JP2022130780A - Water-based paint film formation method and water-based paint film formation device - Google Patents

Water-based paint film formation method and water-based paint film formation device Download PDF

Info

Publication number
JP2022130780A
JP2022130780A JP2021029356A JP2021029356A JP2022130780A JP 2022130780 A JP2022130780 A JP 2022130780A JP 2021029356 A JP2021029356 A JP 2021029356A JP 2021029356 A JP2021029356 A JP 2021029356A JP 2022130780 A JP2022130780 A JP 2022130780A
Authority
JP
Japan
Prior art keywords
paint
water
coating
coated
based paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021029356A
Other languages
Japanese (ja)
Inventor
谷川康夫
Yasuo Tanigawa
ペティット アイザック
Pettitte Isac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANIGAWA Yasuo
Original Assignee
TANIGAWA Yasuo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANIGAWA Yasuo filed Critical TANIGAWA Yasuo
Priority to JP2021029356A priority Critical patent/JP2022130780A/en
Publication of JP2022130780A publication Critical patent/JP2022130780A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)
  • Coating Apparatus (AREA)

Abstract

To provide a technique of eliminating necessity of a flash-off process for evaporating moisture in a paint film by a predetermined amount from a surface after painting when wet-on-wet painting is performed with a water-based paint.SOLUTION: A technique eliminates necessity of a flash-off process by performing spray painting and drying in the same work zone alternately in multiple times until a predetermined paint film thickness is achieved with a water-based paint, while irradiating a painted surface with an infrared ray to evaporate moisture in a painting film by a predetermined amount for drying.SELECTED DRAWING: Figure 1

Description

本発明は水性塗料を用いた塗膜の形成および予備乾燥において、特に被塗物の塗膜の形成と予備乾燥とを同時に行い、塗着塗料の固形分を制御することを可能とする方法と装置に関する。 The present invention relates to the formation and pre-drying of a coating film using a water-based paint, in particular a method of forming a coating film and pre-drying an object to be coated at the same time, thereby making it possible to control the solid content of the applied paint. Regarding the device.

従来、水性塗料による中塗り塗装では、その後の上塗り塗装をウェットオンウェットで行うにしても、フラッシュオフと呼ばれる予備乾燥が必要であった。また、水性塗料によるメタリックベース塗装でも、その後のクリア塗装をウェットオンウェットで行うにしても、フラッシュオフと呼ばれる予備乾燥が必要であった。溶剤塗料から水性塗料に工程を切り替える場合や、水性塗料を塗装する設備を新設する場合、このフラッシュオフ工程を水性塗料の塗装工程の後に追加する必要があった。 Conventionally, intermediate coating with a water-based paint required pre-drying called flash-off, even if the subsequent top coating was performed wet-on-wet. In addition, pre-drying called flash-off is required whether the metallic base coating is performed using water-based paint or the subsequent clear coating is performed wet-on-wet. When switching the process from solvent paint to water-based paint, or when installing equipment for applying water-based paint, it was necessary to add this flash-off process after the water-based paint coating process.

特開2003-251250号公報JP-A-2003-251250 特開2007-319762号公報Japanese Patent Application Laid-Open No. 2007-319762 特開2005-305231号公報JP-A-2005-305231 特開2008-178773号公報JP 2008-178773 A

平成15年度 経済産業大臣賞 新機械振興賞受賞者業績概要 マツダ株式会社 環境対応スリー・ウエットオン塗装技術の開発Fiscal 2003 Minister of Economy, Trade and Industry Prize New Machinery Promotion Award Winner Achievement Summary Mazda Motor Corporation Development of Environmentally Friendly Three-Wet-On Painting Technology

