JP2022127441A - Production method of fermented pickle - Google Patents

Production method of fermented pickle Download PDF

Info

Publication number
JP2022127441A
JP2022127441A JP2021025599A JP2021025599A JP2022127441A JP 2022127441 A JP2022127441 A JP 2022127441A JP 2021025599 A JP2021025599 A JP 2021025599A JP 2021025599 A JP2021025599 A JP 2021025599A JP 2022127441 A JP2022127441 A JP 2022127441A
Authority
JP
Japan
Prior art keywords
lactobacillus
lactic acid
fermentation
fermented
delbrueckii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021025599A
Other languages
Japanese (ja)
Inventor
理 冨田
Osamu Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2021025599A priority Critical patent/JP2022127441A/en
Publication of JP2022127441A publication Critical patent/JP2022127441A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation

Landscapes

  • Storage Of Fruits Or Vegetables (AREA)

Abstract

To provide a production method of fermented pickles capable of stably producing nice-flavor fermented pickles by clarifying relations among a fermentation condition, ingredient composition, flavor, etc. of the fermented pickles.SOLUTION: A production method of fermented pickles according to the present invention includes: adding lactic acid bacteria of genus Lactobacillus to vegetable raw materials, the lactic acid bacteria, for example, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus diolivorans, Lactobacillus parafarraginis, Lactobacillus plantarum, Lactobacillus buchneri and Lactobacillus paraphilia; fermenting them until reached pH becomes 4.5 or less; and acquiring fermented pickles containing at least any of a succinic acid content and an isothiocyanate content more than those of vegetable raw materials.SELECTED DRAWING: Figure 1

Description

本発明は、発酵漬物の製造方法に関する。 The present invention relates to a method for producing fermented pickles.

発酵食品は伝統食品としての価値や健康増進への期待が高まっており、野菜類の発酵食品として漬物が広く認知されている。漬物製品の大部分を占めているのは、無発酵の浅漬である。しかし、各地域の発酵漬物は、伝統食品として現在も高い知名度を保っている。さらに、2019年には全日本漬物協同組合連合会によって「発酵漬物認定制度」が開始されている。このような業界の動向から、浅漬けから発酵漬物へと回帰する機運が高まり、今後の需要が伸びると期待される。ただし、漬物は塩分摂取過多の原因となるというネガティブイメージが根深く、将来的な漬物需要のためにもこれを払拭する必要がある。これらのことから、発酵漬物の中でも無塩(極低塩)の漬物に潜在的需要があるのではないかと考えた。 Expectations for fermented foods to be of value as traditional foods and to promote health are increasing, and pickles are widely recognized as fermented vegetables. Unfermented light pickles account for the majority of pickled products. However, fermented pickles from each region are still well-known as traditional foods. Furthermore, in 2019, the “Fermented pickles certification system” was started by the All Japan Pickles Cooperative Association. Due to these trends in the industry, there is a growing momentum to return from light pickles to fermented pickles, and future demand is expected to grow. However, pickles have a deep-rooted negative image that they cause excessive salt intake, and it is necessary to dispel this for the sake of future demand for pickles. From these facts, I thought that there might be potential demand for unsalted (very low salt) pickles among fermented pickles.

国内で商業的に生産されている無塩発酵漬物は、赤カブの葉を用いて作られる木曽地域伝統の「すんき」が唯一のものである。すんきには、様々な乳酸菌が生息する。特許文献1には、ラクトバチルス・プランタラム、ラクトバチルス・ファーメンタム、ラクトバチルス・デルブリュッキー、及びラクトバチルス・パラブフネリを含むスターター乳酸菌が、良好な品質を有するすんきを安定して製造することが可能であることが記載されている。 The only non-salted fermented pickles that are commercially produced in Japan are the Kiso region's traditional 'sunki' made from red turnip leaves. Sunki is inhabited by various lactic acid bacteria. In Patent Document 1, starter lactic acid bacteria including Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus delbrueckii, and Lactobacillus parabuhneri stably produce sunki having good quality. is described as possible.

特許第5276290号公報Japanese Patent No. 5276290

日本の地域伝統的発酵食品 木曽の伝統発酵野菜「すんき」とおいしさの秘密 Foods & Food Ingredients Journal of Japan Vol.223 No.2 Page.102-110(2018.05.01)Japan's traditional fermented foods Kiso's traditional fermented vegetables "Sunki" and the secret of its deliciousness Foods & Food Ingredients Journal of Japan Vol. 223 No. 2 Page. 102-110 (2018.05.01) すんき発酵乳酸菌の特性解明への取り組み 日本乳酸菌学会誌 Vol.28 No.2 Page 128(2017.06.27)Efforts to elucidate the characteristics of sunki fermented lactic acid bacteria Journal of Japan Society for Lactic Acid Bacteria Vol. 28 No. 2 Page 128 (2017.06.27)

しかしながら、無塩及び極低塩の発酵漬物に生息する乳酸菌、成分組成、風味等品質との関係についてはこれまで知られていない。 However, the relationship between lactic acid bacteria that live in salt-free and extremely low-salt fermented pickles, component composition, and quality such as flavor has not been known so far.

本発明の目的は、発酵漬物の発酵条件、成分組成、風味等品質との関係を明らかにし、良風味で安定生産可能な発酵漬物の製造方法を提供することにある。 An object of the present invention is to clarify the relationship between the fermentation conditions of fermented pickles, component composition, and quality such as flavor, and to provide a method for producing fermented pickles with good flavor and capable of stable production.

本発明は、以下を提供する。
〔1〕野菜原料に乳酸菌を添加して、到達pHが4.5以下となるまで発酵させ、コハク酸含有量及びイソチオシアネート含有量の少なくともいずれかが野菜原料よりも多い発酵漬物を得る、発酵漬物の製造方法。
〔2〕乳酸菌が、ラクトバチルス属乳酸菌である、〔1〕に記載の方法。
〔3〕乳酸菌が、ラクトバチルス・デルブリュッキー、ラクトバチルス・ファーメンタム、ラクトバチルス・ディオリボランス、ラクトバチルス・パラファラギニス、ラクトバチルス・プランタラム、ラクトバチルス・ブフネリ、ラクトバチルス・パラケフィリ、ラクトバチルス・クリスパタス、ラクトバチルス・ガセリ及びラクトバチルス・ロイテリから選ばれる少なくとも1つである、〔1〕又は〔2〕に記載の方法。
〔4〕乳酸菌が、ラクトバチルス・デルブリュッキーと、ラクトバチルス・ファーメンタム、ラクトバチルス・ディオリボランス、ラクトバチルス・パラファラギニス、ラクトバチルス・ブフネリ、ラクトバチルス・パラケフィリ、ラクトバチルス・クリスパタス、及びラクトバチルス・ガセリから選ばれる少なくとも1つとの組み合わせである、〔1〕又は〔2〕に記載の方法。
〔5〕野菜原料に第1の乳酸菌を添加して発酵させた後、第2の乳酸菌を添加して、到達pHが4.3以下となるまで発酵させる、〔1〕~〔4〕のいずれか1項に記載の方法。
〔6〕第1の乳酸菌が、ラクトバチルス・デルブリュッキーであり、第2の乳酸菌が、ラクトバチルス・ファーメンタム及びラクトバチルス・プランタラムである、〔5〕に記載の方法。
〔7〕発酵を、30~45℃の温度条件で行う、〔1〕~〔6〕のいずれか1項に記載の方法。
〔8〕発酵の際、塩化ナトリウムを発酵培地に対し2%(w/v)未満添加する、〔1〕~〔7〕のいずれか1項に記載の方法。
〔9〕発酵の際、リンゴ酸又はその塩を添加する、〔1〕~〔8〕のいずれか1項に記載の方法。
〔10〕野菜原料が、カブ、キャベツ、白菜、及びキュウリから選ばれる少なくとも1種である、〔1〕~〔9〕のいずれか1項に記載の方法。
The present invention provides the following.
[1] Fermentation by adding lactic acid bacteria to the vegetable raw material and fermenting until the final pH reaches 4.5 or less to obtain fermented pickles having at least one of the succinic acid content and the isothiocyanate content higher than the vegetable raw material. Method of making pickles.
[2] The method of [1], wherein the lactic acid bacteria are Lactobacillus lactic acid bacteria.
[3] Lactobacillus is Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus diolivorans, Lactobacillus parafaraginis, Lactobacillus plantarum, Lactobacillus buchneri, Lactobacillus parakephili, Lactobacillus The method of [1] or [2], which is at least one selected from Crispatus, Lactobacillus gasseri and Lactobacillus reuteri.
[4] The lactic acid bacteria include Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus diolivorans, Lactobacillus parafarraginis, Lactobacillus buchneri, Lactobacillus parakephili, Lactobacillus crispatus, and Lactobacillus - The method according to [1] or [2], which is a combination with at least one selected from gasseri.
[5] After adding the first lactic acid bacterium to the vegetable raw material and fermenting it, adding the second lactic acid bacterium and fermenting until the reaching pH is 4.3 or less, any of [1] to [4] or the method according to item 1.
[6] The method of [5], wherein the first lactic acid bacterium is Lactobacillus delbrueckii and the second lactic acid bacterium is Lactobacillus fermentum and Lactobacillus plantarum.
[7] The method according to any one of [1] to [6], wherein the fermentation is performed at a temperature of 30 to 45°C.
[8] The method according to any one of [1] to [7], wherein less than 2% (w/v) of sodium chloride is added to the fermentation medium during fermentation.
[9] The method according to any one of [1] to [8], wherein malic acid or a salt thereof is added during fermentation.
[10] The method according to any one of [1] to [9], wherein the vegetable raw material is at least one selected from turnip, cabbage, Chinese cabbage, and cucumber.

