JP2022135325A - Failure detection relay circuit - Google Patents

Failure detection relay circuit Download PDF

Info

Publication number
JP2022135325A
JP2022135325A JP2021035063A JP2021035063A JP2022135325A JP 2022135325 A JP2022135325 A JP 2022135325A JP 2021035063 A JP2021035063 A JP 2021035063A JP 2021035063 A JP2021035063 A JP 2021035063A JP 2022135325 A JP2022135325 A JP 2022135325A
Authority
JP
Japan
Prior art keywords
relay
failure detection
detection relay
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021035063A
Other languages
Japanese (ja)
Other versions
JP7385612B2 (en
Inventor
貫造 関
Kanzo Seki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosan Electric Manufacturing Co Ltd
Original Assignee
Kyosan Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosan Electric Manufacturing Co Ltd filed Critical Kyosan Electric Manufacturing Co Ltd
Priority to JP2021035063A priority Critical patent/JP7385612B2/en
Publication of JP2022135325A publication Critical patent/JP2022135325A/en
Application granted granted Critical
Publication of JP7385612B2 publication Critical patent/JP7385612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To reduce the restoration time of a failure detection relay to which a protective circuit is connected in parallel.SOLUTION: A relay circuit 1 comprises: a failure detection relay 10 that is connected between output terminals of a drive circuit 3 with an operating contact 22 of a second relay 20 therebetween and to which drive output is applied; a second relay 20 that is connected between the output terminals of the drive circuit 3 with a restoration contact 14 of the failure detection relay 10 therebetween and to which the drive output is applied; and a resistance 40 that is connected in series with an operating contact 12 of the failure detection relay 10, in which the series connection is connected in parallel with the operating contact 22 of the second relay 20. Protection circuits 30a and 30b are connected in parallel to the failure detection relay 10 and the second relay 20, respectively. The resistance 40 limits a coil current of the failure detection relay 10 to be equal to or more than a holding current of the failure detection relay 10 and less than a rated current.SELECTED DRAWING: Figure 1

Description

本発明は、故障検知リレー回路に関する。 The present invention relates to a failure detection relay circuit.

鉄道信号保安制御システムでは、制御装置の故障を外部出力するために故障検知リレーが用いられる。通常、故障検知リレーとしては直流リレーが用いられる。制御装置は、故障が検知されていない場合には、1と0が交互に構成された交番信号を故障検知信号として故障検知リレーの駆動回路に出力して駆動回路から直流出力を発生させて故障検知リレーを動作させる。一方、故障が検知された場合には、0のみで構成された信号を故障検知信号として駆動回路に出力して駆動回路の直流出力を消失させて故障検知リレーを復旧させることで、故障検知リレーの動作接点を介して故障の発生を外部出力する。また、故障検知リレーの動作接点を介して制御装置の出力を外部に出力し、故障検知時には故障検知リレーを復旧させて外部への出力を遮断することで安全な制御を実現している。 2. Description of the Related Art In a railway signaling safety control system, a failure detection relay is used to externally output a failure of a control device. A DC relay is usually used as the failure detection relay. When no failure is detected, the control device outputs an alternating signal composed of 1 and 0 alternately as a failure detection signal to the drive circuit of the failure detection relay to generate a DC output from the drive circuit to detect the failure. Activate the detection relay. On the other hand, when a failure is detected, a signal composed only of 0 is output to the drive circuit as a failure detection signal to extinguish the DC output of the drive circuit and restore the failure detection relay. The occurrence of failure is output to the outside via the operating contact. In addition, the output of the control device is output to the outside through the operation contact of the failure detection relay, and when a failure is detected, the failure detection relay is restored and the output to the outside is cut off, realizing safe control.

