JP2022129432A - Boron chelate compound, near-infrared light absorbing material, thin film, photoelectric conversion element, and imaging element - Google Patents

Boron chelate compound, near-infrared light absorbing material, thin film, photoelectric conversion element, and imaging element Download PDF

Info

Publication number
JP2022129432A
JP2022129432A JP2021028090A JP2021028090A JP2022129432A JP 2022129432 A JP2022129432 A JP 2022129432A JP 2021028090 A JP2021028090 A JP 2021028090A JP 2021028090 A JP2021028090 A JP 2021028090A JP 2022129432 A JP2022129432 A JP 2022129432A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
group
formula
compound represented
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021028090A
Other languages
Japanese (ja)
Inventor
健太郎 前田
Kentaro Maeda
秀典 薬師寺
Hidenori Yakushiji
達也 青竹
Tatsuya AOTAKE
雄一 貞光
Yuichi Sadamitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2021028090A priority Critical patent/JP2022129432A/en
Priority to TW111104938A priority patent/TW202302607A/en
Priority to PCT/JP2022/006394 priority patent/WO2022181439A1/en
Publication of JP2022129432A publication Critical patent/JP2022129432A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

To provide an organic compound, an organic thin film, and a photoelectric conversion element that have high thermal stability, have a main absorption band in a near-infrared region of 900 nm or more, and exhibit high photoelectric conversion characteristics even in the wavelength region of 1,000 nm or more.SOLUTION: There is provided a compound represented by the following formula (1) (R1 to R4 each independently represent a hydrogen atom, an alkyl group, an aromatic hydrocarbon group, a heterocyclic group or a halogen atom. m represents an integer from 1 to 3, and A represents a benzene ring or a naphthalene ring).SELECTED DRAWING: Figure 1

Description

本発明は、ホウ素キレート構造を有する新規化合物、光電変換素子、光センサー、撮像素子に関する。特に、近赤外領域に主たる吸収帯を有する光電変換素子及びその利用に関する。 TECHNICAL FIELD The present invention relates to novel compounds having a boron chelate structure, photoelectric conversion devices, photosensors, and imaging devices. In particular, it relates to a photoelectric conversion element having a main absorption band in the near-infrared region and its use.

700乃至2,500nmの波長領域に吸収帯を有する近赤外光吸収材料は、例えばCD-R(Compact Disk-Recordable)等の光情報記録媒体;サーマルCTP(Computer ToPlate)、フラッシュトナー定着、レーザー感熱記録等の印刷用途; 熱遮断フィルム等の様々な用途で使用されており、また、選択的に特定波長域の光を吸収するという特性を用いて、PDP(Plasma Display Panel)等に用いられる近赤外光カットフィルターや、植物成長調整用フィルム等にも使用されている。更には、近赤外光吸収色素を溶媒に溶解又は分散させた近赤外光吸収インクを用いた印字物は、目視では認識が困難であって、かつ近赤外光検出器等でのみ読み取りが可能であることから、例えば偽造防止等を目的とした印字物等に使用される。 Near-infrared light absorbing materials having an absorption band in the wavelength region of 700 to 2,500 nm are used in optical information recording media such as CD-R (Compact Disk-Recordable); thermal CTP (Computer To Plate), flash toner fixing, laser Printing applications such as thermal recording; It is used in various applications such as heat shielding films, and is also used in PDPs (Plasma Display Panels), etc., using the property of selectively absorbing light in a specific wavelength range. It is also used in near-infrared light cut filters and films for controlling plant growth. Furthermore, printed matter using near-infrared light-absorbing ink in which near-infrared light-absorbing dyes are dissolved or dispersed in a solvent is difficult to recognize visually, and can only be read with a near-infrared light detector or the like. is possible, it is used, for example, for printed matter for the purpose of preventing counterfeiting.

また、近赤外光は紫外光やX線などとは異なり、人体への悪影響はほとんど無い安全な光であり、特に生体を通過する「生体の窓」と呼ばれる700乃至1,400nmの波長領域において、ヘモグロビンや水の影響をほとんど受けることなく、生体内の不可視情報を画像化することができる。さらには、1,000nmを超える波長の近赤外光を用いることにより、食品や農業分野での異物診断やシリコンウエハの欠陥観察に応用することが可能である。 In addition, unlike ultraviolet light and X-rays, near-infrared light is safe light with almost no adverse effects on the human body. , it is possible to image invisible information in vivo without being affected by hemoglobin or water. Furthermore, by using near-infrared light with a wavelength exceeding 1,000 nm, it is possible to apply it to foreign matter diagnosis in the fields of food and agriculture, and defect observation of silicon wafers.

このような不可視画像形成用の近赤外光吸収材料としては、無機系の材料と有機系の材料とが知られており、無機系の近赤外光吸収材料の代表的なシリコンは、可視光のみならず780乃至950nm程度の近赤外光領域でも吸収帯を持つため、これを利用したセンサーが広く用いられている。
その一方で、シリコンは1,000nm以上の波長では光吸収帯を持たないため、1,000nmを超える波長の近赤外光を利用するセンサーの開発には、インジウムガリウムヒ素(InGaAs)を代表とする化合物半導体が近赤外吸収材料として使われている。しかしながら、これらの無機系の材料は一般的に近赤外領域の光吸収能が低く、不可視画像を形成するために単位面積あたりの赤外光吸収材料が多量に必要となる。そのため、無機系の赤外光吸収材料を用いて形成した不可視画像の上にさらに可視画像を形成する場合には、不可視画像表面の凹凸が可視画像の表面形状に影響を与えてしまうことが問題であった。
Inorganic materials and organic materials are known as near-infrared light absorbing materials for such invisible image formation. Since it has an absorption band not only in light but also in the near-infrared region of about 780 to 950 nm, sensors using this are widely used.
On the other hand, since silicon does not have a light absorption band at wavelengths of 1,000 nm or more, indium gallium arsenide (InGaAs) is a typical example for the development of sensors that utilize near-infrared light with wavelengths over 1,000 nm. compound semiconductors are used as near-infrared absorbing materials. However, these inorganic materials generally have a low ability to absorb light in the near-infrared region, and a large amount of infrared light-absorbing material per unit area is required to form an invisible image. Therefore, when forming a visible image on top of an invisible image formed using an inorganic infrared light absorbing material, the unevenness of the surface of the invisible image affects the surface shape of the visible image. Met.

これに対して、有機系の近赤外光吸収材料は近赤外領域の光の吸収能が高く、単位面積あたりの近赤外線吸収材料が少量で不可視画像を形成することができるため、無機系の近赤外光吸収材料を使用した場合のような不都合は生じない。また、有機系の近赤外吸収材料は、その分子構造を柔軟に設計することができるため、ターゲットとする光の波長に吸収帯を有する材料を創生できることから、不要な波長の光の干渉を抑えることができる。そのため、現在に至るまで多くの有機系の近赤外光吸収材料の検討が行われてきた。 On the other hand, organic near-infrared light absorbing materials have a high ability to absorb light in the near-infrared region, and can form an invisible image with a small amount of near-infrared absorbing material per unit area. This does not cause the inconvenience that occurs when using a near-infrared light absorbing material. In addition, since the molecular structure of organic near-infrared absorbing materials can be flexibly designed, it is possible to create materials that have an absorption band at the wavelength of the target light, so interference of light with unnecessary wavelengths is possible. can be suppressed. Therefore, up to now, many organic near-infrared light absorbing materials have been investigated.

近赤外光を効率よく吸収する有機材料を開発できれば、上述したような近赤外光を利用したエレクトロニクスデバイスとしての用途の幅が広がる。そのため有機系の近赤外光吸収材料には、近赤外光領域に十分な吸収帯を有し、なおかつ、有機エレクトロニクスデバイス製造時の電極形成や半導体封止層の導入などのプロセスに必要な温度(通常は120乃至180℃)に適応しうる十分な堅牢性が必要とされる。しかしながら、近赤外領域に吸収帯を示すシアニン色素、スクアリリウム色素及びジインモニウム色素等は何れも堅牢性に乏しく、その用途は限られている。 If an organic material that efficiently absorbs near-infrared light can be developed, the range of applications for electronic devices using near-infrared light as described above will expand. Therefore, organic near-infrared light absorbing materials have a sufficient absorption band in the near-infrared light region, and are necessary for processes such as electrode formation during organic electronic device manufacturing and introduction of semiconductor sealing layers. Sufficient robustness to accommodate temperatures (usually 120-180° C.) is required. However, cyanine dyes, squarylium dyes, diimmonium dyes, and the like, which exhibit an absorption band in the near-infrared region, are all poor in fastness, and their applications are limited.

この様な状況において、近年では近赤外光の波長領域に吸収帯を示すボロンジピロメテン(boron-dipyrromethene、以下「BODIPY」と称す。)系の化合物の研究が盛んになされている。非特許文献1及び2には、BODIPY骨格のピロール環にベンゼン環が縮環したジベンゾBODIPY化合物が、非縮環型のBODIPY化合物よりも長波長シフトした吸収帯を示すことや、B-Oキレート化による縮環構造とすることにより更に長波長シフトを達成できることが記載されており、特許文献1には、該化合物を近赤外光吸収材料として光記録媒体に利用できることが記載されている。また、特許文献2乃至4には、該縮環構造を有する化合物を用いた有機薄膜についても報告されている。 Under such circumstances, in recent years, studies on boron-dipyrromethene (hereinafter referred to as "BODIPY") compounds showing an absorption band in the near-infrared wavelength region have been actively conducted. Non-Patent Documents 1 and 2 show that a dibenzo-BODIPY compound in which a benzene ring is fused to the pyrrole ring of the BODIPY skeleton exhibits an absorption band shifted to a longer wavelength than a non-fused BODIPY compound, and that the BO chelate It is described that a longer wavelength shift can be achieved by forming a condensed ring structure by chemistry, and Patent Document 1 describes that the compound can be used in optical recording media as a near-infrared light absorbing material. In addition, Patent Documents 2 to 4 report on organic thin films using compounds having the condensed ring structure.

更に、特許文献5には、900nm以上の波長の光において光電変換特性を示し、かつ昇華蒸着が可能な近赤外光吸収色素が記載されている。しかしながら、前記の色素は1,000nmを超える波長の光における光電変換特性が低く、しかも近赤外光の吸収波長が限られているため、撮像素子や光センサーの光電変換材料としての用途が限られる。そのため、1,000nmを超える波長においても高い光吸収能と光電変換特性を示す近赤外光電変換材料の開発が望まれている。 Furthermore, Patent Document 5 describes a near-infrared light-absorbing dye that exhibits photoelectric conversion characteristics with respect to light with a wavelength of 900 nm or more and that can be sublimated. However, the above-mentioned dyes have low photoelectric conversion characteristics for light with a wavelength exceeding 1,000 nm, and the absorption wavelength of near-infrared light is limited. be done. Therefore, there is a demand for the development of near-infrared photoelectric conversion materials that exhibit high light absorption and photoelectric conversion characteristics even at wavelengths exceeding 1,000 nm.

特開1999-255774号公報JP-A-1999-255774 特開2012-199541号公報JP 2012-199541 A 特開2016-166284号公報JP 2016-166284 A 国際公開第2013/035303号WO2013/035303 国際公開第2020/162345号WO2020/162345

Chem.Soc.Rev.,2014,43,4778-4823Chem. Soc. Rev. , 2014, 43, 4778-4823 Chem.Rev.,2007,107,4891-4932Chem. Rev. , 2007, 107, 4891-4932

本発明の目的は、熱安定性が高く、有機エレクトロニクスデバイス等に容易に利用できる900nm以上の近赤外光領域に主たる吸収帯を有し、かつ、1,000nmを超える波長領域においても高い光電変換特性を示す化合物、有機薄膜および光電変換素子を提供することにある。 It is an object of the present invention to provide a photocatalyst that has high thermal stability, has a main absorption band in the near-infrared region of 900 nm or more that can be easily used in organic electronic devices, etc., and has high photoelectric properties even in the wavelength region exceeding 1,000 nm. An object of the present invention is to provide a compound, an organic thin film, and a photoelectric conversion device that exhibit conversion characteristics.

