JP2022132297A - Concave diffraction grating, and manufacturing method thereof - Google Patents

Concave diffraction grating, and manufacturing method thereof Download PDF

Info

Publication number
JP2022132297A
JP2022132297A JP2022101492A JP2022101492A JP2022132297A JP 2022132297 A JP2022132297 A JP 2022132297A JP 2022101492 A JP2022101492 A JP 2022101492A JP 2022101492 A JP2022101492 A JP 2022101492A JP 2022132297 A JP2022132297 A JP 2022132297A
Authority
JP
Japan
Prior art keywords
diffraction grating
concave
substrate
grating
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022101492A
Other languages
Japanese (ja)
Other versions
JP2022132297A5 (en
JP7301201B2 (en
Inventor
宇紀 青野
Takanori Aono
佳定 江畠
Yoshisada Ehata
健太 八重樫
Kenta Yaegashi
繁 松井
Shigeru Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018160640A external-priority patent/JP7096738B2/en
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Priority to JP2022101492A priority Critical patent/JP7301201B2/en
Publication of JP2022132297A publication Critical patent/JP2022132297A/en
Publication of JP2022132297A5 publication Critical patent/JP2022132297A5/ja
Application granted granted Critical
Publication of JP7301201B2 publication Critical patent/JP7301201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a concave diffraction grating capable of improving diffraction efficiency by suppressing the spherical aberration.
SOLUTION: A concave diffraction grating 2 is a concave diffraction grating 2 that disperses and condenses light. The concave diffraction grating has sawtooth-shaped lattice grooves 21 formed on a concave substrate 24 in which the intervals between the sawtooth-shaped lattice grooves 21 are unequal. In the concave diffraction grating 2 that disperses and condenses light, a sawtooth shape is formed on a planar substrate by photolithography, etching, or machining. A planar diffraction grating having grating grooves 21 with unequal intervals of sawtooth shape is deformed on a convex fixed substrate and is formed by transferring the mold of the mounted concave diffraction grating to the surface of metal or resin.
SELECTED DRAWING: Figure 3
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、凹面回折格子およびその製造方法に係り、特に光を分光、収束させる曲面回折格子および、それを用いた光学装置に関する。 The present invention relates to a concave diffraction grating and its manufacturing method, and more particularly to a curved diffraction grating for splitting and converging light and an optical device using the same.

本技術分野の背景技術として、分光光度計等の光学装置に搭載される光学素子である曲面回折格子は、光の分光、収束の両方の性能を有しており、部品点数を少なくでき、装置の構成を簡便にすることが可能である。 As background art in this technical field, a curved diffraction grating, which is an optical element mounted in an optical device such as a spectrophotometer, has the performance of both light dispersion and convergence. It is possible to simplify the configuration of

従来、球面の凹面回折格子において、格子溝の間隔を等間隔とすると、分光光はローランド円上に集光されるため、検出器をローランド円上に設置することで、光学装置の性能を向上させることは可能である。しかし、検出器をローランド円上に設置することで、光学装置の大型化が懸念される。そこで、凹面回折格子に形成する格子溝を不等間隔とすることで、集光位置、すなわち検出器の設置場所をローランド円から近似的な直線位置に補正でき、光学装置を小型化できる。このような球面の凹面回折格子を実現するために、例えば、特許文献1、特許文献2、及び特許文献3に記載される方法が提案されている。 Conventionally, in a spherical concave diffraction grating, if the intervals between the grating grooves are equal, the spectroscopic light is focused on the Rowland circle. It is possible to let However, installing the detector on the Rowland circle raises concerns about an increase in the size of the optical device. Therefore, by setting the grating grooves formed on the concave diffraction grating at unequal intervals, the light collection position, that is, the installation position of the detector can be corrected from the Rowland circle to an approximately linear position, and the optical device can be miniaturized. In order to realize such a spherical concave diffraction grating, for example, methods described in Patent Documents 1, 2, and 3 have been proposed.

凹面回折格子は、凸面基板にルーリングエンジン等の機械で格子溝を刻印する方法で凹面回折格子の型を作製し、刻印した格子溝を樹脂、金属等に転写することで、凹面回折格子を製造している。球面の凹面回折格子では、特許文献1に記載されるように格子溝の間隔を不等間隔にすることで、分光光の収差を抑制している。
また、特許文献2では、凹面基板上に格子溝の間隔を不等間隔にレジストを形成し、イオンエッチングによりラミナー型(矩形)格子溝を形成し、凹面回折格子を作製している。特許文献3では、鋸歯形状の格子溝を有する平面回折格子を凹凸面基板で挟み込み、変形させ、凸面基板上に接合して、凹面回折格子の型を形成している。その凹面回折格子の型を金属や樹脂などに転写して凹面回折格子を作製している。
Concave diffraction gratings are manufactured by creating a concave diffraction grating mold by stamping grating grooves on a convex substrate with a machine such as a ruling engine, and transferring the stamped grating grooves to resin, metal, etc. is doing. In a spherical concave diffraction grating, as described in Japanese Patent Application Laid-Open No. 2002-200002, the aberration of spectral light is suppressed by making the intervals between grating grooves unequal.
In Patent Document 2, a resist is formed on a concave substrate with grating grooves at unequal intervals, and laminar (rectangular) grating grooves are formed by ion etching to fabricate a concave diffraction grating. In Patent Document 3, a planar diffraction grating having sawtooth-shaped grating grooves is sandwiched between uneven substrates, deformed, and bonded to a convex substrate to form a concave diffraction grating mold. The mold for the concave diffraction grating is transferred to metal, resin, or the like to fabricate the concave diffraction grating.

特開昭55-13918号公報JP-A-55-13918 特開2011-106842号公報JP 2011-106842 A WO2016/059928号公報WO2016/059928

球面の凹面回折格子において、格子溝の間隔を等間隔とすると、分光光はローランド円上に集光されるため、検出器をローランド円上に設置することで、光学装置の性能を向上させることは可能である。しかし、検出器をローランド円上に設置することで、光学装置の大型化が懸念される。そこで、凹面回折格子に形成する格子溝を不等間隔とすることで、集光位置、すなわち検出器の設置場所をローランド円から近似的な直線位置に補正でき、光学装置を小型化できるが、以下に示す課題がある。 In a spherical concave diffraction grating, if the intervals between the grating grooves are equal, the spectral light will be focused on the Rowland circle. is possible. However, installing the detector on the Rowland circle raises concerns about an increase in the size of the optical device. Therefore, by setting the grating grooves formed on the concave diffraction grating at unequal intervals, the light collection position, that is, the installation position of the detector, can be corrected from the Rowland circle to an approximately linear position, and the optical device can be miniaturized. There are the following issues.

特許文献1に記載される凹面回折格子の製造方法において、凸面基板にルーリングエンジン等の機械で刻印する方法で回折格子の型を作製すると、刻印ツールの角度が一定であるため、曲面基板の中心部、端部において、鋸歯形状の格子溝に浅い部分と深い部分とが形成され、ブレーズ角が一定にならない課題がある。 In the method of manufacturing a concave diffraction grating described in Patent Document 1, if a diffraction grating mold is produced by a method of marking a convex substrate with a machine such as a ruling engine, the angle of the marking tool is constant, so the center of the curved substrate A problem is that the blaze angle is not constant because shallow and deep portions are formed in the sawtooth-shaped grating grooves at the edges and edges.

特許文献2に記載される半導体プロセスを用いた曲面回折格子の製造方法では、任意の曲面基板に対して、フォトリソグラフィによるレジストの格子溝パターンを正確に作製することが困難であり、且つ曲面上へのエッチングでは曲面の垂線から傾きを持ったラミナー型(矩形)の格子溝が形成されるという不具合が生じ得る。 In the method of manufacturing a curved diffraction grating using a semiconductor process described in Patent Document 2, it is difficult to accurately produce a grating groove pattern of a resist by photolithography for an arbitrary curved substrate. In the case of etching to the curved surface, there may be a problem that laminar-type (rectangular) grating grooves having an inclination from the perpendicular to the curved surface are formed.

特許文献3に記載される曲面回折格子の型を作製する技術では、平面基板上に鋸歯状の格子溝を形成した後、曲面に接合するため、曲面基板の中心部、端部においてもブレーズ角一定の凹面回折格子を作製することは可能であるが、格子溝が等間隔であるため収差の抑制は不十分であり、回折効率が低下して、検出光を有効に活用することができない。 In the technique of manufacturing a mold for a curved diffraction grating described in Patent Document 3, after forming sawtooth grating grooves on a flat substrate, the blaze angle is maintained even at the center and end portions of the curved substrate because it is bonded to the curved surface. Although it is possible to fabricate a constant concave diffraction grating, since the grating grooves are equally spaced, the suppression of aberration is insufficient, and the diffraction efficiency is lowered, so that the detected light cannot be effectively utilized.

また仮に、特許文献2に記載されるラミナー型回折格子を平面基板上に作製し、特許文献3に記載される方法を適用した場合、曲面の垂線方向に傾きを持たずに、不等間隔で矩形の格子溝を有する曲面回折格子を作製することはできるが、凹凸面基板で挟み、荷重を印加すると、荷重が矩形の格子溝に加わり、矩形の格子溝が破損する虞がある。また、凹面回折格子の型を転写する際に、矩形の格子溝が噛みこむため、凹面回折格子が型から剥離し難いという課題がある。 Further, if the laminar diffraction grating described in Patent Document 2 is fabricated on a flat substrate and the method described in Patent Document 3 is applied, there is no inclination in the direction perpendicular to the curved surface, and the gratings are arranged at unequal intervals. A curved diffraction grating having rectangular grating grooves can be produced, but if it is sandwiched between uneven substrates and a load is applied, the load may be applied to the rectangular grating grooves and damage the rectangular grating grooves. In addition, when the mold for the concave diffraction grating is transferred, the rectangular grating grooves are caught in the mold, so there is a problem that the concave diffraction grating is difficult to separate from the mold.

