、剛性と応力と振動との間の相関情報を用いて、剛性モデルのパラメータと応力モデルのパラメータと振動モデルのパラメータとを相互に更新してもよい。例えば、モデル生成部23は、指示に応じて、試験データ導出部232の数式の係数を用いて、固体解析部230又は流体解析部231の数式の係数を補正してもよい。
モデル生成部23は、第1教師データと第2教師データとを用いて、学習済モデルを生成する。この学習済モデルの出力は、物体の性能値の予測値である。また、この学習済モデルの入力は、第1教師データに含まれている設計形状データ及び解析条件と、第2教師データに含まれている計測形状データ及び試験条件とのうちの少なくとも一つである。第1教師データと第2教師データとの一部は欠損していてもよい。
固体解析部230は、第1教師データに含まれている設計形状データ及び解析条件を学習中モデルに入力することによって、物体の剛性データと物体の応力データとのうちの少なくとも一つを予測値として得る。固体解析部230は、学習中モデルから出力された予測値と第1教師データの正解ラベルとの差が少なくなるように、学習中モデルのパラメータを更新する。なお、固体解析部230は、第1教師データの設計形状データ及び解析条件に対して有限要素法を用いて、物体の剛性データと物体の応力データとを解析してもよい。
流体解析部231は、第1教師データに含まれている設計形状データ及び解析条件を学習中モデルに入力することによって、物体の周囲における流体の圧力損失データと流体の流れデータとのうちの少なくとも一つを予測値として得る。流体解析部231は、学習中モデルから出力された予測値と第1教師データの正解ラベルとの差が少なくなるように、学習中モデルのパラメータを更新する。なお、流体解析部231は、第1教師データに含まれている設計形状データ及び解析条件に対して数値流体力学の手法を用いて、物体の周囲における流体の圧力損失データと流体の流れデータとを解析してもよい。
試験データ導出部232は、第2教師データに含まれている計測形状データ及び試験条件を学習中モデルに入力することによって、物体の試験データを予測値として導出する。また、試験データ導出部232は、例えば実験計画法の手法を用いて追加試験が実行された場合、追加試験の第2教師データに含まれている計測形状データ及び試験条件を学習中モデルに入力することによって、物体の試験データを更新してもよい。
信頼度付与部233は、第1教師データの精度データ又は第2教師データの精度データの少なくともいずれか一方に基づいて、性能値の予測値に信頼度を付与する。すなわち、信頼度付与部233は、性能値の予測値に対して重み付けを実行する。信頼度付与部233は、第1教師データのサンプル数と第2教師データのサンプル数との比に基づいて信頼度を導出する。例えば、第1教師データ(解析結果)の精度「100%」のサンプル数が1個であり、第2教師データ(試験結果)の精度「90%」のサンプル数が2個である場合、信頼度付与部233は、性能値の予測値の信頼度(精度)を、「93%(=(100×1+90×2)/(1+2)」と導出する。なお、このような導出方法は、一例である。
信頼度付与部233は、第1教師データと第2教師データとうちの少なくとも一方が記憶部21に追加又は変更された場合、性能値の予測値の信頼度を更新してもよい。また、信頼度付与部233は、性能値の予測値の信頼度を向上させるための第2教師データを学習済モデルに追加入力することを、ユーザに提案してもよい。提案の内容は、例えば出力部24に表示される。信頼度を向上させるための第2教師データが学習済モデルに追加入力されることで、取得部20に入力された第2教師データが補間される。
図2は、第2教師データが補間(追加入力)されていない場合における、性能値の予測値の信頼度の例を示す図である。横軸は、解析条件又は試験条件の例としての温度を表す。左側の縦軸は、試験結果を表す。右側の縦軸は、解析結果(シミュレーション結果)を表す。
図2では、摂氏50度が摂氏40度と摂氏60度との両方に近い温度であることから、摂氏50度における解析結果の精度は、摂氏40度における試験結果と摂氏60度における試験結果とに基づいて高くなっている。これに対して、摂氏80度が摂氏40度と摂氏60度との両方から遠い温度であることから、摂氏80度における解析結果の精度は、摂氏50度における解析結果の精度よりも低くなっている。
そこで、信頼度付与部233は、性能値の予測値の信頼度を向上させるための第2教師データとして、摂氏80度に近い例えば摂氏70度(新たな試験条件)における試験結果の第2教師データを学習済モデル又は学習中モデルに追加入力することを、ユーザに提案する。例えば、信頼度付与部233は、提案内容を出力部24に表示する。