本発明者らは前記諸課題を解決するべく考究した結果、特定構造のBODIPY化合物を用いることにより、上記の課題が解決できることを見出し、本発明を完成するに至った。
即ち、本発明は、
[1]下記一般式(1)
The inventors of the present invention have studied to solve the above problems, and as a result, have found that the above problems can be solved by using a BODIPY compound having a specific structure, and have completed the present invention.
That is, the present invention
[1] General formula (1) below

Figure 2022129432000002
Figure 2022129432000002

(式(1)中、R乃至Rはそれぞれ独立に水素原子、アルキル基、芳香族炭化水素基、複素環基又はハロゲン原子を表す。mは1乃至3の整数を表す。Aはベンゼン環又はナフタレン環を表す。)で表される化合物、
[2]R乃至Rの少なくとも一つがアルキル基、芳香族炭化水素基、複素環基又はハロゲン原子である前項[1]に記載の化合物、
[3]R乃至Rの少なくとも一つがハロゲン原子である前項[2]に記載の化合物、
[4]R乃至Rの少なくとも二つが芳香族炭化水素基又はハロゲン原子である前項[2]に記載の化合物、
[5]Aがベンゼン環である前項[1]乃至[4]のいずれか一項に記載の化合物、
[6]前項[1]乃至[5]のいずれか一項に記載の化合物を含む近赤外光吸収材料、
[7]前項[1]乃至[5]のいずれか一項に記載の化合物を含む有機薄膜、
[8]前項[7]に記載の有機薄膜を含む光電変換素子、
[9]前項[8]に記載の光電変換素子を備える光センサー、及び
[10]前項[8]に記載の光電変換素子を備える撮像素子、
に関する。
(In Formula (1), R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, an aromatic hydrocarbon group, a heterocyclic group or a halogen atom. m represents an integer of 1 to 3. A represents benzene represents a ring or a naphthalene ring),
[2] The compound according to [1] above, wherein at least one of R 1 to R 4 is an alkyl group, an aromatic hydrocarbon group, a heterocyclic group or a halogen atom;
[3] The compound according to [2] above, wherein at least one of R 1 to R 4 is a halogen atom;
[4] The compound according to [2] above, wherein at least two of R 1 to R 4 are an aromatic hydrocarbon group or a halogen atom;
[5] The compound according to any one of [1] to [4] above, wherein A is a benzene ring;
[6] A near-infrared light absorbing material containing the compound according to any one of [1] to [5] above,
[7] An organic thin film containing the compound according to any one of [1] to [5] above,
[8] A photoelectric conversion device comprising the organic thin film according to [7] above,
[9] An optical sensor comprising the photoelectric conversion device according to [8] above, and [10] An imaging device comprising the photoelectric conversion device according to [8] above,
Regarding.

本発明の新規な化合物を含む有機薄膜は、近赤外光領域に主たる吸収帯を有する。また、該化合物及び/又は該薄膜を用いることにより、近赤外光電変換素子が実現する。該化合物は、各種有機エレクトロニクスデバイスへの利用が可能である。 An organic thin film containing the novel compound of the present invention has a main absorption band in the near-infrared region. A near-infrared photoelectric conversion device is realized by using the compound and/or the thin film. The compound can be used for various organic electronic devices.

図1は、本発明の光電変換素子の実施態様を例示した断面図を示す。FIG. 1 shows a cross-sectional view illustrating an embodiment of the photoelectric conversion element of the present invention. 図2は、本発明の化合物を用いて得られた有機薄膜の吸収スペクトルの測定結果である。FIG. 2 shows the measurement results of the absorption spectrum of the organic thin film obtained using the compound of the present invention.

以下、本発明について詳細に説明する。ここに記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づくものであるが、本発明はそのような実施態様や具体例に限定されない。なお、本明細書において、近赤外領域とは、750乃至2500nmの範囲内にある光の波長領域を意味し、近赤外光吸収材料とは、近赤外光領域に主たる吸収帯をもつ材料を意味する。 The present invention will be described in detail below. The descriptions of the constituent elements described herein are based on representative embodiments and examples of the invention, but the invention is not limited to such embodiments and examples. In this specification, the near-infrared region means a light wavelength region in the range of 750 to 2500 nm, and the near-infrared light absorbing material has an absorption band mainly in the near-infrared region. means material.

本発明の化合物は、下記式(1)で表される。 The compound of the present invention is represented by the following formula (1).

Figure 2022129432000003
Figure 2022129432000003

式(1)中、R乃至Rはそれぞれ独立に水素原子、アルキル基、芳香族炭化水素基、複素環基又はハロゲン原子を表す。 In formula (1), R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, an aromatic hydrocarbon group, a heterocyclic group or a halogen atom.

式(1)のR乃至Rが表すアルキル基は直鎖状、分岐鎖状及び環状の何れにも限定されず、その炭素数は1乃至20が好ましく、1乃至10がより好ましい。
式(1)のR乃至Rが表すアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-セチル基、n-ヘプタデシル基、2-エチルへキシル基、3-エチルヘプチル基、4-エチルオクチル基、2-ブチルオクチル基、3-ブチルノニル基、4-ブチルデシル基、2-ヘキシルデシル基、3-オクチルウンデシル基、4-オクチルドデシル基、2-オクチルドデシル基、2-デシルテトラデシル基、シクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。尚、式(1)のR乃至Rが表すアルキル基は置換基を有していてもよく、該有していてもよい置換基は特に限定されない。
式(1)のR乃至Rが表すアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、2-エチルへキシル基又はシクロヘキシル基好ましく、メチル基、エチル基、t-ブチル基又はシクロヘキシル基がより好ましい。
The alkyl group represented by R 1 to R 4 in formula (1) is not limited to any of linear, branched and cyclic, and preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms.
Specific examples of alkyl groups represented by R 1 to R 4 in formula (1) include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, iso-butyl group, t-butyl group and n-pentyl. group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-cetyl group, n-heptadecyl group, 2-ethylhexyl group, 3 -ethylheptyl group, 4-ethyloctyl group, 2-butyloctyl group, 3-butylnonyl group, 4-butyldecyl group, 2-hexyldecyl group, 3-octylundecyl group, 4-octyldodecyl group, 2-octyldodecyl group, 2-decyltetradecyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group. The alkyl group represented by R 1 to R 4 in formula (1) may have a substituent, and the substituent that may have is not particularly limited.
Alkyl groups represented by R 1 to R 5 in formula (1) include methyl, ethyl, propyl, isopropyl, n-butyl, iso-butyl, t-butyl, n-pentyl, n -hexyl group, 2-ethylhexyl group or cyclohexyl group is preferred, and methyl group, ethyl group, t-butyl group or cyclohexyl group is more preferred.

式(1)のR乃至Rが表す芳香族炭化水素基とは、芳香族炭化水素化合物の芳香環から水素原子を一つ除いた残基であり、その具体例としては、フェニル基、ビフェニル基、トリル基、インデニル基、ナフチル基、アントリル基、フルオレニル基、ピレニル基、フェナンスニル基及びメスチル基等が挙げられる。尚、式(1)のR乃至Rが表す芳香族炭化水素基は置換基を有していてもよく、該有していてもよい置換基は特に限定されない。
式(1)のR乃至Rが表す芳香族炭化水素基としては、フェニル基、ビフェニル基、ナフチル基、トリル基又はメスチル基が好ましく、フェニル基又はトリル基がより好ましい。
The aromatic hydrocarbon group represented by R 1 to R 4 in formula (1) is a residue obtained by removing one hydrogen atom from an aromatic ring of an aromatic hydrocarbon compound. Specific examples thereof include a phenyl group, biphenyl group, tolyl group, indenyl group, naphthyl group, anthryl group, fluorenyl group, pyrenyl group, phenanthyl group, mestyle group and the like. The aromatic hydrocarbon group represented by R 1 to R 4 in Formula (1) may have a substituent, and the substituent that may have is not particularly limited.
The aromatic hydrocarbon group represented by R 1 to R 4 in formula (1) is preferably a phenyl group, a biphenyl group, a naphthyl group, a tolyl group or a mestyle group, more preferably a phenyl group or a tolyl group.

式(1)のR乃至Rが表す複素環基とは、複素環化合物の複素環から水素原子を一つ除いた残基であり、その具体例としては、フラニル基、チエニル基、チエノチエニル基、ピロリル基、イミダゾリル基、チアゾリル基、オキサゾリル基、ピリジル基、ピラジル基、ピリミジル基、インドリル基、ベンゾピラジル基、ベンゾピリミジル基、ベンゾチエニル基、ベンゾチアゾリル基、ピリジノチアゾリル基、ベンゾイミダゾリル基、ピリジノイミダゾリル基、ベンゾオキサゾリル基、ピリジノオキサゾリル基、ベンゾチアジアゾリル基、ピリジノチアジアゾリル基、ベンゾオキサジアゾリル基、ピリジノオキサジアゾリル基、カルバゾリル基、フェノキサジニル基及びフェノチアジニル基等が挙げられる。尚、式(1)のR乃至Rが表す複素環基は置換基を有していてもよく、該有していてもよい置換基は特に限定されない。
式(1)のR乃至Rが表す複素環基としては、チエニル基、チエノチエニル基、ピロリル基、ピリジル基、ピラジル基又はベンゾチエニル基が好ましく、チエニル基、ピリジル基又はベンゾチエニル基がより好ましい。
The heterocyclic group represented by R 1 to R 4 in formula (1) is a residue obtained by removing one hydrogen atom from the heterocyclic ring of a heterocyclic compound, and specific examples thereof include furanyl group, thienyl group, thienothienyl pyrrolyl group, imidazolyl group, thiazolyl group, oxazolyl group, pyridyl group, pyrazyl group, pyrimidyl group, indolyl group, benzopyrazyl group, benzopyrimidyl group, benzothienyl group, benzothiazolyl group, pyridinothiazolyl group, benzimidazolyl group, pyri dinoimidazolyl group, benzoxazolyl group, pyridinooxazolyl group, benzothiadiazolyl group, pyridinothiadiazolyl group, benzoxadiazolyl group, pyridinooxadiazolyl group, carbazolyl group, phenoxazinyl group and pheno A thiazinyl group and the like can be mentioned. The heterocyclic group represented by R 1 to R 4 in Formula (1) may have a substituent, and the substituent that may have is not particularly limited.
The heterocyclic group represented by R 1 to R 4 in formula (1) is preferably a thienyl group, a thienotienyl group, a pyrrolyl group, a pyridyl group, a pyrazyl group or a benzothienyl group, more preferably a thienyl group, a pyridyl group or a benzothienyl group. preferable.

式(1)のR乃至Rが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子又は塩素原子が好ましい。
式(1)におけるR乃至Rとしては、全てが水素原子であるか、又はR及びRが水素原子であってR及びRの一方が水素原子、アルキル基、芳香族炭化水素基、複素環基若しくはハロゲン原子であって他方がアルキル基、芳香族炭化水素基、複素環基若しくはハロゲン原子であることが好ましく、全てが水素原子であるか、又はR及びRが水素原子であってR及びRの一方が水素原子、芳香族炭化水素基若しくはハロゲン原子であって他方が芳香族炭化水素基若しくはハロゲン原子であることがより好ましい。
Halogen atoms represented by R 1 to R 4 in formula (1) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom or a chlorine atom.
R 1 to R 4 in formula (1) are all hydrogen atoms, or R 1 and R 4 are hydrogen atoms and one of R 2 and R 3 is a hydrogen atom, an alkyl group, or an aromatic hydrocarbon A hydrogen group, a heterocyclic group or a halogen atom and the other is preferably an alkyl group, an aromatic hydrocarbon group, a heterocyclic group or a halogen atom, all of which are hydrogen atoms, or R 1 and R 4 are More preferably, one of R 2 and R 3 is a hydrogen atom, an aromatic hydrocarbon group or a halogen atom and the other is an aromatic hydrocarbon group or a halogen atom.

