JP2022127221A - Reinforcement structure and reinforcement method of masonry wall, and tubular reinforcement member - Google Patents

Reinforcement structure and reinforcement method of masonry wall, and tubular reinforcement member Download PDF

Info

Publication number
JP2022127221A
JP2022127221A JP2021025239A JP2021025239A JP2022127221A JP 2022127221 A JP2022127221 A JP 2022127221A JP 2021025239 A JP2021025239 A JP 2021025239A JP 2021025239 A JP2021025239 A JP 2021025239A JP 2022127221 A JP2022127221 A JP 2022127221A
Authority
JP
Japan
Prior art keywords
layer
diameter
reinforcing member
masonry wall
tubular reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021025239A
Other languages
Japanese (ja)
Inventor
謙吾 堀
Kengo Hori
直人 岩佐
Naoto Iwasa
隆雄 橋本
Takao Hashimoto
雅也 岩津
Masaya Iwazu
和徳 前田
Kazunori Maeda
弘栄 田中
Koei Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Nippon Steel Metal Products Co Ltd
Okabe Co Ltd
Free Kogyo KK
Kokushikan University
Original Assignee
Achilles Corp
Nippon Steel Metal Products Co Ltd
Okabe Co Ltd
Free Kogyo KK
Kokushikan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp, Nippon Steel Metal Products Co Ltd, Okabe Co Ltd, Free Kogyo KK, Kokushikan University filed Critical Achilles Corp
Priority to JP2021025239A priority Critical patent/JP2022127221A/en
Publication of JP2022127221A publication Critical patent/JP2022127221A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Retaining Walls (AREA)

Abstract

To provide a reinforcement structure and a reinforcement method of a masonry wall and a tubular reinforcement member which can prevent collapse of the masonry wall while keeping an original drainage function of a cobble stone layer, by improving pulling-out resistance by means other than solidification means and by solidifying a part other than the cobble stone layer.SOLUTION: In a reinforcement structure of a masonry wall 20 comprising a natural ground layer 23 behind a stone layer 21 via a cobble stone layer 22, a tubular reinforcement member 10 is positioned behind the stone layer 21, and pulling-out resistant portions 11R, 12R are formed in the stone layer 21 and the natural ground layer 23. The pulling-out resistant portions 11R, 12R are formed of a diameter-expansion mechanism 11 provided in the tubular reinforcement member 10 and/or a solidification material (not shown) discharged from the tubular reinforcement member 10. The tubular reinforcement member 10 is formed to have a hollow multi pipe structure (for example, a hollow double pipe structure comprising a short outer pipe 1 and a long inner pipe 2).SELECTED DRAWING: Figure 3

Description

この発明は、石積み壁の補強構造及び補強工法並びに管状の補強部材の技術分野に属する。 The present invention belongs to the technical field of reinforcing structures and methods for masonry walls and tubular reinforcing members.

築石層と裏込め栗石層(以下「栗石層」と称す。)と地山層(定着層とも言う。)とを備えた石積み壁は、前記栗石層が、地震による外力や大雨による水圧を受けて沈下することで前記築石層の背後から築石(間知石)を押し出す方向に力が作用し、その力に築石層が耐力保持できなくなることにより崩壊に至る。
この崩壊メカニズムを踏まえ、例えば、特許文献1、2に開示された従来の石積み壁の補強技術は、前記栗石層の沈下を防ぐことを目的に、築石層表面から地山方向に削孔し、削孔した孔にグラウト材を注入すること、又は補強部材を挿入してグラウト材を注入することで栗石層等を固化させて補強を行っていた。
A masonry wall comprising a boulder layer, a back-filled cobblestone layer (hereinafter referred to as the "cobblestone layer"), and a natural ground layer (also referred to as an anchorage layer) is constructed such that the cobblestone layer absorbs external force due to an earthquake and water pressure due to heavy rain. As a result of subsidence, a force acts in the direction of pushing out the stones (intimate stone) from behind the stone layer, and the stone layer cannot maintain its strength against the force, leading to collapse.
Based on this collapse mechanism, for example, in the conventional masonry wall reinforcement techniques disclosed in Patent Documents 1 and 2, holes are drilled from the surface of the boulder layer in the direction of the natural ground for the purpose of preventing subsidence of the cobblestone layer. In other words, by injecting grout material into the drilled hole, or by inserting a reinforcing member and injecting grout material, the cobblestone layer or the like is solidified and reinforced.

しかし、栗石層を固化させてしまうと、栗石層に期待される雨水や地山層からの地下水の排水機能を低下させることとなり、築石層の背後の水圧が高まることによって、その水圧に築石層(間知石)が耐力保持できなくなり石積み壁の崩壊を招くという新たな課題が懸念される。
また、補強部材(主に鉄筋棒)と地山層との固定手段について、従来はグラウト材等の固化材を補強部材と地山層との隙間に注入して固定を図っていたが、地山層自体が非常に漏出性の高い地盤である場合や、石積み壁のように地山層に隣接して栗石層などの空隙の大きい層が存在する場合は、固化材の充填不足による補強部材の引き抜き抵抗力不足となる課題があり、補強部材の引き抜き抵抗力を固化材だけで負担するのは限界があった。
However, if the cobblestone layer is allowed to solidify, the expected function of the cobblestone layer to drain rainwater and groundwater from the groundwater layer will be reduced. There is concern about a new problem that the stone layer (Machiseki) will not be able to maintain its bearing strength, leading to the collapse of the masonry wall.
In addition, as for the means of fixing reinforcing members (mainly reinforcing bars) to the ground layer, a solidification material such as grout was conventionally injected into the gap between the reinforcing member and the ground layer. If the mountain layer itself is very leaky ground, or if there is a layer with large voids such as a cobblestone layer adjacent to the ground layer like a masonry wall, a reinforcing member due to insufficient filling of the solidification material There is a problem that the pull-out resistance of the reinforcing member is insufficient, and there is a limit to bearing the pull-out resistance of the reinforcing member only by the solidifying material.

特開2005-9209号公報JP-A-2005-9209 特開2006-283309号公報JP 2006-283309 A

したがって、本発明は、上述した背景技術の課題に鑑みて案出されたものであり、その目的とするところは、前記固化手段以外の手段で引き抜き抵抗力を高めたり、前記栗石層以外の部位(築石層、地山層)を固化させたりすることによって前記栗石層本来の排水機能を保持しつつ石積み壁の崩壊を防止することができる、施工性、確実性、安全性、及び品質性に優れた石積み壁の補強構造及び補強工法並びに管状の補強部材を提供することにある。 Therefore, the present invention has been devised in view of the above-mentioned problems of the background art, and its object is to increase the pull-out resistance by means other than the above-mentioned solidification means, Constructability, certainty, safety, and quality that can prevent the collapse of the masonry wall while maintaining the original drainage function of the cobblestone layer by solidifying (stone layer, natural ground layer) To provide a reinforcing structure and a reinforcing construction method for a masonry wall, and a tubular reinforcing member, which are excellent in strength.