溶剤系塗料の溶剤の蒸発は早いので、いわゆるウェットオンウェット塗装を行うことは、比較的容易に実現できる。しかしながら、図6の上図に示すように、水性塗料の溶媒としての水分は、極めて蒸発が遅いので、ウェットオンウェット塗装を行うためには、続いて次に塗装する工程の前で、塗膜中の水分を所定の分だけ表面から蒸発させる工程が必要であった。そのために、赤外線や熱風を用いて予備乾燥するための専用の工程を、フラッシュオフ工程と呼び、約3分程度の工程時間が必要になっていた。フラッシュオフ工程は給排気を行いつつ温度及び湿度を制御するため、空調に消費されるエネルギーは膨大である。さらに溶剤塗料から水性塗料に既存工程の切り替えを実施する場合、新たにフラッシュオフ工程を既存ラインに追加せねばならぬが、そのためのスペースがないケースも多く、この消費エネルギーの削減とともに、フラッシュオフ工程の追加はスペース上の大きな問題であった。 Since the solvent of the solvent-based paint evaporates quickly, so-called wet-on-wet painting can be achieved relatively easily. However, as shown in the upper diagram of FIG. 6, water as a solvent for water-based paint evaporates extremely slowly. A process for evaporating a predetermined amount of moisture from the surface was required. For this reason, a dedicated process for pre-drying using infrared rays or hot air is called a flash-off process, which requires a process time of about 3 minutes. Since the flash-off process controls the temperature and humidity while supplying and exhausting air, the energy consumed for air conditioning is enormous. Furthermore, when the existing process is switched from solvent paint to water-based paint, a new flash-off process must be added to the existing line, but in many cases there is no space for this. Adding a process was a big space problem.

特許文献1のように、「熱硬化性水性塗料の塗装時に、塗料の噴霧粒子が被塗面に移動するほぼ同じ方向に向けて、塗料噴出口の後方から塗装パターンの周囲にパターンに接触するように温度及び/又は湿度が制御された空気を噴射する方法によって塗着塗料の固形分を制御することを特徴とする塗膜形成方法」において、塗装スプレーガンの後方から温風を多量に噴出することで、塗装と乾燥を同時に行う技術が提案されている。その効果として、フラッシュオフ工程を不要とせしめることができても、その温風がスプレーされた塗料粒子の飛行の流れを乱し、結果として塗着効率の大きな低下により塗料を浪費するばかりか、塗着前の飛行中の塗料粒子の水分含有量を温風によって、下げてしまうことに起因し、その塗料粒子の粘度上昇し、それが被塗装面に塗着するときの適正粘度が確保できなかった。その結果、塗装表面の平滑性が大きく妨げられ、正常な塗装品質を得ることに問題があった。 As in Patent Document 1, "When applying a thermosetting water-based paint, the sprayed particles of the paint come in contact with the pattern around the coating pattern from behind the paint ejection port in almost the same direction as they move to the surface to be coated. A method of forming a coating film characterized by controlling the solid content of the applied paint by a method of injecting air whose temperature and/or humidity are controlled as described above, in which a large amount of warm air is ejected from the rear of the paint spray gun. A technique has been proposed in which coating and drying are performed at the same time. As a result, even if the flash-off process can be made unnecessary, the hot air disturbs the flying flow of the sprayed paint particles, resulting in a large decrease in the transfer efficiency, not only wasting the paint, Due to the fact that the moisture content of the paint particles in flight before being applied is lowered by the hot air, the viscosity of the paint particles increases, and the proper viscosity cannot be secured when the paint particles adhere to the surface to be coated. I didn't. As a result, the smoothness of the coating surface is greatly hindered, and there is a problem in obtaining normal coating quality.

そのために、特許文献2のように、フラッシュオフを塗装工程と同じ塗装ブース内に設置し、「水性塗料をワークに塗布する工程と、該水性塗料が塗布されたワークを回転させながら赤外線を照射して塗着塗料の固形分比率を高める工程とを具備することを特徴とする水性塗料の塗膜形成方法。」が提案されている。これにより専用のフラッシュオフ工程はなくせるものの、「ワークを回転させながら赤外線を照射して塗着塗料の固形分比率を高める工程」をフラッシュ工程の代替として、塗装ブース内に過大な乾燥設備を新たに追加することになり、スペース上の問題は解決しなかった。 For that purpose, as in Patent Document 2, a flash-off is installed in the same painting booth as the painting process, and "a process of applying a water-based paint to a work and irradiating infrared rays while rotating the work coated with the water-based paint A method for forming a coating film of a water-based paint, characterized by comprising a step of increasing the solid content ratio of the applied paint. Although this eliminates the need for a dedicated flash-off process, it replaces the flash process with the process of rotating the workpiece while irradiating it with infrared rays to increase the solid content of the applied paint. It was decided to add a new one, and the space problem was not solved.