本発明によれば、良風味で安定生産可能な発酵漬物の製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the fermented pickles which are good flavor and can be produced stably is provided.

図1は、in vitro発酵試験(実施例1)におけるコハク酸およびイソチオシアネート信号強度の比較を示す図である。FIG. 1 shows a comparison of succinate and isothiocyanate signal intensities in an in vitro fermentation test (Example 1).

[発酵漬物の製造方法]
本発明においては、野菜原料に乳酸菌を添加して発酵させて発酵漬物を製造する。
[Method for producing fermented pickles]
In the present invention, fermented pickles are produced by adding lactic acid bacteria to vegetable raw materials and fermenting them.

-野菜原料-
本明細書において野菜原料とは、野菜を少なくとも1種含む原料である。野菜としては、カブ(例えば、白カブ、赤カブ(例えば、王滝カブ、開田カブ)、キャベツ、白菜、キュウリが挙げられる。野菜原料は、必要に応じて(例えば、過発酵の防止、調味等の目的のため)、調味料、保存料等の他の添加物を含んでもよい。
-Vegetable ingredients-
In the present specification, the vegetable raw material is a raw material containing at least one kind of vegetable. Examples of vegetables include turnips (e.g., white turnips, red turnips (e.g., Otaki turnips, Kaida turnips), cabbages, Chinese cabbages, and cucumbers. Vegetable raw materials may be added as necessary (e.g., prevention of overfermentation, seasoning, etc.). purposes), seasonings, preservatives, and other additives.

-乳酸菌-
本発明においては、野菜原料に乳酸菌をスターターとして添加(接種)することにより、野菜原料を発酵させる。乳酸菌としては、例えば、Lactobacillus(ラクトバチルス)属、Lactococcus(ラクトコッカス)属、Leuconostoc(ロイコノストック)属、Pediococcus(ペディオコッカス)属の乳酸菌が挙げられ、Lactobacillus属乳酸菌が好ましい。Lactobacillus属乳酸菌としては、例えば、L.delbrueckii、L.fermentum、L.diolivorans、L.parafarraginis、L.plantarum、L.brevis、L.vilidescens、L.alimentarius、L.sakei、L.curvatus、L.casei、L.buchneri、L.parakefiri、L.reuteri、L.crispatus、L.gasseri、L.vaginalis、L.rossiae、L.otakiensis、L.kisonensis、L.crispatusが挙げられ、L.delbrueckii、L.fermentum、L.diolivorans、L.parafarraginis、L.plantarum、L.buchneri、L.parakefiri、L.crispatus、L.gasseri、L.reuteriが好ましい。Pediococcus属乳酸菌としては、例えば、P.acidilacticiが挙げられる。
-Lactic acid bacteria-
In the present invention, the vegetable raw material is fermented by adding (inoculating) lactic acid bacteria as a starter to the vegetable raw material. Examples of lactic acid bacteria include lactic acid bacteria of the genus Lactobacillus, Lactococcus, Leuconostoc, and Pediococcus, with lactic acid bacteria of the genus Lactobacillus being preferred. Lactobacillus lactic acid bacteria include, for example, L. delbrueckii, L. fermentum, L. diolivorans, L. parafarraginis, L. plantarum, L. brevis, L. vilidescens, L. alimentarius, L. sakei, L. curvatus, L. casei, L. buchneri, L. parkefiri, L. reuteri, L. crispatus, L. gasseri, L. vaginalis, L. rossiae, L. otakiensis, L. kisonensis, L. crispatus, and L. delbrueckii, L. fermentum, L. diolivorans, L. parafarraginis, L. plantarum, L. buchneri, L. parkefiri, L. crispatus, L. gasseri, L. reuteri is preferred. Examples of Pediococcus lactic acid bacteria include, for example, P. acidilactici.

乳酸菌は1種単独で用いても、2種以上の組み合わせを用いてもよい。1種単独の場合、L.delbrueckii、L.fermentum、L.diolivorans、及びL.parafarraginis、L.reuteriが好ましく、L.delbrueckii、L.fermentum、L.diolivoransがより好ましい。2種以上の場合、L.delbrueckiiを少なくとも含む組み合わせが好ましく、L.delbrueckiiと、L.fermentum、L.diolivorans、L.parafarraginis、L.buchneri、L.parakefiri、L.crispatus、L.gasseriから選ばれる少なくとも1つとの組み合わせがより好ましく、L.delbrueckiiと、L.fermentum及びL.parafarraginisから選ばれる少なくとも1つとの組み合わせがさらに好ましい。 Lactic acid bacteria may be used singly or in combination of two or more. In the case of 1 type alone, L. delbrueckii, L. fermentum, L. diolivorans, and L. parafarraginis, L. reuteri is preferred, L. delbrueckii, L. fermentum, L. diolivorans are more preferred. In the case of two or more, L. Combinations containing at least L. delbrueckii are preferred. delbrueckii and L. fermentum, L. diolivorans, L. parafarraginis, L. buchneri, L. parkefiri, L. crispatus, L. A combination with at least one selected from L. gasseri is more preferred. delbrueckii and L. fermentum and L. A combination with at least one selected from parafarraginis is more preferred.

-到達pH-
発酵終了時のpH(到達pH)は、初発pH(通常、弱酸性、すなわち5.0~6.0)よりも低いpHであればよく、好ましくは4.5以下、より好ましくは4.4以下、更に好ましくは4.3以下である。到達pHの調整は、用いる乳酸菌の種類、量、温度、塩濃度等の発酵条件により行えばよい。到達pHの下限は、通常3.3以上、好ましくは3.4以上であるが、特に限定されない。
-Attained pH-
The pH at the end of fermentation (ultimate pH) may be lower than the initial pH (usually weakly acidic, ie, 5.0 to 6.0), preferably 4.5 or less, more preferably 4.4. 4.3 or less, more preferably 4.3 or less. The final pH may be adjusted according to fermentation conditions such as the type and amount of lactic acid bacteria used, temperature, and salt concentration. The lower limit of the reached pH is usually 3.3 or more, preferably 3.4 or more, but is not particularly limited.

-発酵温度-
発酵温度は、30~45℃が好ましく、30~40℃がより好ましい。これにより、到達pHを好ましい数値へ低下させることができる。
-Fermentation temperature-
The fermentation temperature is preferably 30-45°C, more preferably 30-40°C. Thereby, the attained pH can be lowered to a preferable value.