式(1)のmは1乃至3の整数を表し、1又は2が好ましい。 m in formula (1) represents an integer of 1 to 3, preferably 1 or 2;

式(1)中、Aはベンゼン環又はナフタレン環を表す。尚、Aで表されるベンゼン環又はナフタレン環は置換基を有していてもよく、該有していてもよい置換基は特に限定されないが、置換基としては芳香族炭化水素基、複素環基及びハロゲン原子であることが好ましく、ハロゲン原子であることがより好ましい。
式(1)におけるAはベンゼン環であることが好ましく、無置換のベンゼン環であることがより好ましい。
In Formula (1), A represents a benzene ring or a naphthalene ring. The benzene ring or naphthalene ring represented by A may have a substituent, and the substituent that may have is not particularly limited. Examples of the substituent include an aromatic hydrocarbon group, a heterocyclic A group and a halogen atom are preferred, and a halogen atom is more preferred.
A in formula (1) is preferably a benzene ring, more preferably an unsubstituted benzene ring.

次に本発明の化合物の合成方法について説明する。式(1)で表される化合物は、例えば以下のスキームに示した合成法によって合成できる。まず、式(S-1)で表されるヒドロキシチオフェン化合物を、ヨウ化メチルを用いてメチル化することで、式(M-1)で表されるメトキシチオフェン中間体とする。続いてヒドラジン・一水和物との反応により式(M-2)で表されるヒドラジド中間体とする。式(M-2)で表される中間体と式(S-2)で表されるアセトフェノン誘導体を脱水縮合することにより式(M-3)で表されるヒドラゾン中間体とする。その後、ヨードベンゼンジアセテートを用いた脱窒素転位反応により式(M-4)で表されるジケトン中間体とし、該中間体(M-4)に酢酸アンモニウを作用させることにより式(M-5)で表されるジピロメテン中間体とする。最後に、水酸基上のメチル基の脱保護を行うことにより分子内B-O結合を形成させ、式(1)で表される化合物を合成することができる。式(S-1)及び式(S-2)で表される出発化合物はそれぞれ公知の方法を用いることによって合成することができる。
尚、以下の合成スキーム中のR乃至R、m及びAは式(1)におけるR乃至R、m及びAと同じ意味を表す。
Next, a method for synthesizing the compound of the present invention will be described. The compound represented by formula (1) can be synthesized, for example, by the synthesis method shown in the scheme below. First, a hydroxythiophene compound represented by formula (S-1) is methylated using methyl iodide to obtain a methoxythiophene intermediate represented by formula (M-1). Subsequently, a hydrazide intermediate represented by the formula (M-2) is obtained by reaction with hydrazine monohydrate. The intermediate represented by formula (M-2) and the acetophenone derivative represented by formula (S-2) are subjected to dehydration condensation to obtain a hydrazone intermediate represented by formula (M-3). Thereafter, a diketone intermediate represented by the formula (M-4) is obtained by a denitrification rearrangement reaction using iodobenzene diacetate, and the intermediate (M-4) is reacted with ammonium acetate to form the formula (M-5). ) as a dipyrromethene intermediate. Finally, the methyl group on the hydroxyl group is deprotected to form an intramolecular BO bond to synthesize the compound represented by formula (1). Starting compounds represented by formulas (S-1) and (S-2) can be synthesized by using known methods.
R 1 to R 4 , m and A in the following synthesis schemes have the same meanings as R 1 to R 4 , m and A in Formula (1).

Figure 2022129432000004
Figure 2022129432000004

前記式(1)で表される化合物の具体例を以下に示すが、本発明はこれに限定されない。なお、具体例として示した構造式は共鳴構造の一つを表したものにすぎず、図示した共鳴構造に限定されない。 Specific examples of the compound represented by formula (1) are shown below, but the present invention is not limited thereto. It should be noted that the structural formula shown as a specific example merely represents one resonance structure, and is not limited to the illustrated resonance structure.

Figure 2022129432000005
Figure 2022129432000005

Figure 2022129432000006
Figure 2022129432000006

Figure 2022129432000007
Figure 2022129432000007

Figure 2022129432000008
Figure 2022129432000008

Figure 2022129432000009
Figure 2022129432000009

Figure 2022129432000010
Figure 2022129432000010

Figure 2022129432000011
Figure 2022129432000011

Figure 2022129432000012
Figure 2022129432000012

Figure 2022129432000013
Figure 2022129432000013

本発明の近赤外光吸収材料は、上記式(1)で表される化合物を含有する。
本発明の近赤外光吸収材料中の式(1)で表される化合物の含有量は、近赤外光吸収材料を用いる用途において必要とされる近赤外光の吸収能力が発現する限り特に限定されないが、通常は50質量%以上であり、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましい。
本発明の近赤外光吸収材料には、式(1)で表される化合物以外の化合物(例えば式(1)で表される化合物以外の近赤外光吸収材料(色素)等)や添加剤等を併用してもよい。併用し得る化合物や添加剤等は、近赤外光吸収材料を用いる用途において必要とされる近赤外光の吸収能力が発現する限り特に限定されない。
The near-infrared light absorbing material of the present invention contains the compound represented by the above formula (1).
The content of the compound represented by formula (1) in the near-infrared light-absorbing material of the present invention is as long as the near-infrared light absorption ability required in the application using the near-infrared light-absorbing material is expressed. Although not particularly limited, it is usually 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass or more.
The near-infrared light-absorbing material of the present invention includes a compound other than the compound represented by formula (1) (for example, a near-infrared light-absorbing material (dye) other than the compound represented by formula (1), etc.) or an additive You may use an agent etc. together. The compounds, additives, and the like that can be used in combination are not particularly limited as long as they exhibit the near-infrared light absorbing ability required in the application using the near-infrared light absorbing material.

本発明の有機薄膜は、上記式(1)で表される化合物を含有する。
本発明の有機薄膜は、一般的な乾式成膜法や湿式成膜法により作製することができる。具体的には真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング及び分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等が挙げられる。
一般的な近赤外光吸収材料の有機薄膜の形成は、加工の容易性という観点からは化合物を溶液状態で塗布するようなプロセスが望まれている。そのような観点から、溶液プロセスに適応できる溶解性の高い有機材料の開発が望まれる。
The organic thin film of the present invention contains the compound represented by the above formula (1).
The organic thin film of the present invention can be produced by a general dry film-forming method or wet film-forming method. Vacuum processes such as resistance heating vapor deposition, electron beam vapor deposition, sputtering and molecular lamination, solution processes such as casting, spin coating, dip coating, blade coating, wire bar coating, spray coating, and inkjet printing. , printing methods such as screen printing, offset printing, letterpress printing, and soft lithography techniques such as microcontact printing.
For the formation of an organic thin film of a general near-infrared light-absorbing material, a process in which a compound is applied in a solution state is desired from the viewpoint of ease of processing. From such a point of view, the development of highly soluble organic materials that can be applied to solution processes is desired.

一方で、有機膜を積層するような有機エレクトロニクスデバイスの場合、塗布溶液が下層の有機膜を侵さない溶媒条件を選択することが困難なことが多い。この様な積層構造を実現するためには、乾式成膜法、例えば抵抗加熱蒸着等の乾式成膜法に用い得る蒸着可能な材料であることが適切である。したがって、近赤外領域に主たる吸収波長を有し、且つ蒸着可能な近赤外光吸収材料が有機エレクトロニクス材料に用いる際には好ましい。 On the other hand, in the case of organic electronic devices in which organic films are laminated, it is often difficult to select solvent conditions in which the coating solution does not attack the underlying organic films. In order to realize such a layered structure, it is suitable to use a vapor deposition material that can be used in dry film formation methods such as resistance heating vapor deposition. Therefore, a near-infrared light-absorbing material that has a main absorption wavelength in the near-infrared region and that can be vapor-deposited is preferably used as an organic electronic material.

有機膜を積層する場合、各層の成膜には上記の手法を複数組み合わせた方法を採用してもよい。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、通常は0.5乃至5,000nmの範囲であり、好ましくは1乃至1,000nmの範囲、より好ましくは5乃至500nmの範囲である。 When stacking organic films, a method combining a plurality of the above methods may be employed for forming each layer. The thickness of each layer cannot be limited because it depends on the resistance value and charge mobility of each substance, but it is usually in the range of 0.5 to 5,000 nm, preferably in the range of 1 to 1,000 nm. More preferably, it is in the range of 5 to 500 nm.

前記式(1)で表される化合物の分子量は、例えば式(1)で表される化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1,500以下であることが好ましく、1,200以下であることがより好ましく、1,000以下であることがさらに好ましい。分子量の下限値は、式(1)がとりうる最低分子量の値である。
なお、式(1)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。
尚、本明細書における分子量は、EI-GCMS法で算出した値を意味する。
The molecular weight of the compound represented by the formula (1) is, for example, 1,500 or less when the organic layer containing the compound represented by the formula (1) is intended to be formed by a vapor deposition method and used. is preferably 1,200 or less, and even more preferably 1,000 or less. The lower limit of the molecular weight is the minimum molecular weight value that formula (1) can take.
Incidentally, the compound represented by the formula (1) may be formed into a film by a coating method regardless of the molecular weight. If a coating method is used, it is possible to form a film even with a compound having a relatively large molecular weight.
Incidentally, the molecular weight in this specification means the value calculated by the EI-GCMS method.

〔光電変換素子〕
上記式(1)で表される化合物は、近赤外光吸収特性を有する化合物であることから、近赤外光電変換素子に好適に用いられる。特に、上記式(1)で表される化合物は、本発明の光電変換素子に於ける光電変換層に用いることができる。当該素子に於いては、光源の光波長に対する十分な光吸収特性と光電変換特性を有する材料であることが好ましい。光源として用いる照射光の波長領域は、800乃至1,400nmであることが好ましく、900乃至1,400nmであることがより好ましく、1,000乃至1,400nmであることがさらに好ましい。ここで、近赤外光電変換素子としては近赤外光センサー、有機撮像素子、近赤外光イメージセンサー等が挙げられる。
尚、本明細書における吸収帯の極大吸収とは、吸収スペクトル測定で測定した吸光度のスペクトルにおいて、吸光度が極大となる波長の値を意味し、極大吸収波長(λmax)は極大吸収の中で最も長波長側の極大吸収を意味する。
[Photoelectric conversion element]
Since the compound represented by the above formula (1) is a compound having near-infrared light absorption properties, it is suitably used in a near-infrared photoelectric conversion device. In particular, the compound represented by formula (1) above can be used for the photoelectric conversion layer in the photoelectric conversion element of the present invention. In the device, it is preferable to use a material having sufficient light absorption characteristics and photoelectric conversion characteristics with respect to the light wavelength of the light source. The wavelength range of the irradiation light used as the light source is preferably 800 to 1,400 nm, more preferably 900 to 1,400 nm, even more preferably 1,000 to 1,400 nm. Here, the near-infrared photoelectric conversion element includes a near-infrared light sensor, an organic image sensor, a near-infrared light image sensor, and the like.
In addition, the maximum absorption of the absorption band in this specification means the value of the wavelength at which the absorbance is maximum in the absorbance spectrum measured by the absorption spectrum measurement, and the maximum absorption wavelength (λmax) is the highest among the maximum absorption. It means maximum absorption on the long wavelength side.