直流リレーでは、復旧時にリレーコイルに蓄積された電磁エネルギーによる逆起電圧が発生することから、駆動回路の半導体素子等を電気的破壊から保護するために、逆起電圧の吸収用の保護回路が設けられる。しかしながら、リレーコイルに蓄積されている電磁エネルギーを保護回路とコイルとで循環させて消費させるため、保護回路が設けられない場合に比較して、リレーの復旧時間が長くなる。そこで、復旧時間が長くなることを抑制した保護回路の一例として、ダイオードとツェナーダイオードとを直列接続して構成した保護回路が特許文献1に開示されている。 In a DC relay, a back electromotive force is generated by the electromagnetic energy accumulated in the relay coil when it is restored. be provided. However, since the electromagnetic energy accumulated in the relay coil is circulated and consumed by the protection circuit and the coil, the recovery time of the relay becomes longer than when the protection circuit is not provided. As an example of a protection circuit that suppresses an increase in recovery time, Patent Document 1 discloses a protection circuit configured by connecting a diode and a Zener diode in series.

特開昭51-054256号公報JP-A-51-054256

鉄道信号保安制御システムでは、高い安全性が要求される。そのため、故障検知リレーについても、保護回路を設けることを前提として、制御装置による故障検知時における故障検知リレーの復旧時間の更なる短縮が求められている。 A high level of safety is required in the railway signal security control system. Therefore, assuming that a protection circuit is provided for the failure detection relay, further shortening of the recovery time of the failure detection relay when the failure is detected by the control device is required.

本発明は、上記課題に鑑みてなされたものであり、保護回路が並列接続された故障検知リレーの復旧時間を短縮することを目的としている。 SUMMARY OF THE INVENTION An object of the present invention is to shorten the recovery time of a failure detection relay to which a protection circuit is connected in parallel.

上記課題を解決するための第1の発明は、
制御装置から入力される故障検知信号に応じた駆動出力を行う故障検知リレー駆動回路と、
前記駆動出力が第2リレーの動作接点を介して印加される故障検知リレーと、
前記駆動出力が前記故障検知リレーの復旧接点を介して印加される前記第2リレーと、
前記故障検知リレーの動作接点と直列に接続された抵抗であって、当該直列接続が前記第2リレーの動作接点に対して並列に接続された抵抗と、
を備え、
前記故障検知リレー及び前記第2リレーそれぞれには、保護回路が並列接続されており、
前記抵抗は、前記故障検知リレーのコイル電流を当該故障検知リレーの保持電流以上で且つ定格電流未満に制限する、
故障検知リレー回路である。
A first invention for solving the above problems is
a failure detection relay drive circuit that performs a drive output according to a failure detection signal input from a control device;
a failure detection relay to which the drive output is applied via an operating contact of a second relay;
the second relay to which the drive output is applied via a recovery contact of the failure detection relay;
a resistor connected in series with the operating contact of the failure detection relay, the series connection being connected in parallel with the operating contact of the second relay;
with
A protection circuit is connected in parallel to each of the failure detection relay and the second relay,
The resistor limits the coil current of the failure detection relay to a holding current of the failure detection relay or more and less than a rated current.
It is a failure detection relay circuit.

第1の発明によれば、保護回路が並列接続された故障検知リレーの復旧時間を短縮することができる。つまり、故障検知リレーに印加される駆動出力の経路には、第2リレーの動作接点を介した経路と、故障検知リレーの動作接点と抵抗との直列接続を介した経路との2つがある。前者の経路は故障検知リレーを作動させるために利用し、後者の経路は故障検知リレーを継続的に動作状態とするために利用することができる。後者の経路はいわゆる自己保持回路である。後者の経路にある抵抗は、故障検知リレーのコイル電流を保持電流以上で且つ定格電流未満に制限する。これにより、故障検知リレーが動作状態のときにリレーコイルに蓄積される電磁エネルギーは、故障検知リレーのコイル電流が定格電流付近である従来のリレー回路の場合と比較して小さくなる。そのため、動作状態から復旧するときに発生する逆起電圧が小さくなり、復旧時間を短縮することができる。また、故障検知リレーは定格電流未満の電流で動作状態を保持することから、省電力化を図ることができる。 According to the first invention, it is possible to shorten the recovery time of the failure detection relay to which the protection circuit is connected in parallel. In other words, there are two paths for the drive output applied to the failure detection relay: one via the operating contact of the second relay, and the other via the series connection of the operating contact of the failure detection relay and the resistor. The former path can be used to activate the fault detection relay, and the latter path can be used to continuously activate the fault detection relay. The latter path is a so-called self-holding circuit. A resistance in the latter path limits the coil current of the fault detection relay to above the holding current and below the rated current. As a result, the electromagnetic energy stored in the relay coil when the failure detection relay is in operation is smaller than in the case of a conventional relay circuit in which the coil current of the failure detection relay is near the rated current. Therefore, the back electromotive force generated when recovering from the operating state is reduced, and the recovery time can be shortened. In addition, since the failure detection relay maintains the operating state with a current less than the rated current, power can be saved.

