JP2022131773A - aluminum alloy for casting - Google Patents

aluminum alloy for casting Download PDF

Info

Publication number
JP2022131773A
JP2022131773A JP2021030897A JP2021030897A JP2022131773A JP 2022131773 A JP2022131773 A JP 2022131773A JP 2021030897 A JP2021030897 A JP 2021030897A JP 2021030897 A JP2021030897 A JP 2021030897A JP 2022131773 A JP2022131773 A JP 2022131773A
Authority
JP
Japan
Prior art keywords
casting
mass
alloy
aluminum alloy
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021030897A
Other languages
Japanese (ja)
Inventor
悠太 鈴木
Yuta Suzuki
健司 和田
Kenji Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SSAluminum Co Ltd
Original Assignee
SSAluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SSAluminum Co Ltd filed Critical SSAluminum Co Ltd
Priority to JP2021030897A priority Critical patent/JP2022131773A/en
Publication of JP2022131773A publication Critical patent/JP2022131773A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Continuous Casting (AREA)

Abstract

To provide an aluminum alloy for casting having tensile strength and yield strength of 400 MPa or more, and elongation of 5% or more, while suppressing solidification crack.SOLUTION: An aluminum alloy for casting contains Zn:3.0-8.0 mass%, Mg:1.5-5.0 mass%, Cu:0.2-3.0 mass%, at least one kind of Ti, Zr, Mn and Cr:0.1-0.3 mass%, Ni:0.5-2.0 mass% and Fe:0.2-1.0 mass%, and has a residue comprising aluminum and inevitable impurities.SELECTED DRAWING: None

Description

本発明は鋳造用アルミニウム合金に関するものである。 The present invention relates to casting aluminum alloys.

地球環境保全の観点からあらゆる産業に対して省資源、省エネルギー化が求められ、例えば自動車産業では低燃費化、リサイクルへの対応等、多くの課題を抱えている。その中でも、特に地球温暖化に直結する排気ガスの削減は大きな課題であり、低燃費化つまり燃費向上を実現する技術開発に注力している。燃費向上を実現する大きな要素の一つとして、軽量化が挙げられる。従来主に使用されてきた鉄系材料を、より軽量な材料としてアルミニウム合金、マグネシウム合金、炭素材料等へ転換するための研究が活発に行われている。中でもアルミニウム合金は、軽量性のみならず、強度や加工性、耐食性、熱伝導性ならびにリサイクル性の観点から優れており、自動車の軽量化を促進する材料として期待されており、既にアルミニウムが多数採用されているエンジンやホイールに加え、ピラー等の構造部材への採用拡大に向け、研究開発が盛んに進められている。 From the viewpoint of global environmental conservation, all industries are required to save resources and energy. Among them, the reduction of exhaust gas, which is directly linked to global warming, is a major issue, and we are focusing on technological development to realize low fuel consumption, that is, improvement of fuel consumption. One of the major factors for improving fuel efficiency is weight reduction. Researches are being actively conducted to convert iron-based materials, which have been mainly used in the past, to lighter materials such as aluminum alloys, magnesium alloys, carbon materials, and the like. In particular, aluminum alloys are not only lightweight, but are also superior in terms of strength, workability, corrosion resistance, thermal conductivity, and recyclability. In addition to the engines and wheels currently used in the industry, research and development are actively underway to expand the use of this material in structural members such as pillars.

ピラー等の構造部材に採用される代表的な展伸用アルミニウム合金として、例えばJISに定められている6063、6005Cまたは6061等の6000系合金がある。6000系合金は、展伸加工性や耐食性に優れているが、JISに記載されている標準的機械的性質として、6063合金T5処理材の引張強さは185MPa、耐力は145MPaおよび伸びは12%であり、6061合金T6処理材の引張強さは310MPa、耐力は275MPaおよび伸びは12%である。つまり、自動車の軽量化に貢献する構造材としてはさらなる強度の向上が求められている。 Typical wrought aluminum alloys used for structural members such as pillars include, for example, 6000 series alloys such as 6063, 6005C and 6061 defined by JIS. The 6000 series alloys are excellent in drawability and corrosion resistance, but as standard mechanical properties described in JIS, the 6063 alloy T5 treated material has a tensile strength of 185 MPa, a yield strength of 145 MPa, and an elongation of 12%. and the 6061 alloy T6 treated material has a tensile strength of 310 MPa, a yield strength of 275 MPa and an elongation of 12%. In other words, further improvement in strength is required as a structural material that contributes to the weight reduction of automobiles.

