JP2022129696A - Manufacturing method of sintered ore - Google Patents

Manufacturing method of sintered ore Download PDF

Info

Publication number
JP2022129696A
JP2022129696A JP2021028474A JP2021028474A JP2022129696A JP 2022129696 A JP2022129696 A JP 2022129696A JP 2021028474 A JP2021028474 A JP 2021028474A JP 2021028474 A JP2021028474 A JP 2021028474A JP 2022129696 A JP2022129696 A JP 2022129696A
Authority
JP
Japan
Prior art keywords
iron ore
nox
increase
ore
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021028474A
Other languages
Japanese (ja)
Inventor
英昭 矢部
Hideaki Yabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2021028474A priority Critical patent/JP2022129696A/en
Publication of JP2022129696A publication Critical patent/JP2022129696A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To suppress the increase of NOx content in an exhaust gas from sintering, caused by a change in the blending ratio of raw materials.SOLUTION: A manufacturing method of sintered ore blends whole iron ore with new raw materials at a predetermined ratio, the whole iron ore obtained by blending a plurality of brands of iron ore at a predetermined composition ratio. In changing the composition ratio of two or more brands of iron ore in the whole iron ore, if a crystal water content in the whole iron ore after the change is higher than that before the change, the blending ratio of low nitrogen anthracite is increased according to an increment of the crystal water content so that the NOx content in an exhaust gas may not increase from that before the change of the composition ratio.SELECTED DRAWING: Figure 1

Description

本発明は、焼結鉱の製造方法に関する。 The present invention relates to a method for producing sintered ore.

現在、高炉製銑法の主原料は、焼結鉱である。焼結鉱の原料は、鉄鉱石(複数銘柄の鉄鉱石)、雑原料(スケール、製鋼ダストなどの鉄分を含有するリサイクル原料)、および副原料(石灰石、橄欖岩などの焼結鉱中のCaO、MgO成分を調整するための原料)から成る新原料と、炭材(凝結材ともいい、粉コークス、無煙炭などの焼結反応の熱源となる原料)と、返鉱(成品の篩下を循環使用するもの)である。 At present, the main raw material for blast furnace ironmaking is sintered ore. Raw materials for sintered ore include iron ore (multiple brands of iron ore), miscellaneous raw materials (recycled raw materials containing iron such as scale and steelmaking dust), and auxiliary raw materials (limestone, CaO in sintered ore such as peridotite, etc. , raw materials for adjusting the MgO component), carbon materials (also known as coagulants, raw materials that serve as heat sources for sintering reactions such as coke fines and anthracite), and return ores (circulating under the sieves of products used).

焼結鉱は、通常、次のように製造される。まず、原料を所定の割合で混合して配合原料とし、さらに、配合原料を、造粒して原料造粒物とする。次に、原料造粒物を、ホッパより、下方吸引式のドワイトロイド(DL)式焼結機のパレット上に搭載して、原料充填層を形成する。形成した原料充填層の上部(表面層)から、原料充填層中の炭材に点火する。そして、パレットを連続的に移動させながらパレットの下方から空気を吸引して酸素を供給し、原料充填層中の炭材を上部から下部に向けて燃焼させることにより、炭材の燃焼熱により順次焼結させる。得られた焼結部(シンターケーキ)は、所定の粒度に粉砕、篩分け等により整粒して高炉の原料である焼結鉱となる。 Sintered ore is usually manufactured as follows. First, the raw materials are mixed at a predetermined ratio to obtain a blended raw material, and the blended raw material is granulated to obtain raw material granules. Next, the raw material granules are loaded from the hopper onto a pallet of a downward suction type Dwight Lloyd (DL) type sintering machine to form a raw material packed bed. The carbon material in the raw material packed bed is ignited from above (surface layer) of the formed raw material packed bed. Then, while continuously moving the pallet, air is sucked from below the pallet to supply oxygen, and the carbonaceous material in the raw material packed bed is burned from the top to the bottom, so that the combustion heat of the carbonaceous material sequentially Sinter. The obtained sintered part (sinter cake) is pulverized to a predetermined particle size, sieved, or the like to obtain sintered ore, which is a raw material for a blast furnace.

焼結機から排出される焼結排ガス(以下、単に排ガスともいう)には、窒素酸化物NOx(NOおよびNO)が含有される。排ガス中の窒素酸化物NOxの大半は、燃料の炭材が焼結層内で燃焼する際に発生するフューエル(Fuel)NOxであり、フューエルNOxは、炭材に含有される窒素分が酸素と反応することで発生する。 Sintering exhaust gas (hereinafter also simply referred to as exhaust gas) discharged from the sintering machine contains nitrogen oxides NOx (NO and NO 2 ). Most of the nitrogen oxide NOx in the exhaust gas is fuel NOx generated when the fuel carbonaceous material is burned in the sintered layer. Generated by reaction.

窒素酸化物NOxは大気汚染の一原因物質であり、その排出量の削減は重要である。排ガス中のNOx濃度は、配合原料の配合割合の変更など、日常的な焼結機の操業変化等によって変動するため、製鉄所ではNOx濃度を常時監視し、管理値を超過することのないように操業を行っている。この管理値は、製鉄所毎に、各操業地域のNOx排出量の規制値(条例の基準値など)よりも低い値に設定されている。 Nitrogen oxide NOx is one of the causative substances of air pollution, and reduction of its emission is important. The NOx concentration in the exhaust gas fluctuates due to changes in the blending ratio of raw materials and other changes in daily operation of the sintering machine. is operating in This control value is set to a value lower than the NOx emission control value (ordinance standard value, etc.) in each operating area for each ironworks.