そこで、本発明は、球面収差の抑制により回折効率を向上し得る凹面回折格子及びその製造方法を提供する。 Accordingly, the present invention provides a concave diffraction grating capable of improving diffraction efficiency by suppressing spherical aberration, and a method of manufacturing the same.

上記課題を解決するため、本発明に係る凹面回折格子は、光を分光、集光する凹面回折格子であって、凹面状の基板上に鋸歯形状の格子溝を有し、前記鋸歯形状の格子溝の間隔が不等であって、前記格子溝の間隔がブレーズ方向に等差的に縮小させた形状を有すると共に凹面回折格子の反射面は球面の一部を成していることを特徴とする。 In order to solve the above problems, a concave diffraction grating according to the present invention is a concave diffraction grating that disperses and converges light, has sawtooth-shaped grating grooves on a concave substrate, and comprises: It is characterized in that the intervals between the grooves are unequal, the intervals between the grating grooves are reduced equidistantly in the blaze direction, and the reflecting surface of the concave diffraction grating forms a part of a spherical surface. do.

また、本発明に係る凹面回折格子は、光を分光、集光する凹面回折格子であって、凹面状の基板上に鋸歯形状の格子溝を有し、前記鋸歯形状の格子溝の間隔が不等であって、相互に隣接する格子溝の間隔がブレーズ方向に沿って広間隔から狭間隔へと段階的に徐々に変化する形状をすると共に凹面回折格子の反射面は球面の一部を成していることを特徴とする。 Further, a concave diffraction grating according to the present invention is a concave diffraction grating that disperses and converges light, has sawtooth grating grooves on a concave substrate, and the intervals between the sawtooth grating grooves are irregular. etc., in which the spacing between adjacent grating grooves gradually changes from wide to narrow along the blaze direction, and the reflecting surface of the concave diffraction grating forms part of a spherical surface. It is characterized by

また、本発明に係る凹面回折格子の製造方法は、(1)フォトリソグラフィおよびエッチング、または機械加工により、平面状基板上に鋸歯形状を形成し、不等間隔の格子溝であって、格子溝の間隔がブレーズ方向に等差的に縮小させた形状を有すると共に一定のブレーズ角を有するよう形成して、平面状の回折格子基板を作製する工程と、(2)前記格子溝が形成された面に凹面が対向するよう凹面基板を設置すると共に、前記格子溝が形成された面とは反対側の面に凸面が対向するよう接着層を介して凸面基板を設置する工程と、(3)前記平面状の回折格子基板の格子溝が形成された面を前記凹面基板に倣わせると共に、前記接着層により前記平面状の回折格子基板を前記凸面基板に接着する接着工程と、(4)前記凹面基板が取り外された後、前記平面状の回折格子基板のうち前記凸面基板の凸面よりも外側へと延在する外周部を除去し、凹面回折格子の型を形成する工程と、(5)格子溝の間隔がブレーズ方向に等差的に縮小させた形状を有すると共に凹面回折格子の反射面は球面の一部を成す前記凹面回折格子の型を、金属または樹脂の表面に転写する工程と、を備えることを特徴とする。 Further, the method for manufacturing a concave diffraction grating according to the present invention includes: (1) forming a sawtooth shape on a planar substrate by photolithography and etching or machining, and forming grating grooves at uneven intervals; (2) a step of fabricating a planar diffraction grating substrate by forming a planar diffraction grating substrate having a shape in which the intervals between are equally reduced in the blaze direction and having a constant blaze angle; (3) installing a concave substrate so that the concave surface faces the surface, and placing the convex substrate through an adhesive layer so that the convex surface faces the surface opposite to the surface on which the grating grooves are formed; (4) a bonding step of making the surface of the planar diffraction grating substrate on which the grating grooves are formed conform to the concave substrate, and bonding the planar diffraction grating substrate to the convex substrate by the adhesive layer; (5) removing the outer peripheral portion of the planar diffraction grating substrate extending outside the convex surface of the convex substrate after the concave substrate is removed, and forming a concave diffraction grating mold; ) A step of transferring the mold of the concave diffraction grating having a shape in which the intervals of the grating grooves are equally reduced in the blaze direction and the reflection surface of the concave diffraction grating forming a part of a spherical surface, onto the surface of metal or resin. and.

また、本発明に係る凹面回折格子の製造方法は、(1)フォトリソグラフィおよびエッチング、または機械加工により、平面状基板上に鋸歯形状を形成し、不等間隔の格子溝であって、相互に隣接する格子溝の間隔が、ブレーズ方向に沿って広間隔から狭間隔へと段階的に徐々に変化する形状を有するよう形成して、平面状の回折格子基板を作製する工程と、(2)前記格子溝が形成された面に凹面が対向するよう凹面基板を設置すると共に、前記格子溝が形成された面とは反対側の面に凸面が対向するよう接着層を介して凸面基板を設置する工程と、(3)前記平面状の回折格子基板の格子溝が形成された面を前記凹面基板に倣わせると共に、前記接着層により前記平面状の回折格子基板を前記凸面基板に接着する接着工程と、(4)前記凹面基板が取り外された後、前記平面状の回折格子基板のうち前記凸面基板の凸面よりも外側へと延在する外周部を除去し、凹面回折格子の型を形成する工程と、(5)相互に隣接する格子溝の間隔が、ブレーズ方向に沿って広間隔から狭間隔へと段階的に徐々に変化する形状を有すると共に凹面回折格子の反射面は球面の一部を成す前記凹面回折格子の型を、金属または樹脂の表面に転写する工程と、を備えることを特徴とする。 In addition, the method for manufacturing a concave diffraction grating according to the present invention includes: (1) forming a sawtooth shape on a planar substrate by photolithography and etching or machining, and forming unevenly spaced grating grooves mutually (2) fabricating a planar diffraction grating substrate by forming a shape in which the spacing between adjacent grating grooves gradually changes from a wide spacing to a narrow spacing along the blaze direction; A concave substrate is installed so that the concave surface faces the surface on which the grating grooves are formed, and a convex substrate is installed via an adhesive layer so that the convex surface faces the surface opposite to the surface on which the grating grooves are formed. and (3) making the surface of the planar diffraction grating substrate on which the grating grooves are formed conform to the concave substrate, and bonding the planar diffraction grating substrate to the convex substrate by the adhesive layer. (4) after the concave substrate is removed, an outer peripheral portion of the planar diffraction grating substrate extending outside the convex surface of the convex substrate is removed to form a concave diffraction grating mold; (5) the interval between grating grooves adjacent to each other has a shape in which the interval between the grating grooves is gradually changed from wide to narrow along the blaze direction, and the reflecting surface of the concave diffraction grating is spherical. and transferring the mold of the concave diffraction grating forming a part to the surface of metal or resin.

本発明によれば、球面収差の抑制により回折効率を向上し得る凹面回折格子及びその製造方法を提供することが可能となる。
また、本発明によれば、一定のブレーズ角の鋸歯形状を有し、不等間隔の格子溝を備えた凹面回折格子を光学装置に搭載することで、球面収差の抑制により回折効率を向上でき且つ検出器を直線上に設置可能とし得る光学装置を提供することが可能となる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the concave-surface diffraction grating which can improve diffraction efficiency by suppressing a spherical aberration, and its manufacturing method.
Further, according to the present invention, the diffraction efficiency can be improved by suppressing spherical aberration by mounting a concave diffraction grating having a sawtooth shape with a constant blaze angle and provided with unevenly spaced grating grooves in an optical device. In addition, it is possible to provide an optical device in which the detector can be installed in a straight line.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