光電変換素子は、対向する一対の電極膜間に光電変換部(膜)を配置した素子であって、電極膜の上方から光が光電変換部に入射されるものである。光電変換部は前記の入射光に応じて電子と正孔を発生するものであり、半導体により前記電荷に応じた信号が読み出され、光電変換膜部の吸収波長に応じた入射光量を示す素子である。光が入射しない側の電極膜には読み出しのためのトランジスタが接続される場合もある。また、より光源近くに配置された光電変換素子が、光源側から見てその背後に配置された光電変換素子の吸収波長を遮蔽しない(透過する)場合は、複数の光電変換素子を積層して用いてもよい。 A photoelectric conversion element is an element in which a photoelectric conversion portion (film) is arranged between a pair of opposing electrode films, and light is incident on the photoelectric conversion portion from above the electrode films. The photoelectric conversion portion generates electrons and holes in response to the incident light, and a semiconductor device reads out a signal corresponding to the charge and indicates the amount of incident light corresponding to the absorption wavelength of the photoelectric conversion film portion. is. A readout transistor may be connected to the electrode film on the side where light does not enter. If a photoelectric conversion element placed closer to the light source does not block (transmit) the absorption wavelength of the photoelectric conversion element placed behind it when viewed from the light source side, a plurality of photoelectric conversion elements are stacked. may be used.

本発明の光電変換素子は、前記式(1)で表される化合物を上記光電変換部の構成材料として用いたものである。
光電変換部は、光電変換層と、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層及び層間接触改良層等から成る群より選択される一種又は複数種の光電変換層以外の有機薄膜層とから成ることが多い。本発明の式(1)で表される化合物は、光電変換層以外にも用いることもできるが、光電変換層の有機薄膜層として用いることが好ましい。光電変換層は前記式(1)で表される化合物のみで構成されていてもよいが、前記式(1)で表される化合物以外に、公知の近赤外光吸収材料やその他を含んでいてもよい。
The photoelectric conversion element of the present invention uses the compound represented by the formula (1) as a constituent material of the photoelectric conversion portion.
The photoelectric conversion part includes one or more selected from the group consisting of a photoelectric conversion layer, an electron transport layer, a hole transport layer, an electron blocking layer, a hole blocking layer, an anti-crystallization layer, an interlayer contact improving layer, and the like. It is often composed of an organic thin film layer other than the photoelectric conversion layer. Although the compound represented by the formula (1) of the present invention can be used in a layer other than the photoelectric conversion layer, it is preferably used as an organic thin film layer of the photoelectric conversion layer. The photoelectric conversion layer may be composed only of the compound represented by the formula (1), but in addition to the compound represented by the formula (1), it may contain a known near-infrared light absorbing material or others. You can

本発明の光電変換素子に用いられる電極膜は、後述する光電変換部に含まれる光電変換層が、正孔輸送性を有する場合や光電変換層以外の有機薄膜層が正孔輸送性を有する正孔輸送層である場合は、該光電変換層やその他の有機薄膜層から正孔を取り出してこれを捕集する役割を果たし、又光電変換部に含まれる光電変換層が電子輸送性を有する場合や、有機薄膜層が電子輸送性を有する電子輸送層である場合は、該光電変換層やその他の有機薄膜層から電子を取り出して、これを吐出する役割を果たすものである。よって、電極膜として用い得る材料は、ある程度の導電性を有するものであれば特に限定されないが、隣接する光電変換層やその他の有機薄膜層との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選択することが好ましい。電極膜として用い得る材料としては、例えば、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル及びタングステン等の金属:ヨウ化銅及び硫化銅等の無機導電性物質:ポリチオフェン、ポリピロール及びポリアニリン等の導電性ポリマー:炭素等が挙げられる。これらの材料は、必要により複数を混合して用いてもよいし、異なる材料の電極膜を2層以上に積層して用いてもよい。電極膜に用いる材料の導電性も、光電変換素子の受光を必要以上に妨げなければ特に限定されないが、光電変換素子の信号強度や、消費電力の観点から出来るだけ高いことが好ましい。例えばシート抵抗値が300Ω/□以下の導電性を有するITO膜であれば、電極膜として充分機能するが、数Ω/□程度の導電性を有するITO膜を備えた基板の市販品も入手可能となっていることから、この様な高い導電性を有する基板を使用することが望ましい。ITO膜(電極膜)の厚さは導電性を考慮して任意に選択することができるが、通常5乃至500nm、好ましくは10乃至300nm程度である。ITOなどの膜を形成する方法としては、従来公知の蒸着法、電子線ビーム法、スパッタリング法、化学反応法及び塗布法等が挙げられる。基板上に設けられたITO膜には必要に応じUV-オゾン処理やプラズマ処理等を施してもよい。 The electrode film used in the photoelectric conversion element of the present invention is formed when the photoelectric conversion layer included in the photoelectric conversion part described later has a hole-transport property, or when the organic thin film layer other than the photoelectric conversion layer has a hole-transport property. When it is a hole-transporting layer, it plays a role of extracting and collecting holes from the photoelectric conversion layer or other organic thin film layer, and when the photoelectric conversion layer contained in the photoelectric conversion part has an electron-transporting property. Alternatively, when the organic thin film layer is an electron transport layer having an electron transport property, it plays a role of extracting electrons from the photoelectric conversion layer or other organic thin film layers and ejecting them. Therefore, the material that can be used as the electrode film is not particularly limited as long as it has a certain degree of conductivity. is preferably selected in consideration of Examples of materials that can be used as electrode films include conductive metal oxides such as tin oxide (NESA), indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); gold, silver, platinum, chromium, and aluminum. , metals such as iron, cobalt, nickel and tungsten; inorganic conductive substances such as copper iodide and copper sulfide; conductive polymers such as polythiophene, polypyrrole and polyaniline; and carbon. If necessary, a plurality of these materials may be mixed and used, or two or more layers of electrode films made of different materials may be laminated. The conductivity of the material used for the electrode film is also not particularly limited as long as it does not interfere with the light reception of the photoelectric conversion element more than necessary. For example, a conductive ITO film with a sheet resistance value of 300 Ω/□ or less functions well as an electrode film, but substrates with an ITO film having a conductivity of several Ω/□ are also available on the market. Therefore, it is desirable to use a substrate having such high conductivity. Although the thickness of the ITO film (electrode film) can be arbitrarily selected in consideration of conductivity, it is usually about 5 to 500 nm, preferably about 10 to 300 nm. Methods for forming a film such as ITO include conventionally known vapor deposition methods, electron beam methods, sputtering methods, chemical reaction methods, coating methods, and the like. If necessary, the ITO film provided on the substrate may be subjected to UV-ozone treatment, plasma treatment, or the like.

電極膜のうち、少なくとも光が入射する側の何れか一方に用いられる透明電極膜の材料としては、ITO、IZO、SnO、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO、FTO(フッ素ドープ酸化スズ)等が挙げられる。光電変換層の吸収ピーク波長における透明電極膜を介して入射した光の透過率は、60%以上であることが好ましく、80%以上であることがより好ましく、95%以上であることが特に好ましい。 Materials for the transparent electrode film used for at least one of the light incident sides of the electrode film include ITO, IZO, SnO 2 , ATO (antimony-doped tin oxide), ZnO, and AZO (Al-doped zinc oxide). , GZO (gallium-doped zinc oxide), TiO 2 , FTO (fluorine-doped tin oxide), and the like. The transmittance of light incident through the transparent electrode film at the absorption peak wavelength of the photoelectric conversion layer is preferably 60% or more, more preferably 80% or more, and particularly preferably 95% or more. .

検出する波長の異なる光電変換層を複数積層する場合、それぞれの光電変換層の間に用いられる電極膜(これは上記記載の一対の電極膜以外の電極膜である)は、それぞれの光電変換層が検出する波長を有する光以外の光を透過させる必要があり、該電極膜には入射光の90%以上を透過する材料を用いることが好ましく、95%以上の光を透過する材料を用いることがより好ましい。 When a plurality of photoelectric conversion layers with different wavelengths to be detected are stacked, the electrode film (this is an electrode film other than the pair of electrode films described above) used between each photoelectric conversion layer is the same as that of each photoelectric conversion layer It is necessary to transmit light other than light having a wavelength to be detected by the electrode film, and it is preferable to use a material that transmits 90% or more of the incident light for the electrode film, and a material that transmits 95% or more of the light is used. is more preferred.

電極膜はプラズマフリーで作製することが好ましい。プラズマフリーでこれらの電極膜を作成することにより、電極膜が設けられる基板にプラズマが与える影響が低減され、光電変換素子の光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜時にプラズマを用いないか、又はプラズマ発生源から基板までの距離が2cm以上、好ましくは10cm以上、更に好ましくは20cm以上離すことにより、基板に到達するプラズマが減ぜられるような状態を意味する。 The electrode film is preferably produced plasma-free. By forming these electrode films in a plasma-free manner, the influence of plasma on the substrate on which the electrode films are provided is reduced, and the photoelectric conversion characteristics of the photoelectric conversion element can be improved. Here, "plasma-free" means that plasma is not used when forming the electrode film, or the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, and more preferably 20 cm or more, so that the plasma reaches the substrate. means a state in which the generated plasma is reduced.

電極膜の成膜時にプラズマを用いない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置等が挙げられる。EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と称し、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と称する。 Examples of apparatuses that do not use plasma when forming an electrode film include an electron beam vapor deposition apparatus (EB vapor deposition apparatus) and a pulse laser vapor deposition apparatus. A method of forming a transparent electrode film using an EB vapor deposition device is called an EB vapor deposition method, and a method of forming a transparent electrode film using a pulse laser vapor deposition device is called a pulse laser vapor deposition method.

成膜中プラズマを減ずることが出来るような状態を実現できる装置としては、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着装置等が考えられる。 As an apparatus capable of realizing a state in which plasma can be reduced during film formation, for example, a facing target type sputtering apparatus, an arc plasma vapor deposition apparatus, and the like can be considered.

透明導電膜を電極膜(例えば第一の導電膜)とした場合、DCショート、あるいはリーク電流の増大が生じる場合がある。この原因の一つは、光電変換層に発生する微細なクラックがTCO(Transparent Conductive Oxide)などの緻密な膜によって被覆され、第一の導電膜とは反対側の電極膜(第二の導電膜)との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る材料を電極に用いた場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換層の膜厚(クラックの深さ)に応じて制御することにより、リーク電流の増大を抑制することができる。 When a transparent conductive film is used as an electrode film (for example, a first conductive film), a DC short circuit or an increase in leakage current may occur. One of the reasons for this is that fine cracks generated in the photoelectric conversion layer are covered with a dense film such as TCO (Transparent Conductive Oxide), and the electrode film on the opposite side of the first conductive film (second conductive film ) is considered to be due to an increase in conduction between Therefore, when a material such as Al having a relatively inferior film quality is used for the electrode, an increase in leakage current is less likely to occur. By controlling the film thickness of the electrode film according to the film thickness (crack depth) of the photoelectric conversion layer, an increase in leakage current can be suppressed.

通常、導電膜を所定の厚さより薄くすると、急激な抵抗値の増加が起こる。本実施形態の1つである光センサー用光電変換素子における導電膜のシート抵抗は、通常100乃至10000Ω/□であり、膜厚を適宜設定することができる。又、透明導電膜が薄いほど吸収する光の量が少なくなり、一般に光透過率が高くなる。光透過率が高くなると、光電変換層で吸収される光が増加して光電変換能が向上するため非常に好ましい。 Generally, when the conductive film is made thinner than a predetermined thickness, the resistance value abruptly increases. The sheet resistance of the conductive film in the photoelectric conversion element for a photosensor, which is one of the present embodiments, is usually 100 to 10000Ω/□, and the film thickness can be appropriately set. Also, the thinner the transparent conductive film, the less light it absorbs, and generally the higher the light transmittance. When the light transmittance is high, the amount of light absorbed by the photoelectric conversion layer is increased and the photoelectric conversion performance is improved, which is very preferable.