-多段発酵-
2種以上の乳酸菌を用いる場合、各乳酸菌を同時に添加して発酵を行ってもよいし、あるいは、順次添加して発酵を行う、いわゆる多段発酵を行ってもよい。例えば、野菜原料に第1の乳酸菌を添加して発酵させた後、他の乳酸菌を添加して発酵を行う操作を繰り返し、最後の乳酸菌を添加して発酵を行って到達pHが4.3以下となるまで発酵させることができる。多段発酵は、2段発酵が好ましく、第1の乳酸菌としてのL.delbrueckiiを用いる第1の発酵の後、第2の乳酸菌としてL.fermentum及びL.plantarumを用いる第2の発酵を行うことがより好ましい。多段発酵における各乳酸菌を用いる発酵の条件は、それぞれ独立して定めることができる。
-Multi-stage fermentation-
When two or more kinds of lactic acid bacteria are used, each lactic acid bacterium may be added at the same time for fermentation, or so-called multistage fermentation may be performed for sequential addition and fermentation. For example, after adding the first lactic acid bacterium to the vegetable raw material and fermenting it, the operation of adding other lactic acid bacteria and fermenting is repeated, and the final lactic acid bacterium is added and fermented to reach a pH of 4.3 or less. It can be fermented until The multi-stage fermentation is preferably two-stage fermentation, and L. After the first fermentation with L. delbrueckii, as the second lactic acid bacterium, L. fermentum and L. More preferably, a second fermentation using plantarum is performed. Conditions for fermentation using each lactic acid bacterium in multistage fermentation can be determined independently.

-塩分濃度-
発酵にあたっては、塩化ナトリウムを添加してもよく、その添加量は培地に対し2%(w/v)未満が好ましく、好ましくは1.5%(w/v)以下がより好ましい。これにより、塩分摂取過多の原因となるというネガティブイメージを払拭でき、健康に配慮しながら風味を向上させた、極低塩発酵漬物を得ることができる。塩化ナトリウムの添加時期は、発酵の途中であればよいが、発酵開始時(多段発酵の場合、第1の発酵の開始時)が好ましい。
-Salinity concentration-
In fermentation, sodium chloride may be added, and the amount added is preferably less than 2% (w/v), more preferably 1.5% (w/v) or less, relative to the medium. As a result, the negative image that excessive salt intake is a cause can be dispelled, and extremely low-salt fermented pickles with improved flavor while taking health into consideration can be obtained. The timing of adding sodium chloride may be during the fermentation, but is preferably at the start of fermentation (in the case of multistage fermentation, at the start of the first fermentation).

-リンゴ酸-
発酵にあたっては、リンゴ酸又はその塩を添加してもよい。これにより、コハク酸をより多量に含む発酵漬物を得ることができる。リンゴ酸の添加量は、培地に対し通常は50mM以上、好ましくは70mM以上、より好ましくは90mM以上である。リンゴ酸又はその塩の添加時期は、発酵の途中であればよいが、発酵開始時(多段発酵の場合、第1の発酵の開始時)が好ましい。
-malic acid-
In fermentation, malic acid or its salt may be added. As a result, fermented pickles containing a larger amount of succinic acid can be obtained. The amount of malic acid to be added is usually 50 mM or more, preferably 70 mM or more, more preferably 90 mM or more, relative to the medium. Malic acid or a salt thereof may be added during fermentation, but is preferably added at the start of fermentation (at the start of the first fermentation in the case of multistage fermentation).

-他の発酵条件-
上記以外の他の発酵条件は、特に限定されないが、一例を挙げると以下のとおりである。乳酸菌の接種量は、通常は、1.0×105~1.0×1010cfu/mL、好ましくは5.0×105~5.0×109cfu/mL、より好ましくは1.0×106~1.0×109cfu/mLである。接種量は、前培養等、常法に従って調整できる。発酵時間は、通常は、12時間以上、好ましくは20時間以上、より好ましくは24時間以上である。上限は、特に限定されないが、5日程度であれば十分であり、通常は3日以内であり、衛生面からは短期間がよい。また、乳酸菌としてL.delbrueckii、L.fermentum、L.reuteri等の酸素感受性の乳酸菌を用いる場合には、発酵を嫌気条件で行うことが好ましい。発酵の際には、培地を静置して行ってもよいし、必要に応じて撹拌してもよい。
-Other fermentation conditions-
Fermentation conditions other than the above are not particularly limited, but an example is as follows. The amount of lactic acid bacteria to be inoculated is usually 1.0×10 5 to 1.0×10 10 cfu/mL, preferably 5.0×10 5 to 5.0×10 9 cfu/mL, more preferably 1.0×10 5 to 5.0×10 9 cfu/mL. 0×10 6 to 1.0×10 9 cfu/mL. The inoculum amount can be adjusted according to a conventional method such as preculture. Fermentation time is usually 12 hours or more, preferably 20 hours or more, more preferably 24 hours or more. Although the upper limit is not particularly limited, it is sufficient if it is about 5 days, and usually within 3 days. In addition, as lactic acid bacteria, L. delbrueckii, L. fermentum, L. When oxygen-sensitive lactic acid bacteria such as reuteri are used, fermentation is preferably performed under anaerobic conditions. Fermentation may be carried out while the medium is still, or may be stirred as necessary.

[発酵漬物]
上記製造方法により発酵漬物を得ることができる。本明細書において「発酵漬物」とは、食材(例えば、野菜原料)を発酵(例えば、乳酸発酵)させる工程を含む方法により製造される漬物を意味する。例えば、すんき、すぐき、発酵キムチ、発酵しば漬、野沢菜漬、ザワークラウト、ピクルス等が挙げられる。
[Fermented pickles]
A fermented pickle can be obtained by the above production method. As used herein, “fermented pickles” means pickles produced by a method including a step of fermenting (eg, lactic acid fermentation) a food material (eg, vegetable raw material). Examples include sunki, suguki, fermented kimchi, fermented shibazuke, nozawana pickles, sauerkraut, and pickles.

発酵漬物は、そのコハク酸含有量及びイソチオシアネート含有量の少なくともいずれかが野菜原料のよりも多いことが好ましく、通常は4倍以上、好ましくは5倍以上である。発酵漬物のコハク酸含有量及びイソチオシアネート含有量は、野菜原料により異なるため一律に特定することは難しいが、通常0.5mM以上、好ましくは5mM以上、より好ましくは6mM以上である。イソチオシアネートは、アブラナ科植物の野菜に特有の成分であるグルコシノレートの分解産物であり、アブラナ科植物の野菜(例えば、白カブ、赤カブ、キャベツ、白菜)に含まれる。本明細書においてイソチオシアネート含有量は、イソチオシアネート類(例えば、4-ペンテニルITC、3-ブテニルITC、2-フェネチルITC、アリルITC)の総量を意味し、未発酵の野菜に対する相対量として通常8以上、好ましくは10以上である。コハク酸含有量及びイソチオシアネート含有量の調整は、野菜原料の種類、乳酸菌の種類、量、発酵条件により行うことができる。 At least one of the succinic acid content and the isothiocyanate content of the fermented pickles is preferably higher than that of the vegetable raw material, usually 4 times or more, preferably 5 times or more. The succinic acid content and isothiocyanate content of the fermented pickles vary depending on the vegetable raw material, so it is difficult to uniformly specify them, but they are usually 0.5 mM or more, preferably 5 mM or more, and more preferably 6 mM or more. Isothiocyanates are degradation products of glucosinolates, which are components unique to cruciferous vegetables, and are contained in cruciferous vegetables (eg, white turnip, red turnip, cabbage, Chinese cabbage). As used herein, the isothiocyanate content refers to the total amount of isothiocyanates (e.g., 4-pentenyl ITC, 3-butenyl ITC, 2-phenethyl ITC, allyl ITC), usually 8 as a relative amount to unfermented vegetables. 10 or more, preferably 10 or more. The succinic acid content and isothiocyanate content can be adjusted according to the type of vegetable raw material, the type and amount of lactic acid bacteria, and fermentation conditions.

発酵漬物は、コハク酸以外の酸含有量も野菜原料よりも多いことが好ましい。コハク酸以外の酸としては、例えば、酢酸、乳酸が挙げられる。発酵漬物のこれらの酸含有量も、野菜原料により異なるため一律に特定することは難しい。たとえば、酢酸含有量は、通常5mM以上、好ましくは6mM以上である。乳酸含有量は、通常10mM以上、好ましくは12mM以上である。 It is preferable that the fermented pickles contain more acids other than succinic acid than the vegetable raw material. Examples of acids other than succinic acid include acetic acid and lactic acid. These acid contents of fermented pickles also vary depending on the vegetable raw material, so it is difficult to uniformly specify them. For example, the acetic acid content is usually 5 mM or higher, preferably 6 mM or higher. The lactic acid content is usually 10 mM or more, preferably 12 mM or more.