上記課題を解決するための手段として、請求項1に記載した発明に係る石積み壁の補強構造は、築石層の背後に栗石層を介して地山層を備えた石積み壁の補強構造であって、
前記築石層の背後に管状の補強部材が位置決めされており、前記築石層と前記地山層とに引き抜き抵抗部が形成されていることを特徴とする。
As a means for solving the above-mentioned problems, the reinforcement structure for a masonry wall according to the invention described in claim 1 is a reinforcement structure for a masonry wall in which a ground layer is provided behind an artificial stone layer via a cobblestone layer. hand,
A tubular reinforcing member is positioned behind the rock layer, and pull-out resistance portions are formed between the rock layer and the rock layer.

請求項2に記載した発明は、請求項1に記載した石積み壁の補強構造において、前記引き抜き抵抗部は、前記管状の補強部材に設けられた拡径機構、及び/又は前記管状の補強部材から排出された固化材で形成されていることを特徴とする。 The invention recited in claim 2 is the masonry wall reinforcement structure recited in claim 1, wherein the pull-out resistance portion is provided in the tubular reinforcing member and/or from a diameter expanding mechanism provided in the tubular reinforcing member. It is characterized by being formed of the discharged solidifying material.

請求項3に記載した発明に係る管状の補強部材は、請求項1又は2に記載の石積み壁の補強構造に用いる管状の補強部材であって、前記管状の補強部材は、前記築石層で拡径する拡径機構を備えた単管と前記地山層で拡径する拡径機構を備えた単管とを2本以上組み合わせて外径が異なる中空多重管構造に形成されていることを特徴とする。 A tubular reinforcing member according to the invention described in claim 3 is a tubular reinforcing member used in the reinforcing structure of a masonry wall according to claim 1 or 2, wherein the tubular reinforcing member is formed in the stone layer. A hollow multi-pipe structure having different outer diameters is formed by combining two or more single pipes equipped with a diameter-expanding mechanism that expands the diameter and a single pipe equipped with a diameter-expansion mechanism that expands the diameter in the rock layer. Characterized by

請求項4に記載した発明は、請求項3に記載した管状の補強部材において、前記管状の補強部材は、短い外管と長い内管とからなる中空二重管構造に形成され、前記外管は、前記築石層で拡径する拡径機構を備え、前記内管は、前記地山層で拡径する拡径機構を備え、前記外管は前記内管の移動に追随する構成とされていることを特徴とする。 The invention recited in claim 4 is the tubular reinforcing member recited in claim 3, wherein the tubular reinforcing member is formed in a hollow double-tube structure comprising a short outer tube and a long inner tube, and the outer tube is provided with a diameter-expanding mechanism that expands the diameter at the stone layer, the inner pipe has a diameter-expanding mechanism that expands the diameter at the rock layer, and the outer pipe follows the movement of the inner pipe. It is characterized by

請求項5に記載した発明は、請求項3又は4に記載した管状の補強部材において、前記拡径機構は、管軸の周方向に形成された複数本のスリットであることを特徴とする。
請求項6に記載した発明は、請求項4又は5に記載した管状の補強部材において、前記内管は、前記築石層および前記地山層に相当する部位に前記固化材を排出する排出部が設けられていることを特徴とする。
The invention recited in claim 5 is the tubular reinforcing member recited in claim 3 or 4, wherein the diameter expanding mechanism is a plurality of slits formed in the circumferential direction of the pipe axis.
The invention recited in claim 6 is the tubular reinforcing member recited in claim 4 or 5, wherein the inner pipe includes a discharge portion for discharging the solidifying material to a portion corresponding to the rock layer and the natural ground layer. is provided.

請求項7に記載した発明に係る石積み壁の補強工法は、請求項4~6のいずれか1項に記載の管状の補強部材を築石層へ挿入し、前記内管が前記栗石層を貫通して前記地山層へ到達するまで前記管状の補強部材を押し込む工程と、
前記内管の基端部に短尺のテンション棒を取り付け、前記短尺のテンション棒を手前側に引くことによって前記内管の移動に追随する前記外管の拡径機構を前記築石層で拡径させる工程と、
前記短尺のテンション棒を前記内管から取り外した後、前記内管の奥端部に長尺のテンション棒を取り付け、前記長尺のテンション棒を手前側に引くことによって前記内管の拡径機構を前記地山層で拡径させる工程と、を有することを特徴とする。
A method for reinforcing a masonry wall according to the invention recited in claim 7 is characterized in that the tubular reinforcing member according to any one of claims 4 to 6 is inserted into the stone layer, and the inner pipe penetrates the cobblestone layer. and pushing the tubular reinforcing member until it reaches the rock formation;
A short tension rod is attached to the base end of the inner pipe, and by pulling the short tension rod to the near side, the diameter expansion mechanism of the outer pipe that follows the movement of the inner pipe is expanded by the built stone layer. and
After the short tension rod is removed from the inner pipe, a long tension rod is attached to the inner end of the inner pipe, and the long tension rod is pulled forward to expand the diameter of the inner pipe. and a step of expanding the diameter of the base layer.

請求項8に記載した発明は、請求項7に記載した石積み壁の補強工法において、前記内管を通じて前記築石層及び/又は前記地山層に固化材を注入することにより、前記築石層及び/又は前記地山層における前記管状の補強部材の外周に固化補強体を形成することを特徴とする。 The invention described in claim 8 is the masonry wall reinforcement method according to claim 7, wherein a solidification material is injected into the stone layer and/or the natural ground layer through the inner pipe. and/or forming a solidified reinforcing body on the outer circumference of the tubular reinforcing member in the natural ground layer.

本発明に係る石積み壁の補強構造及び補強工法並びに管状の補強部材によれば、以下の効果を奏する。
(1)管状の補強部材に設けた拡径機構を機械的に拡径することにより速やかに築石層と地山層とに引き抜き抵抗部を確実に形成することができるので、従来の流動状のグラウト材による注入量不足による引き抜き抵抗力不足の不安も解消される。よって、施工性、確実性はもとより、施工直後から耐震機能性、安全性、及び品質性に優れた石積み壁の補強構造を実現することができる。
(2)栗石層を改変することなく実施できるので、栗石層本来の排水機能を損なうことがない。よって、さらに耐震機能性、安全性、及び品質性に優れた石積み壁の補強構造を実現することができる。
(3)引き抜き抵抗部を、前記拡径機構と前記固化材との2種の補強手段を導入した構成で実施できるので、従前の固化手段だけで実施する場合と比し、前記2種の補強手段が協働することで、より一層、強度・剛性に優れた引き抜き抵抗部(固化補強体)を形成することができる。よって、耐震機能性、安全性、及び品質性に非常に優れた石積み壁の補強構造を実現することができる。
ADVANTAGE OF THE INVENTION According to the reinforcement structure of a masonry wall, the reinforcement construction method, and the tubular reinforcement member which concern on this invention, the following effects are produced.
(1) By mechanically expanding the diameter of the diameter expanding mechanism provided on the tubular reinforcing member, it is possible to quickly and reliably form a pull-out resisting portion in the rock layer and the natural ground layer. This eliminates the anxiety of insufficient pull-out resistance due to insufficient injection amount due to the grout material. Therefore, it is possible to realize a reinforcement structure for a masonry wall that is excellent in seismic resistance functionality, safety, and quality immediately after construction, as well as workability and reliability.
(2) Since it can be carried out without altering the cobblestone layer, the original drainage function of the cobblestone layer is not impaired. Therefore, it is possible to realize a reinforcing structure for a masonry wall that is more excellent in earthquake resistance functionality, safety, and quality.
(3) Since the pull-out resistance part can be implemented by introducing two types of reinforcement means, the diameter expanding mechanism and the solidification material, the two types of reinforcement can be achieved compared to the case where only the conventional solidification means is used. By cooperating with the means, it is possible to form a pull-out resistance portion (solidified reinforcing body) having even higher strength and rigidity. Therefore, it is possible to realize a reinforcing structure for a masonry wall that is extremely excellent in earthquake resistance functionality, safety, and quality.