本発明の光電変換素子が有する光電変換部は、光電変換層及び光電変換層以外の有機薄膜層を含む場合もある。光電変換部を構成する光電変換層には一般的に有機半導体膜が用いられるが、その有機半導体膜は一層若しくは複数の層であってもよく、一層の場合は、p型有機半導体膜、n型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、層の数は、2乃至10程度であり、p型有機半導体膜、n型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)の何れかを積層した構造であり、層間にバッファ層が挿入されていてもよい。なお、上記の混合膜により光電変換層を形成する場合、本発明の式(1)で表される化合物をp型半導体材料として用い、n型半導体材料としては一般的なフラーレンや、その誘導体を用いることが好ましい。 The photoelectric conversion part of the photoelectric conversion element of the present invention may include a photoelectric conversion layer and an organic thin film layer other than the photoelectric conversion layer. An organic semiconductor film is generally used for the photoelectric conversion layer that constitutes the photoelectric conversion part, and the organic semiconductor film may be a single layer or a plurality of layers. type organic semiconductor films, or mixed films thereof (bulk heterostructures) are used. On the other hand, in the case of a plurality of layers, the number of layers is about 2 to 10, and a structure in which either a p-type organic semiconductor film, an n-type organic semiconductor film, or a mixed film thereof (bulk heterostructure) is laminated. and a buffer layer may be inserted between the layers. When the photoelectric conversion layer is formed from the mixed film described above, the compound represented by the formula (1) of the present invention is used as the p-type semiconductor material, and general fullerene or a derivative thereof is used as the n-type semiconductor material. It is preferable to use

本発明の光電変換素子において、光電変換部を構成する光電変換層以外の有機薄膜層は、光電変換層以外の層、例えば、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層(以下電子ブロック層と正孔ブロック層を総称して「キャリアブロック層」とも表す。)、結晶化防止層又は層間接触改良層等として用いられる。特に電子輸送層、正孔輸送層から成る群より選択される一種以上の薄膜層として用いることにより、弱い光エネルギーでも効率よく電気信号に変換する素子が得られるために好ましい。 In the photoelectric conversion device of the present invention, the organic thin film layer other than the photoelectric conversion layer constituting the photoelectric conversion part is a layer other than the photoelectric conversion layer, such as an electron transport layer, a hole transport layer, an electron blocking layer, and a hole blocking layer. (Hereinafter, the electron blocking layer and the hole blocking layer are collectively referred to as "carrier blocking layer".), the layer is used as a crystallization prevention layer, an interlayer contact improving layer, or the like. In particular, by using one or more thin film layers selected from the group consisting of an electron-transporting layer and a hole-transporting layer, it is possible to obtain an element that efficiently converts even weak light energy into electrical signals, which is preferable.

加えて、撮像素子では、一般的には高コントラスト化や省電力化を目的として、暗電流の低減により性能向上を目指すと考えられため、層構造内にキャリアブロック層を挿入する手法が好ましい。これらのキャリアブロック層は、有機エレクトロニクスデバイス分野では一般に用いられており、其々デバイスの構成膜中において正孔若しくは電子の逆移動を制御する機能を有する。 In addition, in imaging devices, it is generally thought that performance improvement is aimed at by reducing dark current for the purpose of high contrast and power saving. These carrier block layers are generally used in the field of organic electronic devices, and each have a function of controlling the reverse transfer of holes or electrons in the constituent films of the device.

電子輸送層は、光電変換層で発生した電子を電極膜へ輸送する役割と、電子輸送先の電極膜から光電変換層に正孔が移動するのをブロックする役割とを果たす。正孔輸送層は、発生した正孔を光電変換層から電極膜へ輸送する役割と、正孔輸送先の電極膜から光電変換層に電子が移動するのをブロックする役割とを果たす。電子ブロック層は、電極膜から光電変換層への電子の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する役割を果たす。正孔ブロック層は、電極膜から光電変換層への正孔の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。 The electron transport layer plays a role of transporting electrons generated in the photoelectric conversion layer to the electrode film and a role of blocking the movement of holes from the electrode film to which the electrons are transported to the photoelectric conversion layer. The hole transport layer plays a role of transporting generated holes from the photoelectric conversion layer to the electrode film and a role of blocking the movement of electrons from the electrode film to which the holes are transported to the photoelectric conversion layer. The electron blocking layer plays a role of preventing movement of electrons from the electrode film to the photoelectric conversion layer, preventing recombination within the photoelectric conversion layer, and reducing dark current. The hole blocking layer has a function of preventing holes from moving from the electrode film to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current.

図1に本発明の光電変換素子の代表的な素子構造を示すが、本発明はこの構造に限定されるものではない。図1の態様例においては、1が絶縁部、2が一方の電極膜(上部電極膜)、3が電子ブロック層、4が光電変換層、5が正孔ブロック層、6が他方の電極膜(下部電極膜)、7が絶縁基材又は他の有機光電変換素子をそれぞれ表す。図中には読み出し用のトランジスタを記載していないが、2又は6の電極膜と接続されていればよく、更には光電変換層4が透明であれば、光が入射する側とは反対側の電極膜の外側に成膜されていてもよい。有機光電変換素子への光の入射は、光電変換層4を除く構成要素が、光電変換層の主たる吸収波長の光を入射することを極度に阻害することがなければ、上部若しくは下部からの何れからでもよい。 Although FIG. 1 shows a typical element structure of the photoelectric conversion element of the present invention, the present invention is not limited to this structure. In the embodiment of FIG. 1, 1 is an insulating part, 2 is one electrode film (upper electrode film), 3 is an electron blocking layer, 4 is a photoelectric conversion layer, 5 is a hole blocking layer, and 6 is the other electrode film. (lower electrode film) and 7 respectively represent an insulating substrate or other organic photoelectric conversion element. Although a readout transistor is not shown in the figure, it may be connected to two or six electrode films. may be formed outside the electrode film. Light is incident on the organic photoelectric conversion element from either the top or the bottom, provided that the components other than the photoelectric conversion layer 4 do not extremely block the incidence of light of the main absorption wavelength of the photoelectric conversion layer. It can be from

このような光電変換部を備える光電変換素子は、光電変換部の光源から照射された波長光の吸収量に応じた電荷を信号として読み出すことができるため、光センサーとして利用することができる。特に近赤外光センサーとしての利用例は、蛍光物質を用いた生体内情報観測などがあげられる。 A photoelectric conversion element having such a photoelectric conversion portion can be used as an optical sensor because it can read out as a signal an electric charge corresponding to the absorption amount of light of a wavelength irradiated from a light source of the photoelectric conversion portion. In particular, examples of applications as near-infrared light sensors include the observation of in vivo information using fluorescent substances.

また、上記の光センサーにおいて、光電変換素子をアレイ状に多数配置した場合、入射光量に加えて、入射位置情報も得ることができるため、撮像素子として利用することができる。光電変換素子と同じ側に配置した光源から検出体に照射した光の反射光を、もしくは、光電変換素子と逆側に配置した光源から検出体に照射した光の透過光を、光電変換素子を含む受光部により受光量と位置情報を同時に電気信号として読み出すことで、撮像素子となる。光源として近赤外光を利用した撮像素子は、生体静脈観察や食品・農業分野における異物診断などに利用できる。 Further, in the above optical sensor, when a large number of photoelectric conversion elements are arranged in an array, it is possible to obtain incident position information in addition to the amount of incident light, so that the optical sensor can be used as an imaging element. The reflected light of the light irradiated to the detection object from the light source arranged on the same side as the photoelectric conversion element, or the transmitted light of the light irradiated to the detection object from the light source arranged on the opposite side of the photoelectric conversion element is used as the photoelectric conversion element. By simultaneously reading out the amount of received light and the positional information as an electric signal from the light receiving section included, it becomes an imaging device. Imaging devices that use near-infrared light as a light source can be used for observation of veins in living organisms, diagnosis of foreign substances in the fields of food and agriculture, and the like.

以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。合成例に記載の化合物は、必要に応じて質量分析スペクトル、核磁気共鳴スペクトル(NMR)により構造を決定した。実施例における分子量の測定はISQ LT GC-MS(Thermo Fisher Scientific社製)を用いて、また吸収スペクトルの測定はUV-1700(島津製作所製)を用いてそれぞれ行った。また有機光電変換素子の電流電圧の印加測定は、PVL-3300(朝日分光社製)を用いて照射光強度130μW、半値幅20nmの照射条件で、半導体パラメータアナライザ4200-SCS(ケースレーインスツルメンツ社製)を用いて350乃至1100nmの範囲で行った。また、合成の原料となる化合物(S-1)及び化合物(S-2)は 「Organic Letters(2016),18(4),804-807.」に記載の手法に従って合成した。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples. The structures of the compounds described in Synthesis Examples were determined by mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) as necessary. In the examples, the molecular weight was measured using ISQ LT GC-MS (manufactured by Thermo Fisher Scientific), and the absorption spectrum was measured using UV-1700 (manufactured by Shimadzu Corporation). In addition, the applied measurement of the current voltage of the organic photoelectric conversion element was performed using PVL-3300 (manufactured by Asahi Spectrosco Co., Ltd.) under the irradiation conditions of an irradiation light intensity of 130 μW and a half value width of 20 nm. was used in the range from 350 to 1100 nm. In addition, compound (S-1) and compound (S-2), which are raw materials for synthesis, were synthesized according to the method described in “Organic Letters (2016), 18(4), 804-807.”.

実施例1(下記式(1-1)で表される本発明の化合物の合成)
(工程1)下記式(M-1)で表される中間体化合物の合成
フラスコ内で、式(S-1)で表される化合物(15.0g、 56.8mmol)をDMF(300mL)に溶解し、室温で炭酸カリウム(15.7g、 114mmol)、ヨウ化ナトリウム(4.26g、 28.5mmol)及びヨウ化メチル(12、1g、 85.2mmol)を加えた後、攪拌しながら80℃まで昇温して更に3時間撹拌した。前記で得られた反応液を室温まで冷却した後、1N塩酸(1L)に注いで攪拌し、生じた固体を吸引ろ過により回収した。得られた固体を水およびメタノールで洗浄することにより、式(M-1)で表される中間体化合物(14.5g、 52.1mmol、収率91.7%)を得た。
式(M-1)で表される化合物の質量分析の測定結果は以下の通りであった。
DI-MS : m/z = 278 [M]
Example 1 (Synthesis of the compound of the present invention represented by the following formula (1-1))
(Step 1) Synthesis of an intermediate compound represented by the following formula (M-1) In a flask, the compound represented by the formula (S-1) (15.0 g, 56.8 mmol) was added to DMF (300 mL). Dissolve and add potassium carbonate (15.7 g, 114 mmol), sodium iodide (4.26 g, 28.5 mmol) and methyl iodide (12, 1 g, 85.2 mmol) at room temperature, then stir at 80°C. and stirred for 3 hours. After the reaction solution obtained above was cooled to room temperature, it was poured into 1N hydrochloric acid (1 L) and stirred, and the resulting solid was collected by suction filtration. The obtained solid was washed with water and methanol to obtain an intermediate compound (14.5 g, 52.1 mmol, yield 91.7%) represented by formula (M-1).
The results of mass spectrometric measurement of the compound represented by formula (M-1) were as follows.
DI-MS: m/z = 278 [M] +

(工程2)下記式(M-2)で表される中間体化合物の合成
フラスコ内で、工程1で合成した式(M-1)で表される中間体化合物(14.5g、 52.1mmol)をエタノール(260mL)に懸濁させ、室温でヒドラジン-水和物(25.3mL、 521mmol)を加えた後、攪拌しながら78℃まで昇温して6時間還流した。前記で得られた反応液を室温まで冷却した後、水(500mL)で希釈し、エタノールを減圧濃縮により留去した。その後、析出した固体を吸引ろ過により回収し、水およびメタノールで洗浄することにより、式(M-2)で表される中間体化合物(12.9g、 46.4mmol、収率89.1%)を得た。
式(M-2)で表される化合物の質量分析の測定結果は以下の通りであった。
DI-MS : m/z = 278 [M]
(Step 2) Synthesis of an intermediate compound represented by the following formula (M-2) In a flask, an intermediate compound represented by the formula (M-1) synthesized in Step 1 (14.5 g, 52.1 mmol ) was suspended in ethanol (260 mL), hydrazine-hydrate (25.3 mL, 521 mmol) was added at room temperature, and the mixture was heated to 78° C. with stirring and refluxed for 6 hours. After cooling the reaction solution obtained above to room temperature, it was diluted with water (500 mL), and ethanol was distilled off by concentration under reduced pressure. Thereafter, the precipitated solid was collected by suction filtration and washed with water and methanol to obtain an intermediate compound represented by formula (M-2) (12.9 g, 46.4 mmol, yield 89.1%). got
The results of mass spectrometric measurement of the compound represented by formula (M-2) were as follows.
DI-MS: m/z = 278 [M] +