以下に、本発明を実施例により詳細に説明するが、本発明は以下の例に限定されるものではない。 EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the following examples.

参考例1
国内で唯一製造される無塩発酵漬物「すんき」の品評会に出展された49試料の成分組成等を比較し、最優秀品の特徴を明らかにした(表1)。
・pHは4.1であり平均値(4.0)と比較しても良好に乳酸発酵している
・コハク酸の含有量が49試料中で際立って大きい(旨味の寄与成分)
・乳酸、酢酸、グルタミン酸、イソチオシアネート(ITC)の含有量が大きい(風味・漬菜香への寄与成分)
・エタノール、酢酸エチル、アセトイン、ジアセチルの含有量が小さい(発酵臭・つわり臭の原因成分)
Reference example 1
We compared the component composition of 49 samples that were exhibited at a competition for ``Sunki'', the only salt-free fermented pickle produced in Japan, and clarified the characteristics of the best product (Table 1).
・The pH value was 4.1, indicating good lactic acid fermentation even when compared with the average value (4.0). ・The content of succinic acid was remarkably high among the 49 samples (a component that contributes to umami).
・High content of lactic acid, acetic acid, glutamic acid, and isothiocyanate (ITC) (components that contribute to the flavor and aroma of pickles)
・Low content of ethanol, ethyl acetate, acetoin, and diacetyl (components that cause fermentation odor and morning sickness odor)

Figure 2022127441000002
Figure 2022127441000002

本参考例の結果から、高品質な無塩発酵漬物にはコハク酸やイソチオシアネートの含有量が重要であることが明らかとなった。また、他の特徴成分についてもいずれも味や香りを有する成分であることから、良好な風味に対して複合的に貢献していると考えられる。 From the results of this reference example, it became clear that the contents of succinic acid and isothiocyanate are important for high-quality salt-free fermented pickles. In addition, since all of the other characteristic components have taste and aroma, they are considered to contribute to the good flavor in multiple ways.

実施例1 高品質なすんきの成分組成に関わる乳酸菌株の探索
すんきに生息する乳酸菌のうち高いコハク酸の生産に関わるものを探索した。市販や自作したすんきから18の異なる乳酸菌種に属する250個の乳酸菌コロニーを収集した。凍結乾燥した赤カブ(開田カブ)の葉から熱水抽出して調製したエキスに、ラクトバチルスMRS培地(Difco社製)で30℃・24時間培養した乳酸菌を接種し、30℃で3日間発酵させた。発酵後に生産された水溶性成分と揮発性成分の濃度を核磁気共鳴(NMR)法および固相マイクロ抽出-ガスクロマトグラフィー/質量分析(SPME-GC/MS)法により分析した。
Example 1 Search for Lactic Acid Bacteria Strains Related to Component Composition of High-Quality Sunki Among the lactic acid bacteria that inhabit sunki, those involved in the production of high succinic acid were searched. 250 lactobacillus colonies belonging to 18 different lactobacillus species were collected from commercially available or self-produced sunki. An extract prepared by hot water extraction from freeze-dried red turnip (Kaida turnip) leaves was inoculated with lactic acid bacteria cultured for 24 hours at 30°C in Lactobacillus MRS medium (manufactured by Difco), and fermented at 30°C for 3 days. let me The concentrations of water soluble and volatile components produced after fermentation were analyzed by nuclear magnetic resonance (NMR) and solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) methods.

Figure 2022127441000003
Figure 2022127441000003

分析の結果、最もコハク酸を生産するのはL.delbrueckiiであることが明らかとなった(表2、図1)。さらに、L.delbrueckiiにより発酵したカブ菜の汁は、参考例1で示された最優秀品の特徴に最も近くなった。すなわち、良好なpHの低下を示し、乳酸・酢酸の含有量に優れ、エタノール・アセトイン・酢酸エチルの生産量が小さく、イソチオシアネート類の信号強度が大きいといった特徴を示した。
中程度のコハク酸の生産量を示した乳酸菌として、L.fermentum、L.parafarraginis、L.reuteri、L.diolivoransも選抜された。これらの乳酸菌は酢酸の生産量にも優れる。ただし、L.delbrueckiiに比べて発酵物の最終pHが高くなったため、単独の使用では適切な品質を保つpHに到達しない恐れがある。また、これらの菌株の発酵では、成分組成の特徴が最優秀品のすんきとは異なるものになった。
As a result of the analysis, it was found that L. delbrueckii (Table 2, Fig. 1). Furthermore, L. The juice of turnip greens fermented with A. delbrueckii came closest to the characteristics of the winner shown in Reference Example 1. That is, it exhibited characteristics such as good pH reduction, excellent lactic acid/acetic acid content, small production amounts of ethanol/acetoin/ethyl acetate, and high signal intensity of isothiocyanates.
As a lactic acid bacterium that showed a moderate amount of succinic acid production, L. fermentum, L. parafarraginis, L. reuteri, L. diolivorans was also selected. These lactic acid bacteria are also excellent in the production of acetic acid. However, L. Due to the higher final pH of the fermentate compared to C. delbrueckii, it may not be used alone to reach an adequate quality pH. In addition, in the fermentation of these strains, the characteristics of the component composition became different from the best product, Sunki.

実施例2 様々な漬物用野菜に対する適用性の解析
白カブ、木曽の赤カブ(開田カブ、王滝カブ)、キャベツ、白菜、キュウリを用いて、各植物の葉から実施例1と同様にして抽出したエキスに、ラクトバチルスMRS培地(Difco社製)で30℃・24時間培養した表3~表5に示す乳酸菌を接種し、30℃で3日間発酵させた。得られる発酵物の水溶性代謝産物の組成をNMR法により、到達pHをpHメーターにより分析し、原料への適性を3段階(◎:特に良好、〇:概ね良好、△:使用可能)で判定した(表3~5)。
Example 2 Analysis of applicability to various pickled vegetables Using white turnip, Kiso red turnip (Kaida turnip, Otaki turnip), cabbage, Chinese cabbage, and cucumber, extract from the leaves of each plant in the same manner as in Example 1 The obtained extract was inoculated with the lactic acid bacteria shown in Tables 3 to 5 cultured at 30°C for 24 hours in Lactobacillus MRS medium (manufactured by Difco) and fermented at 30°C for 3 days. The composition of the water-soluble metabolites of the resulting fermented product is analyzed by the NMR method, and the reached pH is analyzed with a pH meter, and the suitability for raw materials is judged in three stages (◎: particularly good, 〇: generally good, △: usable). (Tables 3-5).

Figure 2022127441000004
Figure 2022127441000004

Figure 2022127441000005
Figure 2022127441000005

Figure 2022127441000006
Figure 2022127441000006

その結果、乳酸菌は各野菜においてコハク酸生産能を示し、中でも、L.delbrueckiiはいずれの野菜でもすんき乳酸菌の中で最も優れたコハク酸生産能を示した。発酵物のpHについては、白カブ、赤カブ(開田カブ)、白菜、キュウリは特に良好に、赤カブ(王滝カブ)は概ね良好に、キャベツは限定的ではあるがpH低下がみられた。このことから、L.delbrueckiiを広く漬物に利用される他の野菜に用いても、コハク酸を特徴とする良風味の無塩発酵漬物を製造できることが明らかとなった。 As a result, lactic acid bacteria showed succinic acid-producing ability in each vegetable. delbrueckii showed the highest succinic acid-producing ability among sunki lactic acid bacteria in any vegetable. Regarding the pH of the fermented product, white turnip, red turnip (Kaida turnip), Chinese cabbage, and cucumber were particularly favorable, red turnip (Otaki turnip) was generally favorable, and cabbage showed a limited decrease in pH. For this reason, L. It was found that even if C. delbrueckii is used for other vegetables that are widely used for pickles, salt-free fermented pickles with good flavor characterized by succinic acid can be produced.