本発明に係る石積み壁の補強工法の施工状況を概略的に示した説明図である。FIG. 2 is an explanatory view schematically showing a construction situation of a method for reinforcing a masonry wall according to the present invention; 図1の正面図(左側面図)である。FIG. 2 is a front view (left side view) of FIG. 1; 本発明に係る石積み壁の補強工法及び補強構造を概略的に示した説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which showed roughly the reinforcement construction method and reinforcement structure of the masonry wall based on this invention. 図3の正面図(左側面図)である。4 is a front view (left side view) of FIG. 3; FIG. A~Dは、本発明に係る石積み壁の補強工法の施工状況を段階的に示した説明図である。4A to 4D are explanatory diagrams showing step by step the construction status of the method for reinforcing a masonry wall according to the present invention. A~Cは、本発明に係る石積み壁の補強工法の施工状況を段階的に示した説明図である。1A to 1C are explanatory diagrams showing step by step the construction status of the method for reinforcing a masonry wall according to the present invention. 図5Aに示した管状の補強部材のS部拡大図である。5B is an enlarged view of the S section of the tubular reinforcing member shown in FIG. 5A; FIG. 図5Aに示した管状の補強部材のT部拡大図である。5B is an enlarged view of the T portion of the tubular reinforcing member shown in FIG. 5A; FIG. 図5Aに示した管状の補強部材のU部拡大図である。5B is an enlarged view of the U portion of the tubular reinforcing member shown in FIG. 5A; FIG. 図5Bに示した管状の補強部材のV部拡大図である。5C is an enlarged view of the V portion of the tubular reinforcing member shown in FIG. 5B; FIG. 図5Cに示した管状の補強部材のW部拡大図である。FIG. 5D is an enlarged view of the W portion of the tubular reinforcing member shown in FIG. 5C; 図5Cに示した管状の補強部材のX部拡大図である。FIG. 5D is an enlarged view of the X section of the tubular reinforcing member shown in FIG. 5C; 図6Aに示した管状の補強部材のY部拡大図である。6B is an enlarged view of the Y section of the tubular reinforcing member shown in FIG. 6A; FIG. 本発明に係る石積み壁の補強工法及び補強構造のバリエーションを概略的に示した説明図である。It is explanatory drawing which showed roughly the reinforcement construction method of the masonry wall and the variation of a reinforcement structure which concern on this invention.

次に、本発明に係る石積み壁の補強構造及び補強工法並びに管状の補強部材を図面に基づいて説明する。 Next, a reinforcing structure and method for reinforcing a masonry wall and a tubular reinforcing member according to the present invention will be described with reference to the drawings.

図1~図13は、本発明に係る石積み壁20の補強工法及び補強構造並びに補強部材10の実施例を示している。
この石積み壁20の補強構造は、築石層21の背後に栗石層22を介して地山層23を備えており、前記築石層(間知石)21の背後に管状の補強部材10が位置決めされており、前記築石層21と前記地山層23とに引き抜き抵抗部11R、12Rが形成されている(図3参照)。すなわち本発明は、前記栗石層22に引き抜き抵抗部11R、12Rを設けない等、栗石層22を改変しない構成で実施するので、栗石層22本来の排水機能を損なうことはない。
FIGS. 1 to 13 show embodiments of a method of reinforcing a masonry wall 20, a reinforcing structure, and a reinforcing member 10 according to the present invention.
The reinforcing structure of this masonry wall 20 comprises a ground layer 23 behind an artificial stone layer 21 via a cobblestone layer 22 , and a tubular reinforcing member 10 behind the artificial stone layer (Machiseki) 21 . Positioning is performed, and pullout resistance portions 11R and 12R are formed in the rock layer 21 and the ground layer 23 (see FIG. 3). That is, the present invention is carried out in a configuration in which the cobblestone layer 22 is not modified, such as not providing the pull-out resistance portions 11R and 12R in the cobblestone layer 22, so that the original drainage function of the cobblestone layer 22 is not impaired.

前記引き抜き抵抗部11R、12Rは、本実施例では、前記管状の補強部材10に設けられた拡径機構11、12及び前記管状の補強部材10から排出・拡散された固化材(図示省略)で形成されている。すなわち、本実施例に係る引き抜き抵抗部11R、12Rは、前記拡径機構11、12と前記固化材との2種の補強手段を導入した構成で実施しているが、前記2種の補強手段のうち、いずれか一方の補強手段を用いて引き抜き抵抗部11R、12Rを形成してもそれ相応の効果(引き抜き抵抗力)を得られる。 In this embodiment, the pull-out resistance portions 11R and 12R are diameter expanding mechanisms 11 and 12 provided in the tubular reinforcing member 10 and a hardening material (not shown) discharged and diffused from the tubular reinforcing member 10. formed. That is, the pull-out resistance portions 11R and 12R according to the present embodiment are constructed by introducing two types of reinforcing means, namely, the diameter expanding mechanisms 11 and 12 and the solidifying material. Even if one of the reinforcing means is used to form the pull-out resistance portions 11R and 12R, a corresponding effect (pull-out resistance) can be obtained.

前記管状の補強部材10は、短い外管1と長い内管2とからなる中空二重管構造に形成され、前記外管1は、前記築石層21で拡径する拡径機構11を備え、前記内管2は、前記地山層23で拡径する拡径機構12を備え、前記外管1は前記内管2の移動に追随する構成で実施されている。
本実施例では、あくまでも一例として、前記外管1は、めっき処理した鋼管が用いられ、外径23mm程度、肉厚3mm程度、長さ(軸方向長さ)300mm程度で実施され、前記内管2は、めっき処理した鋼管が用いられ、外径17mm程度、肉厚3mm程度、長さ2000mm程度で実施され、前記外管1は前記内管2に隙間なく外嵌めした構成、言い換えると外管1の内径面と内管2の外径面とがほとんど隙間なく接した構成で実施されている。かつ、前記外管1は前記内管2に、図7、図8に示したように、その基端部同士を揃えないで(符号H参照)、溶接手段13で一体化している。前記符号Hは、本実施例では20mmで実施しているがこれに限定されず、前記拡径機構11、12又は形成する引き抜き抵抗部11R、12Rの形態等の構造設計に応じて適宜設計変更可能である。前記溶接手段13もこれに限定されず、前記外管1が前記内管2の一方向への移動に追随(連動)する構成であればよいので、例えばボルト接合手段や突設部(鍔部)等の掛け止め手段でも同様に実施できる。
The tubular reinforcing member 10 is formed in a hollow double-tube structure consisting of a short outer tube 1 and a long inner tube 2, and the outer tube 1 is provided with a diameter-expanding mechanism 11 that expands the diameter of the stone layer 21. , the inner pipe 2 is provided with a diameter-expanding mechanism 12 that expands in the natural layer 23 , and the outer pipe 1 follows the movement of the inner pipe 2 .
In this embodiment, as an example only, the outer tube 1 is a plated steel tube, and has an outer diameter of about 23 mm, a wall thickness of about 3 mm, and a length (axial length) of about 300 mm. 2 uses a plated steel pipe and has an outer diameter of about 17 mm, a wall thickness of about 3 mm, and a length of about 2000 mm. 1 and the outer diameter surface of the inner tube 2 are in contact with each other with almost no gap. 7 and 8, the outer tube 1 is integrated with the inner tube 2 by welding means 13 without aligning their proximal ends (see symbol H). Although the symbol H is 20 mm in this embodiment, it is not limited to this, and the design can be changed as appropriate according to the structural design of the diameter expanding mechanisms 11 and 12 or the form of the withdrawal resistance portions 11R and 12R to be formed. It is possible. The welding means 13 is also not limited to this, and it may be configured so that the outer tube 1 follows (interlocks) with the movement of the inner tube 2 in one direction. ) or the like can be used in the same manner.