図3は、第2教師データが補間(追加入力)された場合における、性能値の予測値の信頼度の例を示す図である。横軸は、解析条件又は試験条件の例としての温度を表す。左側の縦軸は、試験結果を表す。右側の縦軸は、解析結果を表す。例えば実験計画法の手法を用いて、摂氏80度に近い摂氏70度が、性能値の予測値の信頼度を向上させるためのデータの温度として選択される。そして、選択された摂氏70度における試験が追加で実行される。さらに、摂氏70度における試験結果を含む第2教師データが、学習済モデルに追加入力される。
図3では、摂氏80度が摂氏70度(新たな試験条件)から近い温度であることから、摂氏80度における解析結果の精度は、図2の摂氏80度における解析結果の精度よりも向上している。このように精度が向上した解析結果を含む第1教師データと、第2教師データとを用いてモデルの学習が実行されることによって、学習済モデルから出力される性能値の予測値の信頼度は向上する。
なお、ベイズ最適化の結果に基づいて、学習済モデル又は学習中モデル(ニューラルネットワーク)のハイパーパラメータ(例えば、学習率、バッチサイズ、学習のイテレーション数)が定められてもよい。これによって、物体(製品)の性能値の向上が期待できる。
図1に示された出力部24は、液晶ディスプレイ等の表示部である。出力部24は、モデル生成部23から出力された予測値(剛性データ、応力データ、圧力損失データ、流れデータ、試験データ)と、信頼度とを表示する。出力部24は、モデル生成部23から出力された予測値を、グラフで表示してもよい。出力部24は、スピーカを備える音声出力部でもよい。出力部24は、モデル生成部23から出力された予測値と信頼度とを、音声で出力してもよい。
次に、予測装置3の詳細について説明する。
学習段階後の実行段階(予測段階)において、図1に示された予測装置3は、予測対象の物体の3次元形状データを、学習済モデルに入力する。これによって、予測装置3は、その物体の性能値の予測値を、学習済モデルの出力として得る。
取得部30は、性能値の予測対象である物体の3次元形状データ(以下「対象形状データ」という。)を取得する。取得部30は、対象形状データを、予測部31に出力する。対象形状データには、精度データが付与されていてもよい。
予測部31は、所定の物体に関する解析条件及び解析結果又は試験条件及び試験結果の少なくともいずれか一方の情報に基づいて生成された学習済モデルを、記憶部21から取得する。予測部31は、性能値の予測対象である物体の3次元形状データ(取得部30によって取得された形状データ)を、学習済モデルに入力する。これによって、予測部31は、記憶部21に記憶された情報と取得部20によって取得された3次元形状データとに基づいて、予測対象の性能値の予測値として、学習済モデルの出力を導出する。学習済モデルの出力は、例えば、物体の剛性データと、物体の応力データと、物体の周囲における流体の圧力損失データと、物体の周囲における流体の流れデータと、物体の試験データとである。
信頼度付与部32は、学習済モデルを記憶部21から取得する。信頼度付与部32は、例えば、予測対象の物体の3次元形状データに付与されている精度データを、学習済モデルに入力する。これによって、信頼度付与部32は、予測対象の性能値の信頼度として、学習済モデルの出力を導出する。
出力部33は、液晶ディスプレイ等の表示部である。出力部33は、予測部31から出力された予測値(剛性データ、応力データ、圧力損失データ、流れデータ、試験データ)を、予測結果として表示する。出力部33は、予測部31から出力された信頼度を、予測結果として表示してもよい。出力部33は、予測部31から出力された予測値と信頼度とを、グラフで表示してもよい。出力部33は、スピーカを備える音声出力部でもよい。出力部33は、予測部31から出力された予測値と信頼度とを、音声で出力してもよい。
次に、性能予測装置1の動作例を説明する。
図4は、学習装置2の動作例を示すフローチャートである。取得部20は、第1教師データと第2教師データとのうちの少なくとも一方を、モデル生成部23に出力する(ステップS101)。
モデル生成部23は、取得部20から出力された各教師データに含まれている3次元形状データ及び条件を、学習中モデルとしての固体解析部230と流体解析部231と試験データ導出部232とに入力する。学習中モデルは、機械学習モデルでもよいし、統計手法を用いて導出された数式で表されるモデルでもよい。モデル生成部23は、第1教師データに含まれている精度データと、第2教師データに含まれている精度データと、各教師データのサンプル数データとを、学習中モデルとしての信頼度付与部233に入力してもよい(ステップS102)。