実用される展伸用アルミニウム合金のうち、例えばJISに定められている7003、7204または7075等の7000系合金は強度が高いことで知られている。JISに記載されている標準的機械的性質として、7003合金T5処理材の引張強さは315MPa、耐力は255MPaおよび伸びは15%であり、7075合金T6処理材の引張強さは570MPa、耐力は505MPaおよび伸びは11%である。つまり、7000系合金は軽量化への貢献が大きく、ピラー等の構造部材への採用が大きく期待されている。非特許文献1によると、2015年に発表されたGM社製Cadillac-CT6には、ロッカー(サイドシル)等の構造部材に7000系合金押出材が初めて採用された。また、例えば特許文献1および2のように、構造部材に用いられる高強度7000系合金押出材も開発されている。 Among wrought aluminum alloys in practical use, 7000 series alloys such as 7003, 7204 or 7075 defined by JIS are known for their high strength. As the standard mechanical properties described in JIS, the tensile strength of the 7003 alloy T5 treated material is 315 MPa, the proof stress is 255 MPa and the elongation is 15%, and the 7075 alloy T6 treated material has a tensile strength of 570 MPa and a proof stress of 505 MPa and elongation is 11%. In other words, the 7000 series alloys greatly contribute to weight reduction, and are greatly expected to be adopted for structural members such as pillars. According to Non-Patent Document 1, GM's Cadillac-CT6 announced in 2015 was the first to use 7000 series alloy extruded materials for structural members such as rockers (side sills). In addition, high-strength 7000 series alloy extruded materials used for structural members have also been developed, for example, as in Patent Documents 1 and 2.

一方、鋳造用アルミニウム合金として、例えばJISに定められているAC4CH等の鋳造性が良好なAl-Si系合金が多く用いられる。鋳造用Al-Si系アルミニウム合金も自動車の構造部材として採用されている。例えば非特許文献2によると、前述したGM社製Cadillac-CT6において、6000系および7000系合金押出材製のフレームを接続する部材に、Al-Si系アルミニウム合金であるAlcan社製Aural2およびAural5sが採用されている。 On the other hand, as an aluminum alloy for casting, an Al—Si alloy with good castability such as AC4CH defined by JIS is often used. Al-Si aluminum alloys for casting are also employed as structural members of automobiles. For example, according to Non-Patent Document 2, in the Cadillac-CT6 manufactured by GM, Aural2 and Aural5s manufactured by Alcan, which are Al—Si-based aluminum alloys, are used as members that connect frames made of 6000 series and 7000 series alloy extruded materials. Adopted.

ところが、JISに記載されている標準的機械的性質として、例えばAC4CH合金T6処理材金型試験片の引張強さは250MPaおよび伸びは5%に留まる。つまり、Al-Si系合金においては脆い共晶Siが晶出するため、強度および延性が低く、自動車の構造部材へ採用する上で大きな障害となっており、軽量化への貢献は十分でない。 However, as standard mechanical properties described in JIS, for example, the tensile strength of the AC4CH alloy T6 treated material mold test piece is only 250 MPa and the elongation is only 5%. In other words, since brittle eutectic Si crystallizes in Al--Si alloys, the strength and ductility are low, which is a major obstacle in adopting them as structural members of automobiles, and contributes insufficiently to weight reduction.

7000系合金と同様のAl-Zn-Mg系の鋳造用アルミニウム合金を自動二輪車の構造部材に採用した事例として、例えば非特許文献3によると、Al-Zn-Mg系合金製パイプフレームと溶接されるジョイント部品材として、Zn5.5~6.5質量%、Mg0.55~0.75質量%、Fe0.3~0.6質量%、Mn0.1~0.2質量%、Cr0.1~0.2質量%およびTi0.1~0.2質量%から成る鋳造用アルミニウム合金が開発されている。溶接強度を重視してパイプフレームと同様のAl-Zn-Mg系合金が鋳造ジョイント部品材に採用された。 As an example of adopting an Al-Zn-Mg casting aluminum alloy similar to the 7000 series alloy as a structural member of a motorcycle, for example, according to Non-Patent Document 3, it is welded to an Al-Zn-Mg alloy pipe frame. Zn5.5 to 6.5 mass%, Mg0.55 to 0.75 mass%, Fe0.3 to 0.6 mass%, Mn0.1 to 0.2 mass%, Cr0.1 to Casting aluminum alloys have been developed consisting of 0.2% by weight and 0.1-0.2% by weight of Ti. Al--Zn--Mg-based alloy similar to that used for the pipe frame was adopted as the material for the cast joint parts with an emphasis on welding strength.