また、特許文献3のように、「該塗料の乾燥を促進し得る常温より高い温度域に前記被塗装物を予め加熱する予熱工程と、その予熱工程を経た被塗装物が前記温度域に維持されている状態で該被塗装物に一種または二種以上の塗料を順に付与する塗料付与工程と、その予熱工程では、前記被塗装物に遠赤外線を照射して該被塗装物を加熱する塗装方法。」が提案されている。このような塗装前の被塗装物の加熱を行うことは、比較的単純なワークで有効であっても、部分的に厚みの異なる被塗装物や、穴部など複雑な凹凸を持つ被塗装物においては、余熱で得られた熱量が被塗装物の表面に向かう熱伝達量が均一にならず、部分的に乾燥不足や過剰乾燥になってしまうケースがあった。 In addition, as in Patent Document 3, "a preheating step of preheating the object to be coated to a temperature range higher than normal temperature that can accelerate the drying of the paint, and maintaining the object to be coated after the preheating process in the temperature range In the paint application step of sequentially applying one or more paints to the object to be coated in a state where it is being coated, and the preheating step, the object to be coated is irradiated with far infrared rays to heat the object. method” is proposed. Such heating of the object to be coated before painting is effective for relatively simple workpieces, but it may be difficult to apply heat to objects with partially different thicknesses or objects with complex irregularities such as holes. In the method, the amount of heat transferred from the residual heat to the surface of the object to be coated is not uniform, and there have been cases where partial drying is insufficient or excessive.

本発明は、被塗装物の形状にかかわらず、塗装ブースの拡張を伴わずに、安定的な塗装品質を確保しつつ、フラッシュオフ工程を不要とするものである。本発明の目的は、水性塗料によるウェットオンウェット塗装を行うにおいて、塗装後に塗膜中の水分を所定の分だけ表面から蒸発させるためのフラッシュオフ工程を不要とする技術を提供することである。 The present invention eliminates the flash-off process while ensuring stable coating quality without enlarging the coating booth regardless of the shape of the object to be coated. An object of the present invention is to provide a technique that eliminates the need for a flash-off process for evaporating a predetermined amount of water in a coating film from the surface after coating in wet-on-wet coating with water-based paint.

被塗物に対して、水性塗料のスプレー塗装を複数回に分けて施工し、先のスプレー塗装と後のスプレー塗装との間で、赤外線による乾燥を複数回に分けて施工することを、既定の膜厚に達するまで繰り返す。そのようにして、
塗膜の形成と塗膜の乾燥と交互に繰り返すことによって、塗膜形成完了時には、塗膜中の水分を所定の分だけ表面から蒸発させることができる。図4に示すように、被塗装物50の表面において、塗膜形成は、Aから始まり、続いてB、C、D、E、そしてFのように進行する。A、C、Dにおいてはスプレー塗装によって塗着した塗料粒子51は多くの水分を含み、半球状であるが、B、C、Dにおいては、塗料粒子52は、赤外線加熱によって、一部の水分が蒸発し、厚み方向に収縮する。その水分蒸発の速度は、赤外線の種類と強度を適切に選択することで、十分に制御できることは言うまでもない。
A water-based paint is applied to the object to be coated in multiple times, and between the first spray coating and the subsequent spray coating, infrared drying is performed in multiple times. Repeat until a film thickness of in that way,
By alternately repeating the formation of the coating film and the drying of the coating film, a predetermined amount of water in the coating film can be evaporated from the surface when the coating film formation is completed. As shown in FIG. 4, on the surface of the object 50 to be coated, film formation begins at A and proceeds in the order of B, C, D, E, and F. As shown in FIG. In A, C, and D, the paint particles 51 applied by spray coating contain a large amount of water and are hemispherical. evaporates and shrinks in the thickness direction. Needless to say, the speed of water evaporation can be sufficiently controlled by appropriately selecting the type and intensity of infrared rays.

赤外線強度の指標として、被塗装物表面に当たる赤外線を単位面積当たりのキロワット数とし、様々な条件で、塗装の仕上がり品質を評価したのが、表1にある評価表である。ここで照射範囲というのは、図5において、21aの範囲が全体的であり、21bの範囲が部分的であり、その時の塗装スプレーの行われた範囲は22である。被塗装物は連続回転しているので、それぞれの範囲は連続して回転移動していくことは言うまでもない。被塗装物全体に赤外線を照射すると、塗着前のスプレーされた塗料粒子の内部の水分が過熱されることで塗料の粘度上昇が引き起こされて、平滑な塗装面が得られなかった。また、赤外線照射時間が限られるので、赤外線強度が低すぎても、十分に水分蒸発が行われなかった。また、赤外線強度が強すぎても、塗着塗料内の部分的温度上昇により水分が気体化することで、ピンホール不良が発生した。赤外線強度が1平方メートル当たり10Kwで、部分的な塗装と、部分的な乾燥を繰り返した条件5が最も塗装仕上がりが良かった。