本発明の一実施例に係る実施例1の凹面回折格子を用いた光学装置の全体概略構成図である。1 is an overall schematic configuration diagram of an optical device using a concave diffraction grating of Example 1 according to an embodiment of the present invention; FIG. 図1に示す凹面回折格子(球面回折格子)の概略構成を示す斜視図である。2 is a perspective view showing a schematic configuration of a concave diffraction grating (spherical diffraction grating) shown in FIG. 1; FIG. 図2に示す凹面回折格子(球面回折格子)のA-A断面矢視図及び格子溝の拡大図である。FIG. 3 is an AA cross-sectional view of the concave diffraction grating (spherical diffraction grating) shown in FIG. 2 and an enlarged view of grating grooves. 本発明の他の実施例に係る実施例2の凹面回折格子(球面回折格子)の型の概略構成を示す斜視図である。FIG. 10 is a perspective view showing a schematic configuration of a concave diffraction grating (spherical diffraction grating) mold of Example 2 according to another example of the present invention; 図4に示す凹面回折格子(球面回折格子)型のB-B断面矢視図である。FIG. 5 is a cross-sectional view taken along line BB of the concave diffraction grating (spherical diffraction grating) type shown in FIG. 4; 図4に示す凹面回折格子の型を用いた凹面回折格子の製造方法を示す図であって、図6(a)は凹面回折格子の型を用意する工程を、図6(b)は凹面回折格子の型上に金属層を形成する工程を、図6(c)は金属層上に凹面基板を設置する工程を、図6(d)は凹面回折格子の型から剥離し凹面回折格子を得る工程を示す図である。FIG. 6A is a diagram showing a method of manufacturing a concave diffraction grating using the concave diffraction grating mold shown in FIG. 4, FIG. FIG. 6(c) shows the step of forming a metal layer on the grating mold, FIG. 6(c) shows the step of placing a concave substrate on the metal layer, and FIG. It is a figure which shows a process. 本発明の他の実施例に係る実施例3の凹面回折格子の型の製造方法を示す図であって、図7(a)は金属製回折格子を形成する工程を、図7(b)は金属製回折格子の上方に凹面基板を下方に凸面基板を設置する工程を、図7(c)は接着工程を、図7(d)は凹面基板を取り外す工程を、図7(e)は金属製回折格子の外周部を除去することで凹面回折格子の型を得る工程を示す図である。7(a) shows a step of forming a metal diffraction grating, and FIG. FIG. 7(c) shows the bonding step, FIG. 7(d) shows the step of removing the concave substrate, and FIG. 7(e) shows the metal diffraction grating. FIG. 10 is a diagram showing a process of obtaining a mold for a concave diffraction grating by removing the outer periphery of the manufactured diffraction grating; 本発明の他の実施例に係る実施例4の凹面回折格子の型の製造方法を示す図であって、図8(a)は平面回折格子を形成する工程を、図8(b)は金属製回折格子を形成する工程を、図8(c)は平面回折格子から金属製回折格子を剥離する工程を、図8(d)は金属製回折格子の上方に凹面基板を下方に凸面基板を設置する工程を、図8(e)は接着工程を、図8(f)は凹面基板を取り外す工程を、図8(g)は金属製回折格子の外周部を除去することで凹面回折格子の型を得る工程を示す図である。8(a) shows a step of forming a planar diffraction grating, and FIG. FIG. 8(c) shows the step of peeling off the metal diffraction grating from the planar diffraction grating, and FIG. 8(d) shows the process of removing the concave substrate above the metal diffraction grating and the convex substrate below the metal diffraction grating. FIG. 8(e) is the bonding step, FIG. 8(f) is the step of removing the concave substrate, and FIG. 8(g) is the removal of the outer periphery of the metal diffraction grating. It is a figure which shows the process of obtaining a type|mold. 本発明の他の実施例に係る実施例5の凹面回折格子の型の製造方法を示す図であって、図9(a)は金属製回折格子を形成する工程を、図9(b)は金属製回折格子の上方に凹面基板を下方に凸面基板を設置する工程を、図9(c)は接着工程を、図9(d)は凹面基板を取り外す工程を、図9(e)は金属製回折格子の外周部を除去することで凹面回折格子の型を得る工程を示す図である。9A and 9B are diagrams showing a method of manufacturing a concave diffraction grating mold of Example 5 according to another example of the present invention, FIG. FIG. 9(c) shows the bonding step, FIG. 9(d) shows the step of removing the concave substrate, and FIG. 9(e) shows the metal diffraction grating. FIG. 10 is a diagram showing a process of obtaining a mold for a concave diffraction grating by removing the outer periphery of the manufactured diffraction grating; 本発明の他の実施例に係る実施例6の凹面回折格子の型の製造方法を示す図であって、図10(a)は平面回折格子を形成する工程を、図10(b)は金属材料を積層する工程を、図10(c)は金属製回折格子を形成する工程を、図10(d)は金属製回折格子の上方に凹面基板を下方に凸面基板を設置する工程を、図10(e)は接着工程を、図10(f)は凹面基板を取り外す工程を、図10(g)は金属製回折格子の外周部を除去することで凹面回折格子の型を得る工程を示す図である。10(a) shows a step of forming a plane diffraction grating, and FIG. 10(b) shows a method of manufacturing a concave diffraction grating mold according to a sixth embodiment of the present invention. FIG. 10(c) shows the step of forming a metal diffraction grating, and FIG. 10(d) shows the step of placing a concave substrate above and a convex substrate below the metal diffraction grating. 10(e) shows the bonding step, FIG. 10(f) shows the step of removing the concave substrate, and FIG. 10(g) shows the step of removing the outer periphery of the metal diffraction grating to obtain a concave diffraction grating mold. It is a diagram.

以下、図面を用いて本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施例に係る実施例1の凹面回折格子を用いた光学装置の全体概略構成図である。光学装置1は、化学物質、生体物質などにおいて、物質の化学結合に特有の波長の光を選択的に吸収して、濃度測定、物質同定に使用される。図1に示すように、光学装置1は、白色光源11、集光レンズ12a、試料室13、集光レンズ12b、スリット14、凹面回折格子2、及び複数の直線上に配置された検出器16にて構成される。
白色光源11からの光は集光レンズ12aにより集光され、試料室13内の計測対象に照射される。試料室13ら透過してくる光は、集光レンズ12bによりスリット14の開口部上に集光される。スリット14を通過した光は凹面回折格子2によって波長分散されスペクトルを形成する。形成されたスペクトルを検出器16で検出する。
FIG. 1 is an overall schematic configuration diagram of an optical device using a concave diffraction grating of Example 1 according to one embodiment of the present invention. The optical device 1 is used for concentration measurement and substance identification by selectively absorbing light of wavelengths specific to chemical bonds in chemical substances, biological substances, and the like. As shown in FIG. 1, the optical device 1 includes a white light source 11, a condenser lens 12a, a sample chamber 13, a condenser lens 12b, a slit 14, a concave diffraction grating 2, and a plurality of linearly arranged detectors 16. Consists of
The light from the white light source 11 is condensed by the condensing lens 12 a and irradiated to the measurement object in the sample chamber 13 . Light transmitted from the sample chamber 13 is condensed onto the opening of the slit 14 by the condensing lens 12b. The light passing through the slit 14 is wavelength-dispersed by the concave diffraction grating 2 to form a spectrum. The formed spectrum is detected by detector 16 .

凹面回折格子2について説明する。図2は図1に示す凹面回折格子2の概略構成を示す斜視図であり、図3は図2に示す凹面回折格子2のA-A断面矢視図及び格子溝の拡大図である。図2及び図3に示すように、凹面回折格子2は、任意の曲率を有する凹面基板24、格子溝21が形成された金属層22、及び凹面基板24上に金属層22を固定する樹脂層23にて構成される。凹面回折格子の反射面(表面)は球面の一部を成している。そのため凹面回折格子を球面回折格子と称する場合もある。等間隔の格子溝を備えた凹面回折格子では、ローランド円上に結像する。これに対して、図3に示すように、格子溝21の間隔をブレーズ方向に等差的に縮小させた凹面回折格子2では、近似的に直線上に結像することができる。換言すれば、格子溝21の間隔をブレーズ方向に沿って段階的に縮小させた凹面回折格子2では、近似的に直線上に結像することができる。ここで、ブレーズ方向とは、図3に示すように、鋸歯形状の格子溝21の頂角211から最小角度(ブレーズ角212)を有する頂点へ向かう方向と定義される。従って、ブレーズ方向に沿って、相互に隣接する格子溝21の間隔が広間隔から狭間隔へと段階的に徐々に変化する形状を有する。 The concave diffraction grating 2 will be explained. 2 is a perspective view showing a schematic configuration of the concave diffraction grating 2 shown in FIG. 1, and FIG. 3 is a cross-sectional view of the concave diffraction grating 2 shown in FIG. 2 taken along line AA and an enlarged view of grating grooves. As shown in FIGS. 2 and 3, the concave diffraction grating 2 includes a concave substrate 24 having an arbitrary curvature, a metal layer 22 having grating grooves 21 formed therein, and a resin layer fixing the metal layer 22 on the concave substrate 24. 23. The reflecting surface (surface) of the concave diffraction grating is part of a sphere. Therefore, the concave diffraction grating is sometimes called a spherical diffraction grating. A concave grating with equally spaced grating grooves images on the Rowland circle. On the other hand, as shown in FIG. 3, in the concave diffraction grating 2 in which the intervals of the grating grooves 21 are reduced in the blaze direction, an image can be formed approximately on a straight line. In other words, in the concave diffraction grating 2 in which the intervals between the grating grooves 21 are reduced stepwise along the blaze direction, an image can be formed approximately on a straight line. Here, the blaze direction is defined as the direction from the apex angle 211 of the sawtooth-shaped grating groove 21 to the vertex having the minimum angle (blaze angle 212), as shown in FIG. Therefore, along the blaze direction, the interval between adjacent grating grooves 21 gradually changes from wide to narrow.

このようにブレーズ方向に等差的に縮小させた凹面回折格子2を、図1に示す光学装置1に適用することで、複数の検知器16を直線上に配置できるため、検出器16の実装を簡略化でき、光学装置1を小型化することができる。
また、凹面回折格子2で一定のブレーズ角212を有することで、特有の波長の光を選択的に分光できるため、ノイズ(迷光)の小さい光学装置1とでき、検出効率を向上することができる。
A plurality of detectors 16 can be arranged in a straight line by applying the concave diffraction grating 2 that is reduced in the blaze direction equidistantly to the optical device 1 shown in FIG. can be simplified, and the optical device 1 can be miniaturized.
In addition, since the concave diffraction grating 2 has a constant blaze angle 212, it is possible to selectively disperse light of a specific wavelength, so that the optical device 1 can be made with little noise (stray light), and the detection efficiency can be improved. .

以上の通り、本実施例によれば、球面収差の抑制により回折効率を向上し得る凹面回折格子を提供することが可能となる。
また、本実施例によれば、一定のブレーズ角の鋸歯形状を有し、不等間隔の格子溝を備えた凹面回折格子を光学装置に搭載することで、球面収差の抑制により回折効率を向上でき且つ検出器を直線上に設置可能とし得る光学装置を提供することが可能となる。
また、本実施例によれば、検出器を直線上に設置できるため、小型の光学装置を実現できる。
更には、光学素子の部品点数が少ない低コストの光学装置を実現できる。
As described above, according to this embodiment, it is possible to provide a concave diffraction grating capable of improving diffraction efficiency by suppressing spherical aberration.
In addition, according to the present embodiment, by mounting a concave diffraction grating having a sawtooth shape with a constant blaze angle and including grating grooves at uneven intervals in an optical device, spherical aberration is suppressed and diffraction efficiency is improved. It is possible to provide an optical device which can be installed in a straight line and which can be installed in a straight line.
Moreover, according to this embodiment, the detector can be installed in a straight line, so that a compact optical device can be realized.
Furthermore, a low-cost optical device with a small number of optical elements can be realized.

凹面回折格子の型の構造、及び凹面回折格子の製造方法について、図4乃至図6を用いて説明する。図4は本発明の他の実施例に係る実施例2の凹面回折格子の型の概略構成を示す斜視図であり、図5は図4に示す凹面回折格子型のB-B断面矢視図である。 The structure of the concave diffraction grating mold and the manufacturing method of the concave diffraction grating will be described with reference to FIGS. 4 to 6. FIG. FIG. 4 is a perspective view showing a schematic configuration of a concave diffraction grating mold of Embodiment 2 according to another embodiment of the present invention, and FIG. 5 is a cross-sectional view of the concave diffraction grating mold shown in FIG. is.