ところが、Al-Zn-Mg系合金は、鋳造性が非常に悪い。ここで鋳造性が悪いとは、液相線温度が高く、比熱および凝固潜熱が小さいため凝固時間が短く、溶湯の流動性に劣るということ、そしてAl-Si系合金に比べ凝固収縮量が多い、つまり引け巣が発生しやすく、鋳物表面に凝固割れが発生しやすいことである。非特許文献4によると、Al-Zn-Mg-Cu合金において凝固割れの発生が少ない合金組成は、Zn2.5~5質量%、Mg3~5質量%、Zn/Mg<1.17の範囲に限られる。なお、鋳造時に製品に生じる割れについて、凝固割れ、鋳造割れあるいは熱間割れと様々な呼称があるが、ここではそれらを包含して凝固割れと称する。 However, Al--Zn--Mg alloys have very poor castability. Here, poor castability means that the liquidus temperature is high, the specific heat and solidification latent heat are small, so the solidification time is short, the fluidity of the molten metal is poor, and the amount of solidification shrinkage is large compared to Al-Si alloys. That is, shrinkage cavities are likely to occur, and solidification cracks are likely to occur on the casting surface. According to Non-Patent Document 4, the alloy composition that causes less solidification cracking in the Al-Zn-Mg-Cu alloy is Zn2.5 to 5% by mass, Mg3 to 5% by mass, and Zn/Mg<1.17. Limited. There are various names for cracks that occur in products during casting, such as solidification cracks, casting cracks, and hot cracks.

前述の鋳造ジョイント部品材向けAl-Zn-Mg系合金も、非特許文献3によると、凝固割れが発生し易く、金型温度を450~500℃という極めて高温に維持することで凝固割れを抑制している。 According to Non-Patent Document 3, the Al-Zn-Mg alloy for casting joint parts described above is also prone to solidification cracking, and solidification cracking is suppressed by maintaining the mold temperature at an extremely high temperature of 450 to 500 ° C. is doing.

しかしながら、金型温度を極めて高温に維持することは、製造において生産性やエネルギー効率を落とす要因であるだけでなく、凝固速度が遅くなり強度および延性を低下させる要因でもあることは自明である。すなわち、Al-Zn-Mg系合金が持つ優れた機械的特性を鋳造材で発現することは極めて困難であった。 However, it is self-evident that maintaining the mold temperature at an extremely high temperature is not only a factor in reducing productivity and energy efficiency in manufacturing, but also a factor in slowing the solidification rate and reducing strength and ductility. That is, it has been extremely difficult to express the excellent mechanical properties of Al--Zn--Mg alloys in cast materials.

ところが近年、Al-Zn-Mg系合金にNiおよびFeを添加した合金を鋳造すると、凝固割れが抑制されることが報告された。非特許文献5によると、ZnとMgの合計を8.8質量%、Niを0.55質量%、Feを0.41質量%とし、不純物としてSiを0.14質量%含有するアルミニウム合金を鉄製の金型に鋳造すると、凝固割れがなかった。この際の冷却速度は10K/秒と大きく、金型温度は十分低いと推測される。また、当該合金のT6処理材の引張強さは491MPa、耐力は439MPaおよび伸びは6.1%であり、T4処理材の引張強さは397MPa、耐力は227MPaおよび伸びは14.5%であった。すなわち、凝固割れを抑制しかつ優れた機械的特性を発現するAl-Zn-Mg系鋳造合金の可能性が示唆された。 In recent years, however, it has been reported that solidification cracking is suppressed by casting an alloy obtained by adding Ni and Fe to an Al--Zn--Mg alloy. According to Non-Patent Document 5, an aluminum alloy containing 8.8% by mass of Zn and Mg in total, 0.55% by mass of Ni, 0.41% by mass of Fe, and 0.14% by mass of Si as an impurity is When cast in iron molds, there was no solidification cracking. The cooling rate at this time is as high as 10 K/sec, and the mold temperature is presumed to be sufficiently low. In addition, the T6 treated material of the alloy had a tensile strength of 491 MPa, a yield strength of 439 MPa and an elongation of 6.1%, and a T4 treated material had a tensile strength of 397 MPa, a yield strength of 227 MPa and an elongation of 14.5%. rice field. In other words, the possibility of an Al--Zn--Mg cast alloy that suppresses solidification cracking and exhibits excellent mechanical properties was suggested.