(工程3)下記式(M-3)で表される中間体化合物の合成
フラスコ内で、工程2で合成した式(M-2)で表される中間体化合物(12.0g、 43.0mmol)と4’-フルオロ-2’-ヒドロキシ-5’-フェニルアセトフェノン(11.9g、 51.6mmol)をエタノール(215mL)に懸濁させた後、攪拌しながら78℃まで昇温して6時間還流した。前記で得られた反応液を室温まで冷却した後、エタノール(300mL)で希釈し、生じた固体を減圧濾過により回収し、水、メタノールおよび少量のアセトンで洗浄することにより、式(M-3)で表される中間体化合物(20.3g、 41.5mmol、収率96.5%)を得た。
式(M-3)で表される化合物の質量分析の測定結果は以下の通りであった。
DI-MS : m/z = 490 [M]
(Step 3) Synthesis of an intermediate compound represented by the following formula (M-3) In a flask, an intermediate compound represented by the formula (M-2) synthesized in step 2 (12.0 g, 43.0 mmol ) and 4′-fluoro-2′-hydroxy-5′-phenylacetophenone (11.9 g, 51.6 mmol) were suspended in ethanol (215 mL), and the temperature was raised to 78° C. with stirring for 6 hours. refluxed. After cooling the reaction solution obtained above to room temperature, it was diluted with ethanol (300 mL), the resulting solid was collected by filtration under reduced pressure, and washed with water, methanol and a small amount of acetone to obtain the formula (M-3 ) was obtained (20.3 g, 41.5 mmol, yield 96.5%).
The results of mass spectrometric measurement of the compound represented by formula (M-3) were as follows.
DI-MS: m/z = 490 [M] +

(工程4)下記式(M-4)で表される中間体化合物の合成
フラスコ内で、工程3で合成した式(M-3)で表される中間体化合物(19.7g、 40.2mmol)をトルエン(400mL)に懸濁させて95℃まで昇温した後、攪拌しながらヨードベンゼンジアセテート(19.4g、 60.3mmol)を10分間以上かけて少しずつ加えて1時間反応を行った。前記で得られた反応液を室温まで冷却した後、有機溶媒を減圧留去し、生じた残渣液体をシリカゲルを固定相とするカラムクロマトグラフィー(移動相:クロロホルム)により精製することにより、式(M-4)で表される中間体化合物(13.1g、 28.5mmol、収率70.9%)を得た。
式(M-4)で表される化合物の質量分析の測定結果は以下の通りであった。
DI-MS : m/z = 460 [M]
(Step 4) Synthesis of an intermediate compound represented by the following formula (M-4) In a flask, an intermediate compound represented by the formula (M-3) synthesized in step 3 (19.7 g, 40.2 mmol ) was suspended in toluene (400 mL) and the temperature was raised to 95° C. Then, while stirring, iodobenzene diacetate (19.4 g, 60.3 mmol) was gradually added over 10 minutes and the reaction was carried out for 1 hour. rice field. After cooling the reaction solution obtained above to room temperature, the organic solvent was distilled off under reduced pressure, and the resulting residual liquid was purified by column chromatography (mobile phase: chloroform) using silica gel as a stationary phase to obtain the formula ( An intermediate compound represented by M-4) (13.1 g, 28.5 mmol, yield 70.9%) was obtained.
The measurement results of mass spectrometry of the compound represented by formula (M-4) were as follows.
DI-MS: m/z = 460 [M] +

(工程5)下記式(M-5)で表される中間体化合物の合成
フラスコ内で、工程4で合成した式(M-4)で表される中間体化合物(4.88g、 10.6mmol)をトルエン(90mL)に投入し、攪拌しながら60℃まで昇温して溶解させた後、酢酸アンモニウム(81、6g、 1.06mol)と水(10mL)を加えて還流温度まで昇温して更に2時間反応を行った。前記で得られた反応液を室温まで冷却した後、水(500mL)を加えて分液し、水層をトルエン(300mL)を用いて2回抽出した。分液で得られた有機層と前記で得られた抽出液の混合液に無水硫酸マグネシウムを加えて乾燥し、吸引ろ過により固形分を除去した後、有機溶媒を減圧留去した。生じた残渣固体をシリカゲルを固定相とするカラムクロマトグラフィーにより精製することで、式(M-5)で表される中間体化合物(2.25g、 2.59mmol、収率48.9%)を得た。
式(M-5)で表される化合物の質量分析の測定結果は以下の通りであった。
DI-MS : m/z = 868 [M]
(Step 5) Synthesis of an intermediate compound represented by the following formula (M-5) In a flask, an intermediate compound represented by the formula (M-4) synthesized in step 4 (4.88 g, 10.6 mmol ) was added to toluene (90 mL) and dissolved by heating to 60° C. with stirring, then ammonium acetate (81, 6 g, 1.06 mol) and water (10 mL) were added and the temperature was raised to reflux temperature. The reaction was further carried out for 2 hours. After the reaction solution obtained above was cooled to room temperature, water (500 mL) was added for liquid separation, and the aqueous layer was extracted twice using toluene (300 mL). Anhydrous magnesium sulfate was added to the mixture of the organic layer obtained by liquid separation and the extract obtained above to dry the mixture, and after removing the solid content by suction filtration, the organic solvent was distilled off under reduced pressure. By purifying the resulting residual solid by column chromatography using silica gel as a stationary phase, an intermediate compound represented by formula (M-5) (2.25 g, 2.59 mmol, yield 48.9%) was obtained. Obtained.
The measurement results of mass spectrometry of the compound represented by formula (M-5) were as follows.
DI-MS: m/z = 868 [M] +

(工程6)下記式(1-1)で表される化合物の合成
フラスコ内で、工程5で合成した式(M-5)で表される中間体化合物(2.09g、 2.41mmol)をジクロロエタン(340mL)に溶解させ、1Mの三臭化ホウ素ジクロロメタン溶液(48.1mL、 48.1mmol)を滴下し、加熱還流下で12時間攪拌した。前記で得られた反応液を飽和重曹水(1L)に注ぎ、1時間攪拌した後、析出した固体を吸引ろ過により回収し、水、メタノールおよびDMFにより洗浄した。得られた固体を真空昇華法によって精製することで、式(1-1)で表される化合物(1.03g、 1.22mmol、収率50.6%)を得た。
式(1-1)で表される化合物の質量分析の測定結果は以下の通りであった。
DI-MS : m/z = 848 [M]
(Step 6) Synthesis of a compound represented by the following formula (1-1) In a flask, an intermediate compound (2.09 g, 2.41 mmol) represented by the formula (M-5) synthesized in step 5 was added. The mixture was dissolved in dichloroethane (340 mL), 1M boron tribromide dichloromethane solution (48.1 mL, 48.1 mmol) was added dropwise, and the mixture was stirred under reflux with heating for 12 hours. The reaction solution obtained above was poured into a saturated aqueous solution of sodium bicarbonate (1 L) and stirred for 1 hour. The precipitated solid was collected by suction filtration and washed with water, methanol and DMF. The resulting solid was purified by vacuum sublimation to obtain a compound represented by formula (1-1) (1.03 g, 1.22 mmol, yield 50.6%).
The measurement results of mass spectrometry of the compound represented by formula (1-1) were as follows.
DI-MS: m/z = 848 [M] +

Figure 2022129432000014
Figure 2022129432000014

実施例2(下記式(1-2)で表される本発明の化合物の合成)
(工程7)下記式(M-6)で表される中間体化合物の合成
フラスコ内で、式(S-2)で表される化合物(12.0g、 37.5mmol)をDMF(300mL)に溶解し、室温で炭酸カリウム(10.4g、 75.0mmol)、ヨウ化ナトリウム(2.82g、 18.8mmol)及びヨウ化メチル(8.00g、 56.3mmol)を加えた後、攪拌しながら80℃まで昇温して更に3時間撹拌した。前記で得られた反応液を室温まで冷却した後、1N塩酸(1L)に注いで攪拌し、生じた固体を吸引ろ過により回収した。得られた固体を水およびメタノールで洗浄することにより、式(M-6)で表される中間体化合物(11.2g、33.5mmol、収率89.2%)を得た。
式(M-6)で表される化合物の質量分析の測定結果は以下の通りであった。
DI-MS : m/z = 334 [M]
Example 2 (Synthesis of the compound of the present invention represented by the following formula (1-2))
(Step 7) Synthesis of an intermediate compound represented by the following formula (M-6) In a flask, the compound represented by the formula (S-2) (12.0 g, 37.5 mmol) was added to DMF (300 mL). Dissolve and add potassium carbonate (10.4 g, 75.0 mmol), sodium iodide (2.82 g, 18.8 mmol) and methyl iodide (8.00 g, 56.3 mmol) at room temperature, then stir. The temperature was raised to 80° C. and the mixture was further stirred for 3 hours. After the reaction solution obtained above was cooled to room temperature, it was poured into 1N hydrochloric acid (1 L) and stirred, and the resulting solid was collected by suction filtration. The obtained solid was washed with water and methanol to obtain an intermediate compound (11.2 g, 33.5 mmol, yield 89.2%) represented by formula (M-6).
The measurement results of mass spectrometry of the compound represented by formula (M-6) were as follows.
DI-MS: m/z = 334 [M] +

(工程8)下記式(M-7)で表される中間体化合物の合成
フラスコ内で、工程7で合成した式(M-6)で表される中間体化合物(9.89g、 29.6mmol)をエタノール(300mL)に懸濁させ、室温でヒドラジン-水和物(28.8mL、 593mmol)を加えた後、攪拌しながら78℃まで昇温して6時間還流した。前記で得られた反応液を室温まで冷却した後、水(500mL)で希釈し、エタノールを減圧濃縮により留去した。その後、析出した固体を吸引ろ過により回収し、水およびメタノールで洗浄することにより、式(M-7)で表される中間体化合物(8.73g、 26.1mmol、収率88.3%)を得た。
式(M-7)で表される化合物の質量分析の測定結果は以下の通りであった。
DI-MS : m/z = 334 [M]
(Step 8) Synthesis of an intermediate compound represented by the following formula (M-7) In a flask, an intermediate compound represented by the formula (M-6) synthesized in Step 7 (9.89 g, 29.6 mmol ) was suspended in ethanol (300 mL), hydrazine-hydrate (28.8 mL, 593 mmol) was added at room temperature, and the mixture was heated to 78° C. with stirring and refluxed for 6 hours. After cooling the reaction solution obtained above to room temperature, it was diluted with water (500 mL), and ethanol was distilled off by concentration under reduced pressure. Thereafter, the precipitated solid was collected by suction filtration and washed with water and methanol to give an intermediate compound represented by formula (M-7) (8.73 g, 26.1 mmol, yield 88.3%). got
The measurement results of mass spectrometry of the compound represented by formula (M-7) were as follows.
DI-MS: m/z = 334 [M] +