図4及び図5に示すように、凹面回折格子の型3は、任意の曲率を有する凸面基板34、格子溝31が形成された金属膜である金属製回折格子32、および凸面基板34上に金属膜である金属製回折格子32を固定する接着層33にて構成される。図5に示されるように、凹面回折格子の型3を構成する金属製回折格子32の格子溝31の間隔は、ブレーズ方向に等差的に拡大している。換言すれば、金属製回折格子32の格子溝31の間隔をブレーズ方向に沿って段階的に拡大させている。従って、ブレーズ方向に沿って、凹面回折格子の型3を構成する金属製回折格子32は、相互に隣接する格子溝31の間隔が狭間隔から広間隔へと段階的に徐々に変化する形状を有する。 As shown in FIGS. 4 and 5, the concave diffraction grating mold 3 includes a convex substrate 34 having an arbitrary curvature, a metal diffraction grating 32 which is a metal film in which grating grooves 31 are formed, and a It is composed of an adhesive layer 33 that fixes a metal diffraction grating 32, which is a metal film. As shown in FIG. 5, the intervals of the grating grooves 31 of the metal diffraction grating 32 forming the mold 3 of the concave diffraction grating are expanded equally in the blaze direction. In other words, the intervals between the grating grooves 31 of the metal diffraction grating 32 are increased stepwise along the blaze direction. Therefore, along the blaze direction, the metal diffraction grating 32 constituting the mold 3 of the concave diffraction grating has a shape in which the spacing between adjacent grating grooves 31 gradually changes from narrow to wide. have.

次に、上述の実施例1で示した凹面回折格子2の製造方向について説明する。図6は、図4に示す凹面回折格子の型を用いた凹面回折格子の製造方法を示す図であって、図6(a)は凹面回折格子の型を用意する工程を、図6(b)は凹面回折格子の型上に金属層を形成する工程を、図6(c)は金属層上に凹面基板を設置する工程を、図6(d)は凹面回折格子の型から剥離し凹面回折格子を得る工程を示す図である。 Next, the manufacturing direction of the concave diffraction grating 2 shown in the first embodiment will be described. 6A and 6B show a method of manufacturing a concave diffraction grating using the concave diffraction grating mold shown in FIG. ) shows the step of forming a metal layer on a concave diffraction grating mold, FIG. 6C shows the step of placing a concave substrate on the metal layer, and FIG. It is a figure which shows the process of obtaining a diffraction grating.

図6(a)に示す凹面回折格子の型を用意する工程にて、先ず、鋸歯形状の格子溝31を有する凹面回折格子の型3を用意する。
次に、図6(b)に示す凹面回折格子の型上に金属層を形成する工程にて、鋸歯形状の格子溝31を有する凹面回折格子の型3上に剥離層(図示せず)、金属層22を形成する。図6(c)に示す金属層上に凹面基板を設置する工程では、金属層22上に樹脂層23を形成した後、樹脂層23の上に凹面基板24を設置する。
In the step of preparing the mold for the concave diffraction grating shown in FIG. 6A, first, the mold 3 for the concave diffraction grating having the sawtooth-shaped grating grooves 31 is prepared.
Next, in the step of forming a metal layer on the concave diffraction grating mold shown in FIG. A metal layer 22 is formed. In the step of placing the concave substrate on the metal layer shown in FIG. 6C, after forming the resin layer 23 on the metal layer 22 , the concave substrate 24 is placed on the resin layer 23 .

図6(d)に示す凹面回折格子の型から剥離し凹面回折格子を得る工程では、樹脂層23が硬化した後、凹面回折格子の型3から、金属層22、樹脂層23、凹面基板24を外す(剥離する)ことで、凹面回折格子2を製造する。 In the process of obtaining a concave diffraction grating by peeling from the concave diffraction grating mold shown in FIG. The concave diffraction grating 2 is manufactured by removing (separating) the .

なお、凹面回折格子の型3を用いて、ナノインプリント等の技術により、樹脂層23に格子溝31を転写した後、その表面に金属層22を成膜しても良い。ここで、凹面回折格子2は、凹面回折格子の型3を転写して形成するため、図6の右図に示すように、格子溝21の間隔を頂角211からブレーズ角212の頂点に向かって、すなわち、ブレーズ方向(凹面回折格子2のブレーズ方向)に等差的に縮小した凹面回折格子2を形成するためには、凹面回折格子の型3の格子溝31の間隔を頂角311からブレーズ角312の頂点に向かって、すなわち、ブレーズ方向(凹面回折格子の型3のブレーズ方向)に等差的に拡大して形成する必要がある。 Alternatively, the metal layer 22 may be formed on the surface of the resin layer 23 after the grating grooves 31 are transferred to the resin layer 23 by a technique such as nanoimprinting using the concave diffraction grating mold 3 . Here, since the concave diffraction grating 2 is formed by transferring the mold 3 of the concave diffraction grating, as shown in the right diagram of FIG. That is, in order to form the concave diffraction grating 2 that is reduced equidistantly in the blaze direction (the blaze direction of the concave diffraction grating 2), the spacing of the grating grooves 31 of the mold 3 of the concave diffraction grating must be changed from the apex angle 311 to Towards the vertex of the blaze angle 312, that is, it should be formed to expand proportionally in the blaze direction (the blaze direction of the mold 3 of the concave diffraction grating).

以上の通り本実施例によれば、上述の実施例1に示した凹面回折格子2を容易に製造することが可能となる。 As described above, according to this embodiment, it is possible to easily manufacture the concave diffraction grating 2 shown in the first embodiment.

次に凹面回折格子の型の製法について説明する。以下の複数の製法は、上記球面回折格子に代表される凹面回折格子の製造方法に用いることができる。 Next, a method for manufacturing a concave diffraction grating mold will be described. A plurality of manufacturing methods described below can be used for manufacturing a concave diffraction grating represented by the above spherical diffraction grating.

図7は、本発明の他の実施例に係る実施例3の凹面回折格子の型の製造方法を示す図であって、図7(a)は金属製回折格子を形成する工程を、図7(b)は金属製回折格子の上方に凹面基板を下方に凸面基板を設置する工程を、図7(c)は接着工程を、図7(d)は凹面基板を取り外す工程を、図7(e)は金属製回折格子の外周部を除去することで凹面回折格子の型を得る工程を示す図である。 7A and 7B are diagrams showing a method of manufacturing a mold for a concave diffraction grating of Example 3 according to another example of the present invention. FIG. (b) shows the step of placing a concave substrate above the metal diffraction grating and a convex substrate below, FIG. 7(c) shows the bonding step, FIG. 7(d) shows the step of removing the concave substrate, e) is a diagram showing a step of obtaining a concave diffraction grating mold by removing the outer peripheral portion of the metal diffraction grating.

図7(a)に示す金属製回折格子を形成する工程にて、平面の金属基板上に、鋸歯形状を有し、ブレーズ方向に等差的に拡大させた格子溝31を機械刻印して、金属製回折格子32を形成する。換言すれば、金属製回折格子32の格子溝31の間隔をブレーズ方向に沿って段階的に拡大させている。従って、ブレーズ方向に沿って、金属製回折格子32は、相互に隣接する格子溝31の間隔が狭間隔から広間隔へと段階的に徐々に変化する形状を有する。 In the step of forming the metal diffraction grating shown in FIG. 7(a), grating grooves 31 having a saw-tooth shape and expanding equidistantly in the blaze direction are mechanically stamped on a flat metal substrate. A metal diffraction grating 32 is formed. In other words, the intervals between the grating grooves 31 of the metal diffraction grating 32 are increased stepwise along the blaze direction. Therefore, along the blaze direction, the metal diffraction grating 32 has a shape in which the spacing between adjacent grating grooves 31 gradually changes from narrow spacing to wide spacing.

次に、図7(b)に示す金属製回折格子の上方に凹面基板を下方に凸面基板を設置する工程にて、金属製回折格子32の格子溝31を形成した面を凹面基板35側に、格子溝31を形成した面と反対側の面に、接着層33、凸面基板34側に設置する。すなわち、金属製回折格子32の格子溝31を形成した面の上方に、凹面基板35の凹面が対向するよう設置すると共に、金属製回折格子32の格子溝31を形成した面とは反対側の面の下方に、接着層33、接着層33の下方に凸面基板34の凸面が対向するよう設置する。 Next, in the step of placing a concave substrate above the metal diffraction grating and a convex substrate below the metal diffraction grating shown in FIG. , the adhesive layer 33 and the convex substrate 34 are placed on the surface opposite to the surface on which the grating grooves 31 are formed. That is, the concave surface of the concave substrate 35 is placed above the surface of the metal diffraction grating 32 on which the grating grooves 31 are formed, and the concave surface of the metal diffraction grating 32 is placed on the side opposite to the surface of the metal diffraction grating 32 on which the grating grooves 31 are formed. The adhesive layer 33 is placed below the surface, and the convex surface of the convex substrate 34 is placed below the adhesive layer 33 so as to face each other.

図7(c)に示す接着工程では、真空雰囲気下で、接着層33の軟化点以上の温度、および荷重を印加して、金属製回折格子32の格子溝31の形成面を凹面基板35に倣わせると共に、接着層33により金属製回折格子32を凸面基板34の凸面に接着する。
次に、図7(d)に示す凹面基板を取り外す工程では、荷重を印加した状態で冷却させて、接着層33を硬化させ、凹面基板35を取り外す(除去する)。続いて、図7(e)に示す金属製回折格子の外周部を除去することで凹面回折格子の型を得る工程にて、曲面上に変形した金属製回折格子32の外周部(金属製回折格子32のうち凸面基板34の凸面よりも外側へと延在する外周部)を除去することで、凹面回折格子の型3を形成する。
金属製回折格子32を凹面基板35に倣わせて曲面に変形させることで、格子溝31を形成した面は、凹面基板35の面精度となる。また、接着層33は、接着時に軟化しており、金属製回折格子32の厚さばらつき、凸面基板34の面精度ばらつきの影響を吸収することができる。
In the bonding process shown in FIG. 7(c), a temperature higher than the softening point of the bonding layer 33 and a load are applied in a vacuum atmosphere, and the surface of the metal diffraction grating 32 on which the grating grooves 31 are formed is placed on the concave substrate 35. Along with this, the metal diffraction grating 32 is adhered to the convex surface of the convex substrate 34 by the adhesive layer 33 .
Next, in the step of removing the concave substrate shown in FIG. 7D, the adhesive layer 33 is cured by cooling while the load is applied, and the concave substrate 35 is removed (removed). Subsequently, in the process of obtaining a concave diffraction grating mold by removing the outer peripheral portion of the metal diffraction grating shown in FIG. The mold 3 of the concave diffraction grating is formed by removing the outer peripheral portion of the grating 32 extending outside the convex surface of the convex substrate 34 .
By deforming the metal diffraction grating 32 into a curved surface following the concave substrate 35 , the surface on which the grating grooves 31 are formed has the surface accuracy of the concave substrate 35 . Further, the adhesive layer 33 is softened at the time of adhesion, and can absorb the effects of variations in the thickness of the metal diffraction grating 32 and variations in surface precision of the convex substrate 34 .