橋本成一、「神戸製鋼技報」、2017年、第66巻、p.94-98Seiichi Hashimoto, "Kobe Steel Engineering Report", 2017, Vol. 66, p. 94-98 千葉晃司、「2017早稲田大学各務記念材料技術研究所オープンセミナー資料」、2017年10月20日Koji Chiba, "2017 Waseda University Kagami Memorial Research Institute of Materials Science and Technology Open Seminar Materials", October 20, 2017 藤崎優、高崎憲政、小屋栄太郎、望月信介、「軽金属」、一般社団法人軽金属学会、1988年、Vol.38、p.287-291Yu Fujisaki, Norimasa Takasaki, Eitaro Koya, Shinsuke Mochizuki, "Light metal", The Institute of Light Metals, 1988, Vol. 38, p. 287-291 小池敬一、「軽金属」、一般社団法人軽金属学会、1980年、Vol.30、p.442-448Keiichi Koike, "Light Metal", General Incorporated Association Light Metal Society, 1980, Vol. 30, p. 442-448 V.Kh.Mann, A.N.Alabin, A.Yu.Krokhin, A.V.Frolov, N.A.Belov,「LIGHT METAL AGE」,OCTOBER2015,p.12-14V. Kh. Mann, A. N. Alabin, A.; Yu. Krokhin, A.; V. Frolov, N.; A. Belov, "LIGHT METAL AGE", OCTOBER 2015, p. 12-14 小林一典著、「金型鋳造法」、日刊工業新聞社、昭和43年8月27日、p.30-31Kazunori Kobayashi, "Mold Casting Method", Nikkan Kogyo Shimbun, August 27, 1968, p. 30-31

特許第3735407号公報Japanese Patent No. 3735407 特開2011-241449号公報JP 2011-241449 A

上記の実情を鑑みると、凝固割れが抑制されかつ引張強さおよび耐力が400MPa以上かつ伸び5%以上を発現する鋳造用アルミニウム合金の開発が求められている。 In view of the above circumstances, there is a demand for the development of an aluminum alloy for casting that suppresses solidification cracking and exhibits a tensile strength and proof stress of 400 MPa or more and an elongation of 5% or more.

本発明者は上述の課題を解決すべく、鋳造用Al-Zn-Mg系合金の組成を様々変化させ、凝固割れを抑制しつつ、優れた機械的特性を得る方法に重点を置き研究した。その結果、NiおよびFeの含有量を最適化することで、凝固割れを抑制しつつ優れた機械的特性を得ることができる鋳造用アルミニウム合金を実現するに至った。 In order to solve the above-mentioned problems, the present inventors varied the composition of Al--Zn--Mg alloys for casting, and conducted research with an emphasis on methods of obtaining excellent mechanical properties while suppressing solidification cracking. As a result, by optimizing the contents of Ni and Fe, an aluminum alloy for casting that can obtain excellent mechanical properties while suppressing solidification cracking has been realized.

本発明の鋳造用アルミニウム合金は、Zn:3.0~8.0質量%、Mg:1.5~5.0質量%、Cu:0.2~3.0質量%と、Ti、Zr、MnおよびCrの少なくとも一種を0.1~0.3質量%、Ni:0.5~2.0質量%およびFe:0.2~1.0質量%を含有し、残部がアルミニウムと不可避不純物からなることを特徴とする鋳造用アルミニウム合金である。 The casting aluminum alloy of the present invention contains Zn: 3.0 to 8.0 mass%, Mg: 1.5 to 5.0 mass%, Cu: 0.2 to 3.0 mass%, Ti, Zr, 0.1 to 0.3% by mass of at least one of Mn and Cr, 0.5 to 2.0% by mass of Ni and 0.2 to 1.0% by mass of Fe, the balance being aluminum and unavoidable impurities It is an aluminum alloy for casting characterized by consisting of.