Figure 2022130780000002
As an indicator of the intensity of infrared rays, the infrared rays striking the surface of the object to be coated are measured in kilowatts per unit area. In FIG. 5, the irradiation range is defined as the entire range 21a, the partial range 21b, and the range 22 where the coating was sprayed. Since the object to be coated rotates continuously, it goes without saying that each range rotates continuously. When the entire object to be coated is irradiated with infrared rays, the water inside the sprayed paint particles is overheated before coating, causing an increase in the viscosity of the paint, and a smooth painted surface cannot be obtained. In addition, since the infrared irradiation time is limited, even if the intensity of the infrared rays is too low, the moisture is not sufficiently evaporated. Also, even if the intensity of the infrared ray was too strong, a pinhole defect occurred due to the gasification of moisture due to a partial temperature rise in the applied paint. Condition 5, in which the intensity of infrared rays was 10 Kw per square meter, and repeated partial coating and partial drying, gave the best coating finish.
Figure 2022130780000002

本発明によれば、塗装ゾーンで被塗物の表面に水性塗料による塗膜形成を完了させると同時に、塗膜中の水分を所定の分だけ表面から蒸発させることができるので、図6の下図のごとく、水性塗料によるウェットオンウェット塗装においてフラッシュオフ工程を不要とすることができる。 According to the present invention, it is possible to complete the formation of the water-based paint film on the surface of the object to be coated in the coating zone, and at the same time, evaporate a predetermined amount of water in the coating film from the surface. As described above, the flash-off process can be made unnecessary in wet-on-wet painting with water-based paint.

第1の実施例を示す平面図である。FIG. 2 is a plan view showing the first embodiment; 第2の実施例を示す平面図である。It is a top view which shows a 2nd Example. 実施例の赤外線照射装置の要部を示す正面図と平面図である。It is the front view and top view which show the principal part of the infrared irradiation apparatus of an Example. 塗膜形成過程を説明する断面図である。It is sectional drawing explaining the coating-film formation process. 塗装部位と乾燥部位の説明図である。It is explanatory drawing of a coating part and a drying part. 従来技術と本発明技術による工程の差異を示す説明図であるIt is an explanatory view showing the difference in the process between the conventional technology and the technology of the present invention. 第3の実施例における赤外線ランプの設置方法を示す図である。It is a figure which shows the installation method of the infrared lamp in a 3rd Example.