また、前記内管2は、先端部は尖端形状をなし(図9参照)、基端部と奥端部とにそれぞれ、後述するテンション棒8、9を取り付けるための雌ねじ部2a、2bが形成されている。前記雌ねじ部2a、2bは、削孔機械のロッド(図示省略)の接続に供することもできる。
なお、本実施例に係る前記外管1、内管2は、めっき処理した鋼管で実施されているが勿論これに限定されず、ステンレス製やチタン製でも実施可能である。前記外管1、内管2の長さ等の寸法は、勿論前記に限らず、本発明を適用する石積み壁20の形態等に応じて適宜設計変更可能である。
The inner tube 2 has a pointed end (see FIG. 9), and female threads 2a and 2b for attaching tension rods 8 and 9 to be described later are formed at the proximal end and the deep end, respectively. It is The internal threads 2a, 2b can also be used for connecting a rod (not shown) of a drilling machine.
Although the outer tube 1 and the inner tube 2 according to the present embodiment are made of plated steel tubes, they are of course not limited to this, and may be made of stainless steel or titanium. Of course, the dimensions such as the length of the outer tube 1 and the inner tube 2 are not limited to those described above, and can be appropriately changed in design according to the form of the masonry wall 20 to which the present invention is applied.

前記拡径機構11、12は、本実施例では、管軸の周方向に略等間隔に形成された複数本(本実施例では4本)の線状のスリット11a、12aで構成され、周方向に隣接する線状のスリット同士11a、12aの間の部位が、管軸方向から見て放射状に膨らんで(浮き上がって)拡径することにより引き抜き抵抗部11R、12Rが形成される。
前記外管1に設けるスリット11aは、本実施例では、あくまでも一例として、各スリット11aの長さが80mmで、屈曲部位(両端部と中央部との3箇所)は丸孔11bに形成することにより、図5Cの方向から見ると、二等辺三角形状に拡径する構成で実施されている。
前記内管2に設けるスリット12aは、本実施例では、あくまでも一例として、各スリット12aの長さが200mmで、屈曲部位(両端部と中央より左寄りの3箇所)は丸孔12bに形成することにより、図6Bの方向から見ると、前記外管1の拡径寸法よりも大きい、直角三角形状に拡径する構成で実施されている。
なお、前記引き抜き抵抗部11R、12Rの形態(大きさ、形状)は、図示例に限定されない。例えば、本実施例に係る前記引き抜き抵抗部11R、12Rの拡径寸法11W、12W(図6C参照)はそれぞれ、80mm、150mmで実施しているが、構造設計に応じて適宜設計変更可能である。また、前記スリット11a、12a周辺に補強リブを設けて管自体の強度・剛性を高める等の工夫は適宜行われるところである。
In this embodiment, the diameter expanding mechanisms 11 and 12 are composed of a plurality of (four in this embodiment) linear slits 11a and 12a formed at approximately equal intervals in the circumferential direction of the pipe axis. The portions between the linear slits 11a and 12a adjacent to each other in the direction swell (float) radially as viewed from the tube axial direction to form pull-out resistance portions 11R and 12R.
The slits 11a provided in the outer tube 1 are, in this embodiment, as an example only, each slit 11a having a length of 80 mm, and the bending portions (three portions at both ends and the central portion) are formed in the round holes 11b. Therefore, when viewed from the direction of FIG. 5C, it is implemented in a configuration in which the diameter expands in the shape of an isosceles triangle.
The slits 12a provided in the inner tube 2 are, in this embodiment, as an example only, each slit 12a having a length of 200 mm, and the curved portions (both ends and three locations to the left of the center) are formed in round holes 12b. Therefore, when viewed from the direction of FIG. 6B, the outer tube 1 is expanded in diameter in a right-angled triangular shape, which is larger than the expanded diameter dimension of the outer tube 1 .
The form (size and shape) of the pull-out resistance portions 11R and 12R is not limited to the illustrated example. For example, the enlarged diameter dimensions 11W and 12W (see FIG. 6C) of the pull-out resistance portions 11R and 12R according to the present embodiment are set to 80 mm and 150 mm, respectively, but the design can be appropriately changed according to the structural design. . In addition, it is appropriate to take measures such as providing reinforcing ribs around the slits 11a and 12a to increase the strength and rigidity of the pipe itself.

本実施例では、前記引き抜き抵抗部11R、12Rを、前記拡径機構11、12による補強手段に加え、前記固化材を排出(注入)する補強手段を併用した構成で実施している。この固化材を排出する補強手段を実施するべく、本実施例では、前記内管2について、前記築石層21および前記地山層23に相当する部位にそれぞれ、前記固化材を排出する排出部(排出手段)を設けている。
具体的に、前記築石層21へ排出する排出部は、図5C、図12に示したように、一例としてφ5~8m程度の複数の排出孔2cを前記内管2の基端側に当該内管2の内外を連通する構成で穿設し、前記内管2の中空部内に注入した固化材が前記内管2の排出孔2cを通じて前記拡径機構11を利用して排出される。前記排出孔2cの径、配置間隔、及び穿設個数は、構造設計に応じて適宜設計変更可能である。
一方、前記地山層23に排出する排出部は、本実施例の場合は特に排出部を設けなくても、前記内管2の中空部内に注入した固化材は前記内管2の奥端部で拡径した拡径機構12を利用して排出される。
In this embodiment, in addition to the reinforcing means by the diameter expanding mechanisms 11 and 12, the pull-out resistance portions 11R and 12R are constructed by using reinforcing means for discharging (injecting) the solidifying material. In order to implement the reinforcing means for discharging the solidification material, in the present embodiment, the inner pipe 2 is provided with discharge portions for discharging the solidification material to portions corresponding to the rock layer 21 and the ground layer 23, respectively. (Ejection means) is provided.
Specifically, as shown in Figs. 5C and 12, the discharge portion for discharging to the stone layer 21 has, for example, a plurality of discharge holes 2c having a diameter of about 5 to 8 m on the base end side of the inner pipe 2. The solidifying material injected into the hollow portion of the inner pipe 2 is discharged through the discharge hole 2c of the inner pipe 2 by using the diameter expanding mechanism 11. As shown in FIG. The diameter, arrangement interval, and number of holes of the discharge holes 2c can be appropriately changed according to the structural design.
On the other hand, in the case of the present embodiment, even if no discharge portion is provided as a discharge portion for discharging to the ground layer 23, the solidifying material injected into the hollow portion of the inner pipe 2 is is discharged using the diameter-expanding mechanism 12 whose diameter is expanded in .

