JP2022125490A - Induction heating furnace and manufacturing method thereof - Google Patents

Induction heating furnace and manufacturing method thereof Download PDF

Info

Publication number
JP2022125490A
JP2022125490A JP2021023098A JP2021023098A JP2022125490A JP 2022125490 A JP2022125490 A JP 2022125490A JP 2021023098 A JP2021023098 A JP 2021023098A JP 2021023098 A JP2021023098 A JP 2021023098A JP 2022125490 A JP2022125490 A JP 2022125490A
Authority
JP
Japan
Prior art keywords
heat
resistant member
resistant
coating film
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021023098A
Other languages
Japanese (ja)
Other versions
JP7225286B2 (en
Inventor
雅之 内田
Masayuki Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui E&S Machinery Co Ltd
Original Assignee
Mitsui E&S Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui E&S Machinery Co Ltd filed Critical Mitsui E&S Machinery Co Ltd
Priority to JP2021023098A priority Critical patent/JP7225286B2/en
Publication of JP2022125490A publication Critical patent/JP2022125490A/en
Application granted granted Critical
Publication of JP7225286B2 publication Critical patent/JP7225286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)

Abstract

To provide an induction heating furnace and a manufacturing method thereof that can extend the life of a heat-resistant member by enabling removal of oxide scale adhering to the heat-resistant member.SOLUTION: A manufacturing method of a heat-resistant member 2 which is composed of a cylindrical member extending in a horizontal direction and configured such that a billet 4 as an object to be heated can pass through the inner peripheral surface side includes a manufacturing step of molding and hardening the heat-resistant member 2 from concrete or ceramics, and then a coating step of applying a heat-resistant paint to at least a part of the inner peripheral surface of the heat-resistant member 2 to form a coating film portion 7.SELECTED DRAWING: Figure 1

Description

本発明は、ビレットを加熱する誘導加熱炉およびこの誘導加熱炉に設置される耐熱部材の製造方法に関するものであり、詳しくは耐熱部材の長寿命化を実現できる誘導加熱炉および耐熱部材の製造方法に関するものである。 TECHNICAL FIELD The present invention relates to an induction heating furnace for heating billets and a method for manufacturing a heat-resistant member installed in the induction heating furnace. It is about.

誘導加熱炉が種々提案されている(例えば特許文献1参照)。特許文献1にはエア噴射ノズルを備える誘導加熱炉が開示されている。この誘導加熱炉は、板状の被加熱物が通過した後にエア噴射ノズルから空気を噴射することで、耐熱部材の内側に落下した酸化スケールを吹き飛ばして除去することができた。 Various induction heating furnaces have been proposed (see Patent Document 1, for example). Patent Literature 1 discloses an induction heating furnace equipped with an air injection nozzle. In this induction heating furnace, after the plate-shaped object to be heated has passed, air is injected from the air injection nozzle, so that the oxide scale that has fallen inside the heat-resistant member can be blown off and removed.

しかし被加熱物としてビレットを対象としている誘導加熱炉では、エア噴射ノズルを利用できなかった。円柱形状のビレットがその軸方向に搬送される誘導加熱炉における耐熱部材は、開口部が比較的小さく搬送方向に比較的長く構成されている。そのためエア噴射ノズルから噴射される空気が、耐熱部材の内側の奥まで届かず、酸化スケールを除去できなかった。 However, in induction heating furnaces that target billets as objects to be heated, air injection nozzles cannot be used. A heat-resistant member in an induction heating furnace, in which a cylindrical billet is transported in its axial direction, has a relatively small opening and is relatively long in the transport direction. Therefore, the air injected from the air injection nozzle did not reach the inside of the heat-resistant member, and the oxide scale could not be removed.

誘導加熱炉の内部では、先行するビレットを後続のビレットが押すことでビレットが搬送される。複数のビレットが連続的に誘導加熱炉に供給されて加熱される。誘導加熱炉の内部でビレットが途切れることがないので、エア噴射ノズルから空気を噴射する機会が得られなかった。仮に誘導加熱炉の内部にビレットがある状態で空気を噴射すると、誘導加熱炉の内部のビレットの温度が低下する不具合が発生する。噴射される空気によりビレットが部分的に冷やされるため、鍛造品の品質が低下する不具合が発生する。ビレットを加熱する誘導加熱炉において酸化スケールを除去できなかった。 Inside the induction heating furnace, the billets are conveyed by pushing the preceding billet with the subsequent billet. A plurality of billets are continuously supplied to an induction heating furnace and heated. Since the billet was not interrupted inside the induction heating furnace, there was no opportunity to inject air from the air injection nozzle. If air is injected while the billet is inside the induction heating furnace, the temperature of the billet inside the induction heating furnace drops. Since the billet is partially cooled by the jetted air, the quality of the forged product is degraded. Oxidized scale could not be removed in an induction heating furnace for heating billets.

ビレットを加熱する誘導加熱炉において、耐熱部材に付着する酸化スケールを効率よく除去できなかったため、耐熱部材の長寿命化を実現することは困難であった。 In the induction heating furnace for heating the billet, it was difficult to achieve a long service life of the heat-resistant member because the oxide scale adhering to the heat-resistant member could not be efficiently removed.

日本国特開2000-003779号広報Japanese Patent Publication No. 2000-003779

本発明は上記の問題を鑑みてなされたものであり、その目的は耐熱部材に付着する酸化スケールの除去を可能とすることで耐熱部材の長寿命化を実現できる誘導加熱炉および耐熱部材の製造方法を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to enable the removal of oxide scale adhering to the heat-resistant member, thereby realizing a longer life of the heat-resistant member, and the production of the heat-resistant member. to provide a method.