本実施例では、アルミニウムホイールの塗装を例につき説明する。図1では、被塗装物としてのアルミニウムホイール素材を洗浄・電着塗装の後、粉体塗料のプライマー塗装後に、上塗り塗装用治具にセットする。タクトタイムは約30秒である。塗装ブース1内に被塗装物3を搬送するコンベア2によって、塗装ロボット4の正面に被塗装物3が運ばれると、被塗装物回転装置6に係合され、毎分30から60回転の速さで、回転を始める。塗装ロボット4は、被塗装物3の一部をねらって、図5の22の部位に対して、水性メタリックベース塗料(PPG社製 商品名AQUACRON)をスプレーガン7からスプレーするが、その間も被塗装物3は回転を継続する。同時に、塗装ロボット4が塗装している被塗装物3の部位の180度回転対象となる部位は、つまり、図5の近赤外線ヒーター5側によって、1平方メートル当たり10キロワット程度の熱量で塗料の塗着面が加熱される。赤外線ランプ11は、T3型近赤外線用石英チューブで、疑似放物面の反射板12によって、ほぼ平行に近赤外線が被塗装物に向けて照射されるようになっている。赤外線の波長は、1から2ミクロンの範囲の近赤外線で、これは主に水分に吸収されやすく、素材の過熱を促進しない。また、赤外線ランプ11の上部には、ランプの冷却と、ランプ表面の汚れ防止を兼ねて、空気の吐出ノズル13が取り付けられている。この空気は熱風となって、塗膜の乾燥を若干助長するが、過度な風量はスプレー塗装のパターンを乱すので好ましくない。これらの構成により、塗装と乾燥を同時に約30秒行うことで、塗装と乾燥とが15回から30回交互に繰り返され、塗膜が連続に成膜するとともに、塗着直後の塗料はNV50%前後だったものが、塗膜形成を完了には、NV75%以上に確保され、その後さらにウェットオンウェットとして、もう一層、クリア塗装(PPG社製 商品名SPECTRACRON)を重ねるために十分な予備乾燥が得られた。なお、水性メタリックベースの乾燥膜厚は15ミクロンの厚さになるよう、塗装条件設定した。また、実際に近赤外線ヒーターで消費されたエネルギーは高々1Kwで、フラッシュオフ工程の空調に消費されるエネルギーの50分の1であった。 In this embodiment, the coating of an aluminum wheel will be described as an example. In FIG. 1, an aluminum wheel material as an object to be coated is washed, electrodeposition coated, and then powder-coated as a primer, and then set in a top coating jig. The tact time is about 30 seconds. When the object to be coated 3 is conveyed in front of the coating robot 4 by the conveyor 2 for conveying the object to be coated 3 into the coating booth 1, it is engaged with the object rotating device 6 and rotates at a speed of 30 to 60 revolutions per minute. Now, start spinning. The coating robot 4 aims at a portion of the object 3 to be coated, and sprays a water-based metallic base paint (trade name AQUACRON manufactured by PPG) from the spray gun 7 onto the 22 parts in FIG. The object 3 to be coated continues to rotate. At the same time, the portion of the object 3 being coated by the coating robot 4 that is to be rotated 180 degrees is coated with the paint at a heat quantity of about 10 kilowatts per square meter by the near-infrared heater 5 side of FIG. The surface is heated. The infrared lamp 11 is a T3-type near-infrared quartz tube, and a pseudo-parabolic reflecting plate 12 irradiates near-infrared rays toward the object to be coated in a substantially parallel manner. Infrared wavelengths are near-infrared in the range of 1 to 2 microns, which are mainly absorbed by moisture and do not promote overheating of materials. An air discharge nozzle 13 is attached to the upper portion of the infrared lamp 11 to cool the lamp and prevent contamination of the lamp surface. This air becomes hot air, which slightly accelerates the drying of the coating film, but an excessive amount of air disturbs the spray coating pattern, which is not preferable. With these configurations, by performing painting and drying at the same time for about 30 seconds, painting and drying are alternately repeated 15 to 30 times, and the paint film is continuously formed, and the paint immediately after application is NV50%. What used to be before and after is secured at NV75% or more to complete the coating film formation, and after that, as a wet-on-wet process, sufficient pre-drying is performed to overlay another layer of clear coating (PPG's product name SPECTRACRON). Got. The coating conditions were set so that the dry film thickness of the aqueous metallic base was 15 microns. Moreover, the energy actually consumed by the near-infrared heater was 1 Kw at most, which was 1/50 of the energy consumed for the air conditioning in the flash-off process.