また、第2リレーは、駆動出力が故障検知リレーの復旧接点を介して印加されるので、故障検知リレーが復旧状態のときに動作し、故障検知リレーが動作すると復旧する。これにより、故障検知リレーを復旧状態から動作させるときに、先ず第2リレーを動作させて故障検知リレーを動作させ、故障検知リレーが動作状態となった後に、駆動出力が故障検知リレーの動作接点と抵抗との直列接続のみを介して故障検知リレーに印加されて自己保持回路が形成されることで、故障検知リレーの動作状態を保持することができる。 Further, the second relay receives the drive output through the recovery contact of the failure detection relay, so that it operates when the failure detection relay is in the recovery state and recovers when the failure detection relay operates. As a result, when the failure detection relay is operated from the restored state, first the second relay is operated to operate the failure detection relay, and after the failure detection relay is in the operation state, the drive output is the operation contact of the failure detection relay. is applied to the fault detection relay only through the series connection of the .

故障検知リレー回路の構成図。The block diagram of a failure detection relay circuit. リレー回路の動作を説明するタイムチャート。The time chart explaining operation|movement of a relay circuit.

以下、図面を参照して本発明の好適な実施形態の一例について説明する。なお、以下に説明する実施形態によって本発明が限定されるものではなく、本発明を適用可能な形態が以下の実施形態に限定されるものでもない。また、図面の記載において、同一要素には同一符号を付す。 An example of a preferred embodiment of the present invention will be described below with reference to the drawings. In addition, the present invention is not limited by the embodiments described below, and the forms to which the present invention can be applied are not limited to the following embodiments. Also, in the description of the drawings, the same reference numerals are given to the same elements.

[回路の構成]
図1は、本実施形態の故障検知リレー回路100の構成図である。図1に示すように、故障検知リレー回路100は、リレー回路1と、故障検知リレー駆動回路(以下、適宜「駆動回路」と略称する)3とを備える。
[Circuit configuration]
FIG. 1 is a configuration diagram of a failure detection relay circuit 100 of this embodiment. As shown in FIG. 1 , the failure detection relay circuit 100 includes a relay circuit 1 and a failure detection relay drive circuit (hereinafter abbreviated as “drive circuit” as appropriate) 3 .

駆動回路3は、制御装置5から入力される故障の検出有無を示す故障検知信号に応じた駆動信号を出力する。以下、この出力を駆動出力という。具体的には、駆動出力として、出力端子間に、故障が検出されていない旨の故障検知信号が入力された場合には故障検知リレー10の定格電圧(或いは定格電圧近傍)の所定電圧を出力し、故障が検出されている旨の故障検知信号が入力された場合にはゼロ電圧(電圧無し)を出力する。 The drive circuit 3 outputs a drive signal corresponding to a failure detection signal input from the control device 5 and indicating whether or not a failure has been detected. This output is hereinafter referred to as drive output. Specifically, as the drive output, when a failure detection signal indicating that no failure has been detected is input between the output terminals, a predetermined voltage of the rated voltage (or near the rated voltage) of the failure detection relay 10 is output. However, when a failure detection signal indicating that a failure has been detected is input, zero voltage (no voltage) is output.