上記の目的を達成するための誘導加熱炉は、水平方向に延設される筒状の部材で構成されていて内周面側を被加熱物であるビレットが通過可能に形成される耐熱部材と、この耐熱部材の外周面側に配置される加熱コイルとを備える誘導加熱炉において、前記耐熱部材が、コンクリートまたはセラミックスで構成されるとともに、内周面の少なくとも一部に耐熱塗料により形成される塗膜部を有することを特徴とする。 An induction heating furnace for achieving the above object is composed of a cylindrical member extending in a horizontal direction, and a heat-resistant member formed so that a billet, which is an object to be heated, can pass through the inner peripheral surface side. and a heating coil arranged on the outer peripheral surface side of the heat-resistant member, wherein the heat-resistant member is made of concrete or ceramics, and at least a part of the inner peripheral surface is formed of heat-resistant paint. It is characterized by having a coating film portion.

上記の目的を達成するための耐熱部材の製造方法は、水平方向に延設される筒状の部材で構成されていて内周面側を被加熱物であるビレットが通過可能に構成される耐熱部材の製造方法において、コンクリートまたはセラミックスにより前記耐熱部材を成形して硬化させる製造工程と、その後、前記耐熱部材の内周面の少なくとも一部に耐熱塗料が塗布されて塗膜部が形成される塗布工程とを備えることを特徴とする。 A method for manufacturing a heat-resistant member for achieving the above object is a heat-resistant member which is composed of a cylindrical member extending in a horizontal direction and configured so that a billet, which is an object to be heated, can pass through the inner peripheral surface side. In the member manufacturing method, a manufacturing step of molding and hardening the heat-resistant member from concrete or ceramics, and then applying a heat-resistant paint to at least a part of the inner peripheral surface of the heat-resistant member to form a coating film portion. and a coating step.

本発明によれば、塗膜部を配置することで耐熱部材の内周面を滑らかにすることができる。耐熱部材が冷却された後に、耐熱部材の内周面に付着している酸化スケールを容易に除去することが可能となる。耐熱部材の長寿命化を実現するには有利である。 According to the present invention, the inner peripheral surface of the heat-resistant member can be made smooth by arranging the coating film portion. After the heat-resistant member is cooled, it becomes possible to easily remove the oxide scale adhering to the inner peripheral surface of the heat-resistant member. This is advantageous for achieving longer life of heat-resistant members.

誘導加熱炉を断面で例示する説明図である。It is explanatory drawing which illustrates an induction heating furnace in a cross section. 円筒形状の耐熱部材を斜視で例示する説明図である。It is an explanatory view illustrating a cylindrical heat-resistant member in a perspective view. 傾斜部を有する耐熱部材を斜視で例示する説明図である。It is an explanatory view illustrating a heat-resistant member having an inclined portion in a perspective view. 図2のAA矢視を例示する説明図である。FIG. 3 is an explanatory diagram illustrating an AA arrow view of FIG. 2; 耐熱部材から酸化スケールが除去される状態を例示する説明図である。It is explanatory drawing which illustrates the state where an oxide scale is removed from a heat-resistant member. 図2の耐熱部材の変形例を例示する説明図である。FIG. 3 is an explanatory diagram illustrating a modification of the heat-resistant member of FIG. 2; 図6のBB矢視を例示する説明図である。FIG. 7 is an explanatory diagram illustrating the BB arrow view of FIG. 6; 図7の塗膜部および耐熱シートを拡大して例示する説明図である。FIG. 8 is an explanatory diagram illustrating an enlarged example of a coating film portion and a heat-resistant sheet in FIG. 7 ; 図8の変形例を例示する説明図である。FIG. 9 is an explanatory diagram illustrating a modification of FIG. 8;

以下、誘導加熱炉および耐熱部材の製造方法を図に示した実施形態に基づいて説明する。図中では筒状の耐熱部材の延設方向を矢印x、この延設方向xを直角に横断する幅方向を矢印y、上下方向を矢印zで示している。 Hereinafter, an induction heating furnace and a method for manufacturing a heat-resistant member will be described based on embodiments shown in the drawings. In the drawing, the extending direction of the cylindrical heat-resistant member is indicated by the arrow x, the width direction perpendicular to the extending direction x is indicated by the arrow y, and the vertical direction is indicated by the arrow z.

図1に例示するように誘導加熱炉1は、水平方向に延設される筒状の耐熱部材2と、耐熱部材2の外周面側に配置される加熱コイル3とを備えている。耐熱部材2の内周面側には被加熱物であるビレット4を通過可能とするための空間である通路5が形成されている。通路5には例えばビレット4を下方から支持する一対の棒状部材からなるスキッドレール6が配置されている。本発明の誘導加熱炉1はスキッドレール6を備える構成に限定されない。耐熱部材2の内周面側に形成されていてビレット4を搬送可能な通路5を少なくとも備えていればよい。 As illustrated in FIG. 1 , an induction heating furnace 1 includes a cylindrical heat-resistant member 2 extending in the horizontal direction, and a heating coil 3 arranged on the outer peripheral surface side of the heat-resistant member 2 . A passage 5 is formed on the inner peripheral surface side of the heat-resistant member 2 as a space for allowing a billet 4 to be heated to pass through. A skid rail 6 consisting of a pair of rod-shaped members for supporting the billet 4 from below, for example, is arranged in the passage 5 . The induction heating furnace 1 of the present invention is not limited to the configuration provided with the skid rails 6 . At least the passage 5 formed on the inner peripheral surface side of the heat-resistant member 2 and capable of conveying the billet 4 may be provided.

この実施形態では耐熱部材2の延設方向xに沿って三つのユニット1a、1b、1cにより誘導加熱炉1は構成されている。三つのユニット1a-1cは延設方向xに沿って互いに分離可能に構成されている。 In this embodiment, the induction heating furnace 1 is composed of three units 1a, 1b, and 1c along the extending direction x of the heat-resistant member 2. As shown in FIG. The three units 1a-1c are configured to be separable from each other along the extending direction x.