NOx濃度の監視は、一般的に「NOx濃度(O=15%補正値)」の値を用いて行う。NOx濃度(O=15%補正値)は、排ガス中に残留する標準酸素濃度が15%となるように補正した酸素濃度補正後のNOx濃度Cである。NOx濃度C(O=15%補正値)は、測定されたNOx濃度(実測値Cs)と酸素濃度Osに基づいて、下記式(1)を用いて算出される。なお、排ガス中のNOx濃度(実測値)および酸素濃度(実測値)は、例えば、下方吸引を行うメインブロアから煙突までの間に設置された分析計(NOx分析計(化学発光法)、ジルコニア式分析計等)によって連続的に測定される。
C=(21-On)/(21-Os)×Cs ・・・(1)
C : 酸素濃度補正後のNOx濃度(ppm)
Os : 排出ガス中の酸素濃度(当該濃度が20%を超える場合は20%)
On : 標準酸素濃度(%) ※焼結機の場合は15%
Cs : 排出ガス中のNOx実測値(ppm)
NOx concentration is generally monitored using the value of "NOx concentration (O 2 =15% correction value)". The NOx concentration (O 2 =15% correction value) is the NOx concentration C after the oxygen concentration correction corrected so that the standard oxygen concentration remaining in the exhaust gas is 15%. NOx concentration C (O 2 =15% correction value) is calculated using the following formula (1) based on the measured NOx concentration (actual measurement value Cs) and oxygen concentration Os. The NOx concentration (actual value) and oxygen concentration (actual value) in the exhaust gas can be measured by, for example, an analyzer (NOx analyzer (chemiluminescence method), zirconia It is measured continuously by a formula analyzer, etc.).
C=(21−On)/(21−Os)×Cs (1)
C: NOx concentration after oxygen concentration correction (ppm)
Os: Oxygen concentration in the exhaust gas (20% if the concentration exceeds 20%)
On: Standard oxygen concentration (%) *15% for sintering machine
Cs: Measured NOx in exhaust gas (ppm)

製鉄所では、算出されたNOx濃度C(O=15%補正値)の値を常時監視し、管理値を超えた場合には、NOx排出量を低減する措置をとる。低減措置としては、例えば、炭材の銘柄を変更する対策が取られている。また、以下のような技術が提案されている。 In the steelworks, the calculated NOx concentration C (O 2 =15% correction value) is constantly monitored, and if it exceeds the control value, measures are taken to reduce NOx emissions. As a reduction measure, for example, a measure of changing the brand of carbon material is taken. Also, the following techniques have been proposed.

特許文献1には、造粒水分を4.0~6.0%として焼結原料を造粒し、焼結原料を連続下方吸引式焼結機に供給し、コークス燃焼反応進行中の焼結ベッド表面へ5.0~90.0l/t-原料の水分を供給する焼結鉱の製造方法が開示されている。また、特許文献2には、焼結原料として、4.0mass%以上の結晶水を含有する高結晶水鉄鉱石を含む鉄鉱石と、副原料と、燃焼反応の開始温度が450℃未満である低温燃焼固体燃料を10mass%以上含む固体燃料とを前記高結晶水鉄鉱石が前記焼結原料中に30mass%以上含まれるように配合する焼結鉱の製造方法が開示されている。 In Patent Document 1, the sintering raw material is granulated with a granulation moisture content of 4.0 to 6.0%, the sintering raw material is supplied to a continuous downward suction sintering machine, and sintering is performed while the coke combustion reaction is in progress. A method for producing sintered ore is disclosed in which 5.0 to 90.0 l/t-raw material moisture is supplied to the bed surface. Further, in Patent Document 2, as sintering raw materials, iron ore containing high crystal water iron ore containing 4.0 mass% or more of water of crystallization, auxiliary raw materials, and a combustion reaction initiation temperature of less than 450 ° C. A method for producing sintered ore is disclosed in which a solid fuel containing 10 mass% or more of a low-temperature combustible solid fuel is blended with the high crystal water iron ore so that the sintering raw material contains 30 mass% or more.

特許文献1に記載の技術は、焼結層表層へ水を散布して配合原料中の水分量と散水量との配分を適正化することによりNOx発生量の低減するものであり、特許文献2に記載の技術は、高結晶水鉱石と固体燃料(チャー)とを組み合わせ、固体燃料(チャー)と高結晶水鉱石の配合割合を所定量以上とすることにより、NOx発生量を低下させるものである。なお、特許文献2に記載の技術は、仮焼ゾーン内でHが生成してそこでNOが還元することを前提としたものであるが、NOの還元は仮焼ゾーン(低温)で起こるのではなく、コークスガス境膜内(燃焼帯)で起こることがわかっている。 The technique described in Patent Document 1 is to reduce the amount of NOx generated by sprinkling water on the surface of the sintered layer to optimize the distribution of the amount of water in the blended raw material and the amount of sprinkled water. The technology described in 1. combines a high crystal water ore and a solid fuel (char), and reduces the amount of NOx generated by setting the mixing ratio of the solid fuel (char) and the high crystal water ore to a predetermined amount or more. be. The technique described in Patent Document 2 is based on the premise that H2 is generated in the calcining zone and NO is reduced there, but the reduction of NO occurs in the calcining zone (low temperature). It is known to occur within the coke gas boundary film (combustion zone) rather than within the coke gas boundary film.

特開昭61-204342号公報JP-A-61-204342 国際公開第2010/106756号公報International Publication No. 2010/106756

本発明者らは、小型鍋試験装置を用いた焼結実験を重ねることによって、焼結の燃料として使用する炭材の配合割合が一定であっても、異なる銘柄の鉄鉱石を用いた場合にはその焼成時に発生するNOx量が大幅に異なることを見出した。そして、本発明者らは、焼結原料中の鉄鉱石の結晶水含有量(平均値)とNOx生成量とには相関関係があるとの知見を得た。この知見は、高結晶水鉱石の割合を所定量以上使用してNOx発生量を低減させる特許文献2に開示された技術とは逆の結果を示している。 By repeating sintering experiments using a small pot test apparatus, the present inventors found that even if the blending ratio of the carbonaceous material used as the fuel for sintering was constant, when different brands of iron ore were used, It was found that the amount of NOx generated during sintering was significantly different. The present inventors have found that there is a correlation between the water of crystallization content (average value) of the iron ore in the raw material for sintering and the amount of NOx produced. This finding shows a result opposite to the technique disclosed in Patent Document 2, which reduces the amount of NOx generated by using a ratio of high crystal water ore ore of a predetermined amount or more.