リレー回路1は、駆動回路3に接続され、駆動回路3からの駆動出力が印加される。リレー回路1は、故障検知リレー10と、第2リレー20と、抵抗40とを備えて構成される。 The relay circuit 1 is connected to a drive circuit 3 and receives a drive output from the drive circuit 3 . A relay circuit 1 includes a failure detection relay 10 , a second relay 20 and a resistor 40 .

故障検知リレー10は、第2リレー20の動作接点22を介して、駆動回路3の出力端子間に接続されて駆動出力が印加される。第2リレー20は、故障検知リレー10の復旧接点14を介して、駆動回路3の出力端子間に接続されて駆動出力が印加される。 The failure detection relay 10 is connected between the output terminals of the drive circuit 3 via the operation contact 22 of the second relay 20 and applied with a drive output. The second relay 20 is connected between the output terminals of the drive circuit 3 via the recovery contact 14 of the failure detection relay 10 and receives a drive output.

抵抗40は、故障検知リレー10の動作接点12と直列に接続され、その直列接続が、第2リレー20の動作接点22に対して並列に接続されている。つまり、故障検知リレー10に印加される駆動出力の経路には、第2リレー20の動作接点22を介した経路と、故障検知リレー10の動作接点12及び抵抗40の直列接続とを介した経路とがある。後述するように、前者の経路は故障検知リレー10を作動させるために利用し、後者の経路は故障検知リレー10を継続的に動作状態とするために利用する。後者の経路はいわゆる自己保持回路を形成する。抵抗40は、故障検知リレー10のコイル電流を保持電流以上で且つ定格電流未満に制限する。一般的に保持電流は定格電流の30%程度であるから、例えばコイル電流が定格の50%程度となるように、抵抗40の抵抗値を定めることができる。つまり、抵抗40の抵抗値は、故障検知リレー10が動作状態にあるときにリレーコイルに蓄積される電磁エネルギーを、従来のリレー回路に比べて低減することができる。 The resistor 40 is connected in series with the operating contact 12 of the failure detection relay 10 , and the series connection is connected in parallel with the operating contact 22 of the second relay 20 . That is, the path of the driving output applied to the failure detection relay 10 includes a path via the operating contact 22 of the second relay 20 and a path via the series connection of the operating contact 12 of the failure detection relay 10 and the resistor 40. There is. As will be described later, the former path is used to activate the failure detection relay 10, and the latter path is used to keep the failure detection relay 10 in an operating state. The latter path forms a so-called self-holding circuit. A resistor 40 limits the coil current of the failure detection relay 10 to be equal to or greater than the holding current and less than the rated current. Since the holding current is generally about 30% of the rated current, the resistance value of the resistor 40 can be determined so that the coil current is about 50% of the rated current. That is, the resistance value of the resistor 40 can reduce the electromagnetic energy accumulated in the relay coil when the failure detection relay 10 is in an operating state, compared to a conventional relay circuit.

故障検知リレー10及び第2リレー20は、何れも同種類の直流リレーである。つまり、定格電圧や定格電流、動作時間、復旧時間等の特性値が同等である。また、故障検知リレー10に保護回路30aが並列接続され、第2リレー20に保護回路30bが並列接続されている。保護回路30a,30bは、リレーコイルに蓄積された電磁エネルギーにより発生する逆起電圧を抑制するための回路である。例えば、ダイオードや、ダイオードとツェナーダイオードとの直列接続等で構成することができる。 Both the failure detection relay 10 and the second relay 20 are DC relays of the same type. That is, characteristic values such as rated voltage, rated current, operating time, and recovery time are equivalent. A protection circuit 30a is connected in parallel to the failure detection relay 10, and a protection circuit 30b is connected in parallel to the second relay 20. As shown in FIG. The protection circuits 30a and 30b are circuits for suppressing back electromotive force generated by electromagnetic energy accumulated in the relay coils. For example, it can be composed of a diode, a series connection of a diode and a Zener diode, or the like.