図2に例示するように第一ユニット1aおよび第二ユニット1bに配置される耐熱部材2aは、円筒形状に形成されている。円筒形状に限らず角筒形状など他の形状に耐熱部材2aが形成されていてもよい。図3に例示するように第三ユニット1cに配置される耐熱部材2bは、誘導加熱炉1の出口に向かって下方に拡開していく内周面を有する形状に形成されている。この耐熱部材2bはビレット4を下り傾斜で搬送させるための傾斜部を有している。 As illustrated in FIG. 2, the heat-resistant members 2a arranged in the first unit 1a and the second unit 1b are formed in a cylindrical shape. The heat-resistant member 2a may be formed in a shape other than the cylindrical shape, such as a square tube shape. As illustrated in FIG. 3, the heat-resistant member 2b arranged in the third unit 1c is formed in a shape having an inner peripheral surface that widens downward toward the outlet of the induction heating furnace 1. As shown in FIG. This heat-resistant member 2b has an inclined portion for conveying the billet 4 with a downward inclination.

耐熱部材2は例えばコンクリートで構成されている。本明細書においてコンクリートとは、セメントに砂利などの粗骨材と水を混ぜ合わせたものの他、セメントに水を混ぜたもの(セメントペースト)、セメントに砂などの細骨材を混ぜたもの(モルタル)も含む概念である。コンクリートには周知の添加剤等が含まれていてもよい。 The heat-resistant member 2 is made of concrete, for example. In this specification, concrete means a mixture of cement with coarse aggregate such as gravel and water, a mixture of cement with water (cement paste), and a mixture of cement with fine aggregate such as sand ( It is a concept that also includes mortar. Concrete may contain well-known additives and the like.

耐熱部材2はセラミックスで構成されてもよい。本明細書においてセラミックスとは、炭化ケイ素やアルミナ(酸化アルミニウム)などに水を混ぜたもの他、骨材を混ぜたものを含む概念である。セラミックスには周知の添加剤等が含まれていてもよい。 The heat-resistant member 2 may be made of ceramics. In this specification, the term "ceramics" is a concept that includes materials obtained by mixing silicon carbide, alumina (aluminum oxide), etc. with water, as well as materials obtained by mixing aggregates. Ceramics may contain well-known additives and the like.

図2および図3に例示するように耐熱部材2の内周面には塗膜部7が配置されている。塗膜部7は、耐熱部材2の内周面に耐熱塗料を塗布することで形成される。塗膜部7は、例えばジルコニア(二酸化ジルコニウム)を主成分とする耐熱塗料で構成される。 As illustrated in FIGS. 2 and 3, a coating film portion 7 is arranged on the inner peripheral surface of the heat-resistant member 2 . The coating film portion 7 is formed by applying heat-resistant paint to the inner peripheral surface of the heat-resistant member 2 . The coating film portion 7 is made of, for example, a heat-resistant paint containing zirconia (zirconium dioxide) as a main component.

塗膜部7の構成は上記に限定されない。塗膜部7は、誘導加熱炉1における昇温に耐えられる耐熱温度を有するものであればよい。例えば耐熱温度が1300℃の耐熱塗料が使用される。例えばシリコン、シリカ、アルミナ(酸化アルミニウム)またはこれらの混合物を主成分とする耐熱塗料で、塗膜部7を構成することができる。ジルコニアが含まれる混合物を主成分とする耐熱塗料で塗膜部7が構成されてもよい。塗膜部7の形成に使用される耐熱塗料の主成分は、誘導加熱炉1で加熱されるビレット4の温度に応じて適宜選択することができる。 The configuration of the coating film portion 7 is not limited to the above. The coating film portion 7 may have a heat resistant temperature that can withstand the temperature rise in the induction heating furnace 1 . For example, a heat resistant paint having a heat resistant temperature of 1300° C. is used. For example, the coating film portion 7 can be made of a heat-resistant paint containing silicon, silica, alumina (aluminum oxide), or a mixture thereof as a main component. The coating film portion 7 may be composed of a heat-resistant paint whose main component is a mixture containing zirconia. The main component of the heat-resistant paint used for forming the coating film portion 7 can be appropriately selected according to the temperature of the billet 4 heated in the induction heating furnace 1 .

塗布されることで耐熱部材2の内周面の表面粗さを低減できる構成を耐熱塗料は有していればよい。耐熱部材2の内周面に形成される微細な凹部に耐熱塗料が流れ込むとともに微細な凸部を耐熱塗料が覆うことで塗膜部7が形成される。塗膜部7が配置されることで、耐熱部材2の内周面を滑らかにすることができる。 The heat-resistant paint may have a structure capable of reducing the surface roughness of the inner peripheral surface of the heat-resistant member 2 by being applied. The coating film portion 7 is formed by the heat-resistant paint flowing into fine concave portions formed on the inner peripheral surface of the heat-resistant member 2 and by covering the fine convex portions with the heat-resistant paint. The inner peripheral surface of the heat-resistant member 2 can be made smooth by arranging the coating film portion 7 .