機械による刻印、若しくは半導体プロセス(フォトリソ及びエッチング)により、格子溝31を金属の平面基板上に形成した金属製回折格子32、または機械による刻印、若しくは半導体プロセスにより、格子溝31を形成した平面回折格子を金属の平面基板に転写して、金属製回折格子32を作製する。金属の平面基板への平面回折格子の格子溝の転写においては、スパッタリング、蒸着、めっきを用いる。これらの金属製回折格子32を曲面に変形させて、凸面基板34に実装することで、凹面回折格子の型3を作製する。この凹面回折格子の型3を、上述の実施例1における図6に示した方法で、金属層22、樹脂層23に転写させて、凹面回折格子2を作製する。 A metal diffraction grating 32 in which grating grooves 31 are formed on a metal plane substrate by mechanical marking or semiconductor processes (photolithography and etching), or a plane diffraction grating in which grating grooves 31 are formed by mechanical marking or semiconductor processes. A metal diffraction grating 32 is fabricated by transferring the grating to a metal flat substrate. Sputtering, vapor deposition, and plating are used to transfer the grating grooves of the planar diffraction grating to the metal planar substrate. By deforming these metal diffraction gratings 32 into curved surfaces and mounting them on a convex substrate 34, a concave diffraction grating mold 3 is produced. This concave diffraction grating mold 3 is transferred to the metal layer 22 and the resin layer 23 by the method shown in FIG.

機械刻印により平面状の基板に格子溝31を作製すると、刻印ツールの角度が一定であるため、基板の全面において、一定のブレーズ角度312を持った鋸歯形状の格子溝31を、形状ばらつきが少なく形成することができる。
半導体プロセスにより平面基板上に格子溝31を作製すると、曲面上へのフォトリソグラフィ及びエッチングと比較して、一定のブレーズ角度312(図6)を有する鋸歯形状の格子溝31を、形状ばらつきを少なく形成しやすいと共に、従来のフォトリソグラフィやエッチングに適用する装置を適用できる。これらの方法で作製した平面状の回折格子基板(金属製回折格子)32を曲面に変形させて、凸面基板34に実装するため、曲面(凸面)全面において、ほぼ一定のブレーズ角度を有する鋸歯形状を有し、ブレーズ方向に等差的に間隔を変化させた格子溝31を有する凹面回折格子の型3を作製することができる。
When the grating grooves 31 are formed on a flat substrate by mechanical marking, since the angle of the marking tool is constant, the sawtooth-shaped grating grooves 31 having a constant blaze angle 312 can be formed over the entire surface of the substrate with little variation in shape. can be formed.
When the grating grooves 31 are formed on a flat substrate by a semiconductor process, compared with photolithography and etching on a curved surface, the sawtooth shaped grating grooves 31 having a constant blaze angle 312 (FIG. 6) can be formed with less variation in shape. It is easy to form and can be applied to conventional photolithography and etching equipment. The planar diffraction grating substrate (metal diffraction grating) 32 produced by these methods is deformed into a curved surface and mounted on the convex substrate 34, so that the entire surface of the curved surface (convex surface) has a sawtooth shape with a substantially constant blaze angle. and having grating grooves 31 equidistantly spaced in the blaze direction.

金属製回折格子32の曲面への変形、凸面基板34への実装においては、金属製回折格子32を、高い面精度を有する凹面基板35と凸面基板34とで挟み込み、荷重、温度を印加して、凹面回折格子の型3を作製する。金属製回折格子32の格子溝31を形成した面を凹面基板35に倣わせることで、金属製回折格子32の基板厚さばらつき、金属製回折格子32と凸面基板34とを固定する接着層33の厚さばらつき、凸面基板の面精度等の影響なく、凹面回折格子の型3の面精度を向上できる。金属製回折格子32を凹面基板35と凸面基板34とで挟み込み、荷重を印加して、曲面に変形させたときに、格子溝31の変形、潰れ等が懸念されるが、凹面基板35から格子溝31に加わる荷重は、鋸歯形状の格子溝31の頂角311(図6)の隣辺方向へと分散されるため、変形、潰れなく、凹面回折格子の型3を作製できる。 When deforming the metal diffraction grating 32 into a curved surface and mounting it on the convex substrate 34, the metal diffraction grating 32 is sandwiched between a concave substrate 35 having high surface accuracy and a convex substrate 34, and a load and temperature are applied. , to fabricate the mold 3 of the concave diffraction grating. By making the surface of the metal diffraction grating 32 on which the grating grooves 31 are formed follow the concave substrate 35, variations in substrate thickness of the metal diffraction grating 32 and an adhesive layer for fixing the metal diffraction grating 32 and the convex substrate 34 are suppressed. The surface accuracy of the mold 3 for the concave diffraction grating can be improved without being affected by variations in the thickness of 33 and surface accuracy of the convex substrate. When the metal diffraction grating 32 is sandwiched between the concave substrate 35 and the convex substrate 34 and is deformed into a curved surface by applying a load, the grating grooves 31 may be deformed or crushed. Since the load applied to the grooves 31 is distributed in the direction adjacent to the apex angle 311 (FIG. 6) of the sawtooth-shaped grating grooves 31, the mold 3 of the concave diffraction grating can be manufactured without being deformed or crushed.

以上の通り本実施例によれば、曲面(凸面)全面において、ほぼ一定のブレーズ角度を有する鋸歯形状を有し、ブレーズ方向に等差的に間隔を変化させた格子溝31を有する凹面回折格子の型3を作製することが可能となる。その結果、転写されたほぼ一定のブレーズ角度を有する鋸歯形状を有する凹面回折格子2を作製することができる。
また、本実施例によれば、凹面回折格子の型3の面精度を向上することが可能となる。
As described above, according to this embodiment, the concave diffraction grating has a sawtooth shape with a substantially constant blaze angle on the entire curved surface (convex surface), and has grating grooves 31 whose intervals are changed equally in the blaze direction. It becomes possible to produce the mold 3 of As a result, it is possible to fabricate a concave diffraction grating 2 having a transcribed sawtooth shape with a substantially constant blaze angle.
Further, according to this embodiment, it is possible to improve the surface precision of the mold 3 of the concave diffraction grating.

図8は、本発明の他の実施例に係る実施例4の凹面回折格子の型の製造方法を示す図であって、図8(a)は平面回折格子を形成する工程を、図8(b)は金属製回折格子を形成する工程を、図8(c)は平面回折格子から金属製回折格子を剥離する工程を、図8(d)は金属製回折格子の上方に凹面基板を下方に凸面基板を設置する工程を、図8(e)は接着工程を、図8(f)は凹面基板を取り外す工程を、図8(g)は金属製回折格子の外周部を除去することで凹面回折格子の型を得る工程を示す図である。 8A and 8B are diagrams showing a method of manufacturing a concave diffraction grating mold according to Embodiment 4 of another embodiment of the present invention. FIG. b) shows a step of forming a metal diffraction grating, FIG. 8(c) shows a step of separating the metal diffraction grating from the planar diffraction grating, and FIG. 8(e) is the bonding step, FIG. 8(f) is the step of removing the concave substrate, and FIG. 8(g) is the removal of the outer periphery of the metal diffraction grating. FIG. 10 illustrates the process of obtaining a mold for a concave diffraction grating;

図8(a)に示す平面回折格子を形成する工程にて、平面基板上に機械刻印により、鋸歯形状を有する格子溝41aを、ブレーズ方向に等差的に縮小させて、平面回折格子40を形成する。換言すれば、平面回折格子40の格子溝41aの間隔をブレーズ方向に沿って段階的に縮小させている。従って、ブレーズ方向に沿って、平面回折格子40は、相互に隣接する格子溝41aの間隔が広間隔から狭間隔へと段階的に徐々に変化する形状を有する。 In the step of forming the planar diffraction grating shown in FIG. 8A, the sawtooth grating grooves 41a are reduced equally in the blaze direction by mechanical marking on the planar substrate, thereby forming the planar diffraction grating 40. Form. In other words, the interval between the grating grooves 41a of the planar diffraction grating 40 is reduced stepwise along the blaze direction. Accordingly, along the blaze direction, the planar diffraction grating 40 has a shape in which the spacing between adjacent grating grooves 41a gradually changes from wide to narrow in steps.