さらに、NiおよびFeの含有量がFe+0.25Ni≦0.85を満たし、且つ、NiおよびFeの含有量の比(Fe/Ni)が0.03≦Fe/Ni≦1.1を満たすことを特徴とする鋳造用アルミニウム合金である。 Furthermore, the content of Ni and Fe satisfies Fe + 0.25Ni ≤ 0.85, and the ratio of the content of Ni and Fe (Fe/Ni) satisfies 0.03 ≤ Fe/Ni ≤ 1.1 It is an aluminum alloy for casting characterized by:

さらに、NiおよびFeの含有量がFe≦0.4Ni、且つ、Fe+0.2Ni≦0.6を満たすことを特徴とする鋳造用アルミニウム合金である。 Further, the aluminum alloy for casting is characterized in that the contents of Ni and Fe satisfy Fe≦0.4Ni and Fe+0.2Ni≦0.6.

本発明の鋳造用アルミニウム合金を使用することで、凝固割れを抑制しつつ引張強さおよび耐力400MPa以上、伸び5%以上となるアルミニウム合金鋳物製品を得ることができる。また、本発明の鋳造用アルミニウム合金は、砂型鋳造に限らず金型鋳造、特に重力金型鋳造のような比較的設備費が安い製造方法により鋳造できる。 By using the casting aluminum alloy of the present invention, it is possible to obtain an aluminum alloy cast product having a tensile strength and proof stress of 400 MPa or more and an elongation of 5% or more while suppressing solidification cracking. In addition, the aluminum alloy for casting of the present invention can be cast not only by sand casting but also by die casting, particularly gravity die casting, which requires relatively low equipment costs.

本発明の鋳造用アルミニウム合金の限定理由を説明する。なお、特に断りの無い限り、各合金元素の含有量は質量%で示す。 The reason for limiting the aluminum alloy for casting of the present invention will be explained. Unless otherwise specified, the content of each alloying element is shown in % by mass.

本発明の鋳造用アルミニウム合金における亜鉛(Zn)の含有量は3.0~8.0%、マグネシウム(Mg)の含有量は1.5~5.0%である。ZnとMgを共存させたアルミニウム合金は、適切な熱処理を施すことでη相(MgZn)が析出して強度および耐力を向上することが知られている。Zn含有量3.0%およびMg含有量1.5%未満では十分な引張強さおよび耐力が得られない。一方、Zn含有量8.0%およびMg含有量5.0%を超えると凝固割れが頻発するのに加え、伸びが著しく低下する。 The aluminum alloy for casting of the present invention has a zinc (Zn) content of 3.0 to 8.0% and a magnesium (Mg) content of 1.5 to 5.0%. It is known that an aluminum alloy in which Zn and Mg are coexisting is subjected to an appropriate heat treatment to precipitate an η phase (MgZn 2 ) and improve strength and proof stress. If the Zn content is less than 3.0% and the Mg content is less than 1.5%, sufficient tensile strength and yield strength cannot be obtained. On the other hand, when the Zn content exceeds 8.0% and the Mg content exceeds 5.0%, solidification cracking frequently occurs and the elongation significantly decreases.

銅(Cu)は粒界に析出するη相(MgZn)に固溶して腐食電位を低下させ応力腐食割れを抑制する効果があり、0.2~3.0%添加するのが好ましい。Cu含有量0.2%未満では応力腐食割れの抑制効果が十分でない。一方、Cu含有量3.0%を超えると十分な引張強さおよび耐力が得られない。 Copper (Cu) dissolves in the η phase (MgZn 2 ) precipitated at the grain boundary and has the effect of lowering the corrosion potential and suppressing stress corrosion cracking. If the Cu content is less than 0.2%, the effect of suppressing stress corrosion cracking is not sufficient. On the other hand, when the Cu content exceeds 3.0%, sufficient tensile strength and yield strength cannot be obtained.

チタン(Ti)、ジルコニウム(Zr)、マンガン(Mn)およびクロム(Cr)は初晶アルミニウムを微細化する働きを有する。初晶アルミニウムを微細化することで凝固割れならびに応力腐食割れが抑制されかつ機械的特性が向上するため、Ti、Zr、MnおよびCrの少なくとも一種を0.1~0.3%添加するのが好ましい。当該各元素の含有量を0.1%未満とすると、初晶アルミニウムの微細化効果が十分得られない。一方、当該各元素の含有量が0.3%を超えると、当該各元素とアルミニウムとの金属間化合物から成る晶出物が増加して伸びを低下させる。 Titanium (Ti), zirconium (Zr), manganese (Mn) and chromium (Cr) function to refine primary crystal aluminum. By refining the primary crystal aluminum, solidification cracking and stress corrosion cracking are suppressed and mechanical properties are improved. preferable. If the content of each element is less than 0.1%, the effect of refining primary crystal aluminum cannot be sufficiently obtained. On the other hand, if the content of each element exceeds 0.3%, crystallized substances formed by intermetallic compounds between the respective elements and aluminum increase to reduce the elongation.