図4は円筒形状の耐熱部材2aの軸方向(延設方向x)に直交する方向における耐熱部材2aの断面を示している。図4に例示するように塗膜部7は、耐熱部材2aの内周面の下端近傍となる位置に配置されている。本明細書において下端近傍とは、図4において円筒形状の耐熱部材2aの中心Oから内周面の下端P1に伸びる仮想線を基準として左右に45°以下となる範囲をいう。図4では説明のため中心Oから下端P1に伸びる仮想線を一点鎖線で示して、中心Oから左右に45°となる部分を破線で示している。下端近傍はこの一対の破線の間となる範囲となる。また下端近傍が、耐熱部材2において上下方向zの中心となる位置よりも下方側となる範囲であってもよい。つまり図4の中心Oから幅方向yに伸びる仮想線よりも下方側となる範囲を下端近傍としてもよい。塗膜部7は内周面の下端近傍に限らず内周面の全体に配置される構成であってもよい。耐熱部材2aの内周面においてビレット4から発生する酸化スケールが付着しうる範囲に塗膜部7が配置されることが望ましい。 FIG. 4 shows a cross section of the cylindrical heat-resistant member 2a in a direction orthogonal to the axial direction (extending direction x) of the heat-resistant member 2a. As illustrated in FIG. 4, the coating film portion 7 is arranged in the vicinity of the lower end of the inner peripheral surface of the heat-resistant member 2a. In this specification, the vicinity of the lower end refers to a range of 45° or less to the left and right of a virtual line extending from the center O of the cylindrical heat-resistant member 2a to the lower end P1 of the inner peripheral surface in FIG. In FIG. 4, for the sake of explanation, a virtual line extending from the center O to the lower end P1 is indicated by a dashed dotted line, and a portion of 45° left and right from the center O is indicated by a broken line. The vicinity of the lower end is the range between the pair of dashed lines. Also, the vicinity of the lower end may be in a range below the center of the heat-resistant member 2 in the vertical direction z. In other words, the vicinity of the lower end may be a range below the virtual line extending in the width direction y from the center O in FIG. The coating film portion 7 may be arranged not only near the lower end of the inner peripheral surface but also on the entire inner peripheral surface. It is desirable that the coating film portion 7 be arranged in a range where the oxide scale generated from the billet 4 can adhere to the inner peripheral surface of the heat-resistant member 2a.

塗膜部7の厚みは適宜設定される。例えば0.1mm以上3.0mm以下の範囲に塗膜部7の厚みは設定される。塗膜部7は耐熱効果を目的としていないため、厚みは比較的薄い状態に設定されても不具合はない。塗膜部7を薄く構成するほど熱膨張および熱収縮に伴い塗膜部7における亀裂の発生を抑制することができる。また耐熱部材2から塗膜部7が剥離することを抑制できる。塗膜部7を厚く構成するほど耐熱部材2の内周面の凹凸を隠蔽して滑らかな状態にしやすくなる。また酸化スケールが耐熱部材2に直接接触することを抑制しやすくなる。 The thickness of the coating film portion 7 is appropriately set. For example, the thickness of the coating film portion 7 is set in the range of 0.1 mm or more and 3.0 mm or less. Since the coating film portion 7 is not intended for a heat resistance effect, there is no problem even if the thickness is set to be relatively thin. As the thickness of the coating film portion 7 is reduced, cracking in the coating film portion 7 due to thermal expansion and contraction can be suppressed. Moreover, peeling of the coating film portion 7 from the heat-resistant member 2 can be suppressed. The thicker the coating film portion 7, the easier it is to hide irregularities on the inner peripheral surface of the heat-resistant member 2 and make the inner peripheral surface smooth. Moreover, it becomes easy to suppress that an oxide scale contacts the heat-resistant member 2 directly.

耐熱部材2を製造する際には、コンクリートまたはセラミックスの原料や水が混合されて、硬化前のコンクリートまたはセラミックスが準備される。硬化前のコンクリート等は円筒形状等に成形されて硬化される。耐熱部材2が製造される工程を以下、製造工程ということがある。硬化前のコンクリート等は型枠等に流し込まれて成形される。耐熱部材2を構成する材料がコンクリートの場合は乾燥により硬化させる。材料がセラミックスの場合は加熱処理により焼き固められる。 When manufacturing the heat-resistant member 2, raw materials for concrete or ceramics and water are mixed to prepare unhardened concrete or ceramics. Concrete or the like before hardening is molded into a cylindrical shape or the like and hardened. Hereinafter, the process of manufacturing the heat-resistant member 2 may be referred to as a manufacturing process. Concrete or the like before hardening is poured into a mold or the like and shaped. When the material forming the heat-resistant member 2 is concrete, it is cured by drying. When the material is ceramics, it is sintered by heat treatment.

製造工程の後に、耐熱部材2の内周面の少なくとも一部に耐熱塗料が塗布されて塗膜部7が形成される。この工程を以下、塗布工程ということがある。塗布工程の後に、塗膜部7を乾燥させる乾燥工程や、乾燥させた塗膜部7を例えば800℃で焼成させる焼成工程が実施される構成としてもよい。 After the manufacturing process, a heat-resistant paint is applied to at least a part of the inner peripheral surface of the heat-resistant member 2 to form the coating film portion 7 . This process may be hereinafter referred to as a coating process. After the application step, a drying step of drying the coating film portion 7 and a baking step of baking the dried coating film portion 7 at, for example, 800° C. may be performed.

耐熱部材2が設置された誘導加熱炉1において、ビレットを加熱する際に塗膜部7を焼成させる構成としてもよい。耐熱塗料を塗布する塗布工程および耐熱塗料を乾燥させる乾燥工程までで耐熱部材2の製造を完了することができるため、耐熱部材2の製造コストを抑制するには有利である。一方で焼成工程まで行う場合には、耐熱塗料の性状に応じて適切な昇温時間や昇温速度を設定して塗膜部7の焼成を行える。塗膜部7の品質を向上するには有利である。 In the induction heating furnace 1 in which the heat-resistant member 2 is installed, the coating film portion 7 may be baked when the billet is heated. Since the manufacturing of the heat-resistant member 2 can be completed by the application step of applying the heat-resistant paint and the drying step of drying the heat-resistant paint, it is advantageous for reducing the manufacturing cost of the heat-resistant member 2 . On the other hand, when performing up to the baking step, the coating film portion 7 can be baked by setting an appropriate heating time and heating rate according to the properties of the heat-resistant paint. This is advantageous for improving the quality of the coating film portion 7 .