次に、図8(b)に示す金属製回折格子を形成する工程にて、格子溝41aを形成した面に、シード膜を形成した後、電解めっきにより、金属を積層して、金属製回折格子42を形成する。
図8(c)に示す平面回折格子から金属製回折格子を剥離する工程では、平面回折格子40からシード膜をエッチングして、金属製回折格子42を剥離する。ここで、金属製回折格子42の鋸歯形状の格子溝41bは、ブレーズ方向に等差的に拡大した間隔で形成される。換言すれば、金属製回折格子42の格子溝41bの間隔をブレーズ方向に沿って段階的に拡大させている。従って、ブレーズ方向に沿って、金属製回折格子42は、相互に隣接する格子溝41bの間隔が狭間隔から広間隔へと段階的に徐々に変化する形状を有する。
Next, in the step of forming a metal diffraction grating shown in FIG. 8B, after forming a seed film on the surface on which the grating grooves 41a are formed, metal is laminated by electroplating to form a metal diffraction grating. A grid 42 is formed.
In the step of removing the metal diffraction grating from the planar diffraction grating shown in FIG. 8C, the seed film is etched from the planar diffraction grating 40 to remove the metal diffraction grating 42 . Here, the sawtooth-shaped grating grooves 41b of the metal diffraction grating 42 are formed at intervals that are expanded equidistantly in the blaze direction. In other words, the intervals between the grating grooves 41b of the metal diffraction grating 42 are increased stepwise along the blaze direction. Accordingly, along the blaze direction, the metal diffraction grating 42 has a shape in which the spacing between adjacent grating grooves 41b gradually changes in stages from narrow to wide.

次に、図8(d)に示す金属製回折格子の上方に凹面基板を下方に凸面基板を設置する工程にて、金属製回折格子42の格子溝41bを形成した面を凹面基板45側に、格子溝41bを形成した面の反対側の面に、接着層43、凸面基板44を設置する。すなわち、金属製回折格子42の格子溝41bを形成した面の上方に、凹面基板45の凹面が対向するよう設置すると共に、金属製回折格子42の格子溝41bを形成した面とは反対側の面の下方に、接着層43、接着層43の下方に凸面基板44の凸面が対向するよう設置する。 Next, in the step of placing a concave substrate above the metal diffraction grating and a convex substrate below the metal diffraction grating shown in FIG. , an adhesive layer 43 and a convex substrate 44 are placed on the surface opposite to the surface on which the grating grooves 41b are formed. That is, the concave surface of the concave substrate 45 is placed above the surface of the metal diffraction grating 42 on which the grating grooves 41b are formed, and the concave surface of the metal diffraction grating 42 on the side opposite to the surface of the metal diffraction grating 42 on which the grating grooves 41b are formed. The adhesive layer 43 is placed below the surface, and the convex surface of the convex substrate 44 is placed below the adhesive layer 43 so as to face each other.

図8(e)に示す接着工程では、真空雰囲気下で、接着層43の軟化点以上の温度、および荷重を印加して、金属製回折格子42の格子溝41bの形成面を凹面基板45に倣わせると共に、接着層43により金属製回折格子42を凸面基板44の凸面に接着する。 In the bonding step shown in FIG. 8(e), a temperature higher than the softening point of the bonding layer 43 and a load are applied in a vacuum atmosphere, and the surface of the metal diffraction grating 42 on which the grating grooves 41b are formed is placed on the concave substrate 45. The metal diffraction grating 42 is adhered to the convex surface of the convex substrate 44 by means of the adhesive layer 43 .

次に、図8(f)に示す凹面基板を取り外す工程では、荷重を印加した状態で冷却させて、接着層43を硬化させた後、凹面基板45を取り外す(除去する)。続いて、図8(g)に示す金属製回折格子の外周部を除去することで凹面回折格子の型を得る工程にて、曲面上に変形した金属製回折格子42の外周部(金属製回折格子42のうち凸面基板44の凸面よりも外側へと延在する外周部)を除去することで、凹面回折格子の型4を形成する。上記方法により、ブレーズ方向に等差的に拡大した間隔を有する凹面回折格子の型4を形成できる。 Next, in the step of removing the concave substrate shown in FIG. 8F, the concave substrate 45 is removed (removed) after the adhesive layer 43 is cured by cooling while the load is applied. Subsequently, in the process of obtaining a concave diffraction grating mold by removing the outer peripheral portion of the metal diffraction grating shown in FIG. The mold 4 of the concave diffraction grating is formed by removing the outer peripheral portion of the grating 42 extending outside the convex surface of the convex substrate 44 . By the above method, it is possible to form a mold 4 of concave diffraction gratings with spacings that are expanded equitably in the blaze direction.

図9は、本発明の他の実施例に係る実施例5の凹面回折格子の型の製造方法を示す図であって、図9(a)は金属製回折格子を形成する工程を、図9(b)は金属製回折格子の上方に凹面基板を下方に凸面基板を設置する工程を、図9(c)は接着工程を、図9(d)は凹面基板を取り外す工程を、図9(e)は金属製回折格子の外周部を除去することで凹面回折格子の型を得る工程を示す図である。 9A and 9B are diagrams showing a method of manufacturing a concave diffraction grating mold according to Example 5 of another embodiment of the present invention. FIG. 9(b) shows the step of placing a concave substrate above the metal diffraction grating and a convex substrate below, FIG. 9(c) shows the bonding step, FIG. 9(d) shows the step of removing the concave substrate, e) is a diagram showing a step of obtaining a concave diffraction grating mold by removing the outer peripheral portion of the metal diffraction grating.

図9(a)に示す金属製回折格子を形成する工程にて、平面の金属基板上に半導体プロセス(フォトリソグラフィ及びエッチング)により、ブレーズ方向に等差的に拡大させた間隔を有する鋸歯形状の格子溝51を形成して、金属製回折格子52を形成する。換言すれば、金属製回折格子52の格子溝51の間隔をブレーズ方向に沿って段階的に拡大させている。従って、ブレーズ方向に沿って、金属製回折格子52は、相互に隣接する格子溝51の間隔が狭間隔から広間隔へと段階的に徐々に変化する形状を有する。ここで、半導体プロセス(フォトリソグラフィ及びエッチング)を適用することで、機械刻印による金属製回折格子52の作製と比較して、短時間での作製が可能である。 In the step of forming the metal diffraction grating shown in FIG. 9( a ), sawtooth-shaped gratings having intervals that are expanded equidistantly in the blaze direction are formed on a flat metal substrate by semiconductor processes (photolithography and etching). A grating groove 51 is formed to form a metal diffraction grating 52 . In other words, the intervals between the grating grooves 51 of the metal diffraction grating 52 are increased stepwise along the blaze direction. Therefore, along the blaze direction, the metal diffraction grating 52 has a shape in which the spacing between adjacent grating grooves 51 gradually changes from narrow to wide. Here, by applying a semiconductor process (photolithography and etching), it is possible to manufacture the metal diffraction grating 52 in a short time compared to manufacturing the metal diffraction grating 52 by mechanical marking.

次に、図9(b)に示す金属製回折格子の上方に凹面基板を下方に凸面基板を設置する工程にて、金属製回折格子52の格子溝51を形成した面を凹面基板55側に、格子溝51を形成した面と反対側の面に接着層53、凸面基板54を設置する。すなわち、金属製回折格子52の格子溝51を形成した面の上方に、凹面基板55の凹面が対向するよう設置すると共に、金属製回折格子52の格子溝51を形成した面とは反対側の面の下方に、接着層53、接着層53の下方に凸面基板54の凸面が対向するよう設置する。 Next, in the step of placing a concave substrate above the metal diffraction grating and a convex substrate below the metal diffraction grating shown in FIG. , an adhesive layer 53 and a convex substrate 54 are placed on the surface opposite to the surface on which the grating grooves 51 are formed. That is, the concave surface of the concave substrate 55 is placed above the surface of the metal diffraction grating 52 on which the grating grooves 51 are formed, and the concave surface of the metal diffraction grating 52 on the side opposite to the surface of the metal diffraction grating 52 on which the grating grooves 51 are formed. The adhesive layer 53 is placed below the surface, and the convex surface of the convex substrate 54 is placed below the adhesive layer 53 so as to face each other.

図9(c)に示す接着工程では、真空雰囲気下で、接着層53の軟化点以上の温度、および荷重を印加して、金属製回折格子52の格子溝51の形成面を凹面基板55に倣わせると共に、接着層53により金属製回折格子52を凸面基板54の凸面に接着する。 In the bonding step shown in FIG. 9C, a temperature above the softening point of the bonding layer 53 and a load are applied in a vacuum atmosphere, and the surface of the metal diffraction grating 52 on which the grating grooves 51 are formed is placed on the concave substrate 55. In parallel with this, the metal diffraction grating 52 is adhered to the convex surface of the convex substrate 54 by the adhesive layer 53 .

次に、図9(d)に示す凹面基板を取り外す工程では、荷重を印加した状態で冷却させて、接着層53を硬化させた後、凹面基板55を取り外す(除去する)。続いて、図9(e)に示す金属製回折格子の外周部を除去することで凹面回折格子の型を得る工程にて、金属製回折格子52の凸面基板54の凸面に接着されていない外周部(金属製回折格子52のうち凸面基板54の凸面よりも外側へと延在する外周部)を除去することで、凹面回折格子の型5を形成する。 Next, in the step of removing the concave substrate shown in FIG. 9D, the concave substrate 55 is removed (removed) after the adhesive layer 53 is cured by cooling while the load is applied. Subsequently, in the step of obtaining a concave diffraction grating mold by removing the outer peripheral portion of the metal diffraction grating shown in FIG. A concave diffraction grating mold 5 is formed by removing a portion (an outer peripheral portion of the metal diffraction grating 52 that extends beyond the convex surface of the convex substrate 54).

以上の通り本実施例によれば、平面の金属基板上に半導体プロセス(フォトリソグラフィ及びエッチング)により、ブレーズ方向に等差的に拡大させた間隔を有する鋸歯形状の格子溝51を形成して、金属製回折格子52を形成することにより、機械刻印による金属製回折格子52の作製と比較して、短時間での作製が可能となる。 As described above, according to this embodiment, the sawtooth-shaped lattice grooves 51 having intervals that are expanded equidistantly in the blaze direction are formed on a flat metal substrate by a semiconductor process (photolithography and etching). By forming the metal diffraction grating 52, it is possible to manufacture the metal diffraction grating 52 in a short time compared to manufacturing the metal diffraction grating 52 by mechanical engraving.