本発明は、かかる知見に基づいて創作されたものであり、焼結排ガスに含まれるNOx量の増加を抑制することができる新たな焼結鉱の製造方法を提供することを目的とする。 The present invention was created based on such knowledge, and an object of the present invention is to provide a new method for producing sintered ore that can suppress an increase in the amount of NOx contained in sintering exhaust gas.

本発明の要旨とするところは、以下のとおりである。
(1)複数銘柄の鉄鉱石を所定の構成比率で配合したものを全鉄鉱石として、前記全鉄鉱石を新原料に対して所定割合で配合する焼結鉱の製造方法において、
前記全鉄鉱石における2以上の銘柄の鉄鉱石の構成比率を変更するに際して、変更後の全鉄鉱石の結晶水含有量が変更前より増加する場合には、排ガス中のNOx濃度が構成比率を変更する前より増加することのないように、結晶水含有量の増加量に応じて低窒素無煙炭の配合割合を増加させる、焼結鉱の製造方法。
(2)予め前記全鉄鉱石の結晶水含有量の増加量に対するNOx濃度の増加係数Ccw(dNOx/dCW)を求め、
予め前記低窒素無煙炭の配合割合の増加量に対するNOx濃度の低減係数Cans(dNOx/dAns)を求め、
前記全鉄鉱石の結晶水含有量の増加量がΔxのとき、前記低窒素無煙炭の配合割合の増加量を、(Ccw/Cans)×Δx以上とする、(1)に記載の焼結鉱の製造方法。
(3)前記全鉄鉱石の結晶水含有量の増加量Δxの単位が質量%であり、Ccw/Cansを0.5とする、(2)に記載の焼結鉱の製造方法。
ここで、低窒素無煙炭とは、窒素含有量が一般的な焼結用炭材である粉コークスよりも少ない無煙炭である。
The gist of the present invention is as follows.
(1) A method for producing sintered ore in which a mixture of multiple brands of iron ore at a predetermined composition ratio is used as total iron ore, and the total iron ore is mixed with a new raw material at a predetermined ratio,
When changing the composition ratio of two or more brands of iron ore in the total iron ore, if the crystal water content of the total iron ore after the change is higher than before the change, the NOx concentration in the exhaust gas will change the composition ratio. A method for producing sintered ore, wherein the blending ratio of low-nitrogen anthracite coal is increased according to the increase in crystal water content so as not to increase the content from before the change.
(2) determining in advance the NOx concentration increase coefficient Ccw (d 1 NOx/dCW) with respect to the increase in the crystal water content of the total iron ore;
Obtaining in advance the reduction coefficient Cans (d 2 NOx/dAns) of the NOx concentration with respect to the increase in the blending ratio of the low-nitrogen anthracite,
The sintered ore according to (1), wherein when the increase in the crystal water content of the total iron ore is Δx, the increase in the blending ratio of the low-nitrogen anthracite is set to (Ccw/Cans)×Δx or more. Production method.
(3) The method for producing sintered ore according to (2), wherein the unit of the increment Δx in the water of crystallization content of the total iron ore is % by mass, and Ccw/Cans is 0.5.
Here, the low-nitrogen anthracite is anthracite whose nitrogen content is lower than that of coke fine, which is a general carbonaceous material for sintering.

本発明によれば、全鉄鉱石における2以上の銘柄の鉄鉱石の構成比率を変える操業アクションに際して、全鉄鉱石の結晶水含有量が増加する場合、その増加量に応じて低窒素無煙炭の配合割合を増加させることにより、焼結機排ガス中のNOx量の上昇を抑制することができる。 According to the present invention, when the crystal water content of the total iron ore increases during an operational action that changes the composition ratio of two or more brands of iron ore in the total iron ore, low-nitrogen anthracite is blended according to the increased amount. By increasing the ratio, an increase in the amount of NOx in the exhaust gas from the sintering machine can be suppressed.

各銘柄の鉄鉱石の結晶水含有量と焼結排ガス中のNOx濃度(O=15%補正値)との関係を示す図である。FIG. 3 is a diagram showing the relationship between the water of crystallization content of each brand of iron ore and the NOx concentration in the sintering exhaust gas (O 2 =15% correction value).

本発明者らは、NOx排出量を低減するべく鋭意検討を重ねた結果、新原料における鉄鉱石の配合割合が一定でも、結晶水含有量が多い鉄鉱石を用いた場合には発生するNOx量が多く、結晶水含有量が少ない鉄鉱石を用いた場合には発生するNOx量が少なくなるという相関関係を見出した。この知見に基づいて、本発明者らは、焼結鉱を製造するにあたり、配合原料中の全鉄鉱石に含まれる平均結晶水量(全鉄鉱石の結晶水含有量)を、焼結排ガス中のNOx排出量を管理する指標とすることを考案した。以下に、まず、上記知見を裏付ける実験とその結果について説明する。 As a result of extensive studies to reduce NOx emissions, the present inventors found that even if the blending ratio of iron ore in the new raw material is constant, the amount of NOx generated when iron ore with a high content of water of crystallization is used. A correlation has been found that the amount of NOx generated decreases when iron ore with a large amount of water of crystallization is used. Based on this knowledge, the present inventors, in producing sintered ore, calculated the average amount of water of crystallization contained in all iron ore in the raw material blend (the content of water of crystallization in all iron ore) in the sintering exhaust gas. It was devised to use it as an index for managing NOx emissions. First, an experiment and its results supporting the above findings will be described below.