図5は円筒形状の耐熱部材2aの延設方向xに平行となる方向における耐熱部材2aの断面を示している。耐熱部材2のメンテナンス作業を行う際には、まず耐熱部材2が十分に冷えた後に誘導加熱炉1から取り外される。図5の上方に例示するように耐熱部材2aの内周面には酸化スケール8が固着している状態となっている。 FIG. 5 shows a cross section of the heat-resistant member 2a in a direction parallel to the extending direction x of the cylindrical heat-resistant member 2a. When performing maintenance work on the heat-resistant member 2, first, the heat-resistant member 2 is removed from the induction heating furnace 1 after it has cooled sufficiently. As illustrated in the upper part of FIG. 5, the oxide scale 8 adheres to the inner peripheral surface of the heat-resistant member 2a.

耐熱部材2aの内周面を鉄ブラシ等のワイヤーブラシで擦ると、酸化スケールが内周面から分離する。図5の下方に示すように耐熱部材2aから酸化スケールを容易に除去することができる。酸化スケールは粉末の状態で回収される。塗膜部7が下方側となる状態で耐熱部材2aを誘導加熱炉1に設置してメンテナンス作業を終了する。 When the inner peripheral surface of the heat-resistant member 2a is rubbed with a wire brush such as an iron brush, the oxide scale is separated from the inner peripheral surface. As shown in the lower part of FIG. 5, the oxide scale can be easily removed from the heat-resistant member 2a. Oxidized scale is recovered in powder form. The heat-resistant member 2a is placed in the induction heating furnace 1 with the coating film portion 7 facing downward, and the maintenance work is completed.

内周面に配置される塗膜部7を耐熱部材2は有しているため、付着した酸化スケールを容易に除去することが可能となる。耐熱部材2の長寿命化を実現するには有利である。 Since the heat-resistant member 2 has the coating film portion 7 arranged on the inner peripheral surface, it is possible to easily remove the adhering oxide scale. This is advantageous for realizing a long life of the heat-resistant member 2 .

塗膜部7を有さない耐熱部材においては、耐熱部材の内周面の凹凸に酸化スケールが流れ込むように移動して固着してしまう。そのため耐熱部材を冷ました後に酸化スケールを除去しようとすると、酸化スケールに接触させたタガネ等をハンマーで叩いて削り取る必要があった。ハンマーの衝撃で耐熱部材が割れてしまう恐れがあった。 In a heat-resistant member that does not have the coating film portion 7, the oxide scale flows into and adheres to the unevenness of the inner peripheral surface of the heat-resistant member. Therefore, when trying to remove the oxide scale after cooling the heat-resistant member, it was necessary to scrape off the chisel or the like brought into contact with the oxide scale by hitting it with a hammer. There was a risk that the heat-resistant material would crack due to the impact of the hammer.

これに対して本願発明では、塗膜部7により耐熱部材2の内周面が滑らかに構成されるため、鉄ブラシ等で擦ることで酸化スケールを容易に除去できる。耐熱部材2に衝撃等が発生することがなく、耐熱部材2が破損する恐れはない。 In contrast, in the present invention, the coating film portion 7 makes the inner peripheral surface of the heat-resistant member 2 smooth, so that the oxide scale can be easily removed by rubbing with an iron brush or the like. The heat-resistant member 2 is not subjected to impact or the like, and there is no fear of the heat-resistant member 2 being damaged.

また塗膜部7により、酸化スケールが耐熱部材2と直接接触することを抑制できる。酸化スケールと耐熱部材2との化学反応によって、耐熱部材2に酸化スケールが強固に接合する不具合を、塗膜部7が阻害する。そのため耐熱部材2から酸化スケールを除去することが容易になる。 In addition, the coating film portion 7 can prevent the oxide scale from coming into direct contact with the heat-resistant member 2 . The coated film portion 7 inhibits the chemical reaction between the oxide scale and the heat-resistant member 2 to firmly bond the oxide scale to the heat-resistant member 2 . Therefore, it becomes easy to remove the oxide scale from the heat-resistant member 2 .

塗膜部7の主成分がジルコニアで構成される場合は、耐熱部材2よりも酸化スケールに塗膜部7の熱膨張率が近い状態となる。そのため塗膜部7は冷却時に酸化スケールとともに収縮する。冷却時に収縮する酸化スケールから耐熱部材2に及ぼされる応力が塗膜部7により低減される。耐熱部材2に亀裂が発生する不具合を抑制できる。耐熱部材2の長寿命化を実現するには有利である。 When the main component of the coating film portion 7 is zirconia, the coefficient of thermal expansion of the coating film portion 7 is closer to that of the oxide scale than the heat-resistant member 2 . Therefore, the coating film portion 7 shrinks together with the oxide scale during cooling. The stress exerted on the heat-resistant member 2 from the oxide scale that shrinks during cooling is reduced by the coating film portion 7 . It is possible to suppress the problem that the heat-resistant member 2 is cracked. This is advantageous for realizing a long life of the heat-resistant member 2 .

耐熱塗料を塗布することで塗膜部7を配置できる。軸方向に長く形成される耐熱部材2においても軸方向の全体に容易に塗膜部7を配置できる。耐熱部材2から酸化スケールを除去できる範囲は、耐熱部材2の軸方向の長さの影響を受けない。あらゆる形状の耐熱部材2において塗膜部7を配置して、酸化スケールを除去しやすい状態とすることができる。 The coating film portion 7 can be arranged by applying heat-resistant paint. Even in the heat-resistant member 2 formed long in the axial direction, the coating film portion 7 can be easily arranged over the entire axial direction. The range in which the oxide scale can be removed from the heat-resistant member 2 is not affected by the length of the heat-resistant member 2 in the axial direction. The coating film portion 7 can be arranged on the heat-resistant member 2 of any shape to make the oxide scale easy to remove.