(工程9)下記式(M-8)で表される中間体化合物の合成
フラスコ内で、工程8で合成した式(M-7)で表される中間体化合物(7.85g、 23.5mmol)と4’-フルオロ-2’-ヒドロキシ-5’-フェニルアセトフェノン(5.96g、 25.9mmol)をエタノール(400mL)に懸濁攪拌させた後、攪拌しながら78℃まで昇温して6時間還流した。前記で得られた反応液を室温まで冷却した後、反応液をエタノール(150mL)で希釈し、生じた固体を減圧濾過により回収し、水、メタノールおよび少量のアセトンで洗浄することにより、式(M-8)で表される中間体化合物(12.2g、 22.4mmol、収率95.5%)を得た。
式(M-8)で表される化合物の質量分析の測定結果は以下の通りであった。
DI-MS : m/z = 546 [M]
(Step 9) Synthesis of an intermediate compound represented by the following formula (M-8) In a flask, an intermediate compound represented by the formula (M-7) synthesized in step 8 (7.85 g, 23.5 mmol ) and 4′-fluoro-2′-hydroxy-5′-phenylacetophenone (5.96 g, 25.9 mmol) were suspended and stirred in ethanol (400 mL), and the temperature was raised to 78° C. while stirring. Refluxed for hours. After cooling the reaction solution obtained above to room temperature, the reaction solution was diluted with ethanol (150 mL), the resulting solid was collected by vacuum filtration, and washed with water, methanol and a small amount of acetone to obtain the formula ( An intermediate compound represented by M-8) (12.2 g, 22.4 mmol, yield 95.5%) was obtained.
The results of mass spectrometric measurement of the compound represented by formula (M-8) were as follows.
DI-MS: m/z = 546 [M] +

(工程10)下記式(M-9)で表される中間体化合物の合成
フラスコ内で、工程9で合成した式(M-8)で表される中間体化合物(12.2g、 22.4mmol)をトルエン(500mL)に懸濁させ、95℃まで昇温した後、ヨードベンゼンジアセテート(10.8g、 33.6mmol)を10分間以上かけて少しずつ加えて1時間反応を行った。前記で得られた反応液を室温まで冷却した後、有機溶媒を減圧留去し、生じた残渣液体をシリカゲルを固定相とするカラムクロマトグラフィー(移動相:クロロホルム)により精製することにより、式(M-9)で表される中間体化合物(7.64g、 14.8mmol、収率66.2%)を得た。
式(M-9)で表される化合物の質量分析の測定結果は以下の通りであった。
DI-MS : m/z = 516 [M]
(Step 10) Synthesis of an intermediate compound represented by the following formula (M-9) In a flask, an intermediate compound represented by the formula (M-8) synthesized in Step 9 (12.2 g, 22.4 mmol ) was suspended in toluene (500 mL), the temperature was raised to 95° C., and iodobenzene diacetate (10.8 g, 33.6 mmol) was gradually added over 10 minutes, and the reaction was carried out for 1 hour. After cooling the reaction solution obtained above to room temperature, the organic solvent was distilled off under reduced pressure, and the resulting residual liquid was purified by column chromatography (mobile phase: chloroform) using silica gel as a stationary phase to obtain the formula ( An intermediate compound represented by M-9) (7.64 g, 14.8 mmol, yield 66.2%) was obtained.
The measurement results of mass spectrometry of the compound represented by formula (M-9) were as follows.
DI-MS: m/z = 516 [M] +

(工程11)下記式(M-10)で表される中間体化合物の合成
フラスコ内で、工程10で合成した式(M-9)で表される中間体化合物(3.23g、 6.26mmol)をトルエン(50mL)中に投入し、60℃まで昇温して溶解させた後、酢酸アンモニウム(96.3g、 1.25mol)と水(5mL)を加えて還流温度まで昇温して更に2時間反応を行った。前記で得られた反応液を室温まで冷却した後、水(100mL)を加えて分液し、水層をトルエン(200mL)を用いて2回抽出した。分液で得られた有機層と前記で得られた抽出液の混合液に無水硫酸マグネシウムを加えて乾燥し、吸引ろ過により固形分を除去した後、有機溶媒を減圧留去した。生じた残渣固体をシリカゲルを固定相とするカラムクロマトグラフィーにより精製することで、式(M-10)で表される中間体化合物(1.44g、 1.47mmol、収率47.0%)を得た。
式(M-10)で表される化合物の質量分析の測定結果は以下の通りであった。
DI-MS : m/z = 980 [M]
(Step 11) Synthesis of an intermediate compound represented by the following formula (M-10) In a flask, an intermediate compound represented by the formula (M-9) synthesized in step 10 (3.23 g, 6.26 mmol ) was put into toluene (50 mL) and heated to 60° C. to dissolve, then ammonium acetate (96.3 g, 1.25 mol) and water (5 mL) were added and the temperature was raised to reflux temperature and further The reaction was carried out for 2 hours. After the reaction solution obtained above was cooled to room temperature, water (100 mL) was added for liquid separation, and the aqueous layer was extracted twice using toluene (200 mL). Anhydrous magnesium sulfate was added to the mixture of the organic layer obtained by liquid separation and the extract obtained above to dry the mixture, and after removing the solid content by suction filtration, the organic solvent was distilled off under reduced pressure. The resulting residual solid was purified by column chromatography using silica gel as a stationary phase to give an intermediate compound represented by formula (M-10) (1.44 g, 1.47 mmol, yield 47.0%). Obtained.
The results of mass spectrometric measurement of the compound represented by formula (M-10) were as follows.
DI-MS: m/z = 980 [M] +

(工程12)下記式(1-2)で表される化合物の合成
フラスコ内で、工程11で合成した式(M-10)で表される中間体化合物(1.15g、 1.17mmol)をジクロロエタン(100mL)に溶解させ、1Mの三臭化ホウ素ジクロロメタン溶液(23.4mL、 23.4mmol)を滴下し、加熱還流下で12時間攪拌した。前記で得られた反応液を飽和重曹水(500mL)に注ぎ、1時間攪拌した後、析出した固体を吸引ろ過により回収し、水、メタノールおよびDMFにより洗浄した。得られた固体を真空昇華法によって精製することで、式(1-2)で表される化合物(0.32g、 0.334mmol、収率28.5%)を得た。
式(1-2)で表される化合物の質量分析の測定結果は以下の通りであった。
DI-MS : m/z = 960 [M]
(Step 12) Synthesis of a compound represented by the following formula (1-2) In a flask, an intermediate compound (1.15 g, 1.17 mmol) represented by the formula (M-10) synthesized in step 11 was added. The mixture was dissolved in dichloroethane (100 mL), 1M boron tribromide dichloromethane solution (23.4 mL, 23.4 mmol) was added dropwise, and the mixture was stirred under reflux with heating for 12 hours. The reaction solution obtained above was poured into a saturated aqueous solution of sodium bicarbonate (500 mL) and stirred for 1 hour. The precipitated solid was collected by suction filtration and washed with water, methanol and DMF. The resulting solid was purified by vacuum sublimation to obtain a compound represented by formula (1-2) (0.32 g, 0.334 mmol, yield 28.5%).
The measurement results of mass spectrometry of the compound represented by formula (1-2) were as follows.
DI-MS: m/z = 960 [M] +

Figure 2022129432000015
Figure 2022129432000015

実施例3、4(有機薄膜の作製)
実施例1及び2で得られた化合物を予め洗浄したガラス基板上に抵抗加熱真空蒸着し、それぞれの化合物の有機薄膜を作製した。式(1-1)で表される化合物を用いて得られた有機薄膜(実施例3)の厚さは120nm、式(1-2)で表される化合物を用いて得られた有機薄膜(実施例4)の厚さは100nmであった。
Examples 3 and 4 (Preparation of organic thin film)
The compounds obtained in Examples 1 and 2 were vacuum-deposited by resistance heating on a pre-washed glass substrate to prepare an organic thin film of each compound. The thickness of the organic thin film (Example 3) obtained using the compound represented by formula (1-1) was 120 nm, and the organic thin film obtained using the compound represented by formula (1-2) ( The thickness of Example 4) was 100 nm.

(有機薄膜の吸収スペクトル測定)
実施例3及び4で得られた各有機薄膜の吸収スペクトルを測定した。結果を図2に示した。尚、図2は測定結果を単位膜厚(nm)あたりに換算したものである。実施例3及び4で得られた有機薄膜の極大吸収波長(λmax)は、それぞれ921nm及び961nmであった。
(Absorption spectrum measurement of organic thin film)
The absorption spectrum of each organic thin film obtained in Examples 3 and 4 was measured. The results are shown in FIG. In addition, FIG. 2 is obtained by converting the measurement result per unit film thickness (nm). The maximum absorption wavelengths (λmax) of the organic thin films obtained in Examples 3 and 4 were 921 nm and 961 nm, respectively.

実施例3及び4で得られた本発明の有機薄膜は、900nm以上の長波長領域に極大吸収波長を有しており、800乃至1,000nm付近の近赤外光を効率よく吸収できることは明らかである。 The organic thin films of the present invention obtained in Examples 3 and 4 have a maximum absorption wavelength in the long wavelength region of 900 nm or longer, and it is clear that they can efficiently absorb near infrared light in the vicinity of 800 to 1,000 nm. is.

実施例5(式(1-1)で表される化合物を用いた光電変換素子の作製およびその評価)
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、抵抗加熱真空蒸着によって式(1-1)で表される化合物の厚さ120nmの有機薄膜を形成し、光電変換層とした。その上に、抵抗加熱真空蒸着によってアルミニウムの厚さ100nmの膜を形成し、本発明の光電変換素子を作製した。ITOとアルミニウムを電極として、1,000nm、半値幅20nmの光照射を行える状態で、1Vの電圧を印加した際の光電流応答性を測定したところ、暗所での電流は1.01×10-10A/cm、明所での電流は1.82×10-7A/cmであり、前記の測定結果から算出した明暗比(明電流/暗電流)の値は1.80×10であった。
Example 5 (Preparation of photoelectric conversion device using compound represented by formula (1-1) and evaluation thereof)
An organic thin film having a thickness of 120 nm of the compound represented by the formula (1-1) was formed on an ITO transparent conductive glass (manufactured by Geomatec, ITO film thickness of 150 nm) by resistance heating vacuum deposition to form a photoelectric conversion layer. . An aluminum film having a thickness of 100 nm was formed thereon by resistance heating vacuum deposition to produce a photoelectric conversion element of the present invention. Using ITO and aluminum as electrodes, the photocurrent responsiveness was measured when a voltage of 1 V was applied in a state where light irradiation of 1,000 nm and a half-value width of 20 nm was possible. −10 A/cm 2 , the current in bright light is 1.82×10 −7 A/cm 2 , and the value of the light-dark ratio (light current/dark current) calculated from the above measurement results is 1.80× was 10 3 .

実施例6(式(1-2)で表される化合物を用いた光電変換素子の作製およびその評価)
式(1-1)で表される化合物の代わりに式(1-2)で表される化合物を用い、かつ、光電変換層の厚さを100nmとしたこと以外は実施例5に準じた方法で、本発明の光電変換素子を作製した。ITOとアルミニウムを電極として、1,000nm、半値幅20nmの光照射を行える状態で、1Vの電圧を印加した際の光電流応答性を測定したところ、暗所での電流は2.41×10-10A/cm、明所での電流は3.18×10-7A/cmであり、前記の測定結果から算出した明暗比(明電流/暗電流)の値は1.32×10であった。
Example 6 (Preparation and Evaluation of Photoelectric Conversion Device Using Compound Represented by Formula (1-2))
A method according to Example 5 except that the compound represented by formula (1-2) was used instead of the compound represented by formula (1-1), and the thickness of the photoelectric conversion layer was 100 nm. Thus, a photoelectric conversion device of the present invention was produced. Using ITO and aluminum as electrodes, the photocurrent responsiveness was measured when a voltage of 1 V was applied in a state where light irradiation with a wavelength of 1,000 nm and a half-value width of 20 nm was possible. −10 A/cm 2 , the current in bright light is 3.18×10 −7 A/cm 2 , and the value of the light-dark ratio (light current/dark current) calculated from the above measurement results is 1.32× was 10 3 .