モデル生成部23は、学習中モデルから出力された予測値(例えば、剛性データ、応力データ、圧力損失データ、流れデータ、試験データ)と、取得部20から出力された各教師データの正解ラベルとの差が少なくなるように、学習中モデルのパラメータを更新する。モデル生成部23は、性能値の予測値と正解ラベルと差が少なくなるように、学習中モデルを表す数式の係数を更新してもよい。学習中モデルに対して、転移学習の手法が実行されてもよい。このようにして、パラメータが更新された学習中モデルは、学習済モデルとなる。なお、モデル生成部23は、精度データに基づいて、予測値の信頼度を導出してもよい(ステップS103)。
出力部24は、製品又は部品の性能値の予測値と、性能値の予測値の信頼度とを表示する(ステップS104)。モデル生成部23は、学習済モデルを記憶部21に記録する(ステップS105)。
図5は、予測装置3の動作例を示すフローチャートである。予測部31は、学習済モデルを記憶部21から取得する(ステップS201)。取得部30は、対象形状データ(予測対象の3次元形状データ)を、所定の外部装置(不図示)から取得する(ステップS202)。取得部30は、対象形状データを予測部31に出力する(ステップS203)。
予測部31は、対象形状データを学習済モデルに入力する(ステップS204)。予測部31は、学習済モデルの出力を、予測対象の性能値の予測値として導出する。信頼度付与部32は、対象形状データに付与されている精度データに基づいて、性能値の予測値の信頼度を導出する(ステップS205)。出力部33は、予測対象の性能値の予測値と、性能値の予測値の信頼度とを表示する(ステップS206)。
以上のように、性能予測装置1において、モデル生成部23は、第1教師データと第2教師データとに基づいて、学習済モデルを生成する。第1教師データは、設計形状データと、解析条件と、解析結果(正解ラベル)とを含む。第2教師データは、計測形状データと、試験条件と、試験結果(正解ラベル)とを含む。第1教師データは、解析結果の精度データを含んでもよい。第2教師データは、試験結果の精度データを含んでもよい。解析結果の精度データは、試験結果の精度データ(例えば、100%)を基準としてもよい。
学習済モデルの入力は、第1教師データ(設計形状データ等)と、第2教師データ(計測形状データ等)とのうちの少なくとも一つである。第1教師データと第2教師データとの一部は欠損していてもよい。学習済モデルは、物体の性能値の予測値を出力する。予測部31は、予測対象の3次元形状データを学習済モデルに入力する。これによって、予測部31は、学習済モデルの出力を、予測対象の性能値の予測値として導出する。学習済モデルは、予測値の信頼度を出力してもよい。信頼度付与部32は、予測対象の3次元形状データを、学習済モデルに入力する。これによって、信頼度付与部32は、学習済モデルの出力を、予測値の信頼度として導出する。出力部33は、導出された予測値と信頼度とを出力する。
これによって、製品(機器、部品)の性能値をその製品の3次元形状に基づいて効率よく予測することが可能である。
学習装置2は、解析結果(シミュレーション結果)と試験データ(試験結果)とを、機械学習等のモデルの教師データとして用いる。学習装置2は、3次元形状データと設計性能との相関を予め学習し、学習済モデルを生成する。これによって、予測装置3が学習済モデルを用いて、その製品の対象形状データに基づいて予測装置3が製品の設計性能を高速に予測することが可能である。
試験結果の精度は、解析結果の精度よりも高いことが多い。また、試験結果の計測点のサンプル数は、解析結果のサンプル数よりも少ないことが多い。そこで、解析結果と試験結果とを学習中モデルに同時に学習させることによって、解析結果と試験結果との間の相関情報が、学習済モデルに反映される。これによって、解析結果と試験結果とのうちの片方を学習中モデルに学習させる場合と比較して、予測値の信頼度の向上が見込まれる。
製品開発が効率化され、素早い製品投入が顧客に対して可能となる。様々な設計案を試せるようになり、魅力ある製品を開発することが可能となる。素早い検証により、設計変更が早期に可能となり、サプライヤとメーカとの間の調整が容易になる。風などによる外乱の多い風車の性能値と、海流などによる外乱の多い船舶との性能値とを、効率よく予測することが可能である。
性能値(剛性、応力、圧力損失)を予測するために、過去に実施した解析情報(固定条件及び荷重条件等の解析条件、解析結果)とその解析情報に対応する製品情報(製品の種別、部品の構成、3次元形状等)に基づいて学習した予測アルゴリズムに、性能を予測する対象の物体の3次元形状と製品種別と部品構成とを入力することにより、新規の解析を行う場合よりも短時間で製品又は部品の性能値を予測することができる。
(第2実施形態)
第2実施形態では、教師データを用いない学習(教師なし学習)を学習装置が実行する点が、第1実施形態と相違する。第2実施形態では、第1実施形態との差分を中心に説明する。