[回路の動作]
図2は、リレー回路1の動作を説明するタイムチャートである。図2では、横方向を時間経過として、上から順に、駆動回路3が出力する駆動出力、第2リレー20の状態、故障検知リレー10の状態、を示している。駆動出力は、故障が検出されず所定電圧を出力する“正常”と、故障が検出されて出力電圧が無しとなる“故障”との2つの状態として示している。第2リレー20及び故障検知リレー10の状態は、“動作”と“復旧”との2つの状態として示している。
[Circuit operation]
FIG. 2 is a time chart for explaining the operation of the relay circuit 1. FIG. In FIG. 2 , the horizontal direction indicates the passage of time, and from the top, the drive output output by the drive circuit 3, the state of the second relay 20, and the state of the failure detection relay 10 are shown. The drive output is shown in two states: "normal" in which no failure is detected and a predetermined voltage is output, and "fault" in which no failure is detected and no output voltage is output. The states of the second relay 20 and the failure detection relay 10 are shown as two states of "operating" and "restoring".

先ず、駆動回路3の立ち上げ前の初期状態では、駆動出力である駆動回路3の出力電圧は無しの状態である。従って、第2リレー20及び故障検知リレー10は、ともに復旧しており、それぞれの復旧接点が構成され、動作接点が開放されている(図2の(a))。 First, in the initial state before the drive circuit 3 is activated, there is no output voltage of the drive circuit 3, which is the drive output. Therefore, both the second relay 20 and the failure detection relay 10 are restored, their restoration contacts are configured, and their operating contacts are open ((a) in FIG. 2).

駆動回路3の立ち上げ直後は、故障が検出されていないならば、駆動回路3から所定電圧が出力される(図2の(b))。すると、故障検知リレー10の復旧接点14を介して駆動出力が印加される第2リレー20が所定の動作時間taの経過後に動作し、第2リレー20の動作接点22が構成される(図2の(c))。 Immediately after the start-up of the drive circuit 3, a predetermined voltage is output from the drive circuit 3 if no failure is detected ((b) in FIG. 2). Then, the second relay 20 to which the drive output is applied via the recovery contact 14 of the failure detection relay 10 operates after a predetermined operating time ta has elapsed, and the operating contact 22 of the second relay 20 is formed (see FIG. 2). (c)).

第2リレー20は、リレーコイルの電圧(又は電流)が、その定格電圧(又は定格電流)において動作接点を構成するまでの時間が、動作時間taである。そして、駆動出力である駆動回路3の出力電圧は故障検知リレー10の定格電圧付近の所定電圧であるから、故障検知リレー10と同一種類の第2リレー20のリレーコイルに流れる電流(コイル電流)は、定格電流付近の電流に達することになる。 For the second relay 20, the time it takes for the voltage (or current) of the relay coil to form the operating contact at its rated voltage (or rated current) is the operating time ta. Since the output voltage of the drive circuit 3, which is the drive output, is a predetermined voltage near the rated voltage of the failure detection relay 10, the current (coil current) flowing through the relay coil of the second relay 20 of the same type as the failure detection relay 10. will reach a current near the rated current.

次いで、第2リレー20の動作接点22を介して駆動出力が印加される故障検知リレー10が所定の動作時間taの経過後に動作し、故障検知リレー10の動作接点12が構成されるとともに復旧接点14が開放される(図2の(d))。このとき、故障検知リレー10のリレーコイルに流れる電流(コイル電流)は、第2リレー20と同様に、定格電流付近の電流に達することになる。そして、故障検知リレー10の動作接点が構成されることで、直列接続された抵抗40とともに自己保持回路を形成し、この自己保持回路を介して、故障検知リレー10は動作状態を継続することになる。 Next, the failure detection relay 10 to which the drive output is applied via the operating contact 22 of the second relay 20 operates after a predetermined operating time ta has elapsed, and the operating contact 12 of the failure detection relay 10 is configured and the recovery contact is established. 14 is opened (FIG. 2(d)). At this time, the current (coil current) flowing through the relay coil of the failure detection relay 10 reaches a current near the rated current, like the second relay 20 . By configuring the operation contact of the failure detection relay 10, a self-holding circuit is formed together with the resistor 40 connected in series, and the failure detection relay 10 continues the operating state via this self-holding circuit. Become.