かくして、前記拡径機構11、12を利用して排出・拡散される固化材は、前記管状の補強部材10の前記築石層21の周囲と前記地山層23の周囲で固化され、それぞれ塊状の固化補強体、ひいては前記引き抜き抵抗部11R、12Rを呈し、当該引き抜き抵抗部11R、12Rの楔(アンカー)効果による抵抗力により、従来の流動状のグラウト材による注入量不足による引き抜き抵抗力不足の不安も解消される、耐震機能性、安全性、及び品質性に優れた石積み壁の補強構造を実現することができる。 Thus, the solidifying material discharged and diffused using the diameter expanding mechanisms 11 and 12 is solidified around the rock layer 21 and the natural ground layer 23 of the tubular reinforcing member 10, and is solidified in lumps. The solidified reinforcing body, and thus the pull-out resistance portions 11R and 12R, are exhibited, and due to the resistance due to the wedge (anchor) effect of the pull-out resistance portions 11R and 12R, the pull-out resistance is insufficient due to the insufficient injection amount of the conventional fluid grout material. It is possible to realize a reinforced structure for masonry walls that is excellent in earthquake-resistant functionality, safety, and quality.

次に、本発明にかかる石積み壁20の補強工法を説明する。
この石積み壁20の補強工法は、上述した外管1と内管2とからなる管状の補強部材10を、築石層21へ挿入し、前記内管2が前記栗石層22を貫通して前記地山層23へ到達するまで前記管状の補強部材10を押し込む(図1、図2参照)。この押し込み手段は、前記内管2の基端部に設けた雌ねじ部2aに、図示は省略するが、先端に雄ねじ部を形成したロッドをねじ込んで接続し、当該ロッドを介して回転しながら打撃を加えるドリフター等の削孔機により推進力を与えて実施する。本実施例では、水平方向やや斜め下方に勾配(例えば5~10度程度)をつけて地山層(定着層)23へ向けて打ち込んでいる。もっとも、前記管状の補強部材10を築石層21へ挿入する前に削孔機で事前削孔しておいてもよい。本実施例では、固化材の良好な流動等を勘案し、水平方向やや斜め下方に勾配をつけて地山層23へ打設しているがこれに限定されず、水平方向へ打設して実施することもできる。
そして、前記管状の補強部材10を所定位置まで押し込んだ(打ち込んだ)後、前記ロッドを前記内管2から取り外して撤去する(図5A参照)。
Next, a method for reinforcing the masonry wall 20 according to the present invention will be described.
In this method of reinforcing the masonry wall 20, the tubular reinforcing member 10 composed of the outer tube 1 and the inner tube 2 is inserted into the stone layer 21, and the inner tube 2 penetrates the cobblestone layer 22 to the above-mentioned The tubular reinforcing member 10 is pushed in until it reaches the ground layer 23 (see FIGS. 1 and 2). This pushing means is connected by screwing a rod having a male threaded portion at the tip (not shown) into the female threaded portion 2a provided at the proximal end portion of the inner tube 2, and impacting while rotating through the rod. It is carried out by applying a driving force with a drilling machine such as a drifter that adds In this embodiment, the material is driven toward the natural ground layer (fixation layer) 23 with an inclination (for example, about 5 to 10 degrees) slightly obliquely downward in the horizontal direction. However, before inserting the tubular reinforcing member 10 into the stone layer 21, the hole may be pre-drilled with a drilling machine. In the present embodiment, considering the good flow of the solidifying material, etc., it is cast into the ground layer 23 with a slightly oblique downward slope in the horizontal direction. can also be implemented.
After the tubular reinforcing member 10 is pushed (struck) into a predetermined position, the rod is removed from the inner tube 2 (see FIG. 5A).

次に、図5Bと図10に示したように、前記内管2の基端部の雌ねじ部2aに短尺のテンション棒8をねじ込んで接続する。短尺のテンション棒8を取り付けた後は、当該短尺のテンション棒8の基端部にカプラー25をねじ込んで取り付け、さらに前記カプラー25にセンターシャフト26をねじ込んで取り付けることにより引張ジャッキ24を前記石積み壁20(築石層21)の表面へ当接させて位置決めする。 Next, as shown in FIGS. 5B and 10, a short tension rod 8 is screwed into the female threaded portion 2a at the proximal end of the inner tube 2 to connect it. After the short tension rod 8 is attached, a coupler 25 is screwed to the base end of the short tension rod 8, and a center shaft 26 is screwed to the coupler 25 to attach the tension jack 24 to the masonry wall. 20 (stone layer 21) is brought into contact with the surface and positioned.

次に、図5Bから図5Cに段階的に示したように、前記石積み壁20表面に反力をとって前記センターシャフト26、ひいては前記短尺のテンション棒8を手前側に引くことによって、図10から図11に段階的に示したように、前記短尺のテンション棒8に接続された前記内管2が前記引張ジャッキ24に衝突するまで(符号H=20mm)移動する。そうすると、前記内管2の移動に追随する構成の外管1は、その基端が前記引張ジャッキ24に当接されたままの状態で(図10参照)、その先端部(図8参照)を手前側へ引き寄せることになるので、前記拡径機構11のスリット11aの中央付近の丸孔11b辺りに座屈作用が働き、その結果、図5C(図12)に示したように、前記外管1に形成した拡径機構11(スリット11a)が前記築石層21で放射状に膨らんで拡径する。 5B to 5C step by step, a reactive force is applied to the surface of the masonry wall 20 to pull the center shaft 26 and thus the short tension rod 8 toward the front, thereby 11 until the inner tube 2 connected to the short tension rod 8 collides with the pulling jack 24 (mark H=20 mm). Then, the outer tube 1 configured to follow the movement of the inner tube 2 is kept in contact with the tension jack 24 at its proximal end (see FIG. 10), and its distal end (see FIG. 8) is Since it is drawn to the near side, a buckling action acts around the round hole 11b near the center of the slit 11a of the diameter expanding mechanism 11, and as a result, as shown in FIG. 5C (FIG. 12), the outer tube The diameter expanding mechanism 11 (slit 11a) formed in 1 bulges radially in the stone layer 21 to expand the diameter.