図6は、学習装置2aの構成例を示す図である。学習装置2aは、入力された第1データ及び第2データに含まれている3次元形状データに基づいて、物体の性能値の予測値を導出する。第1データは、設計形状データと、解析条件と、解析結果とを含む。第2データは、計測形状データと、試験条件と、試験結果とを含む。
学習装置2aは、取得部20と、記憶部21と、制御部22と、モデル生成部23aと、出力部24とを備える。モデル生成部23aは、固体解析部230と、流体解析部231と、試験データ導出部232と、信頼度付与部233とを備える。
取得部20は、取得された第1データを、固体解析部230と流体解析部231と記憶部21とに出力する。取得部20は、取得された第2データを、試験データ導出部232と記憶部21とに出力する。記憶部21は、取得された第1データ及び第2データを記憶する。すなわち、記憶部21は、所定の物体に関する解析条件及び解析結果又は試験条件及び試験結果の少なくともいずれか一方の情報を記憶する。
モデル生成部23は、第1データと第2データとを用いて、教師なし学習によって学習済モデルを生成する。この学習済モデルの入力は、第1データに含まれている設計形状データ及び解析条件と、第2データに含まれている計測形状データ及び試験条件とのうちの少なくとも一つである。第1データと第2データとの一部は欠損していてもよい。また、この学習済モデルの出力は、物体の性能値の予測値である。
モデル生成部23は、学習済モデルを用いる教師なし学習として、第1データと第2データとのクラスタリングを実行する。モデル生成部23は、例えば「k-means法」を用いて、第1データと第2データとのクラスタリングを実行する。クラスタ数「k」の値は、ユーザによって予め定められてもよいし、モデル生成部23が混合ディリクレ過程を用いてクラスタ数「k」の事後分布を導出することによって推定してもよい。
これによって、予測段階において学習済モデルに入力された対象形状データがどのクラスタに属するかを予測部31が識別することができる。対象形状データがどのクラスタに属するのかに基づいて、予測段階において物体の性能値の予測値を学習済モデルが出力することができる。
モデル生成部23は、学習済モデルを用いる教師なし学習として、第1データと第2データとに対して主成分分析(次元の圧縮)を実行してもよい。これによって、製品又は部品の性能値の予測値に影響する主要因を、予測段階において予測部31が対象形状データのうちから抽出することができる。すなわち予測段階において、学習済モデルは、学習済モデルに入力された対象形状データにおける主要因に基づいて、物体の性能値の予測値を出力することができる。
図7は、学習装置2aの動作例を示すフローチャートである。取得部20は、第1データと第2データとのうちの少なくとも一方を、モデル生成部23に出力する(ステップS301)。
モデル生成部23は、取得部20から出力された各データに含まれている3次元形状データ及び条件を、学習中モデルとしての固体解析部230と流体解析部231と試験データ導出部232とに入力する。学習中モデルは、機械学習モデルでもよいし、統計手法を用いて導出された数式で表されるモデル(モデル式)でもよい。モデル生成部23は、第1データに含まれている精度データと、第2データに含まれている精度データと、各データのサンプル数データとを、学習中モデルとしての信頼度付与部233に入力してもよい(ステップS302)。
モデル生成部23は、例えば、第1データと第2データとに対してクラスタリングを実行する。また、モデル生成部23は、例えば、第1データと第2データとに対して主成分分析を実行してもよい。このようにして、パラメータが更新された学習中モデルは、学習済モデルとなる。なお、モデル生成部23は、精度データに基づいて、予測値の信頼度を導出してもよい(ステップS303)。
出力部24は、製品又は部品の性能値の予測値と、性能値の予測値の信頼度とを表示する(ステップS304)。モデル生成部23は、学習済モデルを記憶部21に記録する(ステップS305)。
以上のように、モデル生成部23は、第1データと第2データとを用いて、教師なし学習によって学習済モデルを生成する。これによって、製品(機器、部品)の性能値をその製品の3次元形状に基づいて効率よく予測することが可能である。
(第3実施形態)
第3実施形態では、外部で用意された任意の学習済モデルを用いて予測装置が予測値を導出する点が、第1実施形態及び第2実施形態と相違する。第3実施形態では、第1実施形態及び第2実施形態との差分を中心に説明する。