第2の実施例として、スピンドル塗装として広く知られた工法に適用した例につき説明する。図2では、実施例1と同様に導電プライマー塗装された被塗装物3aを、6本の腕を有する回転治具3bの先端付近にそれぞれセットする。タクトタイムは約30秒である。塗装ブース1内に回転治具3bを搬送するコンベア2によって、塗装ロボット4の正面に回転治具3b3が運ばれると、被塗装物回転装置6に係合され、毎分30から60回転の速さで、回転を始める。塗装ロボット4は、塗装ロボット側に近い被塗装物3aをねらって、水性プライマー塗料(PPG社製 商品名Optiprime3)をスプレーガン7からスプレーするが、その間も回転治具3bは回転を継続する。同時に、塗装ロボット4から一番遠い被塗装物3aは、近赤外線ヒーター5側によって、1平方メートル当たり10キロワット程度の熱量で塗料の塗着面が加熱される。赤外線ランプ11は、T3型近赤外線用石英チューブで、疑似放物面の反射板12によって、ほぼ平行に近赤外線が被塗装物に向けて照射されるようになっている。赤外線の波長は、1から2ミクロンの範囲の近赤外線で、これは主に水分に吸収されやすく、素材の過熱を促進しない。また、赤外線ランプ11の上部には、ランプの冷却と、ランプ表面の汚れ防止を兼ねて、空気の吐出ノズル13が取り付けられている。この空気は熱風となって、塗膜の感想を若干助長するが、過度な風量はスプレー塗装のパターンを乱すので好ましくない。これらの構成により、塗装と乾燥を同時に約30秒行うことで、塗装と乾燥とが15回から30回交互に繰り返され、塗膜が連続に成膜するとともに、塗着直後の塗料はNV50%前後だったものが、塗膜形成を完了には、NV75%以上に確保され、その後さらにウェットオンウェットとして、もう一層、上塗り塗装(PPG社製 商品名SPECTRACRON)を重ねるために十分な予備乾燥が得られた。なお、水性プライマーの乾燥膜厚は20ミクロンの厚さになるよう、塗装条件設定した。また、実際に近赤外線ヒーターで消費されたエネルギーは高々1Kwで、フラッシュオフ工程の空調に消費されるエネルギーの50分の1であった。 As a second embodiment, an example of application to a method widely known as spindle coating will be described. In FIG. 2, objects 3a to be coated with a conductive primer in the same manner as in Example 1 are set in the vicinity of the tips of rotating jigs 3b having six arms. The tact time is about 30 seconds. When the rotary jig 3b3 is conveyed in front of the coating robot 4 by the conveyor 2 that conveys the rotary jig 3b into the coating booth 1, it is engaged with the object rotating device 6 to rotate at a speed of 30 to 60 revolutions per minute. Now, start spinning. The painting robot 4 sprays a water-based primer paint (manufactured by PPG under the trade name of Optiprime 3) from the spray gun 7, aiming at the object 3a to be painted near the painting robot side, while the rotating jig 3b continues to rotate. At the same time, the object to be coated 3a farthest from the coating robot 4 is heated by the near-infrared heater 5 with a heat quantity of about 10 kilowatts per square meter. The infrared lamp 11 is a T3-type near-infrared quartz tube, and a pseudo-parabolic reflecting plate 12 irradiates near-infrared rays toward the object to be coated in a substantially parallel manner. Infrared wavelengths are near-infrared in the range of 1 to 2 microns, which are mainly absorbed by moisture and do not promote overheating of materials. An air discharge nozzle 13 is attached to the upper portion of the infrared lamp 11 to cool the lamp and prevent contamination of the lamp surface. This air turns into hot air, which slightly enhances the impression of the coating film, but an excessive air volume disturbs the spray coating pattern, which is not preferable. With these configurations, by performing painting and drying at the same time for about 30 seconds, painting and drying are alternately repeated 15 to 30 times, and the paint film is continuously formed, and the paint immediately after application is NV50%. What was before and after is secured to NV 75% or more to complete the coating film formation, and after that, as a wet-on-wet process, sufficient pre-drying is performed to overlay another top coat (PPG's product name SPECTRACRON). Got. The coating conditions were set so that the dry film thickness of the water-based primer was 20 microns. Moreover, the energy actually consumed by the near-infrared heater was 1 Kw at most, which was 1/50 of the energy consumed for the air conditioning in the flash-off process.