次に、図5Dに示したように、前記短尺のテンション棒8を内管2の基端部から取り外して撤去した後、図6Aと図13に示したように、前記内管2の奥端部の雌ねじ部2bに長尺のテンション棒9をねじ込んで接続する。長尺のテンション棒9を取り付けた後は、当該長尺のテンション棒9の基端部にカプラー25をねじ込んで取り付け、さらに前記カプラー25にセンターシャフト26をねじ込んで取り付けることにより引張ジャッキ24を前記石積み壁20(築石層21)の表面へ当接させて位置決めする。 Next, as shown in FIG. 5D, after removing the short tension rod 8 from the proximal end of the inner tube 2 and removing it, as shown in FIGS. A long tension rod 9 is screwed and connected to the female threaded portion 2b of the portion. After the long tension rod 9 is attached, the coupler 25 is screwed to the base end of the long tension rod 9, and the center shaft 26 is screwed to the coupler 25 to attach the tension jack 24 as described above. It is positioned by contacting the surface of the masonry wall 20 (stone layer 21).

次に、図6Aから図6Bに段階的に示したように、前記石積み壁20表面に反力をとって前記センターシャフト26、ひいては前記長尺のテンション棒9を手前側に引くことによって、前記内管2の基端が前記引張ジャッキ24に当接されたままの状態で(図11参照)、その先端部を手前側へ引き寄せることになるので、前記拡径機構12のスリット12aの中央左寄り付近の丸孔12b辺りに座屈作用が働き、その結果、図6Bに示したように、前記内管2に形成した拡径機構12(スリット12a)が前記地山層23で放射状に膨らんで拡径する。
前記外管1、内管2にそれぞれ形成する引き抜き抵抗部11R、12Rの拡径度合いは、前記引張ジャッキ24のストローク量で管理することができる。
しかる後、前記長尺のテンション棒9を前記内管2から取り外して撤去する(図6C参照)。
Next, as shown in steps from FIG. 6A to FIG. 6B, a reaction force is applied to the surface of the masonry wall 20 to pull the center shaft 26 and thus the elongated tension rod 9 toward the near side. With the proximal end of the inner tube 2 kept in contact with the pulling jack 24 (see FIG. 11), the distal end is pulled forward, so that the slit 12a of the diameter-enlarging mechanism 12 is pushed toward the left of the center. A buckling action acts around the nearby round hole 12b, and as a result, as shown in FIG. Expand diameter.
The degree of diameter expansion of the pullout resistance portions 11R and 12R formed in the outer tube 1 and the inner tube 2, respectively, can be controlled by the stroke amount of the pulling jack 24. As shown in FIG.
After that, the long tension rod 9 is removed from the inner tube 2 and removed (see FIG. 6C).

本実施例では、その後、前記内管2の中空部に固化材を注入し、前記中空部を通じて前記築石層21及び前記地山層23へそれぞれ固化材を排出・拡散することにより、前記築石層21及び前記地山層23における管状の補強部材10の外周に固化補強体(引き抜き抵抗部11R、12R)を形成する。具体的に、本実施例では、前記内管2の中空部を通じてその奥端部の地山層23へ固化材(例えば、セメントミルク、無機系固化材)を排出・拡散させた後、前記内管2の基端部側に設けた排出孔2cを通じて外管1の拡径機構11から築石層21へ固化材(例えば、ウレタン)を排出・拡散させることより四方の隣り合う築石(間知石)を相互に固定する。かくして、前記栗石層22を改変することなく前記地山層23と前記築石層21とにそれぞれ所要の強度・剛性を備えた塊状の固化補強体(引き抜き抵抗部11R、12R)を形成することができる。
なお、前記固化材の注入作業の際に注入用チューブや逆止弁パッカーを装着したインサートパッカーを用いる等の工夫は適宜行われるところである。
In this embodiment, after that, a solidifying material is injected into the hollow portion of the inner tube 2, and the solidifying material is discharged and diffused through the hollow portion into the rock layer 21 and the natural ground layer 23, respectively. A solidified reinforcing member (pull-out resistance portions 11R and 12R) is formed on the outer periphery of the tubular reinforcing member 10 in the stone layer 21 and the ground layer 23 . Specifically, in this embodiment, after discharging and diffusing a solidification material (eg, cement milk, inorganic solidification material) through the hollow portion of the inner pipe 2 to the ground layer 23 at the inner end thereof, By discharging and diffusing the solidifying material (for example, urethane) from the diameter expanding mechanism 11 of the outer tube 1 to the stone layer 21 through the discharge hole 2c provided on the base end side of the tube 2, adjacent stones (intervals) in four directions are discharged and diffused. intellectual stone) to each other. Thus, without modifying the cobblestone layer 22, the solidified solidified masses (pull-out resistance portions 11R and 12R) having required strength and rigidity are formed in the natural ground layer 23 and the built-stone layer 21, respectively. can be done.
It should be noted that, at the time of injecting the solidifying material, some measures such as using an insert packer equipped with an injection tube or a check valve packer are appropriately made.

しかる後、前記補強部材10の基端部の突き出し部に受圧板(固定プレート)19をボルト18(図3参照)、又は溶接等の接合手段で接合することにより前記石積み壁20を支圧する。具体的には前記ボルト18を用いて接合する場合、前記内管2の基端部の雌ねじ部2aに前記ボルト18をねじ込んで接続し、前記接続したボルト18に前記受圧板19(の中央に形成した孔)を通した上でナットをねじ込んで締結して接合する。前記受圧板19を固定する際、石積み壁20表面を覆う被覆ネットを鋼線、ワイヤロープ、又は樹脂材料を用いて張設する等の工夫は適宜行われるところである。
そして、上記段落[0023]~[0028]で説明した施工工程を、打設する補強部材10の本数(図示例では略千鳥配置に12本)に応じて繰り返し行い、もって、石積み壁20の補強工法を終了する。
Thereafter, a pressure receiving plate (fixing plate) 19 is joined to the protruding portion of the base end of the reinforcing member 10 by means of joining means such as bolts 18 (see FIG. 3) or welding to support the masonry wall 20 . Specifically, when joining using the bolt 18, the bolt 18 is screwed into the female threaded portion 2a of the proximal end portion of the inner tube 2 for connection, and the connected bolt 18 is attached to the pressure receiving plate 19 (at the center of the pressure plate 19). After passing through the formed hole), the nut is screwed in to fasten and join. When fixing the pressure-receiving plate 19, it is appropriate to use a steel wire, a wire rope, or a resin material to stretch a covering net covering the surface of the masonry wall 20, for example.
Then, the construction steps described in paragraphs [0023] to [0028] are repeated according to the number of reinforcing members 10 to be placed (12 in a substantially staggered arrangement in the illustrated example), thereby reinforcing the masonry wall 20. End the construction method.

以上、実施例を図面に基づいて説明したが、本発明は、図示例の限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更、応用のバリエーションの範囲を含むことを念のために言及する。 Although the embodiments have been described above with reference to the drawings, the present invention is not limited to the illustrated examples, and includes the range of design changes and application variations that are normally made by those skilled in the art within the scope that does not deviate from the technical idea of the present invention. Just to be sure.