図10は、本発明の他の実施例に係る実施例6の凹面回折格子の型の製造方法を示す図であって、図10(a)は平面回折格子を形成する工程を、図10(b)は金属材料を積層する工程を、図10(c)は金属製回折格子を形成する工程を、図10(d)は金属製回折格子の上方に凹面基板を下方に凸面基板を設置する工程を、図10(e)は接着工程を、図10(f)は凹面基板を取り外す工程を、図10(g)は金属製回折格子の外周部を除去することで凹面回折格子の型を得る工程を示す図である。 10A and 10B are diagrams showing a method of manufacturing a concave diffraction grating mold according to Embodiment 6 of another embodiment of the present invention. FIG. b) shows the step of laminating metal materials, FIG. 10(c) shows the step of forming a metal diffraction grating, and FIG. 10(d) shows a process of placing a concave substrate above and a convex substrate below the metal diffraction grating. 10(e) is the bonding step, FIG. 10(f) is the step of removing the concave substrate, and FIG. 10(g) is the mold of the concave diffraction grating by removing the outer periphery of the metal diffraction grating. It is a figure which shows the process of obtaining.

図10(a)に示す平面回折格子を形成する工程にて、平面基板上にフォトリソグラフィにより、レジスト(樹脂)で、ブレーズ方向に等差的に縮小した間隔で、鋸歯形状を持った格子溝61aを形成して、平面回折格子60を形成する。換言すれば、平面回折格子60の格子溝61aの間隔をブレーズ方向に沿って段階的に縮小させている。従って、ブレーズ方向に沿って、平面回折格子60は、相互に隣接する格子溝61aの間隔が広間隔から狭間隔へと段階的に徐々に変化する形状を有する。 In the step of forming a planar diffraction grating shown in FIG. 10(a), grating grooves having a sawtooth shape are formed on a planar substrate by photolithography using a resist (resin) at an interval that is equally reduced in the blaze direction. 61a is formed to form the planar diffraction grating 60. FIG. In other words, the interval between the grating grooves 61a of the planar diffraction grating 60 is reduced stepwise along the blaze direction. Accordingly, along the blaze direction, the planar diffraction grating 60 has a shape in which the spacing between adjacent grating grooves 61a gradually changes from wide to narrow in steps.

次に、図10(b)に示す金属材料を積層する工程にて、格子溝61aを形成した面に、シード膜を形成した後、電解めっきにより、金属材料を積層する。
図10(c)に示す金属製回折格子を形成する工程では、平面回折格子60から金属材料を剥離させ、ブレーズ方向に等差的に拡大した間隔で、鋸歯形状の格子溝61bを有する金属製回折格子62を形成する。換言すれば、金属製回折格子62の格子溝61bの間隔をブレーズ方向に沿って段階的に拡大させている。従って、ブレーズ方向に沿って、金属製回折格子62は、相互に隣接する格子溝61bの間隔が狭間隔から広間隔へと段階的に徐々に変化する形状を有する。ここで、フォトリソグラフィでの平面回折格子60の作製は、機械刻印と比較して、短時間で作製でき、且つ平面回折格子60から金属製回折格子62を剥離する際に、レジスト(樹脂)を溶解させることで、容易に剥離させることができる。
Next, in the step of laminating a metal material shown in FIG. 10B, after forming a seed film on the surface on which the lattice grooves 61a are formed, a metal material is laminated by electroplating.
In the step of forming the metal diffraction grating shown in FIG. 10(c), the metal material is peeled off from the plane diffraction grating 60, and the metal material having sawtooth-shaped grating grooves 61b at intervals that are expanded equally in the blaze direction. A diffraction grating 62 is formed. In other words, the interval between the grating grooves 61b of the metal diffraction grating 62 is increased stepwise along the blaze direction. Accordingly, along the blaze direction, the metal diffraction grating 62 has a shape in which the spacing between adjacent grating grooves 61b gradually changes from narrow to wide in a stepwise manner. Here, the production of the plane diffraction grating 60 by photolithography can be made in a shorter time than that by machine stamping, and when the metal diffraction grating 62 is peeled off from the plane diffraction grating 60, the resist (resin) is removed. By dissolving, it can be easily peeled off.

次に、図10(d)に示す金属製回折格子の上方に凹面基板を下方に凸面基板を設置する工程にて、金属製回折格子62の格子溝61bを形成した面を凹面基板65側に、格子溝61bを形成した面の反対側の面に接着層63、凸面基板64を設置する。すなわち、金属製回折格子62の格子溝61bを形成した面の上方に、凹面基板65の凹面が対向するよう設置すると共に、金属製回折格子62の格子溝61bを形成した面とは反対側の面の下方に、接着層63、接着層63の下方に凸面基板64の凸面が対向するよう設置する。 Next, in the step of placing a concave substrate above the metal diffraction grating and a convex substrate below the metal diffraction grating shown in FIG. , an adhesive layer 63 and a convex substrate 64 are placed on the surface opposite to the surface on which the grating grooves 61b are formed. That is, the concave surface of the concave substrate 65 is placed above the surface of the metal diffraction grating 62 on which the grating grooves 61b are formed, and the concave surface of the metal diffraction grating 62 on the side opposite to the surface of the metal diffraction grating 62 on which the grating grooves 61b are formed. The adhesive layer 63 is placed below the surface, and the convex surface of the convex substrate 64 is placed below the adhesive layer 63 so as to face it.

図10(e)に示す接着工程では、真空雰囲気下で、接着層63の軟化点以上の温度、および荷重を印加して、金属製回折格子62の格子溝61bの形成面を凹面基板65に倣わせると共に、金属製回折格子62を接着層63で凸面基板64の凸面に接着する。 In the bonding step shown in FIG. 10(e), a temperature higher than the softening point of the bonding layer 63 and a load are applied in a vacuum atmosphere, and the surface of the metal diffraction grating 62 on which the grating grooves 61b are formed is placed on the concave substrate 65. In parallel with this, the metal diffraction grating 62 is adhered to the convex surface of the convex substrate 64 with the adhesive layer 63 .

次に、図10(f)に示す凹面基板を取り外す工程では、荷重を印加した状態で冷却させて、接着層63を硬化させた後、凹面基板65を取り外す(除去する)。続いて、図10(g)に示す金属製回折格子の外周部を除去することで凹面回折格子の型を得る工程にて、曲面上に変形した金属製回折格子62の凸面基板64の凸面に接着されていない外周部(金属製回折格子62のうち凸面基板64の凸面よりも外側へと延在する外周部)を除去することで、凹面回折格子の型6を形成する。 Next, in the step of removing the concave substrate shown in FIG. 10F, the concave substrate 65 is removed (removed) after the adhesive layer 63 is cured by cooling while the load is applied. Subsequently, in the process of obtaining a concave diffraction grating mold by removing the outer peripheral portion of the metal diffraction grating shown in FIG. A concave diffraction grating mold 6 is formed by removing the non-bonded outer peripheral portion (the outer peripheral portion of the metal diffraction grating 62 extending outside the convex surface of the convex substrate 64).

以上の通り本実施例によれば、フォトリソグラフィにて平面回折格子60を作製することにより、機械刻印と比較して、短時間で作製でき、且つ平面回折格子60から金属製回折格子62を剥離する際に、レジスト(樹脂)を溶解させることで、容易に剥離させることができる。 As described above, according to the present embodiment, the planar diffraction grating 60 is manufactured by photolithography, so that it can be manufactured in a shorter time than the mechanical stamping, and the metal diffraction grating 62 is separated from the planar diffraction grating 60. When the resist (resin) is dissolved, the resist (resin) can be easily removed.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
In addition, the present invention is not limited to the above-described embodiments, and includes various modifications.
For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

1…光学装置
2…凹面回折格子
3,4,5,6…凹面回折格子の型
11…光源
12a,12b…集光レンズ
13…試料室
14…スリット
16…検出器
21…格子溝
22…金属層
23…樹脂層
24…凹面基板
30,50,60…平面回折格子
31,41,51,61…格子溝
32,42,52,62…金属製回折格子
33,43,53,63…接着層
34,44,54,64…凸面基板
35,45,55,65…凹面基板
Reference Signs List 1 Optical device 2 Concave diffraction grating 3, 4, 5, 6 Concave diffraction grating mold 11 Light source 12a, 12b Collecting lens 13 Sample chamber 14 Slit 16 Detector 21 Grating groove 22 Metal Layer 23 Resin layer 24 Concave substrate 30, 50, 60 Planar diffraction gratings 31, 41, 51, 61 Grating grooves 32, 42, 52, 62 Metal diffraction gratings 33, 43, 53, 63 Adhesive layer 34, 44, 54, 64... Convex substrates 35, 45, 55, 65... Concave substrates

Claims (5)