図8は、予測装置3bの構成例を示す図である。予測装置3bは、取得部30と、予測部31bと、信頼度付与部32と、出力部33とを備える。予測部31bは、外部で用意された任意の学習済モデルを取得する。この任意の学習済モデルは、予測対象の物体の3次元形状データを入力とし、予測対象の性能値の予測値を出力とするモデルである。学習済モデルは、例えばモデル式で表現されてもよいし、例えばニューラルネットワークを用いて表現されてもよい。
予測部31bは、予測対象の物体の3次元形状データを、外部で用意された任意の学習済モデルに入力する。これによって、予測部31は、予測対象の性能値の予測値として、学習済モデルの出力を導出する。ここで、予測対象の物体の3次元形状データを学習済モデルの入力として、予測対象の性能値の予測値を学習済モデルが出力する点が技術的な特徴であり、学習済モデルのパラメータの値は特定の値に限定されない。
以上のように、予測部31bは、予測対象の物体の3次元形状データを入力とし、予測対象の性能値の予測値を出力とする学習済モデルに、予測対象の物体の3次元形状データを入力する。これによって、製品(機器、部品)の性能値をその製品の3次元形状に基づいて効率よく予測することが可能である。
上記の学習装置及び予測装置の各機能部(コンピュータ)のうちの一部又は全部は、CPU(Central Processing Unit)等のプロセッサが、記憶部に記憶されたプログラムを実行することにより実現される。記憶部は、例えばフラッシュメモリ、HDD(Hard Disk Drive)などの不揮発性の記録媒体(非一時的な記録媒体)が好ましい。記憶部は、RAM(Random Access Memory)などの揮発性の記録媒体を備えてもよい。上記の学習装置及び予測装置の各機能部のうちの一部又は全部は、例えば、LSI(Large Scale Integrated circuits)やASIC(Application Specific Integrated Circuit)等のハードウェアを用いて実現されてもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1…性能予測装置、2,2a…学習装置、3,3b…予測装置、20…取得部、21…記憶部、22…制御部、23…モデル生成部、24…出力部、30…取得部、31…予測部、32…信頼度付与部、33…出力部、230…固体解析部、231…流体解析部、232…試験データ導出部、233…信頼度付与部

Claims (13)

  1. 所定の物体に関する解析条件及び解析結果又は試験条件及び試験結果の少なくともいずれか一方の情報を記憶する記憶部と、
    性能値の予測対象である物体の形状データを取得する取得部と、
    前記記憶部に記憶された情報と前記取得部によって取得された前記形状データとに基づいて前記性能値の予測値を導出する予測部と、
    導出された前記予測値を出力する出力部と
    を備える性能予測装置。
  2. 前記記憶部に記憶された情報に基づいて学習済モデルを生成するモデル生成部を備え、
    前記予測部は、前記取得部によって取得された前記形状データと前記学習済モデルとに基づいて前記物体の性能値の予測値を導出する、
    請求項1に記載の性能予測装置。
  3. 前記予測部によって導出された前記予測値に信頼度を付与する信頼度付与部を備え、
    前記出力部は前記信頼度が付与された前記予測値を出力する、
    請求項1又は請求項2に記載の性能予測装置。
  4. 前記信頼度付与部は、前記記憶部に記憶された前記解析条件及び前記解析結果を表す第1教師データの精度又は前記試験条件及び試験結果を表す第2教師データの精度の少なくともいずれか一方に基づいて前記信頼度を導出する、
    請求項3に記載の性能予測装置。
  5. 前記信頼度付与部は、前記記憶部に記憶された第1教師データの精度のサンプル数と前記第2教師データの精度のサンプル数との比に基づいて前記信頼度を導出する、
    請求項4に記載の性能予測装置。
  6. 前記信頼度付与部は、前記第1教師データと前記第2教師データとうちの少なくとも一方が前記記憶部に追加された場合に、前記予測値に付与された前記信頼度を更新する、
    請求項5に記載の性能予測装置。
  7. 前記信頼度付与部は新たな試験条件における試験結果を前記第2教師データとして前記記憶部に追加することをユーザに提案する、
    請求項4から請求項6のいずれか一項に記載の性能予測装置。
  8. 前記第1教師データは前記物体の剛性データと前記物体の応力データと前記物体の周囲における流体の圧力損失データと前記流体の流れデータとのうちの少なくとも一つの前記解析結果を正解ラベルとして含む、
    請求項4から請求項7のいずれか一項に記載の性能予測装置。