例えば、図1~図13に係る実施例は、前記管状の補強部材10を、短い外管1を1本と長い内管2を1本の計2本の単管からなる中空二重管構造に形成し、前記築石層21と前記地山層23とに1箇所ずつ計2箇所に引き抜き抵抗部11R、12Rを設けて実施しているが、本発明の範囲はこれに限定されない。前記管状の補強部材10を、前記築石層21で拡径する拡径機構を備えた単管と前記地山層23で拡径する拡径機構を備えた単管とを2本以上組み合わせて外径が異なる中空多重管構造に形成して実施することもできる。具体的に図14は、前記築石層21で拡径する拡径機構を備えた単管1本と前記地山層23で拡径する拡径機構を備えた単管2本の計3本の単管を組み合わせて外径が異なる中空三重管構造に形成した管状の補強部材10’の実施例を概略的に示している。この中空三重管構造をなす管状の補強部材10’は、既に説明した図1~図13に係る前記中空二重管構造の管状の補強部材10の拡径手法に倣って順に拡径される。
すなわち、例えば、前記3本の単管を内方から外方へ順に内管、中管、外管と称するとして、前記外管は前記中管の移動に追随し、前記中管は前記内管の移動に追随する構成とし、先ず前記中管の基端部の雌ねじ部に短尺のテンション棒をねじ込み、手前側に引くことによって、前記外管に形成した拡径機構を前記築石層21で拡径させ、次に、前記内管の基端部の雌ねじ部に短尺のテンション棒をねじ込み、手前側に引くことによって、前記中管に形成した拡径機構を前記地山層23で拡径させ、次に、前記内管の奥端部の雌ねじ部に長尺のテンション棒をねじ込み、手前側に引くことによって、前記内管に形成した拡径機構を前記地山層23で拡径させる。
この図14に係る実施例は、図1~図13に係る実施例と比し、地山層23だけで2箇所の引き抜き抵抗部12Rを形成することができるので、前記地山層23が軟弱で1箇所の引き抜き抵抗部12R(図3参照)では所定の引き抜き耐力を確保できない(虞がある)場合、引き抜き耐力を飛躍的に高めることができる効果がある。
なお、図14に係る管状の補強部材10’は、中空三重管構造で実施しているがこれに限定されず、中空四重管以上の構造で実施することもでき、当該構造に応じて地山層23に3箇所以上の引き抜き抵抗部12Rを形成して実施することもできる。
For example, in the embodiment according to FIGS. 1 to 13, the tubular reinforcing member 10 has a hollow double-tube structure consisting of two single tubes, one short outer tube 1 and one long inner tube 2. , and the pull-out resistors 11R and 12R are provided in two places, one in each of the stone layer 21 and the ground layer 23, but the scope of the present invention is not limited to this. The tubular reinforcing member 10 is formed by combining two or more single pipes having a diameter-expanding mechanism that expands the diameter in the boulder layer 21 and a single pipe that has a diameter-expanding mechanism that expands the diameter in the ground layer 23. It can also be implemented by forming a hollow multi-tube structure with different outer diameters. Specifically, FIG. 14 shows a total of three pipes: one single pipe equipped with a diameter-expanding mechanism that expands in the rock layer 21 and two single pipes equipped with a diameter-expanding mechanism that expands in the ground layer 23. 1 schematically shows an embodiment of a tubular reinforcing member 10' formed by combining the single tubes to form a hollow triple tube structure with different outer diameters. The tubular reinforcing member 10' having the hollow triple-tube structure is sequentially expanded in diameter according to the method for expanding the diameter of the tubular reinforcing member 10 having the hollow double-tube structure according to FIGS. 1 to 13 already described.
That is, for example, if the three single pipes are called an inner pipe, a middle pipe, and an outer pipe in order from the inside to the outside, the outer pipe follows the movement of the middle pipe, and the middle pipe follows the inner pipe. First, a short tension rod is screwed into the female threaded portion of the base end of the middle pipe, and pulled forward, so that the diameter expanding mechanism formed in the outer pipe is formed on the built stone layer 21. Then, a short tension rod is screwed into the female threaded portion of the base end of the inner pipe, and pulled forward to expand the diameter of the diameter-expanding mechanism formed in the middle pipe by the ground layer 23 . Then, a long tension rod is screwed into the female threaded portion at the back end of the inner pipe, and is pulled forward to expand the diameter of the diameter-expanding mechanism formed in the inner pipe by the rock layer 23 . .
In the embodiment shown in FIG. 14, as compared with the embodiments shown in FIGS. 1 to 13, the ground layer 23 alone can form two pull-out resistance portions 12R, so that the ground layer 23 is soft. , there is an effect that the pull-out resistance can be dramatically increased when a predetermined pull-out resistance cannot be secured (or is likely to occur) with a single pull-out resistance portion 12R (see FIG. 3).
The tubular reinforcing member 10' according to FIG. 14 has a hollow triple-tube structure, but is not limited to this. It is also possible to form three or more pull-out resistance portions 12R in the mountain layer 23 and carry it out.

その他、前記補強部材10を構成する内管2は、一本物のほか、端部がネジきり加工された管材同士をカプラーで連結した構成で実施することも勿論できる。 In addition, the inner pipe 2 constituting the reinforcing member 10 can be of course constructed by connecting pipe members having threaded ends with a coupler instead of a single pipe.

以上、本実施例では石積み壁20を中心に説明したが、石垣にも適用可能であることを念のため特記しておく。 Although the present embodiment has been described mainly for the masonry wall 20, it should be noted that the present invention can also be applied to a stone wall.

1 外管
2 内管
2a 雌ねじ部
2b 雌ねじ部
2c 排出部(排出孔)
8 短尺のテンション棒
9 長尺のテンション棒
10 管状の補強部材(中空二重管構造)
10’ 管状の補強部材(中空三重管構造)
11 拡径機構
11a スリット
11b 丸孔
11R 引き抜き抵抗部
12 拡径機構
12a スリット
12b 丸孔
12R 引き抜き抵抗部
13 溶接手段
18 ボルト
19 受圧板
20 石積み壁
21 築石層
22 栗石層
23 地山層
24 引張ジャッキ
25 カプラー
26 センターシャフト
Reference Signs List 1 outer tube 2 inner tube 2a female threaded portion 2b female threaded portion 2c discharge portion (discharge hole)
8 short tension rod 9 long tension rod 10 tubular reinforcing member (hollow double tube structure)
10' tubular reinforcing member (hollow triple tube structure)
11 Diameter expanding mechanism 11a Slit 11b Round hole 11R Withdrawal resistance portion 12 Diameter expanding mechanism 12a Slit 12b Round hole 12R Withdrawal resistance portion 13 Welding means 18 Bolt 19 Pressure receiving plate 20 Masonry wall 21 Masonry layer 22 Cobblestone layer 23 Ground layer 24 Tensile Jack 25 Coupler 26 Center shaft

Claims (8)