ただし、L.delbrueckiiはキャベツの発酵に対する適性が他菌種に劣り、コハク酸の生産量は最大レベルであるものの、到達pHが4.5付近に留まる結果となった。これに対し、他の野菜で中程度のコハク酸生産量を示したL.fermentumが、キャベツの発酵においてはL.delbrueckiiに匹敵するコハク酸生産量を示した。また、L.fermentum、L.diolivorans、L.parafarraginisなどについても、開田カブと同様の代謝物生産傾向が確認された。 However, L. delbrueckii is inferior to other strains in suitability for cabbage fermentation, and although the production of succinic acid is at the highest level, the pH reached remains at around 4.5. In contrast, L. spp., which showed moderate succinic acid production in other vegetables. fermentum in the fermentation of cabbage, L. succinic acid production comparable to that of C. delbrueckii. Also, L.I. fermentum, L. diolivorans, L. Parafarraginis and the like were also confirmed to have the same metabolite production tendency as Kaida turnip.

実施例3 複数の乳酸菌を併用した共発酵試験
白カブ、木曽の赤カブ(開田カブ、王滝カブ)、キャベツ、白菜、キュウリを用いて、各植物の葉から実施例1と同様にして抽出したエキスに、ラクトバチルスMRS培地(Difco社製)で30℃・24時間培養した表6及び表7に示す乳酸菌(単独又は2種の組み合わせ)を接種し、30℃で3日間発酵させた。得られる発酵物の水溶性代謝産物の組成、到達pHを実施例2と同様の方法で分析し、原料への適性を実施例1、2と同様に判定した(表6、7)。
Example 3 Co-fermentation test using multiple lactic acid bacteria Using white turnip, Kiso red turnip (Kaida turnip, Otaki turnip), cabbage, Chinese cabbage, and cucumber, extraction was performed from the leaves of each plant in the same manner as in Example 1. The extract was inoculated with the lactic acid bacteria shown in Tables 6 and 7 (single or a combination of two types) cultured at 30°C for 24 hours in Lactobacillus MRS medium (manufactured by Difco) and fermented at 30°C for 3 days. The resulting fermented product was analyzed for the composition of water-soluble metabolites and the reached pH in the same manner as in Example 2, and the suitability for raw materials was determined in the same manner as in Examples 1 and 2 (Tables 6 and 7).

Figure 2022127441000007
Figure 2022127441000007

Figure 2022127441000008
Figure 2022127441000008

試験の結果、キャベツを用いて、L.delbrueckii及びL.fermentumを共発酵した場合、コハク酸の蓄積量が増加した(表6、7)。さらに、乳酸と酢酸の生産もそれぞれ大幅に向上し、pH低下が大幅に改善した。両乳酸菌をそれぞれ単独で使用したときよりも向上していることから、これらの乳酸菌の併用により相乗的な発酵促進効果を得ることできた。この相乗効果が科学的に検証された事例はなく、そのメカニズムは明らかではないが、ヨーグルト発酵においてL.delbrueckii subsp.bulgaricusとStreptococcus thermophilusとがお互いに不足する栄養素を補い合うような、何らかの共生関係が成立しているのではないかと考えられる。 As a result of the test, using cabbage, L. delbrueckii and L. Co-fermentation of fermentum increased the accumulation of succinic acid (Tables 6 and 7). Furthermore, the production of lactic acid and acetic acid was also greatly improved, respectively, and the pH drop was greatly improved. Since the improvement was better than when both lactic acid bacteria were used alone, a synergistic fermentation promotion effect could be obtained by the combined use of these lactic acid bacteria. Although this synergistic effect has not been scientifically verified and the mechanism is not clear, L. delbrueckii subsp. It is presumed that some kind of symbiotic relationship is established in which bulgaricus and Streptococcus thermophilus supplement each other's lacking nutrients.

また、キャベツ以外の野菜においても共発酵の効果が見られ、たとえば白カブや赤カブの発酵において、コハク酸と乳酸生産にはほとんど影響させずに酢酸の増加効果が得られた。この効果はL.fermentumに限らず他の乳酸菌でも同様である。コハク酸生産能が比較的低いL.buchneri、L.parakefiri、L.crispatus、L.gasseriを共発酵に用いても同様に乳酸と酢酸の増加効果が得られる。 In addition, the effect of co-fermentation was also observed in vegetables other than cabbage. For example, in the fermentation of white turnip and red turnip, the effect of increasing acetic acid was obtained with almost no effect on succinic acid and lactic acid production. This effect was demonstrated by L. The same applies to other lactic acid bacteria as well as fermentum. L. succinic acid-producing ability is relatively low. buchneri, L. parkefiri, L. crispatus, L. Even if gasseri is used for co-fermentation, the effect of increasing lactic acid and acetic acid can be similarly obtained.

実施例4 2段階の共発酵による追加発酵の効果
白カブ、木曽の赤カブ(開田カブ、王滝カブ)、キャベツ、白菜、キュウリを用いて、各植物の葉から実施例1と同様にして抽出したエキスに、ラクトバチルスMRS培地(Difco社製)で30℃・24時間培養したL.delbrueckiiを接種し、30℃で3日間発酵させた。続いて、表8及び表9に示す乳酸菌をさらに接種し、追加で30℃で3日間発酵させた。得られる発酵物の水溶性代謝産物の組成、到達pHを分析し、原料への適性を実施例1、2と同様に判定した(表8、9)。
Example 4 Effect of additional fermentation by two-step co-fermentation Extraction from the leaves of each plant in the same manner as in Example 1 using white turnip, Kiso red turnip (Kaida turnip, Otaki turnip), cabbage, Chinese cabbage, and cucumber Lactobacillus cultured in Lactobacillus MRS medium (manufactured by Difco) at 30° C. for 24 hours was added to the extract. delbrueckii and fermented at 30° C. for 3 days. Subsequently, the lactic acid bacteria shown in Tables 8 and 9 were further inoculated and further fermented at 30°C for 3 days. The resulting fermented product was analyzed for the composition of water-soluble metabolites and the reached pH, and its suitability as a raw material was determined in the same manner as in Examples 1 and 2 (Tables 8 and 9).

Figure 2022127441000009
Figure 2022127441000009

Figure 2022127441000010
Figure 2022127441000010

共発酵の効果は、実施例3のように2菌株を同時に接種した場合だけでなく、発酵を2段階に分けた場合にも得られた(表8、9)。 The effect of co-fermentation was obtained not only when two strains were inoculated simultaneously as in Example 3, but also when the fermentation was divided into two stages (Tables 8 and 9).

キャベツのように、L.delbrueckii単独ではコハク酸を蓄積できるがpH低下に乏しい原料の場合、L.fermentumなどキャベツ発酵に適する乳酸菌による2段階目の追加発酵を行うことによって、コハク酸を低下させることなく酢酸と乳酸を大幅に増加させ、pHを4.0以下に低下させることができる。これは、L.delbrueckiiが適性の低い原料においてもコハク酸を優先して生産する性質を利用しており、残っている大部分の炭素源を他の乳酸菌によって追加発酵させたことによるものである。 Like cabbage, L. delbrueckii alone is capable of accumulating succinic acid, but in the case of raw materials with poor pH reduction, L. By performing the second stage of additional fermentation with lactic acid bacteria suitable for cabbage fermentation such as fermentum, acetic acid and lactic acid can be greatly increased without decreasing succinic acid, and the pH can be lowered to 4.0 or less. This is L. This is because S. delbrueckii utilizes the property of preferentially producing succinic acid even from raw materials with low suitability, and the majority of remaining carbon sources are additionally fermented with other lactic acid bacteria.

王滝カブのように、L.delbrueckii単独では到達pHがやや高くなる原料では、L.plantarumなどによる追加発酵を行うと、高いコハク酸濃度を維持したまま酢酸と乳酸の蓄積量を高め、pH低下を補助することができる。これは、一般的には他の炭素源に比べて乳酸菌に優先的に消費されるグルコースが、L.delbrueckiiによる野菜汁の発酵においてはむしろ残存しやすいという、本研究での発見に基づいて実現したものである。L.plantarumは、その残存したグルコースに加えて、L.delbrueckiiが資化しないクエン酸をも乳酸や酢酸へと変換することができる。 Like Otaki turnip, L. L. delbrueckii alone gives a slightly higher pH. Additional fermentation with a plantarum or the like can increase the accumulation of acetic acid and lactic acid while maintaining a high succinic acid concentration, and assist in lowering the pH. This is because glucose, which is generally preferentially consumed by lactic acid bacteria compared to other carbon sources, is used by L. This was realized based on the discovery in this research that it is rather likely to survive in the fermentation of vegetable juice by delbrueckii. L. In addition to its residual glucose, L. plantarum citric acid that is not assimilated by A. delbrueckii can also be converted to lactic acid and acetic acid.