耐熱部材2の冷却後に酸化スケールを除去できる。加熱中に空気を噴射して酸化スケールを除去する従来技術のように、ビレットの温度が低下するなど製品への影響がない。 After cooling the heat-resistant member 2, the oxide scale can be removed. Unlike the conventional technology in which air is jetted during heating to remove oxidized scale, there is no impact on the product such as a drop in the temperature of the billet.

耐熱部材2の内周面の全体に塗膜部7が形成される構成としてもよい。耐熱部材2の内周の上面や側面に酸化スケールが飛散して付着した場合であっても、この酸化スケールを除去しやすくなる。 The coating film portion 7 may be formed on the entire inner peripheral surface of the heat-resistant member 2 . Even if oxide scale scatters and adheres to the upper and side surfaces of the inner periphery of the heat-resistant member 2, the oxide scale can be easily removed.

酸化スケールの除去後に円筒形状の耐熱部材2aを誘導加熱炉1に戻す際に、耐熱部材2aの向きに関わらず配置することができる。メンテナンス作業の作業性を向上できる。またメンテナンス作業の前に下方側となっていた塗膜部7を上方側となる状態として誘導加熱炉1に耐熱部材2aを配置することで、酸化スケールの影響をほとんど受けていな塗膜部7を下方側として利用できる。酸化スケールによる耐熱部材2への影響を抑制するには有利である。例えばメンテナンス作業の度に耐熱部材2aの延設方向xを中心軸として例えば90°ずつ回転させて誘導加熱炉1に配置することで、長期間に渡り塗膜部7が良好な状態で耐熱部材2aを使用できる。耐熱部材2aの長寿命化には極めて有利である。 When returning the cylindrical heat-resistant member 2a to the induction heating furnace 1 after removing the oxide scale, the heat-resistant member 2a can be disposed regardless of the direction. Workability of maintenance work can be improved. In addition, by arranging the heat-resistant member 2a in the induction heating furnace 1 so that the coating film portion 7, which was on the lower side before the maintenance work, is placed on the upper side, the coating film portion 7 is hardly affected by the oxide scale. can be used as the lower side. This is advantageous for suppressing the influence of oxide scale on the heat-resistant member 2 . For example, by rotating the heat-resistant member 2a by 90° around the extension direction x of the heat-resistant member 2a at each maintenance work and placing it in the induction heating furnace 1, the heat-resistant member can be maintained in a good state for a long period of time. 2a can be used. This is extremely advantageous for prolonging the life of the heat-resistant member 2a.

誘導加熱炉1に耐熱部材2を戻す際に耐熱塗料を再塗装してもよい。塗膜部7を再形成することができるので酸化スケールによる耐熱部材2への影響を抑制できる。 When returning the heat-resistant member 2 to the induction heating furnace 1, the heat-resistant paint may be reapplied. Since the coating film portion 7 can be re-formed, the influence of the oxide scale on the heat-resistant member 2 can be suppressed.

図6および図7に例示するように耐熱部材2の内周面に耐熱シート9が配置される構成にしてもよい。以下、円筒形状の耐熱部材2aに耐熱シート9を配置した例について説明するが、傾斜部を有する耐熱部材2bにも同様に耐熱シート9を配置することができる。 As illustrated in FIGS. 6 and 7, a heat-resistant sheet 9 may be arranged on the inner peripheral surface of the heat-resistant member 2 . An example in which the heat-resistant sheet 9 is arranged on the cylindrical heat-resistant member 2a will be described below, but the heat-resistant sheet 9 can be similarly arranged on the heat-resistant member 2b having an inclined portion.

耐熱シート9は例えば網目を有する織物で構成される。耐熱シート9は、例えばアルミナとシリカとを主成分とした繊維で構成することができる。耐熱シート9の主成分はこれに限らず、700℃~1300℃の高温に耐える材料で構成されていればよい。耐熱シート9の主成分は誘導加熱炉1で加熱されるビレット4の温度に応じて適宜選択することができる。図6では耐熱シート9を構成する織物が耐熱部材2の内周面から部分的に露出している様子を図示している。耐熱シート9は織物に限らない。不織布で構成されてもよい。 The heat-resistant sheet 9 is made of, for example, a fabric having a mesh. The heat-resistant sheet 9 can be made of fibers containing alumina and silica as main components, for example. The main component of the heat-resistant sheet 9 is not limited to this, as long as it is made of a material that can withstand high temperatures of 700°C to 1300°C. The main component of the heat-resistant sheet 9 can be appropriately selected according to the temperature of the billet 4 heated in the induction heating furnace 1 . FIG. 6 illustrates a state in which the fabric forming the heat-resistant sheet 9 is partially exposed from the inner peripheral surface of the heat-resistant member 2 . The heat-resistant sheet 9 is not limited to woven fabric. It may be composed of a non-woven fabric.

耐熱シート9は、耐熱部材2の延設方向xと略平行となる状態で配置されている。耐熱シート9は耐熱部材2の内周面と略平行となる状態で配置されているともいえる。耐熱シート9が延設方向xに沿って上り傾斜または下り傾斜など、延設方向xに対して傾いた状態で配置される構成を除外するものではない。 The heat-resistant sheet 9 is arranged substantially parallel to the extending direction x of the heat-resistant member 2 . It can also be said that the heat-resistant sheet 9 is arranged so as to be substantially parallel to the inner peripheral surface of the heat-resistant member 2 . A configuration in which the heat-resistant sheet 9 is arranged in an inclined state with respect to the extending direction x, such as an upward inclination or a downward inclination along the extending direction x, is not excluded.