光を分光、集光する凹面回折格子であって、
凹面状の基板上に鋸歯形状の格子溝を有し、前記鋸歯形状の格子溝の間隔が不等であって、前記格子溝の間隔がブレーズ方向に等差的に縮小させた形状を有すると共に凹面回折格子の反射面は球面の一部を成していることを特徴とする凹面回折格子。
A concave diffraction grating that disperses and collects light,
It has sawtooth-shaped grating grooves on a concave substrate, the intervals between the sawtooth-shaped grating grooves are unequal, and the intervals between the grating grooves are equally reduced in the blaze direction. A concave diffraction grating characterized in that the reflection surface of the concave diffraction grating forms a part of a spherical surface.
光を分光、集光する凹面回折格子であって、
凹面状の基板上に鋸歯形状の格子溝を有し、前記鋸歯形状の格子溝の間隔が不等であって、相互に隣接する格子溝の間隔がブレーズ方向に沿って広間隔から狭間隔へと段階的に徐々に変化する形状をすると共に凹面回折格子の反射面は球面の一部を成していることを特徴とする凹面回折格子。
A concave diffraction grating that disperses and collects light,
Saw-tooth grating grooves are provided on a concave substrate, the intervals between the saw-tooth grating grooves are unequal, and the intervals between adjacent grating grooves change from wide to narrow along the blaze direction. and a concave diffraction grating characterized in that the reflecting surface of the concave diffraction grating forms a part of a spherical surface.
請求項1又は請求項2に記載の凹面回折格子において、
光を分光、集光する凹面が、球面であることを特徴とする凹面回折格子。
In the concave diffraction grating according to claim 1 or claim 2,
A concave diffraction grating characterized in that the concave surface that disperses and converges light is a spherical surface.
フォトリソグラフィおよびエッチング、または機械加工により、平面状基板上に鋸歯形状を形成し、不等間隔の格子溝であって、格子溝の間隔がブレーズ方向に等差的に縮小させた形状を有するよう形成して、平面状の回折格子基板を作製する工程と、
前記格子溝が形成された面に凹面が対向するよう凹面基板を設置すると共に、前記格子溝が形成された面とは反対側の面に凸面が対向するよう接着層を介して凸面基板を設置する工程と、
前記平面状の回折格子基板の格子溝が形成された面を前記凹面基板に倣わせると共に、前記接着層により前記平面状の回折格子基板を前記凸面基板に接着する接着工程と、
前記凹面基板が取り外された後、前記平面状の回折格子基板のうち前記凸面基板の凸面よりも外側へと延在する外周部を除去し、凹面回折格子の型を形成する工程と、
格子溝の間隔がブレーズ方向に等差的に縮小させた形状を有すると共に凹面回折格子の反射面は球面の一部を成す前記凹面回折格子の型を、金属または樹脂の表面に転写する工程と、を備えることを特徴とする凹面回折格子の製造方法。
By photolithography and etching, or machining, a sawtooth shape is formed on a planar substrate, and unevenly spaced grating grooves having a shape in which the spacing of the grating grooves is reduced equidistantly in the blaze direction. forming to fabricate a planar diffraction grating substrate;
A concave substrate is installed so that the concave surface faces the surface on which the grating grooves are formed, and a convex substrate is installed via an adhesive layer so that the convex surface faces the surface opposite to the surface on which the grating grooves are formed. and
a bonding step of causing the surface of the planar diffraction grating substrate on which the grating grooves are formed to conform to the concave substrate, and bonding the planar diffraction grating substrate to the convex substrate with the adhesive layer;
After the concave substrate is removed, a step of removing an outer peripheral portion of the planar diffraction grating substrate extending outside the convex surface of the convex substrate to form a concave diffraction grating mold;
a step of transferring the mold of the concave diffraction grating having a shape in which the intervals of the grating grooves are equally reduced in the blaze direction and the reflection surface of the concave diffraction grating forming a part of a spherical surface, onto the surface of metal or resin; A method for manufacturing a concave diffraction grating, comprising:
フォトリソグラフィおよびエッチング、または機械加工により、平面状基板上に鋸歯形状を形成し、不等間隔の格子溝であって、相互に隣接する格子溝の間隔が、ブレーズ方向に沿って広間隔から狭間隔へと段階的に徐々に変化する形状を有するよう形成して、平面状の回折格子基板を作製する工程と、
前記格子溝が形成された面に凹面が対向するよう凹面基板を設置すると共に、前記格子溝が形成された面とは反対側の面に凸面が対向するよう接着層を介して凸面基板を設置する工程と、
前記平面状の回折格子基板の格子溝が形成された面を前記凹面基板に倣わせると共に、前記接着層により前記平面状の回折格子基板を前記凸面基板に接着する接着工程と、
前記凹面基板が取り外された後、前記平面状の回折格子基板のうち前記凸面基板の凸面よりも外側へと延在する外周部を除去し、凹面回折格子の型を形成する工程と、
相互に隣接する格子溝の間隔が、ブレーズ方向に沿って広間隔から狭間隔へと段階的に徐々に変化する形状を有すると共に凹面回折格子の反射面は球面の一部を成す前記凹面回折格子の型を、金属または樹脂の表面に転写する工程と、を備えることを特徴とする凹面回折格子の製造方法。
By photolithography and etching, or machining, a sawtooth shape is formed on a planar substrate, with unevenly spaced grating grooves, the spacing between adjacent grating grooves varying from wide to narrow along the blaze direction. fabricating a planar diffraction grating substrate by forming it to have a shape that gradually changes to the spacing;
A concave substrate is installed so that the concave surface faces the surface on which the grating grooves are formed, and a convex substrate is installed via an adhesive layer so that the convex surface faces the surface opposite to the surface on which the grating grooves are formed. and
a bonding step of causing the surface of the planar diffraction grating substrate on which the grating grooves are formed to conform to the concave substrate, and bonding the planar diffraction grating substrate to the convex substrate with the adhesive layer;
After the concave substrate is removed, a step of removing an outer peripheral portion of the planar diffraction grating substrate extending outside the convex surface of the convex substrate to form a concave diffraction grating mold;
The concave diffraction grating has a shape in which the intervals between grating grooves adjacent to each other gradually change in stages from wide intervals to narrow intervals along the blaze direction, and the reflecting surface of the concave diffraction grating forms a part of a spherical surface. A method of manufacturing a concave diffraction grating, characterized by comprising the step of transferring the mold of to a surface of metal or resin.
JP2022101492A 2018-08-29 2022-06-24 Manufacturing method of concave diffraction grating Active JP7301201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022101492A JP7301201B2 (en) 2018-08-29 2022-06-24 Manufacturing method of concave diffraction grating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018160640A JP7096738B2 (en) 2018-08-29 2018-08-29 Concave diffraction grating and its manufacturing method
JP2022101492A JP7301201B2 (en) 2018-08-29 2022-06-24 Manufacturing method of concave diffraction grating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018160640A Division JP7096738B2 (en) 2018-08-29 2018-08-29 Concave diffraction grating and its manufacturing method

Publications (3)

Publication Number Publication Date
JP2022132297A true JP2022132297A (en) 2022-09-08
JP2022132297A5 JP2022132297A5 (en) 2023-03-06
JP7301201B2 JP7301201B2 (en) 2023-06-30

Family

ID=86938605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022101492A Active JP7301201B2 (en) 2018-08-29 2022-06-24 Manufacturing method of concave diffraction grating

Country Status (1)

Country Link
JP (1) JP7301201B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012843A (en) * 1973-04-25 1977-03-22 Hitachi, Ltd. Concave diffraction grating and a manufacturing method thereof
JPS6184604A (en) * 1984-10-03 1986-04-30 Hitachi Ltd Producing of diffraction grating of unequally spaced grating groove
US4798446A (en) * 1987-09-14 1989-01-17 The United States Of America As Represented By The United States Department Of Energy Aplanatic and quasi-aplanatic diffraction gratings
JPH0915410A (en) * 1995-06-29 1997-01-17 Olympus Optical Co Ltd Production of optical element and production of metal mold for optical element
JP2004053992A (en) * 2002-07-22 2004-02-19 Hitachi Cable Ltd Diffraction grating, wavelength multiplexer/demultiplexer and wavelength multiplex signal optical transmission module using them
JP2008051822A (en) * 2007-10-09 2008-03-06 Toshiba Corp Chemical analyzer
JP2011187733A (en) * 2010-03-09 2011-09-22 Canon Inc Optical device and device manufacturing method
WO2016059928A1 (en) * 2014-10-16 2016-04-21 株式会社 日立ハイテクノロジーズ Method of manufacturing mold for curved diffraction grating, method of manufacturing curved diffraction grating, curved diffraction grating, and optical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150095191A1 (en) 2013-09-30 2015-04-02 Amazon Technologies, Inc. Global merchant network

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012843A (en) * 1973-04-25 1977-03-22 Hitachi, Ltd. Concave diffraction grating and a manufacturing method thereof
JPS6184604A (en) * 1984-10-03 1986-04-30 Hitachi Ltd Producing of diffraction grating of unequally spaced grating groove
US4798446A (en) * 1987-09-14 1989-01-17 The United States Of America As Represented By The United States Department Of Energy Aplanatic and quasi-aplanatic diffraction gratings
JPH0915410A (en) * 1995-06-29 1997-01-17 Olympus Optical Co Ltd Production of optical element and production of metal mold for optical element
JP2004053992A (en) * 2002-07-22 2004-02-19 Hitachi Cable Ltd Diffraction grating, wavelength multiplexer/demultiplexer and wavelength multiplex signal optical transmission module using them
JP2008051822A (en) * 2007-10-09 2008-03-06 Toshiba Corp Chemical analyzer
JP2011187733A (en) * 2010-03-09 2011-09-22 Canon Inc Optical device and device manufacturing method
WO2016059928A1 (en) * 2014-10-16 2016-04-21 株式会社 日立ハイテクノロジーズ Method of manufacturing mold for curved diffraction grating, method of manufacturing curved diffraction grating, curved diffraction grating, and optical device

Also Published As

Publication number Publication date
JP7301201B2 (en) 2023-06-30

Similar Documents

Publication Publication Date Title
JP6510548B2 (en) Method of manufacturing mold of curved surface diffraction grating, method of manufacturing curved surface diffraction grating, curved surface diffraction grating, and optical device
JP6029502B2 (en) Method for manufacturing curved diffraction grating
EP3745166B1 (en) Manufacturing method of concave diffrraction grating
JP6058402B2 (en) Method of manufacturing curved diffraction grating, and mold of curved diffraction grating
US9157798B2 (en) Optical wavelength dispersion device and method of manufacturing the same
US6839135B2 (en) Optical device
US10175185B2 (en) Methods for manufacturing doubly bent X-ray focusing device, doubly bent X-ray focusing device assembly, doubly bent X-ray spectroscopic device and doubly bent X-ray spectroscopic device assembly
JP7096738B2 (en) Concave diffraction grating and its manufacturing method
JP7301201B2 (en) Manufacturing method of concave diffraction grating
US20130135740A1 (en) Optical wavelength dispersion device and method of manufacturing the same
WO2021256009A1 (en) Method for manufacturing concave diffraction grating, and optical device
WO2021038919A1 (en) Diffraction grating, manufacturing method for diffraction grating, and photomask
WO2023281950A1 (en) Method for manufacturing diffraction lattice and method for manufacturing replica diffraction lattice
Peterson et al. Off-plane x-ray reflection grating fabrication
JP2001296415A (en) Spectral device and far ir spectral device
JP5115737B2 (en) Wavelength demultiplexing spectrometer
CN115004065A (en) Concave diffraction grating and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230620

R150 Certificate of patent or registration of utility model

Ref document number: 7301201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150