<発明に至った基礎的検討>
鉄鉱石の銘柄毎に特有のNOx排出傾向を確認するため、5種の銘柄の鉄鉱石(鉄鉱石A~鉄鉱石E)を単味で配合した配合原料を用いた5つの実験(実験1~実験5)を実施した。実験1~実験5は、焼結機での焼結現象を模した小型(直径100mm)の焼結鍋試験により行った。
<Fundamental study leading to the invention>
In order to confirm the NOx emission tendency peculiar to each brand of iron ore, five experiments (experiment 1- Experiment 5) was performed. Experiments 1 to 5 were conducted using a small sintering pot test (100 mm in diameter) simulating the sintering phenomenon in a sintering machine.

(原料配合)
表1は、実験1~実験5で用いた焼結用の各原料の配合割合を示す。表1に示すように、返鉱および炭材を除いた新原料(鉄鉱石、石灰石、生石灰、および橄欖岩)を100質量%として、返鉱、炭材の配合割合を、それぞれ外数で、15.0質量%、4.5質量%とした。
(Raw material composition)
Table 1 shows the mixing ratio of each raw material for sintering used in Experiments 1 to 5. As shown in Table 1, the new raw materials (iron ore, limestone, quicklime, and peridotite) excluding the return ore and the carbonaceous material are assumed to be 100% by mass, and the mixing ratio of the return ore and the carbonaceous material is expressed as an external number, 15.0% by mass and 4.5% by mass.

Figure 2022129696000002
Figure 2022129696000002

表2は、実験1~実験5において使用した各鉄鉱石A~鉄鉱石Eの主な成分量(質量%)を示す。実験1~実験5の各実験においては、表1に示す原料の鉄鉱石として、1つの鉄鉱石種(1銘柄)を、単味で使用した。例えば、実験1においては、原料の鉄鉱石として鉄鉱石Aのみを使用した。表2に示すように、鉄鉱石Aおよび鉄鉱石Bは、結晶水(CW:combined water)の含有量が多いピソライト系鉄鉱石であり、鉄鉱石Dおよび鉄鉱石Eは、結晶水の含有量が少ないヘマタイト系鉱石である。また、鉄鉱石Cは、結晶水含有量が鉄鉱石Aおよび鉄鉱石Bよりも少なく、鉄鉱石Dおよび鉄鉱石Eよりも多いマラマンバ系鉄鉱石である。 Table 2 shows the amounts (% by mass) of main components of iron ores A to E used in Experiments 1 to 5. In each experiment of Experiments 1 to 5, one type of iron ore (one brand) was used singly as the raw material iron ore shown in Table 1. For example, in Experiment 1, only iron ore A was used as the raw iron ore. As shown in Table 2, iron ore A and iron ore B are pisolite iron ores with a high content of water of crystallization (CW: combined water), and iron ore D and iron ore E have a high content of water of crystallization. It is a hematite ore with little Iron ore C is a Marra Mamba iron ore having a water of crystallization content lower than iron ore A and iron ore B and higher than iron ore D and iron ore E.

Figure 2022129696000003
Figure 2022129696000003

表3は、原料として使用した鉄鉱石および炭材の粒度分布を示す。この粒度分布は、目開き寸法が5.0mm、3.0mm、1.0mm、0.5mm、0.25mmの篩で分級したものである。例えば、粒度区分「1mm-0.5mm」とは、0.5mmの篩目の篩で篩分けた際に篩上であり、1mmの篩目の篩で篩分けた際に篩下である。実験1~実験5の各実験において粒度条件を同一とし、表3に示す粒度分布の鉄鉱石および炭材を使用した。 Table 3 shows the particle size distribution of iron ore and carbonaceous materials used as raw materials. This particle size distribution was obtained by classifying with sieves having opening sizes of 5.0 mm, 3.0 mm, 1.0 mm, 0.5 mm and 0.25 mm. For example, the particle size division "1 mm-0.5 mm" means above the sieve when sieved with a sieve with a sieve of 0.5 mm, and under sieve when sieving with a sieve with a sieve of 1 mm. In each of Experiments 1 to 5, the particle size conditions were the same, and iron ore and carbonaceous materials having particle size distributions shown in Table 3 were used.

Figure 2022129696000004
Figure 2022129696000004

(実験条件)
各焼結用原料を、表1に示す配合割合で混合した配合原料を造粒し、造粒した原料造粒物を焼成した。主要な実験装置は表4に示す通りである。
(Experimental conditions)
Each raw material for sintering was mixed at the mixing ratio shown in Table 1, and the mixed raw material was granulated, and the granulated raw material was fired. The main experimental equipment is as shown in Table 4.

Figure 2022129696000005
Figure 2022129696000005

上記焼結実験においては、配合原料を、ドラムミキサーによって32rpmで1分間混合(乾燥混合)した。混合後、配合原料に対して、水分を7.0質量%添加して4分間造粒し、原料造粒物を製造した。焼結鍋内には、まず、カオウールをロストル上に敷設した。次に、原料造粒物を層厚が445mmとなるように焼結鍋に装入した。装入後、原料表面に点火炉で60[sec]加熱して点火し、風箱内の風量(一定)0.08[Nm/min]で焼成した。 In the above sintering experiment, the raw materials were mixed (dry mixed) for 1 minute at 32 rpm in a drum mixer. After mixing, 7.0% by mass of water was added to the blended raw material, and the mixture was granulated for 4 minutes to produce raw material granules. In the sintering pot, first, cao wool was laid on the rostle. Next, the raw material granules were charged into a sintering pot so as to have a layer thickness of 445 mm. After charging, the surface of the raw material was heated and ignited in an ignition furnace for 60 [sec], and fired at an air volume (constant) of 0.08 [Nm 3 /min] in the wind box.