図7に例示するように耐熱シート9は、耐熱部材2aの内周面の下端近傍となる位置に配置されている。この実施形態では塗膜部7が配置される範囲と同様の範囲に耐熱シート9が配置されている。つまり図7において耐熱部材2aの中心Oから内周面の下端P1に伸びる仮想線を基準として左右に45°以下となる範囲に耐熱シート9が配置されている。また下端近傍が、耐熱部材2において上下方向zの中心となる位置よりも下方側となる範囲であってもよい。つまり図7の中心Oから幅方向yに伸びる仮想線よりも下方側となる範囲を下端近傍としてもよい。耐熱シート9は内周面の下端近傍に限らず内周面の全体に配置される構成であってもよい。耐熱シート9が配置される範囲は塗膜部7よりも広い範囲であってもよく、狭い範囲であってもよい。 As illustrated in FIG. 7, the heat-resistant sheet 9 is arranged in the vicinity of the lower end of the inner peripheral surface of the heat-resistant member 2a. In this embodiment, the heat-resistant sheet 9 is arranged in the same range as the coating film portion 7 is arranged. That is, in FIG. 7, the heat-resistant sheet 9 is arranged within a range of 45° or less to the left and right of an imaginary line extending from the center O of the heat-resistant member 2a to the lower end P1 of the inner peripheral surface. Also, the vicinity of the lower end may be in a range below the center of the heat-resistant member 2 in the vertical direction z. In other words, the vicinity of the lower end may be a range below the virtual line extending in the width direction y from the center O of FIG. The heat-resistant sheet 9 may be arranged not only in the vicinity of the lower end of the inner peripheral surface but also on the entire inner peripheral surface. The range in which the heat-resistant sheet 9 is arranged may be wider than or narrower than the coating film portion 7 .

図8に例示するように耐熱シート9は一部が耐熱部材2を構成するコンクリートまたはセラミックスに埋没する状態であり、残りの部分がコンクリート等から露出する状態で配置されている。この実施形態では耐熱シート9の大部分がコンクリート等に埋没する状態であり、一部が耐熱部材2の内周面側に露出する状態で耐熱シート9は配置されている。耐熱シート9が織物で構成されている場合の網目の大きさdは例えば1-10mmに構成される。耐熱シート9を構成する糸9aの間隔であり、一方の糸9aの側方端部から他方の糸9aの側方端部までの長さが網目の大きさdとなる。 As shown in FIG. 8, the heat-resistant sheet 9 is partially buried in the concrete or ceramics forming the heat-resistant member 2, and the rest of the heat-resistant sheet 9 is exposed from the concrete or the like. In this embodiment, the heat-resistant sheet 9 is arranged so that most of the heat-resistant sheet 9 is buried in concrete or the like, and a part of the heat-resistant sheet 9 is exposed on the inner peripheral surface side of the heat-resistant member 2 . When the heat-resistant sheet 9 is made of woven fabric, the mesh size d is, for example, 1-10 mm. It is the interval between the threads 9a forming the heat-resistant sheet 9, and the mesh size d is the length from the side end of one thread 9a to the side end of the other thread 9a.

耐熱部材2の下端近傍における亀裂の発生および亀裂の拡大を、耐熱部材2に一部が埋没して一体となっている耐熱シート9が抑制できる。亀裂が拡大しようとする力は耐熱シート9に引張方向に力を生じさせる。耐熱部材2に亀裂が発生して、この亀裂に酸化スケールが侵入する不具合を回避しやすくなる。 The heat-resistant sheet 9, which is partially embedded in the heat-resistant member 2 and integrated with the heat-resistant member 2, can suppress the occurrence and expansion of cracks in the vicinity of the lower end of the heat-resistant member 2. FIG. The force that tends to expand the crack causes the heat-resistant sheet 9 to generate force in the tensile direction. This makes it easier to avoid the problem of cracks occurring in the heat-resistant member 2 and oxide scale entering into the cracks.

耐熱シート9の内周面側に塗膜部7が配置されている場合は、酸化スケールが耐熱シート9に固着する不具合を抑制することができる。耐熱シート9と塗膜部7とを組み合わせることで、耐熱部材2の内周面および塗膜部7に亀裂が発生して、亀裂の内部に酸化スケールが付着する不具合を抑制できる。亀裂の発生およびその成長を抑制できるので、耐熱部材2の長寿命化を実現するには有利である。 When the coating film portion 7 is arranged on the inner peripheral surface side of the heat-resistant sheet 9 , it is possible to suppress the problem that the oxide scale adheres to the heat-resistant sheet 9 . By combining the heat-resistant sheet 9 and the coating film portion 7, it is possible to suppress the problem that cracks occur in the inner peripheral surface of the heat-resistant member 2 and the coating film portion 7, and oxide scale adheres inside the cracks. Since the generation and growth of cracks can be suppressed, it is advantageous for achieving a longer life of the heat-resistant member 2 .

耐熱シート9が接着剤等により耐熱部材2の内周面に貼り付けられる構成であってもよい。ただし耐熱シート9は少なくとも一部が耐熱部材2に埋め込まれる構成の方が、耐熱部材2からの分離を抑制できるので有利である。耐熱シート9が耐熱部材2から分離すると、亀裂の発生およびその成長を阻止できなくなる。耐熱部材2の交換が必要となる場合もある。 The heat-resistant sheet 9 may be attached to the inner peripheral surface of the heat-resistant member 2 with an adhesive or the like. However, the configuration in which at least a part of the heat-resistant sheet 9 is embedded in the heat-resistant member 2 is more advantageous because separation from the heat-resistant member 2 can be suppressed. When the heat-resistant sheet 9 separates from the heat-resistant member 2, it becomes impossible to prevent the occurrence and growth of cracks. In some cases, the heat-resistant member 2 needs to be replaced.