非特許文献5によると、NiとFeを共添加することで3元共晶化合物AlFeNiが晶出して凝固割れを抑制するとされている。本発明者は鋭意研究の結果、NiおよびFeの含有量の好適な範囲は、ニッケル(Ni)を0.5~2.0%および鉄(Fe)を0.2~1.0%であり、凝固割れを抑制するとともに高い機械的特性が得られることを見出した。 According to Non-Patent Document 5, the co-addition of Ni and Fe results in the crystallization of the ternary eutectic compound Al 9 FeNi, which suppresses solidification cracking. As a result of intensive research by the present inventors, the preferable range of Ni and Fe contents is 0.5 to 2.0% for nickel (Ni) and 0.2 to 1.0% for iron (Fe). , which suppresses solidification cracking and provides high mechanical properties.

NiおよびFeの含有量がFe+0.25Ni≦0.85を満たし、且つ、NiおよびFeの含有量の比(Fe/Ni)が0.03≦Fe/Ni≦1.1を満たすことはより好ましい。 More preferably, the content of Ni and Fe satisfies Fe+0.25Ni≦0.85, and the ratio of the content of Ni and Fe (Fe/Ni) satisfies 0.03≦Fe/Ni≦1.1. .

NiおよびFeの含有量がFe≦0.4Ni、且つ、Fe+0.2Ni≦0.6を満たすことはさらに好ましい。 More preferably, the contents of Ni and Fe satisfy Fe≦0.4Ni and Fe+0.2Ni≦0.6.

以上のように、本発明の鋳造用アルミニウム合金を使用することで、凝固割れを抑制しつつ引張強さおよび耐力400MPa以上、伸び5%以上となるアルミニウム合金鋳物製品を得ることができる。また、本発明の鋳造用アルミニウム合金は、砂型鋳造に限らず比較的低温で金型鋳造、特に重力金型鋳造のような比較的設備費が安い製造方法により鋳造できるので、生産性に優れる。 As described above, by using the casting aluminum alloy of the present invention, it is possible to obtain an aluminum alloy cast product having a tensile strength and proof stress of 400 MPa or more and an elongation of 5% or more while suppressing solidification cracking. In addition, the aluminum alloy for casting of the present invention can be cast not only by sand casting, but also by a manufacturing method such as die casting at a relatively low temperature, particularly gravity die casting, which requires relatively low equipment costs, and thus has excellent productivity.

本発明の詳細を以下の実施例により説明する。なお、以下に示す実施例は本発明の態様についての理解を容易にするためのものであり、これらの実施例に制限されるものではない。 The details of the invention are illustrated by the following examples. The examples shown below are intended to facilitate understanding of aspects of the present invention, and the present invention is not limited to these examples.

表1に検討した合金の組成を示す。なお、表1に示す元素以外の残部は、実質的にアルミニウムと不可避不純物から成る。 Table 1 shows the compositions of the alloys studied. The balance other than the elements shown in Table 1 consists essentially of aluminum and unavoidable impurities.

Figure 2022131773000001
Figure 2022131773000001

合金の溶製方法を以下に説明する。黒鉛製の坩堝に原材料として工業用純アルミニウム(純度99.7%以上)を装入し、大気雰囲気において電気炉を使用して溶解した。純アルミニウムが溶け落ちた後、所望の組成となるよう質量を調整したチタン母合金(Al-10%Ti)、ジルコニウム母合金(Al-15%Zr)、金属ニッケル、金属銅、金属亜鉛および金属マグネシウムを添加した。得られた溶湯中の水素ガスおよび介在物除去を目的としてアルゴンガスバブリングを行った後、溶湯を鎮静して溶湯表面の滓を取り除いた。 The method of melting the alloy will be described below. Industrial pure aluminum (purity of 99.7% or higher) was charged as a raw material into a graphite crucible and melted in an air atmosphere using an electric furnace. Titanium master alloy (Al-10% Ti), zirconium master alloy (Al-15% Zr), metallic nickel, metallic copper, metallic zinc and metals whose mass is adjusted so as to have a desired composition after pure aluminum melts down Magnesium was added. After argon gas bubbling was performed for the purpose of removing hydrogen gas and inclusions in the obtained molten metal, the molten metal was calmed to remove slag on the surface of the molten metal.