(測定)
ガス分析には堀場製作所ポータブルガス分析計PG-350を用いた。NOx濃度は、化学発光式分析ユニット、酸素濃度はジルコニア式分析ユニットを用いて測定を行った。
(measurement)
A portable gas analyzer PG-350 manufactured by Horiba, Ltd. was used for gas analysis. The NOx concentration was measured using a chemiluminescence analysis unit, and the oxygen concentration was measured using a zirconia analysis unit.

(実験結果)
表5の最右欄に、測定したNOx濃度および酸素濃度から算出したNOx濃度(O=15%補正値)を示す。また、図1は、表5の結晶水含有量と、NOx濃度(O=15%補正値)との関係を示すグラフである。図1に示すように、結晶水含有量とNOx濃度(O=15%補正値)とには相関関係があり、鉄鉱石中の結晶水含有量が低くなるほど、焼成により発生するNOx濃度(NOx排出量)は低減する傾向があることが確認された。
(Experimental result)
The rightmost column of Table 5 shows the NOx concentration (O 2 =15% correction value) calculated from the measured NOx concentration and oxygen concentration. FIG. 1 is a graph showing the relationship between the water of crystallization content in Table 5 and the NOx concentration (O 2 =15% correction value). As shown in FIG. 1, there is a correlation between the water of crystallization content and the NOx concentration (O 2 =15% correction value). NOx emissions) tended to decrease.

Figure 2022129696000006
Figure 2022129696000006

図1より導かれる、結晶水含有量とNOx濃度(O=15%補正値)との相関関係を示すNOx濃度の増加係数Ccwを、下記の(2)式に示す。(2)式に示すように、鉄鉱石中の結晶水含有量が1%(質量%)増加すると、NOx濃度(O=15%補正値)が約5ppm上昇することが分かった。
NOx濃度の増加係数Ccw=5ppm/結晶水含有量の増加量1質量%・・・(2)
The NOx concentration increase coefficient Ccw, which is derived from FIG. 1 and indicates the correlation between the water of crystallization content and the NOx concentration (O 2 =15% correction value), is shown in the following equation (2). As shown in the formula (2), it was found that when the crystal water content in the iron ore increases by 1% (mass %), the NOx concentration (O 2 =15% correction value) increases by about 5 ppm.
NOx concentration increase coefficient Ccw = 5 ppm/increase in crystal water content 1% by mass (2)

<実施形態>
(本発明とその特徴)
本発明は、以上の知見に、低窒素無煙炭を使用したNOx量低減方法(詳細は後述)を組み合わせて創案されたものである。本発明は、複数銘柄の鉄鉱石を所定の構成比率で配合したものを全鉄鉱石として、全鉄鉱石を新原料に対して所定割合で配合する焼結鉱の製造方法において、全鉄鉱石における2以上の銘柄の鉄鉱石の構成比率を変更するに際して、変更後の全鉄鉱石の結晶水含有量が変更前より増加する場合には、排ガス中のNOx量(NOx濃度)が構成比率変更操作前より増加することのないように、その増加量に応じて低窒素無煙炭の配合割合を増加させることを特徴とする。
<Embodiment>
(The present invention and its features)
The present invention was invented by combining the above findings with a method for reducing the amount of NOx using low-nitrogen anthracite (details will be described later). The present invention provides a method for producing sintered ore in which a mixture of multiple brands of iron ore at a predetermined composition ratio is used as total iron ore, and the total iron ore is mixed with a new raw material at a predetermined ratio. When changing the composition ratio of two or more brands of iron ore, if the crystal water content of all the iron ores after the change is higher than before the change, the NOx amount (NOx concentration) in the exhaust gas will change. The blending ratio of the low-nitrogen anthracite coal is increased according to the increased amount so as not to increase from before.

(鉄鉱石の配合変更)
配合原料の鉄鉱石は、通常、複数銘柄の鉄鉱石が所定の割合で配合される。各銘柄の鉄鉱石の入荷量や価格は一定でなく変動するため、各銘柄の鉄鉱石の配合割合は、適宜変更される。具体的には、新原料における全鉄鉱石(所定の割合で配合される複数銘柄の鉄鉱石全体)の配合割合(質量%)は変更せず、全鉄鉱石における各銘柄の鉄鉱石の構成比率の一部または全部を変更する操業アクションをとる。この操業アクションを鉄鉱石の構成比率変更操作という。また、所定の割合で配合された複数銘柄の鉄鉱石全体を、以下の説明において、全鉄鉱石または均鉱という。
(Change in composition of iron ore)
The iron ore of the blended raw material is usually blended with a predetermined ratio of multiple brands of iron ore. Since the arrival amount and price of each brand of iron ore are not constant and fluctuate, the mixing ratio of each brand of iron ore is changed as appropriate. Specifically, the composition ratio (mass%) of all iron ore (multiple brands of iron ore mixed in a predetermined ratio) in the new raw material will not be changed, and the composition ratio of each brand of iron ore in all iron ore will be take operational actions that change part or all of This operation action is called an iron ore composition ratio change operation. In the following description, the entire iron ore of multiple brands blended at a predetermined ratio is referred to as all iron ore or uniform ore.