  9. 前記第2教師データは前記物体の変位計測値と前記物体の応力計測値と時系列の振動入力に対する前記物体の加速度若しくは変位の計測値と前記物体に定められた位置間の圧力差の計測値と前記物体に対して作動油から加えられる力の計測値とうちの少なくとも一つの前記試験結果を正解ラベルとして含む、
    請求項4から請求項8のいずれか一項に記載の性能予測装置。
  10. 前記物体は機器又は部品であり、
    前記機器は減速機と油圧バルブとコンプレッサとドアとのうちの少なくとも一つであり、
    前記部品はボルトとバネとハウジングとブラケットと歯車とフレームとのうちの少なくとも一つである、
    請求項1から請求項9のいずれか一項に記載の性能予測装置。
  11. 前記物体は風車と船舶と建機とロボットの少なくともいずれか一つに搭載される前記機器又は前記部品である、
    請求項10に記載の性能予測装置。
  12. 性能値が予測される対象である物体の形状データを取得する取得ステップと、
    所定の物体に関する解析条件及び解析結果又は試験条件及び試験結果の少なくともいずれか一方の情報と取得された前記形状データとに基づいて前記性能値の予測値を導出する予測ステップと、
    導出された前記予測値を出力する出力ステップと
    を含む性能予測方法。
  13. コンピュータに、
    性能値が予測される対象である物体の形状データを取得する取得手順と、
    所定の物体に関する解析条件及び解析結果又は試験条件及び試験結果の少なくともいずれか一方の情報と取得された前記形状データとに基づいて前記性能値の予測値を導出する予測手順と、
    導出された前記予測値を出力する出力手順と
    を実行させるための性能予測プログラム。
JP2021036005A 2021-03-08 2021-03-08 性能予測装置、性能予測方法及び性能予測プログラム Pending JP2022136412A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021036005A JP2022136412A (ja) 2021-03-08 2021-03-08 性能予測装置、性能予測方法及び性能予測プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021036005A JP2022136412A (ja) 2021-03-08 2021-03-08 性能予測装置、性能予測方法及び性能予測プログラム

Publications (1)

Publication Number Publication Date
JP2022136412A true JP2022136412A (ja) 2022-09-21

Family

ID=83311824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021036005A Pending JP2022136412A (ja) 2021-03-08 2021-03-08 性能予測装置、性能予測方法及び性能予測プログラム

Country Status (1)

Country Link
JP (1) JP2022136412A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024113485A1 (zh) * 2022-11-30 2024-06-06 苏州大学 一种子弹侵彻钢板场景下钢板强度参数的分析方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024113485A1 (zh) * 2022-11-30 2024-06-06 苏州大学 一种子弹侵彻钢板场景下钢板强度参数的分析方法及装置

Similar Documents

Publication Publication Date Title
Dong et al. Bearing degradation process prediction based on the PCA and optimized LS-SVM model
Abdeljaber et al. Nonparametric structural damage detection algorithm for ambient vibration response: utilizing artificial neural networks and self-organizing maps
Mohan et al. Structural damage assessment using FRF employing particle swarm optimization
CN100468422C (zh) 利用交叉模型交叉模态的结构模型修正方法
US9081921B2 (en) Method for simulating rubber compound