凝固割れ性の評価として、前記非特許文献6に記されたリング状鋳型を用いた割れ試験を行った。鋳型温度は常温であり、注湯温度は液相線温度+100℃とした。鋳造冷却後、割れ試験片表面に見える割れの長さを測定した。各水準n=4で試験を行った。表2に割れ試験結果を示す。 As an evaluation of solidification cracking resistance, a cracking test using a ring-shaped mold described in Non-Patent Document 6 was conducted. The mold temperature was room temperature, and the pouring temperature was the liquidus temperature +100°C. After casting and cooling, the length of cracks visible on the surface of the crack test piece was measured. The test was performed at each level n=4. Table 2 shows the crack test results.

Figure 2022131773000002
Figure 2022131773000002

本発明の鋳造用アルミニウム合金である実施例1~8では、割れが発生しないまたは1個に過ぎないのに対し、比較例9~15では割れが全数発生した。 In Examples 1 to 8, which are the aluminum alloys for casting of the present invention, no or only one crack occurred, whereas in Comparative Examples 9 to 15, cracks occurred in all of them.

続いて、実施例5~8ならびに比較例12~15について、鋳造温度735℃で供試材採取用鋳型に鋳込み、自然空冷させた後に鋳型から取り出し供試材採取用鋳物を得た。供試材採取用鋳型はJIS:H5202の図2に基づいた舟金型であり、型温度は常温とした。 Subsequently, for Examples 5 to 8 and Comparative Examples 12 to 15, they were cast into molds for collecting test materials at a casting temperature of 735° C., allowed to air cool naturally, and then removed from the molds to obtain castings for collecting test materials. The mold for collecting the test material was a boat mold based on Fig. 2 of JIS: H5202, and the mold temperature was room temperature.

上記のように得た供試材採取用鋳物から、JIS4号引張試験片を作製した。表3に実施例5~8ならびに比較例12~15の引張試験結果を示す。 A JIS No. 4 tensile test piece was produced from the casting for sampling the test material obtained as described above. Table 3 shows the tensile test results of Examples 5-8 and Comparative Examples 12-15.

Figure 2022131773000003
Figure 2022131773000003

実施例5~8ならびに比較例12~15いずれも、引張強さおよび耐力は400MPaを超えているものの、伸びが5%以上となるのは実施例5~8に限られる。原因は明らかでないが、実施例の組成は凝固割れが抑制されており内部健全性に優れていると考える。 All of Examples 5 to 8 and Comparative Examples 12 to 15 have a tensile strength and proof stress of over 400 MPa, but only Examples 5 to 8 have an elongation of 5% or more. Although the cause is not clear, it is believed that the compositions of the examples are excellent in internal soundness because solidification cracking is suppressed.

以上の結果により、凝固割れを抑制しつつ引張強さおよび耐力400MPa以上、伸び5%以上となる鋳造用アルミニウム合金を得ることができる。また、本発明の鋳造用アルミニウム合金は、砂型鋳造に限らず比較的低温で金型鋳造、特に重力金型鋳造のような比較的設備費が安い製造方法により鋳造できる。




Based on the above results, it is possible to obtain an aluminum alloy for casting having a tensile strength and proof stress of 400 MPa or more and an elongation of 5% or more while suppressing solidification cracking. In addition, the aluminum alloy for casting of the present invention can be cast not only by sand mold casting but also by relatively low-temperature mold casting, particularly gravity mold casting, which requires relatively low equipment costs.




Claims (3)