第3の実施例では、アルミニウムホイールのクリア塗装を例につき説明する。クリア塗装は、ベース塗料との材料の組み合わせによって、水性クリアと溶剤クリアとを使い分ける必要があった。そのため、塗装ブース内は、防爆仕様の設備仕様が要求される。第1実施例と同様に、被塗装物としてのアルミニウムホイール素材を洗浄・電着塗装の後、粉体塗料のプライマー塗装の焼き付けをした後、水性メタリックベースを塗装し、次に、クリア塗装を行った。タクトタイムは約90秒である。第1実施例と同様に、クリア塗装ブース1内に被塗装物3を搬送するコンベア2によって、塗装ロボット4の正面に被塗装物3が運ばれると、被塗装物回転装置6に係合され、毎分30から60回転の速さで、回転を始める。塗装ロボット4は、被塗装物3の一部をねらって、図5の22の部位に対して、水性クリア塗料(PPG社製 商品名EC520 clearcoat)をスプレーガン7からスプレーするが、その間も被塗装物3は回転を継続する。同時に、塗装ロボット4が塗装している被塗装物3の部位の180度回転対象となる部位は、つまり、図5の近赤外線ヒーター5にて加熱される部位であり、1平方メートル当たり10キロワット程度の熱量で塗料の塗着面が加熱される。赤外線ランプ11は、T3型近赤外線用石英チューブで、疑似放物面の反射板12によって、ほぼ平行に近赤外線が被塗装物に向けて照射されるようになっている。この赤外線ヒーターは、塗装ブース外に開口部のあるチャンバー8に覆われていて、被塗物側の面は、透明な耐熱ガラス(石英ガラス)が装着されている。赤外線の波長は、1から2ミクロンの範囲の近赤外線で、これは主に水分に吸収されやすく、素材の過熱を促進しない。これらの構成により、塗装と乾燥を同時に約90秒行うことで、塗装と乾燥とが45回から90回交互に繰り返され、塗膜が連続に成膜するとともに、塗着直後の塗料はNV50%前後だったものが、塗膜形成を完了には、NV75%以上に確保され、塗装膜厚も50ミクロン以上を確保できた。また、赤外線ランプ11は非防爆仕様であるが、塗装ブース外にあるため、安全に、溶剤系塗料と水性塗料との交互塗装も可能となった。 In the third embodiment, clear coating of aluminum wheels will be described as an example. For clear coating, it was necessary to use water-based clear and solvent clear depending on the combination of materials with the base paint. Therefore, explosion-proof equipment specifications are required in the coating booth. As in the first embodiment, the aluminum wheel material as the object to be coated was washed and electrodeposition coated, and then the primer coating of the powder coating was baked, followed by coating with a water-based metallic base, and then clear coating. gone. The tact time is approximately 90 seconds. As in the first embodiment, when the object to be coated 3 is conveyed to the front of the coating robot 4 by the conveyor 2 that conveys the object to be coated 3 into the clear coating booth 1, the object to be coated rotating device 6 is engaged. , start rotating at a speed of 30 to 60 revolutions per minute. The coating robot 4 aims at a part of the object 3 to be coated and sprays a water-based clear coating (product name: EC520 clearcoat manufactured by PPG) from the spray gun 7 onto 22 parts in FIG. The object 3 to be coated continues to rotate. At the same time, the part of the object 3 being coated by the coating robot 4 that is to be rotated 180 degrees is the part heated by the near-infrared heater 5 in FIG. The coating surface is heated with a heat quantity of . The infrared lamp 11 is a T3-type near-infrared quartz tube, and a pseudo-parabolic reflecting plate 12 irradiates near-infrared rays toward the object to be coated in a substantially parallel manner. This infrared heater is covered with a chamber 8 having an opening outside the coating booth, and a transparent heat-resistant glass (quartz glass) is mounted on the surface facing the object to be coated. Infrared wavelengths are near-infrared in the range of 1 to 2 microns, which are mainly absorbed by moisture and do not promote overheating of materials. With these configurations, by performing painting and drying at the same time for about 90 seconds, painting and drying are alternately repeated 45 to 90 times, and the paint film is continuously formed, and the paint immediately after application is NV50%. When the coating film formation was completed, NV75% or more was secured, and the coating film thickness was also secured at 50 microns or more. In addition, although the infrared lamp 11 is non-explosion proof, it is located outside the painting booth, so it is possible to safely alternately paint with solvent-based paint and water-based paint.

アルミニウムホイール塗装、自動車用アウトサイドミラーカバー塗装、小型家電の外装塗装等の工業用塗装において、この発明の利用が可能であり、カーボンニュートラルに向けて、環境対応として、水性塗料への切り替えでVOCを削減しつつ、フラッシュオフ工程を不要とすることでエネルギーを減らすことへのニーズはますます高まっている。 This invention can be used in industrial painting such as aluminum wheel painting, exterior mirror cover painting for automobiles, and exterior painting of small home appliances. There is a growing need to reduce energy consumption by eliminating the flash-off process while reducing

1 塗装ブース
2 搬送コンベア
3 被塗装物
3a 被塗装物
3b 回転治具
4 塗装ロボット
5 近赤外線ヒーター
6 被塗装物回転装置
7 スプレーガン
8 チャンバー
11 赤外線ランプ
12 反射板
13 空気吐出ノズル
21a 照射範囲(全体)
21b 照射範囲(部分的)
22 スプレー塗装範囲
50 被塗装物表面
51 塗着した塗料粒子
52 乾燥した塗料粒子
1 Coating booth 2 Conveyor 3 Object to be coated 3a Object to be coated 3b Rotating jig 4 Coating robot 5 Near-infrared heater 6 Object rotating device 7 Spray gun 8 Chamber 11 Infrared lamp 12 Reflector 13 Air discharge nozzle 21a Irradiation range ( whole)
21b Irradiation range (partial)
22 spray coating area 50 surface to be coated 51 applied paint particles 52 dried paint particles

Claims (3)