(均鉱の結晶水含有量)
均鉱の結晶水含有量は、以下の式(3)により算出される。式(3)は、均鉱の結晶水含有量CWを、全銘柄の鉄鉱石の平均結晶水含有量として、各銘柄別の結晶水含有量CWiを均鉱中の各銘柄の構成比率で加重平均して求めることを示す。
CW=Σ(Xi×CWi)/100 ・・・(3)
CW:均鉱の結晶水含有量(質量%)
Xi:均鉱における鉄鉱石銘柄iの構成比率(質量%)
CWi:鉄鉱石銘柄iの結晶水含有量(質量%)
(Crystal water content of uniform ore)
The crystal water content of uniform ore is calculated by the following formula (3). Formula (3) uses the water of crystallization content CW of the graded ore as the average water of crystallization content of all brands of iron ore, and the water of crystallization content CWi for each brand weighted by the composition ratio of each brand in the graded ore. Indicates to be calculated on average.
CW=Σ(Xi×CWi)/100 (3)
CW: Crystal water content of uniform ore (% by mass)
Xi: Composition ratio of iron ore brand i in uniform ore (% by mass)
CWi: Crystal water content of iron ore grade i (% by mass)

(低窒素無煙炭)
次に、低窒素無煙炭とそれを使用したNOx量低減方法について、順に説明する。
本発明において、低窒素無煙炭とは、窒素含有量が一般的な焼結用炭材である粉コークス(窒素含有量は約1質量%)よりも少ない無煙炭であると定義される。低窒素無煙炭は、窒素含有量が少ないので、燃焼時に発生するNOx量が粉コークスよりも少ない。なお、大きなNOx量低減効果を得るためには、窒素含有量が0.6質量%以下の無煙炭を用いることが望ましい。表6に、粉コークスおよび低窒素無煙炭の性状の一例を示す。
(Low nitrogen anthracite)
Next, the low-nitrogen anthracite and the NOx amount reduction method using it will be described in order.
In the present invention, low-nitrogen anthracite is defined as anthracite whose nitrogen content is lower than coke breeze (nitrogen content is about 1% by mass), which is a common carbonaceous material for sintering. Low-nitrogen anthracite has a low nitrogen content, so it produces less NOx than coke breeze when burned. In order to obtain a large NOx reduction effect, it is desirable to use anthracite with a nitrogen content of 0.6% by mass or less. Table 6 shows an example of properties of coke breeze and low-nitrogen anthracite.

Figure 2022129696000007
Figure 2022129696000007

銘柄毎の鉄鉱石の構成比率の変更により全鉄鉱石の結晶水含有量が増加すると、焼結排ガス中のNOx量も増加する。本発明では、結晶水含有量の増加量に応じて、低窒素無煙炭の配合割合を増加させることにより、焼結排ガス中のNOx量の増加を抑制する。
以下、本発明の好適な実施形態について説明する。
When the content of water of crystallization in all iron ores increases due to changes in the composition ratio of iron ores for each brand, the amount of NOx in the sintering exhaust gas also increases. In the present invention, an increase in the amount of NOx in the sintering exhaust gas is suppressed by increasing the blending ratio of the low-nitrogen anthracite according to the amount of increase in the content of water of crystallization.
Preferred embodiments of the present invention are described below.

まず、焼結排ガス中のNOx量(NOx)と鉄鉱石の結晶水含有量(CW)との相関関係を実験、操業データの回帰分析などによって求め、鉄鉱石の結晶水の増加量(dCW)に対する焼結排ガス中のNOxの増加量(dNOx)を示す増加係数Ccw(dNOx/dCW)を求める。また、焼結排ガス中のNOx量と無煙炭の使用量(Ans)との相関関係を実験、操業データの回帰分析などによって求め、無煙炭の配合割合の増加量(dAns)に対する焼結排ガス中のNOxの低減量(dNOx)を示す低減係数Cans(dNOx/dAns)も求めておく。
そして、鉄鉱石の構成比率変更操作にともない、全鉄鉱石(均鉱)の結晶水含有量(全銘柄の鉄鉱石の平均結晶水含有量)が増加(ΔCW)する場合、排ガス中のNOx量(NOx濃度)が構成比率変更操作前より増加することのないように、結晶水含有量の増加量に応じて、低窒素無煙炭の配合割合を増加(ΔAns)させる。
すなわち、低窒素無煙炭の配合割合の増加量(ΔAns)は、下記の式(4)を満たせばよい。
ΔAns≧ΔCW×((dNOx/dCW)/(dNOx/dAns))
=ΔCW×(Ccw/Cans)・・・(4)
First, the correlation between the amount of NOx in the sintering exhaust gas (NOx) and the water of crystallization of iron ore (CW) is determined by experiments, regression analysis of operation data, etc., and the increase in water of crystallization of iron ore (dCW) An increase coefficient Ccw (d 1 NOx/dCW) indicating an increase in NOx (d 1 NOx) in the sintering exhaust gas relative to the sintering gas is obtained. In addition, the correlation between the amount of NOx in the sintering exhaust gas and the amount of anthracite coal used (Ans) was obtained by experiments, regression analysis of operation data, etc., and the NOx A reduction coefficient Cans (d 2 NOx/dAns) indicating the reduction amount (d 2 NOx) of is also obtained.
Then, when the water of crystallization of all iron ores (average water of crystallization of all brands of iron ore) increases (ΔCW) due to the operation to change the composition ratio of iron ore, the amount of NOx in exhaust gas The blending ratio of low nitrogen anthracite coal is increased (ΔAns) according to the amount of increase in water of crystallization so that (NOx concentration) does not increase from before the operation of changing the composition ratio.
That is, the amount of increase (ΔAns) in the blending ratio of the low-nitrogen anthracite should satisfy the following formula (4).
ΔAns≧ΔCW×((d 1 NOx/dCW)/(d 2 NOx/dAns))
=ΔCW×(Ccw/Cans) (4)

上述の実施形態において、鉄鉱石の結晶水の増加量に対する焼結排ガス中のNOxの増加量を示す増加係数Ccw(dNOx/dCW)の具体例は、(2)式としてすでに示した。以下に、無煙炭の使用量の増加量に対する焼結排ガス中のNOxの減少量を示す低減係数Cans(dNOx/dAns)の具体例を示す。 In the above-described embodiment, a specific example of the increase coefficient Ccw (d 1 NOx/dCW), which indicates the amount of increase in NOx in the sintering exhaust gas with respect to the amount of increase in water of crystallization of iron ore, has already been shown as formula (2). Specific examples of the reduction coefficient Cans (d 2 NOx/dAns) indicating the amount of NOx reduction in the sintering exhaust gas with respect to the amount of increase in the amount of anthracite coal used are shown below.