実施例5 発酵温度の影響
木曽の赤カブ(開田カブ、王滝カブ)を用いて、各植物の葉から実施例1と同様にして抽出したエキスに、L.delbrueckiiを接種し、温度条件を表10及び表11に示す条件として1日から14日間まで発酵させた。培養開始後、発酵物の水溶性代謝産物の組成、到達pHを実施例2と同様の方法により分析した(表10及び11)。
Example 5 Effect of Fermentation Temperature Using Kiso red turnips (Kaida turnips, Otaki turnips), extracts extracted from the leaves of each plant in the same manner as in Example 1 were added with L. delbrueckii was inoculated and fermented from 1 day to 14 days under the temperature conditions shown in Tables 10 and 11. After starting the culture, the composition of water-soluble metabolites of the fermented product and the reached pH were analyzed by the same methods as in Example 2 (Tables 10 and 11).

Figure 2022127441000011
Figure 2022127441000011

Figure 2022127441000012
Figure 2022127441000012

漬物の発酵における温度の影響を確認したところ、最も早くpHが低下し、到達pHも最低となった発酵温度は40℃だった(表10及び11)。30℃ではわずかに、45℃ではやや発酵が遅れた。50℃あるいは20℃以下ではpH低下の悪化が顕著だった。コハク酸の生産量は40℃または30℃で最大となり、pH低下の進行と同様の差がみられた。したがって、適切な発酵の進行は、好ましくは30℃から45℃の範囲、より好ましくは30℃から40℃の範囲で得られると考えられる。 When the effect of temperature on the fermentation of pickles was confirmed, the fermentation temperature at which the pH decreased the fastest and reached the lowest was 40°C (Tables 10 and 11). Fermentation was delayed slightly at 30°C and slightly at 45°C. At 50°C or 20°C or less, the worsening of pH drop was remarkable. The amount of succinic acid produced reached a maximum at 40°C or 30°C, showing the same difference as the progress of pH decrease. Therefore, it is believed that suitable fermentation progress is obtained preferably in the range of 30°C to 45°C, more preferably in the range of 30°C to 40°C.

実施例6 L.delbrueckiiの塩濃度耐性
木曽の赤カブ(開田カブ)を用いて、各植物の葉から実施例1と同様にして抽出したエキスに、L.delbrueckiiを接種し、食塩水を表12に示す濃度となるように4分の1倍量を添加し、30℃で3日間発酵させた。培養開始後、発酵物の水溶性代謝産物の組成、到達pHを実施例2と同様の方法により分析した(表12)。
Example 6 L.I. Salt Concentration Tolerance of L. delbrueckii Extracts extracted from the leaves of each plant in the same manner as in Example 1 using Kiso red turnips (Kaida turnips) were added with L. delbrueckii. delbrueckii was inoculated, 1/4 of saline solution was added to the concentration shown in Table 12, and fermented at 30°C for 3 days. After starting the culture, the composition of water-soluble metabolites of the fermented product and the reached pH were analyzed by the same methods as in Example 2 (Table 12).

Figure 2022127441000013
Figure 2022127441000013

NaCl濃度が2%(w/v)以上のNaCl濃度では発酵が大きく抑制されたのに対し、2%(w/v)未満では、代謝産物の組成に大きな影響はみられなかった(表12)。このことから、食塩を2%(w/v)未満の濃度で添加してもよいことが分かった。 Fermentation was greatly inhibited at NaCl concentrations of 2% (w/v) and above, whereas at less than 2% (w/v), metabolite composition was not significantly affected (Table 12). ). From this, it was found that salt may be added at a concentration of less than 2% (w/v).

実施例7 リンゴ酸の添加によるコハク酸生産の増強
キャベツを用いて、各植物の葉から実施例1と同様にして抽出したエキスに、リンゴ酸ナトリウム(富士フイルム和光純薬社製)を100mMとなるよう添加し、ラクトバチルスMRS培地(Difco社製)で30℃・24時間培養した表13に示す乳酸菌を接種し、30℃で3日間発酵させた。培養開始後、発酵物の水溶性代謝産物の組成、到達pHを実施例2と同様の方法により分析した(表13)。
Example 7 Enhancement of succinic acid production by addition of malic acid Using cabbage, the extract extracted from the leaves of each plant in the same manner as in Example 1 was added with 100 mM sodium malate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). and cultured at 30°C for 24 hours in Lactobacillus MRS medium (manufactured by Difco). After starting the culture, the composition of water-soluble metabolites of the fermented product and the reached pH were analyzed in the same manner as in Example 2 (Table 13).

Figure 2022127441000014
Figure 2022127441000014

100mMリンゴ酸ナトリウムを添加してからL.delbrueckiiとL.fermentumの共発酵を行ったところ、リンゴ酸ナトリウムの添加により共発酵におけるコハク酸の増強効果がさらに高まった(表13)。この結果から、L.delbrueckiiとL.fermentumとの共培養をベースとして、リンゴ酸の添加を併用することで、コハク酸による発酵漬物の特徴付けをさらに強化できることが分かった。 After addition of 100 mM sodium malate, L. delbrueckii and L. When co-fermentation of S. fermentum was performed, the addition of sodium malate further enhanced the enhancing effect of succinic acid in the co-fermentation (Table 13). From this result, L. delbrueckii and L. It was found that the characterization of fermented pickles with succinic acid can be further enhanced by using malic acid as a base for co-cultivation with fermentum.

野菜の発酵における乳酸菌によるコハク酸の生産は、リンゴ酸を基質としてコハク酸に変換することによるものが大部分と考えられる。本実施例の結果から、L.delbrueckii等の乳酸菌単独でもコハク酸を高生産できる野菜の場合は、単純にリンゴ酸を添加することで乳酸菌によるコハク酸の生産を増強できることが分かる。 Most of the production of succinic acid by lactic acid bacteria in vegetable fermentation is considered to be by conversion to succinic acid using malic acid as a substrate. From the results of this example, L. In the case of vegetables capable of producing high levels of succinic acid even with lactic acid bacteria such as delbrueckii alone, it can be seen that simply adding malic acid can enhance the production of succinic acid by the lactic acid bacteria.

実施例8 酸素が発酵の進行に与える影響
木曽の赤カブ(開田カブ、王滝カブ)を用いて、各植物の葉から実施例1と同様にして抽出したエキスをツーポジションキャップ付き培養チューブ(コーニング社製)にとり、表14に示す乳酸菌を接種し、30℃で3日間発酵させた。嫌気条件のグループは、密閉した嫌気ジャーの中でアネロパック(三菱ガス化学社製)を使用して嫌気状態で発酵を行い、通気ありのグループは、半開放した嫌気ジャーの中でツーポジションキャップを通気状態にして静置し、さらに24時間ごとに培地を混和して通気を行った。得られる発酵物の水溶性代謝産物及び到達pHを実施例2と同様の方法により分析した(表14)。
Example 8 Effect of oxygen on the progress of fermentation Using Kiso red turnips (Kaida turnips, Otaki turnips), extracts extracted from the leaves of each plant in the same manner as in Example 1 were added to culture tubes with two-position caps (Corning company), inoculated with the lactic acid bacteria shown in Table 14, and fermented at 30°C for 3 days. The anaerobic condition group was fermented under anaerobic conditions using an aneropack (manufactured by Mitsubishi Gas Chemical Co., Ltd.) in a closed anaerobic jar, and the aerated group was in a semi-open anaerobic jar with a two-position cap. The plate was allowed to stand in an aerated state, and the medium was mixed and aerated every 24 hours. The resulting fermented product was analyzed for water-soluble metabolites and ultimate pH in the same manner as in Example 2 (Table 14).