Zn:3.0~8.0質量%、Mg:1.5~5.0質量%、Cu:0.2~3.0質量%と、Ti、Zr、MnおよびCrの少なくとも一種を0.1~0.3質量%、Ni:0.5~2.0質量%およびFe:0.2~1.0質量%を含有し、残部がアルミニウムと不可避不純物からなることを特徴とする鋳造用アルミニウム合金。
Zn: 3.0 to 8.0% by mass, Mg: 1.5 to 5.0% by mass, Cu: 0.2 to 3.0% by mass, and at least one of Ti, Zr, Mn and Cr at 0.00%. Casting characterized by containing 1 to 0.3% by mass, Ni: 0.5 to 2.0% by mass, and Fe: 0.2 to 1.0% by mass, and the balance being aluminum and inevitable impurities aluminum alloy.
NiおよびFeの含有量がFe+0.25Ni≦0.85を満たし、且つ、NiおよびFeの含有量の比(Fe/Ni)が0.03≦Fe/Ni≦1.1を満たすことを特徴とする請求項1に記載の鋳造用アルミニウム合金。
The content of Ni and Fe satisfies Fe + 0.25Ni ≤ 0.85, and the ratio of the content of Ni and Fe (Fe/Ni) satisfies 0.03 ≤ Fe/Ni ≤ 1.1 The aluminum alloy for casting according to claim 1.
NiおよびFeの含有量がFe≦0.4Ni、且つ、Fe+0.2Ni≦0.6を満たすことを特徴とする請求項1または2のいずれか1つに記載の鋳造用アルミニウム合金。
























3. The aluminum alloy for casting according to claim 1, wherein the contents of Ni and Fe satisfy Fe≦0.4Ni and Fe+0.2Ni≦0.6.
























JP2021030897A 2021-02-26 2021-02-26 aluminum alloy for casting Pending JP2022131773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021030897A JP2022131773A (en) 2021-02-26 2021-02-26 aluminum alloy for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021030897A JP2022131773A (en) 2021-02-26 2021-02-26 aluminum alloy for casting

Publications (1)

Publication Number Publication Date
JP2022131773A true JP2022131773A (en) 2022-09-07

Family

ID=83152789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021030897A Pending JP2022131773A (en) 2021-02-26 2021-02-26 aluminum alloy for casting

Country Status (1)

Country Link
JP (1) JP2022131773A (en)

Similar Documents

Publication Publication Date Title
JP5383916B2 (en) High-strength multi-element heat-resistant aluminum alloy material and preparation method thereof
EP3669011A1 (en) Method of forming a cast aluminium alloy
CA2721761C (en) Aluminum alloy and manufacturing method thereof
WO2011035652A1 (en) High-strength heat-proof aluminum alloy material containing lithium and rare earth and producing method thereof
AU2010322541B2 (en) Aluminum alloy and manufacturing method thereof
CN113061787A (en) High-strength high-toughness Al-Si-Cu-Mg-Cr-Mn-Ti series casting alloy and preparation method thereof
WO2011023060A1 (en) High-strength heat-proof aluminum alloy material and producing method thereof
WO2011035654A1 (en) High-strength heat-proof aluminum alloy material containing beryllium and rare earth and producing method thereof
JPS63206445A (en) Aluminum-lithium ternary alloy
WO2011035653A1 (en) High-strength heat-proof aluminum alloy material containing cobalt and rare earth and producing method thereof
WO2011035650A1 (en) Nickel-rare earth co-doped high-strength heat-proof aluminum alloy material and producing method thereof
CN103060640B (en) High-strength aluminum alloy material treated by halogen compound, and preparation method thereof
JP2013501854A (en) Method for producing high-strength aluminum-magnesium alloy
JP6900199B2 (en) Manufacturing method of aluminum alloy for casting, aluminum alloy casting products and aluminum alloy casting products
JP2022131773A (en) aluminum alloy for casting
WO2011032433A1 (en) High-strength heat-proof aluminum alloy material containing tungsten and rare earth and producing method thereof
CN102021448A (en) Be-RE high-strength heat-resistant aluminium alloy material with C as modifier and preparation method thereof
CN102021425B (en) Sc-Ni-RE high-strength and heat-resistance aluminum alloy material with C as modificator and preparation method thereof
CN102021424B (en) Sc-Li-RE high-strength heat-resistant aluminium alloy material with C as modifier and preparation method thereof
CN102021417B (en) Sc-Co-RE high-strength heat-resistant aluminium alloy material with C as modifier and preparation method thereof
WO2011035651A1 (en) High-strength heat-proof aluminum alloy material containing niobium and rare earth and producing method thereof
CN102021416B (en) Be-Sc-RE high-strength heat-resisting aluminum-alloy material modified with C and preparation method thereof
WO2011032435A1 (en) Chromium-rare earth co-doped high-strength heat-proof aluminum alloy material modified by carbon and producing method thereof
CN102021379B (en) C modified Ag-Be-RE high-strength heat resistant aluminum alloy material and preparation method thereof
CN102021426B (en) Sc-Mo-RE high-strength heat-resistant aluminium alloy material with C as modifier and preparation method thereof