(低窒素無煙炭を使用したNOx量低減方法)
本発明では、焼結排ガス中のNOx量(NOx濃度)低減策として、炭材として、粉コークスの代わりに上述した低窒素無煙炭を多く使用する。
本発明者らは、新たに、上述の小型焼結鍋試験と同様の実験を行い、低窒素無煙炭を使用した際のNOx量低減効果を確認した。具体的には、上述の小型焼結鍋試験において、最初に外数4.5質量%で配合される炭材として粉コークス単独使用時におけるNOx量を確認後、段階的に粉コークスを低窒素無煙炭に等量ずつ置換した場合のNOx量を記録し、低窒素無煙炭への置換量とNOx濃度低減量についての関係を定量化した。その結果、下記の式(5)に示すように、低窒素無煙炭への置換量1質量%あたり、NOx発生量は10ppm低減した。なお、表1の鉄鉱石には、表7に示すように複数銘柄の鉄鉱石を配合したものを使用した。
NOx濃度の低減係数Cans=10ppm/低窒素無煙炭置換量1質量%・・・(5)
(NOx reduction method using low-nitrogen anthracite)
In the present invention, as a measure to reduce the amount of NOx (NOx concentration) in the sintering exhaust gas, a large amount of the low-nitrogen anthracite coal described above is used instead of coke fine as the carbon material.
The present inventors newly conducted an experiment similar to the small sintering pot test described above, and confirmed the effect of reducing the amount of NOx when using low-nitrogen anthracite coal. Specifically, in the above-mentioned small sintering pot test, after confirming the amount of NOx when using coke fine alone as a carbon material blended with an external number of 4.5% by mass, coke fine is gradually added to low nitrogen The amount of NOx when replacing with anthracite in equal amounts was recorded, and the relationship between the amount of replacement with low-nitrogen anthracite and the reduction in NOx concentration was quantified. As a result, as shown in the following formula (5), the amount of NOx generated was reduced by 10 ppm per 1% by mass of replacement with low-nitrogen anthracite. As the iron ore in Table 1, a mixture of multiple brands of iron ore as shown in Table 7 was used.
NOx concentration reduction coefficient Cans = 10 ppm/Low nitrogen anthracite replacement amount 1% by mass (5)

Figure 2022129696000008
Figure 2022129696000008

(全鉄鉱石の結晶水含有量の増加量に基づく排ガス中のNOx量の調整)
上述の(2)式より、結晶水含有量の増加量1質量%であると、NOx濃度は5ppm増加する。また、上述の(4)式および(5)式より、NOx濃度の増加を抑制するためには、低窒素無煙炭置換量を0.5質量%とすればよい。すなわち、鉄鉱石の構成比率変更操作後にNOx濃度を増加させないためには、結晶水含有量の増加量Δx質量%に対し、低窒素無煙炭置換量は、(0.5×Δx)質量%以上とすればよく、NOx濃度の増加を抑制する抑制効果係数は0.5である。
(Adjustment of NOx amount in exhaust gas based on increase in crystal water content of all iron ores)
From the above formula (2), the NOx concentration increases by 5 ppm when the amount of increase in the crystal water content is 1% by mass. Further, according to the above formulas (4) and (5), in order to suppress an increase in the NOx concentration, the replacement amount of low nitrogen anthracite should be 0.5% by mass. That is, in order not to increase the NOx concentration after the iron ore composition ratio change operation, the amount of low nitrogen anthracite replaced with respect to the increase amount Δx mass% of the water of crystallization is (0.5 × Δx) mass% or more. The suppression effect coefficient for suppressing the increase in NOx concentration is 0.5.

表8に示す配合割合の配合原料を用いて、上述の小型焼結鍋試験と同様の実験を行い、上記発明の効果を検証した。
表8に示すように、複数銘柄の鉄鉱石の構成比率を変更する前と、変更した後とについて、焼結排ガス中のNOx濃度を測定した。複数銘柄の鉄鉱石の構成比率の変更前よりも変更後の方が、全鉄鉱石中の結晶水含有量が増加したため、炭材である低窒素無煙炭の配合割合を増加させた。具体的には、変更前よりも全鉄鉱石中の結晶水含有量が1.5質量%増加したため、上述の抑制効果係数の値(0.5)に基づき、粉コークスを、新原料に対して外数で0.75質量%、低窒素無煙炭に置換した。
Experiments similar to the above-described small sintering pot test were conducted using the blended raw materials of the blending ratios shown in Table 8 to verify the effects of the above invention.
As shown in Table 8, the NOx concentration in the sintering exhaust gas was measured before and after changing the composition ratio of multiple brands of iron ore. The water of crystallization in the total iron ore increased after the change compared to before the change in the composition ratio of multiple brands of iron ore. Specifically, the crystal water content in the total iron ore increased by 1.5% by mass compared to before the change, so based on the above-mentioned suppression effect coefficient value (0.5), coke fine was added to the new raw material. was replaced with low-nitrogen anthracite at an external number of 0.75% by mass.

Figure 2022129696000009
Figure 2022129696000009

表8の最右欄に示すように、鉄鉱石の構成比率の変更後においても、焼結排ガス中のNOx濃度が増加しないことが確認された。 As shown in the rightmost column of Table 8, it was confirmed that the NOx concentration in the sintering exhaust gas did not increase even after changing the composition ratio of iron ore.