また、故障検知リレー10の復旧接点14が開放されることで、第2リレー20が所定の復旧時間tnの経過後に復旧し、第2リレー20の動作接点22が開放される(図2の(e))。この復旧時間tnは、保護回路30bが並列接続されていることにより、特性値の復旧時間より長い時間となっている。これにより、故障検知リレー10に対する駆動出力の経路が、第2リレー20の動作接点22を介した経路から、故障検知リレー10の動作接点12と抵抗40との直列接続による自己保持回路を形成する経路に切り替わることになる。また、故障検知リレー10のリレーコイルに流れる電流(コイル電流)は、動作直後は定格電流付近の電流であったが、自己保持回路を介する経路に切り替わった後は、抵抗40に流れる電流の分だけ定格電流から小さくなった電流(例えば、定格電流の50%程度)となる。 Further, by opening the restoration contact 14 of the failure detection relay 10, the second relay 20 is restored after a predetermined restoration time tn has passed, and the operating contact 22 of the second relay 20 is opened (( e)). This recovery time tn is longer than the recovery time of the characteristic value due to the parallel connection of the protection circuit 30b. As a result, the path of the drive output to the failure detection relay 10 changes from the path via the operation contact 22 of the second relay 20 to form a self-holding circuit by the series connection of the operation contact 12 of the failure detection relay 10 and the resistor 40. It will switch to route. In addition, the current (coil current) flowing through the relay coil of the failure detection relay 10 was a current near the rated current immediately after the operation, but after switching to the path via the self-holding circuit, the current flowing through the resistor 40 The current becomes smaller than the rated current (for example, about 50% of the rated current).

その後、故障が検知されることにより駆動回路3の出力電圧が無しに変化すると(図2の(f))、故障検知リレー10が復旧時間t1を経過した後に復旧し、故障検知リレー10の動作接点12が開放されるとともに復旧接点14が構成される(図2の(g))。このときの復旧時間t1は、復旧時間tnより短い。これは、故障検知リレー10には抵抗40を介して駆動回路3の駆動出力が印加されており、故障検知リレー10のコイル電流が、抵抗40によって保持電流以上定格電流未満の電流となっているからである。つまり、リレーコイルに蓄積される電磁エネルギーPは、リレーコイルの自己インダクタンスL及びコイル電流Iから、P=(1/2)×L×I、で与えられる。従って、コイル電流Iが定格電流の1/2(50%)である場合の電磁エネルギーは、コイル電流Iが定格電流付近である場合の1/4となる。また、駆動回路3の出力電圧が無しに変化したときに発生する逆起電圧Eは、E=-L(dI/dt)、で与えられる。これにより、コイル電流が定格電流より小さい場合、リレーコイルに蓄積された電磁エネルギーが小さくなることから、逆起電圧Eも小さくなり、その結果、復旧時間が短くなるのである。 After that, when the output voltage of the drive circuit 3 changes to nothing due to the detection of a failure ((f) in FIG. 2), the failure detection relay 10 is restored after the recovery time t1 has passed, and the failure detection relay 10 operates. The contact 12 is opened and the recovery contact 14 is formed (FIG. 2(g)). The recovery time t1 at this time is shorter than the recovery time tn. This is because the drive output of the drive circuit 3 is applied to the failure detection relay 10 via the resistor 40, and the coil current of the failure detection relay 10 is set to a current equal to or higher than the holding current and lower than the rated current by the resistor 40. It is from. That is, the electromagnetic energy P accumulated in the relay coil is given by P=(1/2)×L×I 2 from the self-inductance L and the coil current I of the relay coil. Therefore, the electromagnetic energy when the coil current I is 1/2 (50%) of the rated current is 1/4 of that when the coil current I is near the rated current. Also, the back electromotive voltage E generated when the output voltage of the drive circuit 3 changes without change is given by E=-L(dI/dt). As a result, when the coil current is smaller than the rated current, the electromagnetic energy stored in the relay coil is small, so the back electromotive voltage E is also small, and as a result the recovery time is shortened.