築石層の背後に栗石層を介して地山層を備えた石積み壁の補強構造であって、
前記築石層の背後に管状の補強部材が位置決めされており、前記築石層と前記地山層とに引き抜き抵抗部が形成されていることを特徴とする、石積み壁の補強構造。
A reinforcing structure of a masonry wall provided with a ground layer behind an artificial stone layer via a cobble stone layer,
A reinforcement structure for a masonry wall, characterized in that a tubular reinforcing member is positioned behind the built stone layer, and pull-out resisting portions are formed between the built stone layer and the ground layer.
前記引き抜き抵抗部は、前記管状の補強部材に設けられた拡径機構、及び/又は前記管状の補強部材から排出された固化材で形成されていることを特徴とする、請求項1に記載した石積み壁の補強構造。 2. The pull-out resistance part is formed of a diameter expanding mechanism provided in the tubular reinforcing member and/or a hardening material discharged from the tubular reinforcing member. Masonry wall reinforcement structure. 請求項1又は2に記載の石積み壁の補強構造に用いる管状の補強部材であって、前記管状の補強部材は、前記築石層で拡径する拡径機構を備えた単管と前記地山層で拡径する拡径機構を備えた単管とを2本以上組み合わせて外径が異なる中空多重管構造に形成されていることを特徴とする、管状の補強部材。 3. A tubular reinforcing member used in a reinforcing structure for a masonry wall according to claim 1 or 2, wherein the tubular reinforcing member comprises a single pipe provided with a diameter-expanding mechanism that expands the diameter of the stone layer and the natural ground. A tubular reinforcing member characterized in that it is formed into a hollow multi-tube structure having different outer diameters by combining two or more single tubes provided with a diameter-expanding mechanism that expands the diameter in layers. 前記管状の補強部材は、短い外管と長い内管とからなる中空二重管構造に形成され、前記外管は、前記築石層で拡径する拡径機構を備え、前記内管は、前記地山層で拡径する拡径機構を備え、前記外管は前記内管の移動に追随する構成とされていることを特徴とする、請求項3に記載した管状の補強部材。 The tubular reinforcing member is formed in a hollow double-tube structure consisting of a short outer tube and a long inner tube, the outer tube has a diameter-expanding mechanism that expands the diameter with the stone bed, and the inner tube is: 4. The tubular reinforcing member according to claim 3, further comprising a diameter-expanding mechanism that expands the diameter in the natural layer, wherein the outer pipe follows the movement of the inner pipe. 前記拡径機構は、管軸の周方向に形成された複数本のスリットであることを特徴とする、請求項3又は4に記載した管状の補強部材。 5. The tubular reinforcing member according to claim 3, wherein the diameter expanding mechanism is a plurality of slits formed in the circumferential direction of the tube axis. 前記内管は、前記築石層および前記地山層に相当する部位に前記固化材を排出する排出部が設けられていることを特徴とする、請求項4又は5に記載した管状の補強部材。 6. The tubular reinforcing member according to claim 4 or 5, wherein the inner pipe is provided with a discharge portion for discharging the solidification material at a portion corresponding to the rock layer and the natural ground layer. . 請求項4~6のいずれか1項に記載の管状の補強部材を築石層へ挿入し、前記内管が前記栗石層を貫通して前記地山層へ到達するまで前記管状の補強部材を押し込む工程と、
前記内管の基端部に短尺のテンション棒を取り付け、前記短尺のテンション棒を手前側に引くことによって前記内管の移動に追随する前記外管の拡径機構を前記築石層で拡径させる工程と、
前記短尺のテンション棒を前記内管から取り外した後、前記内管の奥端部に長尺のテンション棒を取り付け、前記長尺のテンション棒を手前側に引くことによって前記内管の拡径機構を前記地山層で拡径させる工程と、を有することを特徴とする、石積み壁の補強工法。
The tubular reinforcing member according to any one of claims 4 to 6 is inserted into the stone layer, and the tubular reinforcing member is inserted until the inner pipe penetrates the cobblestone layer and reaches the natural ground layer. pushing process;
A short tension rod is attached to the base end of the inner pipe, and by pulling the short tension rod to the near side, the diameter expansion mechanism of the outer pipe that follows the movement of the inner pipe is expanded by the built stone layer. and
After the short tension rod is removed from the inner pipe, a long tension rod is attached to the inner end of the inner pipe, and the long tension rod is pulled forward to expand the diameter of the inner pipe. A method of reinforcing a masonry wall, comprising:
前記内管を通じて前記築石層及び/又は前記地山層に固化材を注入することにより、前記築石層及び/又は前記地山層における前記管状の補強部材の外周に固化補強体を形成することを特徴とする、請求項7に記載した石積み壁の補強工法。 By injecting a solidification material into the rock layer and/or the rock layer through the inner pipe, a solidified reinforcing body is formed on the outer circumference of the tubular reinforcing member in the rock layer and/or the rock layer. The method for reinforcing a masonry wall according to claim 7, characterized in that:
JP2021025239A 2021-02-19 2021-02-19 Reinforcement structure and reinforcement method of masonry wall, and tubular reinforcement member Pending JP2022127221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021025239A JP2022127221A (en) 2021-02-19 2021-02-19 Reinforcement structure and reinforcement method of masonry wall, and tubular reinforcement member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021025239A JP2022127221A (en) 2021-02-19 2021-02-19 Reinforcement structure and reinforcement method of masonry wall, and tubular reinforcement member

Publications (1)

Publication Number Publication Date
JP2022127221A true JP2022127221A (en) 2022-08-31

Family

ID=83059916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021025239A Pending JP2022127221A (en) 2021-02-19 2021-02-19 Reinforcement structure and reinforcement method of masonry wall, and tubular reinforcement member

Country Status (1)

Country Link
JP (1) JP2022127221A (en)

Similar Documents

Publication Publication Date Title
JP5335200B2 (en) Spiral steel pipe pile
JP5091282B2 (en) Underground anchor
KR100437910B1 (en) grouting apparatus for earth anchor using compound packer and earth anchor construction method using the same
JP2010248812A (en) Double tube-type pile head structure
KR100797800B1 (en) Fixing device of permanent anchor
WO2013089466A1 (en) Method and apparatus for pouring bonding filler in a perforation expansion portion for enhancing the support force of a pile or tensile member
KR20130029906A (en) An expanding device of frictional force
JP2022127221A (en) Reinforcement structure and reinforcement method of masonry wall, and tubular reinforcement member
KR101488721B1 (en) Construction method for extending bulb of the ground anchor by post grouting and bulb extending apparatus being used for the same
KR100616359B1 (en) Support-pipe using method of soil nailing
JP2007170038A (en) Natural ground reinforcing body and construction method of natural ground reinforcing body
JP4017766B2 (en) Hollow cylindrical body and its construction method
JP4608327B2 (en) The tip structure of a steel pipe pile used in the medium digging method.
US11124938B2 (en) Expanding foundation components and related systems and methods
KR101609168B1 (en) Small bore steel pipe pile
JP4104471B2 (en) Ground anchor construction method
JP5504463B2 (en) Reinforcing method of concrete frame
KR20020021299A (en) An apparatus and method for ground anchor using FRP tube
CN214738025U (en) Framework structure of driving-in type combined anchor rod
CN111305201A (en) Tensile type anchor
KR20160001115U (en) Coulper of steel pipe pile for rotational intrusion and pullout
JP2015187379A (en) Steel pipe pile and construction method for the same
JP7165958B1 (en) Reinforcement drainage system for retaining wall and Reinforcement drainage method for retaining wall
JP5455869B2 (en) Reinforcing structure of existing retaining wall and reinforcing method of existing retaining wall
KR102492371B1 (en) Reinforcement structure with various cross-section structure for increasing bearing capacity of piles and micropile method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240625