Demo et al. An efficient shape parametrisation by free-form deformation enhanced by active subspace for hull hydrodynamic ship design problems in open source environment
Agathos et al. Parametric reduced order models for output-only vibration-based crack detection in shell structures
US20210333768A1 (en) Control support apparatus, control support method, computer readable medium with control support program recorded thereon and control system
JPWO2018150798A1 (ja) モデル推定システム、方法およびプログラム
Deng et al. Data-driven calibration of multifidelity multiscale fracture models via latent map gaussian process
Kerfriden et al. Statistical extraction of process zones and representative subspaces in fracture of random composites
JP2022136412A (ja) 性能予測装置、性能予測方法及び性能予測プログラム
Zhang et al. A right-hand side function surrogate model-based method for the black-box dynamic optimization problem
JP2021012605A (ja) 伝達関数の予測方法
Iquebal et al. Emulating the evolution of phase separating microstructures using low-dimensional tensor decomposition and nonlinear regression
Ahmadian et al. Comparative study of a newly proposed machine learning classification to detect damage occurrence in structures
He et al. Toward a shape-performance integrated digital twin based on hybrid reduced-order modeling for engineering structures
JP7490807B2 (ja) 産業上の利用のために人工知能モジュールを訓練すること
Vollant et al. Optimal estimator and artificial neural network as efficient tools for the subgrid-scale scalar flux modeling
He et al. A novel geometric nonlinear reduced order modeling method using multi-fidelity surrogate for real-time structural analysis
Wei et al. Automatic Parameterization for Aerodynamic Shape Optimization via Deep Geometric Learning
Parola et al. Structural Damage Localization via Deep Learning and IoT Enabled Digital Twin.
Wilson et al. Hierarchical model verification and validation for structural health monitoring using dynamic substructuring
JP7163977B2 (ja) 推定装置、学習装置、それらの方法、およびプログラム
WO2023012964A1 (ja) 機械学習装置、加工面品位を評価するシステム、及び機械学習用プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240227