[作用効果]
このように、本実施形態のリレー回路1によれば、保護回路30aが並列接続された故障検知リレー10の復旧時間を短縮することができる。つまり、故障検知リレー10に印加される駆動出力の経路には、第2リレー20の動作接点22を介した経路と、故障検知リレー10の動作接点12と抵抗40との直列接続を介した経路との2つがある。前者の経路は故障検知リレー10を作動させるために利用され、後者の経路は故障検知リレー10を継続的に動作状態とするために利用される。後者の経路はいわゆる自己保持回路である。後者の経路にある抵抗40は、故障検知リレー10のコイル電流を保持電流以上で且つ定格電流未満に制限する。これにより、故障検知リレー10が動作状態のときにリレーコイルに蓄積される電磁エネルギーは、故障検知リレー10のコイル電流が定格電流付近である従来のリレー回路の場合と比較して小さくなる。そのため、動作状態から復旧するときに発生する逆起電圧が小さくなり、復旧時間を短縮することができる。
[Effect]
Thus, according to the relay circuit 1 of this embodiment, it is possible to shorten the recovery time of the failure detection relay 10 to which the protection circuit 30a is connected in parallel. That is, the path of the driving output applied to the failure detection relay 10 includes a path via the operating contact 22 of the second relay 20 and a path via a series connection of the operating contact 12 of the failure detection relay 10 and the resistor 40. There are two. The former path is used to activate the failure detection relay 10, and the latter path is used to keep the failure detection relay 10 in an operating state. The latter path is a so-called self-holding circuit. A resistor 40 in the latter path limits the coil current of fault detection relay 10 to above the holding current and below the rated current. As a result, the electromagnetic energy accumulated in the relay coil when the failure detection relay 10 is in an operating state is smaller than in the case of a conventional relay circuit in which the coil current of the failure detection relay 10 is near the rated current. Therefore, the back electromotive voltage generated when recovering from the operating state is reduced, and the recovery time can be shortened.

また、第2リレー20は、駆動出力である駆動回路3の出力端子間に故障検知リレー10の復旧接点14を介して接続されているので、故障検知リレー10が復旧状態のときに動作し、故障検知リレー10が動作すると復旧する。これにより、故障検知リレー10を復旧状態から動作させるときに、先ず第2リレー20を動作させて故障検知リレー10を動作させ、故障検知リレー10が動作状態となった後に、駆動出力が故障検知リレー10の動作接点12と抵抗40との直列接続のみを介して故障検知リレー10に接続して自己保持回路を形成させることで、故障検知リレー10の動作状態を保持することができる。また、故障検知リレー10は定格電流未満の電流で動作状態を保持することから、省電力化を図ることができる。 In addition, since the second relay 20 is connected between the output terminals of the drive circuit 3, which is the drive output, via the recovery contact 14 of the failure detection relay 10, it operates when the failure detection relay 10 is in the recovery state. When the failure detection relay 10 operates, it is restored. As a result, when the failure detection relay 10 is operated from the restored state, the second relay 20 is first operated to operate the failure detection relay 10, and after the failure detection relay 10 is in the operating state, the drive output is changed to the failure detection state. By forming a self-holding circuit by connecting to the failure detection relay 10 only through the series connection of the operating contact 12 of the relay 10 and the resistor 40, the operating state of the failure detection relay 10 can be held. Further, since the failure detection relay 10 maintains the operating state with a current less than the rated current, power saving can be achieved.

なお、本発明の適用可能な実施形態は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能なのは勿論である。例えば、駆動回路の電源に定電圧電源を使用することで安定した復旧時間を提供するようにしてもよい。 It should be noted that the embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can of course be changed as appropriate without departing from the gist of the present invention. For example, a stable recovery time may be provided by using a constant voltage power supply as the power supply for the drive circuit.