比較例1(比較用の化合物を用いた光電変換素子の作製およびその評価)
式(1-1)で表される化合物の代わりに国際公開第2020/162345号に記載されている方法に準じて合成した下記式(R-1)で表される化合物を用い、かつ、光電変換層の厚さを100nmとしたこと以外は実施例5に準じた方法で、比較用の光電変換素子を作製した。ITOとアルミニウムを電極として、1,000nm、半値幅20nmの光照射を行える状態で、1Vの電圧を印加した際の光電流応答性の測定結果から算出した明暗比(明電流/暗電流)の値は1.5×10であった。
Comparative Example 1 (Preparation of photoelectric conversion element using comparative compound and evaluation thereof)
Using a compound represented by the following formula (R-1) synthesized according to the method described in WO 2020/162345 instead of the compound represented by formula (1-1), and photoelectrically A photoelectric conversion element for comparison was produced in the same manner as in Example 5, except that the conversion layer had a thickness of 100 nm. Using ITO and aluminum as electrodes, the light-dark ratio (light current/dark current) calculated from the measurement results of the photocurrent response when a voltage of 1 V was applied in a state where light irradiation with a wavelength of 1,000 nm and a half-value width of 20 nm was possible. The value was 1.5 x 100.

Figure 2022129432000016
Figure 2022129432000016

比較例2(比較用の化合物を用いた光電変換素子の作製およびその評価)
式(1-1)で表される化合物の代わりに国際公開第2020/162345号に記載されている方法に準じて合成した下記式(R-2)で表される化合物を用い、かつ、光電変換層の厚さを100nmとしたこと以外は実施例5に準じた方法で、比較用の光電変換素子を作製した。ITOとアルミニウムを電極として、1,000nm、半値幅20nmの光照射を行える状態で、1Vの電圧を印加した際の光電流応答性の測定結果から算出した明暗比(明電流/暗電流)の値は8.6×10であった。
Comparative Example 2 (Preparation and Evaluation of Photoelectric Conversion Device Using Comparative Compound)
Using a compound represented by the following formula (R-2) synthesized according to the method described in WO 2020/162345 instead of the compound represented by the formula (1-1), and photoelectrically A photoelectric conversion element for comparison was produced in the same manner as in Example 5, except that the conversion layer had a thickness of 100 nm. Using ITO and aluminum as electrodes, the light-dark ratio (light current/dark current) calculated from the measurement results of the photocurrent response when a voltage of 1 V was applied in a state where light irradiation with a wavelength of 1,000 nm and a half-value width of 20 nm was possible. The value was 8.6×10 1 .

Figure 2022129432000017
Figure 2022129432000017

比較例3(比較用の化合物を用いた光電変換素子の作製およびその評価)
式(1-1)で表される化合物の代わりに国際公開第2020/162345号に記載されている方法に準じて合成した下記式(R-3)で表される化合物を用い、かつ、光電変換層の厚さを100nmとしたこと以外は実施例5に準じた方法で、比較用の光電変換素子を作製した。ITOとアルミニウムを電極として、1,000nm、半値幅20nmの光照射を行える状態で、1Vの電圧を印加した際の光電流応答性の測定結果から算出した明暗比(明電流/暗電流)の値は2.0×10であった。
Comparative Example 3 (Preparation of photoelectric conversion element using comparative compound and evaluation thereof)
Using a compound represented by the following formula (R-3) synthesized according to the method described in WO 2020/162345 instead of the compound represented by formula (1-1), and photoelectrically A photoelectric conversion element for comparison was produced in the same manner as in Example 5, except that the conversion layer had a thickness of 100 nm. Using ITO and aluminum as electrodes, the light-dark ratio (light current/dark current) calculated from the measurement results of the photocurrent response when a voltage of 1 V was applied in a state where light irradiation with a wavelength of 1,000 nm and a half-value width of 20 nm was possible. The value was 2.0×10 1 .

Figure 2022129432000018
Figure 2022129432000018

上記の結果より、本発明の化合物を用いた有機薄膜を含む有機光電変換素子は、波長1,000nmの近赤外光において比較の有機光電変換素子よりも高い明暗比を示し、撮像素子や光センサー用の近赤外光吸収材料として有用であることがわかった。 From the above results, the organic photoelectric conversion device containing the organic thin film using the compound of the present invention exhibits a higher contrast ratio in near-infrared light with a wavelength of 1,000 nm than the comparative organic photoelectric conversion device. It was found to be useful as a near-infrared light absorbing material for sensors.

本発明の化合物は、近赤外光領域における良好な吸収特性を示し、デバイス作成プロセスに十分に耐えうる高い耐熱性と、良好な近赤外光電変換特性を示すことから有機エレクトロニクスデバイス材料として有用である。


The compound of the present invention exhibits good absorption properties in the near-infrared region, high heat resistance that can sufficiently withstand the device fabrication process, and good near-infrared photoelectric conversion properties, and is therefore useful as a material for organic electronic devices. is.


Claims (10)

下記式(1)
Figure 2022129432000019
(式(1)中、R乃至Rはそれぞれ独立に水素原子、アルキル基、芳香族炭化水素基、複素環基又はハロゲン原子を表す。mは1乃至3の整数を表す。Aはベンゼン環又はナフタレン環を表す。)で表される化合物。
Formula (1) below
Figure 2022129432000019
(In Formula (1), R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, an aromatic hydrocarbon group, a heterocyclic group or a halogen atom. m represents an integer of 1 to 3. A represents benzene a ring or a naphthalene ring).
乃至Rの少なくとも一つがアルキル基、芳香族炭化水素基、複素環基又はハロゲン原子である請求項1に記載の化合物。 2. The compound according to claim 1, wherein at least one of R1 to R4 is an alkyl group, an aromatic hydrocarbon group, a heterocyclic group or a halogen atom. 乃至Rの少なくとも一つがハロゲン原子である請求項2に記載の化合物。 3. The compound according to claim 2, wherein at least one of R1 to R4 is a halogen atom. 乃至Rの少なくとも二つが芳香族炭化水素基又はハロゲン原子である請求項2に記載の化合物。 3. The compound according to claim 2, wherein at least two of R1 to R4 are aromatic hydrocarbon groups or halogen atoms. Aがベンゼン環である請求項1乃至4のいずれか一項に記載の化合物。 5. A compound according to any one of claims 1 to 4, wherein A is a benzene ring. 請求項1乃至5のいずれか一項に記載の化合物を含む近赤外光吸収材料。 A near-infrared light absorbing material comprising the compound according to any one of claims 1 to 5. 請求項1乃至5のいずれか一項に記載の化合物を含む有機薄膜。 An organic thin film comprising the compound according to any one of claims 1 to 5. 請求項7に記載の有機薄膜を含む光電変換素子。 A photoelectric conversion device comprising the organic thin film according to claim 7 . 請求項8に記載の光電変換素子を備える光センサー。 An optical sensor comprising the photoelectric conversion element according to claim 8 . 請求項8に記載の光電変換素子を備える撮像素子。


An imaging device comprising the photoelectric conversion device according to claim 8 .


JP2021028090A 2021-02-25 2021-02-25 Boron chelate compound, near-infrared light absorbing material, thin film, photoelectric conversion element, and imaging element Pending JP2022129432A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021028090A JP2022129432A (en) 2021-02-25 2021-02-25 Boron chelate compound, near-infrared light absorbing material, thin film, photoelectric conversion element, and imaging element
TW111104938A TW202302607A (en) 2021-02-25 2022-02-10 Boron chelate compounds, near-infrared light absorbing materials, thin films, photoelectric conversion elements, and image sensors
PCT/JP2022/006394 WO2022181439A1 (en) 2021-02-25 2022-02-17 Boron chelate compound, near-infrared light absorbing material, thin film, photoelectric conversion element, and imaging element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021028090A JP2022129432A (en) 2021-02-25 2021-02-25 Boron chelate compound, near-infrared light absorbing material, thin film, photoelectric conversion element, and imaging element

Publications (1)

Publication Number Publication Date
JP2022129432A true JP2022129432A (en) 2022-09-06

Family

ID=83049350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021028090A Pending JP2022129432A (en) 2021-02-25 2021-02-25 Boron chelate compound, near-infrared light absorbing material, thin film, photoelectric conversion element, and imaging element

Country Status (3)

Country Link
JP (1) JP2022129432A (en)
TW (1) TW202302607A (en)
WO (1) WO2022181439A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013035303A1 (en) * 2011-09-09 2015-03-23 出光興産株式会社 Organic thin film solar cell materials
JP2016006033A (en) * 2014-04-23 2016-01-14 シャープ株式会社 Compound, marking agent, solar cell module, photovoltaic power generator, organic thin film solar cell, display device and organic el element
JP6465350B2 (en) * 2015-03-09 2019-02-06 公立大学法人首都大学東京 Novel organic compounds and their use
TWI747979B (en) * 2016-10-28 2021-12-01 日商日本化藥股份有限公司 Dibenzopyrromethene boron chelate compound, near infrared light absorbent, thin film, and organic electronics device
WO2019031456A1 (en) * 2017-08-10 2019-02-14 日本化薬株式会社 Dibenzopyrromethene boron chelate compound, near-infrared light-absorbing material, thin-film, and organic electronic device
WO2020162345A1 (en) * 2019-02-05 2020-08-13 日本化薬株式会社 Dibenzopyrromethene boron chelate compound, near-infrared absorbing material, organic thin film and organic electronic device
JP7177001B2 (en) * 2019-05-23 2022-11-22 日本化薬株式会社 Dibenzopyromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion device, near-infrared light sensor and imaging device
JP7177002B2 (en) * 2019-05-24 2022-11-22 日本化薬株式会社 Dibenzopyromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion device, near-infrared light sensor and imaging device

Also Published As

Publication number Publication date
WO2022181439A1 (en) 2022-09-01
TW202302607A (en) 2023-01-16

Similar Documents

Publication Publication Date Title
JP6803362B2 (en) Photoelectric conversion element for image sensor
JP6844934B2 (en) Dibenzopyrromethene boron chelate compounds, near-infrared light absorbing materials, thin films and organic electronics devices
JP6618785B2 (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element including the same
JP7073382B2 (en) Dibenzopyrromethene boron chelate compounds, near-infrared light absorbing materials, thin films and organic electronics devices
KR20120081098A (en) Visible/nir photodetectors
JP7433741B2 (en) Photoelectric conversion elements, two-dimensional sensors, image sensors and imaging devices
JP2018188617A (en) Composition, and photoelectric conversion element and imaging device that employ the same
WO2018016354A1 (en) Organic compound and organic photoelectric conversion element comprising same
JP2018129510A (en) Organic photoelectric conversion material for image pickup device and organic photoelectric conversion device and organic imaging device using the same
JP2018190964A (en) Photoelectric conversion film, photoelectric conversion element using the same, and imaging apparatus
JP6864561B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP2018123093A (en) Dibenzopyrromethene boron chelate compound, near infrared light absorbing dye, photoelectric conversion element, near-infrared photosensor and imaging element
JP6862277B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6906357B2 (en) Photoelectric conversion element for image sensor
JPWO2020162345A1 (en) Dibenzopyrromethene boron chelate compounds, near-infrared light absorbing materials, organic thin films and organic electronics devices
JP7051332B2 (en) Organic compounds and photoelectric conversion elements
JP6890469B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP2020010024A (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element
WO2022181439A1 (en) Boron chelate compound, near-infrared light absorbing material, thin film, photoelectric conversion element, and imaging element
JP7177001B2 (en) Dibenzopyromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion device, near-infrared light sensor and imaging device
JP7177002B2 (en) Dibenzopyromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion device, near-infrared light sensor and imaging device
JP2017137264A (en) Organic compound, infrared light absorbing material and use thereof
JP2021116297A (en) Boron chelate compound, near infrared light absorption material, thin film, and organic electronic device
JP7033039B2 (en) Dibenzopyrromethene boron chelate compounds and their uses
JP6759075B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230822