なお、本実施例では表6に示す低窒素無煙炭および粉コークスについて低窒素無煙炭への置換量とNOx濃度低減量との関係を求めたが、窒素含有量の異なる他の低窒素無煙炭または/および窒素含有量の異なる他の粉コークスを利用する場合には新たに焼結鍋試験を実施し、低窒素無煙炭への置換量とNOx濃度低減量との関係(NOx濃度の低減係数Cans)を求めることが望ましい。 In this example, the relationship between the amount of low-nitrogen anthracite replaced with low-nitrogen anthracite and the amount of NOx concentration reduction was determined for the low-nitrogen anthracite and coke fine shown in Table 6, but other low-nitrogen anthracite and/or When using other coke fines with different nitrogen contents, a new sintering pot test is performed to determine the relationship between the amount of replacement with low-nitrogen anthracite and the amount of NOx concentration reduction (NOx concentration reduction coefficient Cans). is desirable.

Claims (3)

複数銘柄の鉄鉱石を所定の構成比率で配合したものを全鉄鉱石として、前記全鉄鉱石を新原料に対して所定割合で配合する焼結鉱の製造方法において、
前記全鉄鉱石における2以上の銘柄の鉄鉱石の構成比率を変更するに際して、変更後の全鉄鉱石の結晶水含有量が変更前より増加する場合には、排ガス中のNOx濃度が構成比率を変更する前より増加することのないように、結晶水含有量の増加量に応じて低窒素無煙炭の配合割合を増加させる、焼結鉱の製造方法。
A method for producing sintered ore in which a mixture of multiple brands of iron ore at a predetermined composition ratio is used as total iron ore, and the total iron ore is mixed with a new raw material at a predetermined ratio,
When changing the composition ratio of two or more brands of iron ore in the total iron ore, if the crystal water content of the total iron ore after the change is higher than before the change, the NOx concentration in the exhaust gas will change the composition ratio. A method for producing sintered ore, wherein the blending ratio of low-nitrogen anthracite coal is increased according to the increase in crystal water content so as not to increase the content from before the change.
予め前記全鉄鉱石の結晶水含有量の増加量に対するNOx濃度の増加係数Ccw(dNOx/dCW)を求め、
予め前記低窒素無煙炭の配合割合の増加量に対するNOx濃度の低減係数Cans(dNOx/dAns)を求め、
前記全鉄鉱石の結晶水含有量の増加量がΔxのとき、前記低窒素無煙炭の配合割合の増加量を、(Ccw/Cans)×Δx以上とする、請求項1に記載の焼結鉱の製造方法。
Obtaining in advance the NOx concentration increase coefficient Ccw (d 1 NOx/dCW) with respect to the increase in the crystal water content of the total iron ore,
Obtaining in advance the reduction coefficient Cans (d 2 NOx/dAns) of the NOx concentration with respect to the increase in the blending ratio of the low-nitrogen anthracite,
2. The sintered ore according to claim 1, wherein when the amount of increase in the water of crystallization content of the total iron ore is Δx, the amount of increase in the blending ratio of the low-nitrogen anthracite is set to (Ccw/Cans)×Δx or more. Production method.
前記全鉄鉱石の結晶水含有量の増加量Δxの単位が質量%であり、Ccw/Cansを0.5とする、請求項2に記載の焼結鉱の製造方法。
The method for producing sintered ore according to claim 2, wherein the unit of the increase amount Δx of the water of crystallization content of the total iron ore is % by mass, and Ccw/Cans is 0.5.
JP2021028474A 2021-02-25 2021-02-25 Manufacturing method of sintered ore Pending JP2022129696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021028474A JP2022129696A (en) 2021-02-25 2021-02-25 Manufacturing method of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021028474A JP2022129696A (en) 2021-02-25 2021-02-25 Manufacturing method of sintered ore

Publications (1)

Publication Number Publication Date
JP2022129696A true JP2022129696A (en) 2022-09-06

Family

ID=83151000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021028474A Pending JP2022129696A (en) 2021-02-25 2021-02-25 Manufacturing method of sintered ore

Country Status (1)

Country Link
JP (1) JP2022129696A (en)

Similar Documents

Publication Publication Date Title
Fernández-González et al. Iron ore sintering: Process
JP4807103B2 (en) Blast furnace operation method
JP5585503B2 (en) Method for producing sintered ore
CN111471852B (en) Method for sintering waste activated carbon powder, sintering mixture and sintered ore
JP7207147B2 (en) Method for producing sintered ore
JP2022033594A (en) Method for manufacturing sintered ore
JP4910640B2 (en) Blast furnace operation method
BRPI1012529B1 (en) METHOD FOR SINTER PRODUCTION
JP5420935B2 (en) Manufacturing method of granular metallic iron
JP2022129696A (en) Manufacturing method of sintered ore
JP7265162B2 (en) Method for reducing NOx in sintering exhaust gas
TWI658147B (en) Blast furnace operation method
BRPI1007900B1 (en) CARBONACE MATERIAL FOR SINTERING IRON ORE
TWI730628B (en) Blast furnace operation method
JP4725230B2 (en) Method for producing sintered ore
JP6866856B2 (en) Sintered ore manufacturing method and blast furnace operation method
JPH0285324A (en) Operating method for sintering low in nox
JP2002226920A (en) Sintered ore manufacturing method, and sintered ore
JP2003129141A (en) Sintered ore for blast furnace and manufacturing method therefor
CN111560514A (en) Iron ore sintering method capable of simultaneously improving reducibility of sintered ore and reducing emission of nitrogen oxides
CN106244799A (en) A kind of sintering method improving sintering desulfuration rate
JP5004421B2 (en) Method for producing sintered ore
JP2008019455A (en) Method for producing half-reduced sintered ore
JP2021080504A (en) Manufacturing method of sintered ore
WO2024116777A1 (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231019