100…故障検知リレー回路
1…リレー回路
10…故障検知リレー
12…動作接点、14…復旧接点
20…第2リレー
22…動作接点
30a,30b…保護回路
40…抵抗
3…駆動回路(故障検知リレー駆動回路)
DESCRIPTION OF SYMBOLS 100... Failure detection relay circuit 1... Relay circuit 10... Failure detection relay 12... Operation contact, 14... Recovery contact 20... Second relay 22... Operation contact 30a, 30b... Protection circuit 40... Resistance 3... Drive circuit (failure detection relay drive circuit)

Claims (1)

制御装置から入力される故障検知信号に応じた駆動出力を行う故障検知リレー駆動回路と、
前記駆動出力が第2リレーの動作接点を介して印加される故障検知リレーと、
前記駆動出力が前記故障検知リレーの復旧接点を介して印加される前記第2リレーと、
前記故障検知リレーの動作接点と直列に接続された抵抗であって、当該直列接続が前記第2リレーの動作接点に対して並列に接続された抵抗と、
を備え、
前記故障検知リレー及び前記第2リレーそれぞれには、保護回路が並列接続されており、
前記抵抗は、前記故障検知リレーのコイル電流を当該故障検知リレーの保持電流以上で且つ定格電流未満に制限する、
故障検知リレー回路。
a failure detection relay drive circuit that performs a drive output according to a failure detection signal input from a control device;
a failure detection relay to which the drive output is applied via an operating contact of a second relay;
the second relay to which the drive output is applied via a recovery contact of the failure detection relay;
a resistor connected in series with the operating contact of the failure detection relay, the series connection being connected in parallel with the operating contact of the second relay;
with
A protection circuit is connected in parallel to each of the failure detection relay and the second relay,
The resistor limits the coil current of the failure detection relay to a holding current of the failure detection relay or more and less than a rated current.
Fault detection relay circuit.
JP2021035063A 2021-03-05 2021-03-05 Failure detection relay circuit Active JP7385612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021035063A JP7385612B2 (en) 2021-03-05 2021-03-05 Failure detection relay circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021035063A JP7385612B2 (en) 2021-03-05 2021-03-05 Failure detection relay circuit

Publications (2)

Publication Number Publication Date
JP2022135325A true JP2022135325A (en) 2022-09-15
JP7385612B2 JP7385612B2 (en) 2023-11-22

Family

ID=83232140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021035063A Active JP7385612B2 (en) 2021-03-05 2021-03-05 Failure detection relay circuit

Country Status (1)

Country Link
JP (1) JP7385612B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003691B2 (en) 2013-02-05 2016-10-05 株式会社デンソー Power supply

Also Published As

Publication number Publication date
JP7385612B2 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
US6570272B2 (en) Safety switching device for connection and safe disconnection of an electrical load, in particular an electrically driven machine
CN104025406B (en) For suppressing to occur the circuit arrangement of the electric arc in switch element contactor gap
JP2008252966A (en) Motor drive device
US20160181789A1 (en) Protection circuit for an inverter as well as inverter system
EP0681310B1 (en) Load driving circuit
JP3831611B2 (en) Device for isolating an electrical load having a high inductance from a DC voltage source
JP2022135325A (en) Failure detection relay circuit
US6809911B2 (en) Safety switching device for safely switching off an electrical load
KR100804518B1 (en) Earth leakage blocking method and device for preventing leakage by detecting leakage current in two stages
JP2008104276A (en) Inverter device
JP5517759B2 (en) Protective relay
US7187991B2 (en) Failsafe control circuit for electrical appliances
JP2011228110A (en) Contact output device
CN109690718B (en) Drive circuit of electromagnetic operating mechanism
CN101400471B (en) Welding equipment
JP6157538B2 (en) Electromagnetic operating mechanism drive circuit
RU2195762C1 (en) Magnetic starter
JP2007330068A (en) Circuit breaker control circuit
JP7158551B1 (en) Contact output device
JPH07130254A (en) Automatic switch
JP2012191716A (en) Capacitor discharge circuit for dc output circuit
JP2002112470A (en) Off-line ups system
JP6698414B2 (en) Power transmission line protection system
JP5317649B2 (en) Generator initial excitation device
JPS62117226A (en) Detector of disability of breaking of switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231110

R150 Certificate of patent or registration of utility model

Ref document number: 7385612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150