Figure 2022127441000015
Figure 2022127441000015

L.delbrueckiiが明らかな酸素への感受性を示した(表14)。また、到達pHが上昇しただけでなく、L.delbrueckiiによるコハク酸生産量も約1/3と大幅に低下した。L.fermentumも若干であるが酸素への感受性を示した。したがって、L.delbrueckii、L.fermentum等の酸素感受性の乳酸菌を用いる場合、培養は嫌気条件で行うことが好ましいことが分かった。 L. delbrueckii showed a clear sensitivity to oxygen (Table 14). Moreover, not only the reached pH increased, but also the L. The amount of succinic acid produced by C. delbrueckii was also greatly reduced to about 1/3. L. fermentum also showed some sensitivity to oxygen. Therefore, L. delbrueckii, L. It was found that when oxygen-sensitive lactic acid bacteria such as fermentum are used, culturing is preferably carried out under anaerobic conditions.

実施例9 無塩発酵漬物の小仕込み試験
発酵漬物の製造実績を有する漬物工場において、L.delbrueckiiを用いた無塩発酵漬物を試作し、発酵物の評価を行った。発酵スターターには、食塩無添加トマトジュース(商品名:カゴメトマトジュース食塩無添加、カゴメ社製)の遠心分離上清と食品添加物で調製した食品グレード培地(0.5%ハイニュートAM(不二製油社製)、3.0%食用酵母エキス(マーマイト:ユニリーバ社製)、0.5%酢酸ナトリウム、0.02%硫酸マグネシウム、水酸化ナトリウムでpH6.5に調整し115℃・10分間オートクレーブ滅菌)を用いて、L.delbrueckiiを37℃で24時間培養したものを用いた。赤カブ、白菜、キュウリ及びキャベツを用いて、刻んだ原料それぞれ9kgを70℃の熱水で湯通ししてから漬物用コンテナに設置したポリ袋に入れ、L.delbrueckiiを初発1.0×107cfu/mLとなるように接種した。原料が液面に浸るようにポリ袋の空気を追い出してから口を閉じ、コンテナをマットレスに包み保温して室温に静置し3日間発酵させた。比較対照として、0.5%の乳酸を添加して3日間漬け込んだ無発酵の無塩漬物を調製した。得られる漬物の汁に含まれる代謝産物、到達pH、乳酸菌数、大腸菌群数及びカビ・酵母数を分析した(表15)。また、漬け上がった無塩発酵漬物の嗜好性を4名のパネルで評価し、それぞれが3段階(3点:特に良好、2点:概ね良好、1点:不良)で判定し、点数の平均値(平均評価)を算出した(表16)。
Example 9 Small preparation test of salt-free fermented pickles At a pickle factory that has a track record of producing fermented pickles, L. A trial production of unsalted fermented pickles using C. delbrueckii was performed, and the fermented products were evaluated. For the fermentation starter, a food grade medium (0.5% high nut AM Nisei Oil Co., Ltd.), 3.0% edible yeast extract (Marmite: Unilever Co., Ltd.), 0.5% sodium acetate, 0.02% magnesium sulfate, adjusted to pH 6.5 with sodium hydroxide, 115 ° C. for 10 minutes Autoclave sterilization) to remove L. delbrueckii cultured at 37° C. for 24 hours. Using red turnip, Chinese cabbage, cucumber and cabbage, 9 kg each of the chopped raw materials was blanched in hot water at 70°C, put in a plastic bag placed in a container for pickles, and L. delbrueckii was inoculated at an initial dose of 1.0×10 7 cfu/mL. After expelling air from the plastic bag so that the raw material was submerged on the surface of the liquid, the mouth was closed, and the container was wrapped in a mattress to keep it warm and allowed to stand at room temperature for fermentation for 3 days. As a control, unfermented, unsalted pickles were prepared by adding 0.5% lactic acid and pickling for 3 days. Metabolites, reached pH, lactic acid bacteria count, coliform group count, and mold/yeast count contained in the resulting pickle juice were analyzed (Table 15). In addition, the palatability of the pickled unsalted fermented pickles was evaluated by a panel of four people, each of which was judged in three stages (3 points: particularly good, 2 points: generally good, 1 point: poor), and the average score Values (average ratings) were calculated (Table 16).

Figure 2022127441000016
Figure 2022127441000016

Figure 2022127441000017
Figure 2022127441000017

各発酵漬物においては、コハク酸等の発酵代謝物が生成し、良好な嗜好性が発揮されたことから、発酵が良好に進み、生成したコハク酸やITC等が旨味、香り等の風味向上に貢献していることが分かった(表15、16)。 In each fermented pickle, fermented metabolites such as succinic acid were produced and good palatability was exhibited, so fermentation proceeded well, and the produced succinic acid and ITC improved the flavor such as umami and aroma. (Tables 15 and 16).

実施例10 ITC量への様々な乳酸菌による発酵および共発酵の効果
ITC生成の基質となるグルコシノレート類を特徴的に含むアブラナ科の漬物野菜(白カブ、木曽の赤カブ(開田カブ、王滝カブ)、キャベツ、白菜)を用いて、各植物の葉から実施例1と同様にして抽出したエキスに、ラクトバチルスMRS培地(Difco社製)で30℃・24時間培養した表17に示す乳酸菌を接種し、30℃で3日間発酵させた。また、複合スターターによる発酵試験も実施した。複合発酵試験では、実施例3及び実施例4と同様にして、共発酵及び2段階発酵を行った。共発酵試験では、L.delbrueckii及び表18に示すその他の乳酸菌を接種し、30℃・3日間発酵させた。2段階発酵試験では、L.delbrueckiiによる30℃・3日間の発酵ののち、さらに表18に示すその他の乳酸菌を用いて30℃・3日間発酵させた。発酵はスクリューキャップ付き不活性ガラスバイアルを用いて行った。得られる発酵物の揮発性代謝産物の組成をSPME-GC/MSを用いて分析し、各ITCが示したピーク面積値を信号強度として比較した(表17及び表18)。
Example 10 Effect of fermentation and co-fermentation by various lactic acid bacteria on ITC content Turnip), cabbage, Chinese cabbage) were extracted from the leaves of each plant in the same manner as in Example 1, and the lactic acid bacteria shown in Table 17 were cultured in Lactobacillus MRS medium (manufactured by Difco) at 30 ° C. for 24 hours. was inoculated and fermented at 30°C for 3 days. A fermentation test with a composite starter was also carried out. In the multiple fermentation test, co-fermentation and two-step fermentation were performed in the same manner as in Examples 3 and 4. In the co-fermentation test, L. delbrueckii and other lactic acid bacteria shown in Table 18 were inoculated and fermented at 30°C for 3 days. In the two-step fermentation test, L. delbrueckii for 3 days at 30°C, and then other lactic acid bacteria shown in Table 18 were fermented at 30°C for 3 days. Fermentations were carried out using inert glass vials with screw caps. The composition of volatile metabolites in the resulting fermentation product was analyzed using SPME-GC/MS, and the peak area values indicated by each ITC were compared as signal intensities (Tables 17 and 18).

Figure 2022127441000018
Figure 2022127441000018

Figure 2022127441000019
Figure 2022127441000019

分析の結果、L.delbrueckiiによりアブラナ科漬物野菜を発酵させると、他の乳酸菌よりも多くのITCが生成されることが明らかとなった(表17)。白カブ、赤カブ(開田カブ・王滝カブ)、白菜を用いた場合では、4-ペンテニルITCと3-ブテニルITCが、乳酸菌未接種に対して約1.5から約2.5倍に増加した。キャベツではほとんどアリルITCのみが検出されたが、L.delbrueckiiで発酵させた場合に、乳酸菌未接種よりも信号強度がやや増加した。L.plantarumによって発酵させた試料では、一部の野菜で極めて強いITCの信号が検出された。この特徴は漬物に強烈な辛みをもたらし、品質の異常につながることが懸念される。以上のことから、L.delbrueckiiでアブラナ科野菜の発酵に用いることで、ITCの香りと辛みによる特徴を適度に強調する効果が得られると期待される。 As a result of the analysis, L. It was found that fermentation of cruciferous pickled vegetables with C. delbrueckii produced more ITC than other lactic acid bacteria (Table 17). When white turnips, red turnips (Kaida turnips/Otaki turnips), and Chinese cabbage were used, 4-pentenyl ITC and 3-butenyl ITC increased by about 1.5 to about 2.5 times compared to those not inoculated with lactic acid bacteria. . Almost only allyl ITC was detected in cabbage, whereas L. There was a slight increase in signal intensity when fermented with delbrueckii compared to non-inoculation of lactic acid bacteria. L. In the plantarum fermented samples, very strong ITC signals were detected in some vegetables. It is feared that this characteristic will bring a strong pungent taste to pickles and lead to abnormal quality. From the above, L. By using delbrueckii for fermentation of cruciferous vegetables, it is expected that the effect of moderately emphasizing the characteristics of ITC due to its aroma and pungency can be obtained.