被塗物面に水性塗料を塗装ガンにて塗装する方法において、所定塗装膜厚に達するまでスプレー塗装と乾燥とを、同じ作業ゾーン内で複数回に分けて行いつつ、被塗装面に赤外線を照射することで塗膜内の水分を所定の分だけ蒸発させることを特徴とする水性塗料の塗装方法。 In the method of applying a water-based paint to a surface to be coated with a paint gun, spray coating and drying are performed in the same work zone several times until a predetermined coating film thickness is reached, while infrared rays are applied to the surface to be coated. 1. A method of applying a water-based paint, characterized by evaporating a predetermined amount of water in the paint film by irradiating. 被塗物面に水性塗料を塗装ガンにて塗装する方法において、該水性塗料の塗装中に被塗装面を断続的に塗装スプレー範囲と塗装スプレー範囲外に回転移動させ、塗装スプレー範囲内では膜厚形成を行い、塗装スプレー範囲外では赤外線照射を行なうことを複数回繰り返すことで、塗着塗料の固形分を制御することを特徴とする水性塗料の塗装方法。 In a method of applying a water-based paint to a surface of an object to be coated with a paint gun, the surface to be coated is intermittently rotated and moved between the paint spray range and outside the paint spray range while the water-based paint is being applied. A method of coating a water-based paint, characterized in that the solid content of the applied paint is controlled by repeating a plurality of times of forming a thickness and irradiating with infrared rays outside the spray range of the paint. 搬送される被塗物の搬送経路に設けられた塗装ゾーンにおいて、回転可能な塗装治具上に置かれた被塗装物に対して、被塗物を加温する赤外線加熱装置と、被塗物に対して水性塗料をスプレーする塗装ガンを具備する塗装機とを対向して配置し、被塗物を回転しながら、水性塗料のスプレーと、被塗装面の予備乾燥を同時に行なえるように配設してなる塗装装置。 An infrared heating device for heating an object to be coated placed on a rotatable coating jig in a coating zone provided on a conveying route of the object to be conveyed; and an object to be coated. A coating machine equipped with a coating gun that sprays water-based paint is placed opposite to the surface, and is arranged so that while rotating the work to be coated, water-based paint can be sprayed and the surface to be coated can be pre-dried at the same time. A coating device that is installed.
JP2021029356A 2021-02-26 2021-02-26 Water-based paint film formation method and water-based paint film formation device Pending JP2022130780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021029356A JP2022130780A (en) 2021-02-26 2021-02-26 Water-based paint film formation method and water-based paint film formation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021029356A JP2022130780A (en) 2021-02-26 2021-02-26 Water-based paint film formation method and water-based paint film formation device

Publications (1)

Publication Number Publication Date
JP2022130780A true JP2022130780A (en) 2022-09-07

Family

ID=83153476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021029356A Pending JP2022130780A (en) 2021-02-26 2021-02-26 Water-based paint film formation method and water-based paint film formation device

Country Status (1)

Country Link
JP (1) JP2022130780A (en)

Similar Documents

Publication Publication Date Title
EP1251972A2 (en) Process for coating metallic substrate surfaces
RU2669636C2 (en) Painting method and painting apparatus for producing a decorative coating
JP5157177B2 (en) Coating film drying method
US20060222778A1 (en) Multi-stage processes for drying and curing substrates coated with aqueous basecoat and a topcoat
JP2022130780A (en) Water-based paint film formation method and water-based paint film formation device
CN101502827B (en) Paint spraying method for car lamp polycarbonate matched mirror
CA1103107A (en) Coating of articles
US4730575A (en) Coating of articles
US20060051519A1 (en) Multi-stage processes for drying and curing substrates coated with aqueous basecoat and a topcoat
JP4935086B2 (en) Coating method using rotary atomizing coating equipment
JP4984654B2 (en) Water-based paint film forming equipment
JP6222226B2 (en) Clear coating method, coating method and coating film structure
CN106824720A (en) Based on the technique that PVD method is processed automotive upholstery surface
JP4599990B2 (en) Water-based coating method and coating system
US4455328A (en) Coating of articles
JP4916618B2 (en) Coating method of sprayed metal layer surface
JP3885589B2 (en) Paint flash-off device
JP4734919B2 (en) Coating method and coating apparatus
JP2014023996A (en) Method and device for applying top coat to vehicle body
JP2007061728A (en) Coater
JP2005305231A (en) Coating method
JP2003251250A (en) Method and apparatus for applying water based coating material
JP2006026476A (en) Cooling method and cooling apparatus for object to be coated
JP2003211040A (en) Coating method and coating booth
JP2007038148A (en) Coating method of aqueous paint