L.delbrueckiiと他の乳酸菌との共発酵では、L.diolivorans、L.parafarraginis、L.parakefiriなどの、多くの組み合わせで乳酸菌未接種よりも各ITCが増加する効果が得られた(表18)。したがって、L.delbrueckiiによるコハク酸及びITCの高生産と、実施例3で示した共発酵による乳酸及び酢酸の生成促進は、同時に効果を得ることができることが分かる。 L. In the co-fermentation between L. delbrueckii and other lactic acid bacteria, L. diolivorans, L. parafarraginis, L. Many combinations, such as parakefiri, were effective in increasing each ITC compared to non-inoculation of lactic acid bacteria (Table 18). Therefore, L. It can be seen that the high production of succinic acid and ITC by C. delbrueckii and the promotion of the production of lactic acid and acetic acid by co-fermentation shown in Example 3 can be achieved at the same time.

Claims (10)

野菜原料に乳酸菌を添加して、到達pHが4.5以下となるまで発酵させ、コハク酸含有量及びイソチオシアネート含有量の少なくともいずれかが野菜原料よりも多い発酵漬物を得る、発酵漬物の製造方法。 Production of fermented pickles by adding lactic acid bacteria to vegetable raw materials and fermenting them until the final pH reaches 4.5 or less to obtain fermented pickles in which at least one of succinic acid content and isothiocyanate content is higher than that of vegetable raw materials. Method. 乳酸菌が、ラクトバチルス属乳酸菌である、請求項1に記載の方法。 2. The method according to claim 1, wherein the lactic acid bacterium is Lactobacillus lactic acid bacterium. 乳酸菌が、ラクトバチルス・デルブリュッキー、ラクトバチルス・ファーメンタム、ラクトバチルス・ディオリボランス、ラクトバチルス・パラファラギニス、ラクトバチルス・プランタラム、ラクトバチルス・ブフネリ、ラクトバチルス・パラケフィリ、ラクトバチルス・クリスパタス、ラクトバチルス・ガセリ及びラクトバチルス・ロイテリから選ばれる少なくとも1つである、請求項1又は2に記載の方法。 Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus diolivorans, Lactobacillus parafaraginis, Lactobacillus plantarum, Lactobacillus buchneri, Lactobacillus parakephili, Lactobacillus crispatus, Lacto 3. The method according to claim 1 or 2, which is at least one selected from Bacillus gasseri and Lactobacillus reuteri. 乳酸菌が、ラクトバチルス・デルブリュッキーと、ラクトバチルス・ファーメンタム、ラクトバチルス・ディオリボランス、ラクトバチルス・パラファラギニス、ラクトバチルス・ブフネリ、ラクトバチルス・パラケフィリ、ラクトバチルス・クリスパタス、及びラクトバチルス・ガセリから選ばれる少なくとも1つとの組み合わせである、請求項1又は2に記載の方法。 Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus diolivorans, Lactobacillus parafaraginis, Lactobacillus buchneri, Lactobacillus parakephili, Lactobacillus crispatus, and Lactobacillus gasseri 3. The method of claim 1 or 2 in combination with at least one selected. 野菜原料に第1の乳酸菌を添加して発酵させた後、第2の乳酸菌を添加して、到達pHが4.3以下となるまで発酵させる、請求項1~4のいずれか1項に記載の方法。 5. The method according to any one of claims 1 to 4, wherein the first lactic acid bacterium is added to the vegetable raw material and fermented, and then the second lactic acid bacterium is added and fermented until the reached pH is 4.3 or less. the method of. 第1の乳酸菌が、ラクトバチルス・デルブリュッキーであり、第2の乳酸菌が、ラクトバチルス・ファーメンタム及びラクトバチルス・プランタラムである、請求項5に記載の方法。 6. The method according to claim 5, wherein the first lactic acid bacterium is Lactobacillus delbrueckii and the second lactic acid bacterium is Lactobacillus fermentum and Lactobacillus plantarum. 発酵を、30~45℃の温度条件で行う、請求項1~6のいずれか1項に記載の方法。 The method according to any one of claims 1 to 6, wherein the fermentation is performed at a temperature of 30-45°C. 発酵の際、塩化ナトリウムを発酵培地に対し2%(w/v)未満添加する、請求項1~7のいずれか1項に記載の方法。 A method according to any one of claims 1 to 7, wherein less than 2% (w/v) of sodium chloride is added to the fermentation medium during fermentation. 発酵の際、リンゴ酸又はその塩を添加する、請求項1~8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein malic acid or a salt thereof is added during fermentation. 野菜原料が、カブ、キャベツ、白菜、及びキュウリから選ばれる少なくとも1種である、請求項1~9のいずれか1項に記載の方法。 The method according to any one of claims 1 to 9, wherein the vegetable raw material is at least one selected from turnip, cabbage, Chinese cabbage, and cucumber.
JP2021025599A 2021-02-19 2021-02-19 Production method of fermented pickle Pending JP2022127441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021025599A JP2022127441A (en) 2021-02-19 2021-02-19 Production method of fermented pickle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021025599A JP2022127441A (en) 2021-02-19 2021-02-19 Production method of fermented pickle

Publications (1)

Publication Number Publication Date
JP2022127441A true JP2022127441A (en) 2022-08-31

Family

ID=83060059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021025599A Pending JP2022127441A (en) 2021-02-19 2021-02-19 Production method of fermented pickle

Country Status (1)

Country Link
JP (1) JP2022127441A (en)

Similar Documents

Publication Publication Date Title
Panagou et al. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria
Jin et al. Profiling the key metabolites produced during the modern brewing process of Chinese rice wine
Xu et al. Traditional chinese biotechnology
CN108077847A (en) A kind of method for being segmented low-temperature salting sauerkraut
CN109971689B (en) Pediococcus pentosaceus ZF618 and application thereof
JP4672776B2 (en) Acid-resistant Leuconostoc mesenteroides with excellent mannitol-producing ability and method for producing kimchi using the same
Li et al. Probiotic potential of γ-aminobutyric acid (GABA)–producing yeast and its influence on the quality of cheese
CN111944731A (en) Method for improving flavor of fermented fruits and vegetables based on multi-bacterium co-fermentation technology
JP2019208508A (en) Flavoring agent for beverage and flavoring agent for food
CN115812936A (en) Lactobacillus direct vat set fermented cowpea and preparation method thereof
KR101778260B1 (en) Preparation Method for Kimchi with High GABA Content
JPH0584065A (en) New lactobacillus and fermented ginseng juice prepared by using the same
JP2003024006A (en) Novel vinegar or acidulated food paste, and method for producing the vinegar or acidulated food paste
JP6158401B1 (en) Method for producing distilled liquor using koji mold and lactic acid bacteria
KR102169933B1 (en) Acetobacter pasteurianus BGK2018 Strain having High Acetic acid Production Ability and Method for Producing Fermented Vinegar using the same
JP4185823B2 (en) Method for producing vinegar with high GABA (γ-aminobutyric acid) content
JP2022127441A (en) Production method of fermented pickle
CN112940951B (en) Ester-producing saccharomycete and application thereof in making sour meat
JP2003339366A (en) Alcoholic beverage using bouillon extracted from meat as raw material and method for producing the same
Ahmed et al. Production process, nutritional composition, microbiology and quality issues of shidal, a traditional fermented indigenous fish product: A review
KR102243418B1 (en) Novel acetic acid bacteria and process for preparing Kombucha beverages using the same
JP6723427B1 (en) Lactic Acid Bacteria with Sour Taste Inhibition and Fermented Pickle Production Method Using the Same
CN112931796A (en) Ester-producing lactic acid bacteria and application thereof in sour meat production
Shetty et al. Fermentation of brewer's spent grain liquids to increase shelf life and give an organic acid enhanced ingredient.
KR20050066427A (en) The method of delaying the over ripening of kimchi with low-producing lactic acid leuconostoc mesenteroides and non-fermentable sugar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231121