耐熱シート9が耐熱部材2に貼り付けられる構成の場合、耐熱シート9の全体が耐熱部材2から露出する状態となる。 When the heat-resistant sheet 9 is attached to the heat-resistant member 2 , the entire heat-resistant sheet 9 is exposed from the heat-resistant member 2 .

耐熱シート9の全体が耐熱部材2に埋没する状態で、耐熱シート9が配置されてもよい。耐熱部材2の内部において耐熱シート9は亀裂の成長を抑制できる。耐熱シート9が耐熱部材2からまったく露出しない場合であっても、耐熱部材2の内周面側の表面に近い位置に耐熱シート9が配置されている方が、表面での亀裂の発生を抑制できるので望ましい。 The heat-resistant sheet 9 may be arranged such that the entire heat-resistant sheet 9 is buried in the heat-resistant member 2 . The heat-resistant sheet 9 can suppress the growth of cracks inside the heat-resistant member 2 . Even if the heat-resistant sheet 9 is not exposed from the heat-resistant member 2 at all, the occurrence of cracks on the surface is suppressed if the heat-resistant sheet 9 is arranged at a position close to the inner peripheral surface of the heat-resistant member 2. It is desirable because it can be done.

耐熱シート9が、耐熱部材2の内周面の全周に配置される構成としてもよい。耐熱部材2の内周面側の下端近傍に限らず側方から上端近傍に至る全周に耐熱シート9が配置されている状態となる。通路5の全周に耐熱シート9が配置される状態となる。 The heat-resistant sheet 9 may be arranged along the entire circumference of the inner peripheral surface of the heat-resistant member 2 . The heat-resistant sheet 9 is arranged not only near the lower end of the inner peripheral surface of the heat-resistant member 2 but also over the entire circumference from the side to near the upper end. The heat-resistant sheet 9 is arranged around the entire circumference of the passage 5 .

耐熱部材2を製造する際には、製造工程において耐熱部材2に耐熱シート9が配置された後に、塗布工程において耐熱塗料が塗布されて塗膜部7が形成される。 When the heat-resistant member 2 is manufactured, after the heat-resistant sheet 9 is arranged on the heat-resistant member 2 in the manufacturing process, the heat-resistant paint is applied in the coating process to form the coating film portion 7 .

図9に例示するように耐熱シート9の糸9aの一部が耐熱部材2の内周面に露出している場合も、糸9aの表面に塗膜部7が形成される。そのため酸化スケールが糸9aに固着して除去し難くなる不具合を回避できる。 Even when a part of the thread 9a of the heat-resistant sheet 9 is exposed on the inner peripheral surface of the heat-resistant member 2 as illustrated in FIG. 9, the coating film portion 7 is formed on the surface of the thread 9a. Therefore, it is possible to avoid the problem that the oxide scale adheres to the thread 9a and is difficult to remove.

1 誘導加熱炉
1a 第一ユニット
1b 第二ユニット
1c 第三ユニット
2 耐熱部材
2a (円筒形状の)耐熱部材
2b (傾斜部を有する)耐熱部材
3 加熱コイル
4 ビレット
5 通路
6 スキッドレール
7 塗膜部
8 酸化スケール
9 耐熱シート
9a 糸
x 延設方向
y 幅方向
z 上下方向
O 中心
P1 下端
d 網目の大きさ
1 induction heating furnace 1a first unit 1b second unit 1c third unit 2 heat-resistant member 2a (cylindrical) heat-resistant member 2b (having inclined portion) heat-resistant member 3 heating coil 4 billet 5 passage 6 skid rail 7 coating film 8 Oxide scale 9 Heat-resistant sheet 9a Yarn x Extension direction y Width direction z Vertical direction O Center P1 Bottom end d Mesh size

Claims (8)

水平方向に延設される筒状の部材で構成されていて内周面側を被加熱物であるビレットが通過可能に形成される耐熱部材と、この耐熱部材の外周面側に配置される加熱コイルとを備える誘導加熱炉において、
前記耐熱部材が、コンクリートまたはセラミックスで構成されるとともに、内周面の少なくとも一部に耐熱塗料により形成される塗膜部を有することを特徴とする誘導加熱炉。
A heat-resistant member composed of a cylindrical member extending in a horizontal direction and formed so that a billet, which is an object to be heated, can pass through the inner peripheral surface side, and a heater arranged on the outer peripheral surface side of the heat-resistant member. In an induction heating furnace comprising a coil,
1. An induction heating furnace, wherein said heat-resistant member is made of concrete or ceramics, and has a coating film formed of heat-resistant paint on at least a part of an inner peripheral surface thereof.
前記塗膜部は、二酸化ジルコニウムを主成分とする耐熱塗料により構成される請求項1に記載の誘導加熱炉。 2. The induction heating furnace according to claim 1, wherein said coating film portion is made of a heat-resistant paint containing zirconium dioxide as a main component. 前記塗膜部は、前記耐熱部材の前記内周面の下端近傍に配置される請求項1または2に記載の誘導加熱炉。 3. The induction heating furnace according to claim 1, wherein the coating film portion is arranged in the vicinity of the lower end of the inner peripheral surface of the heat resistant member. 前記塗膜部は、前記耐熱部材の前記内周面の全体に配置される請求項1または2に記載の誘導加熱炉。 3. The induction heating furnace according to claim 1, wherein the coating film portion is arranged on the entire inner peripheral surface of the heat-resistant member. 水平方向に延設される筒状の部材で構成されていて内周面側を被加熱物であるビレットが通過可能に構成される耐熱部材の製造方法において、
コンクリートまたはセラミックスにより前記耐熱部材を成形して硬化させる製造工程と、
その後、前記耐熱部材の内周面の少なくとも一部に耐熱塗料が塗布されて塗膜部が形成される塗布工程とを備えることを特徴とする耐熱部材の製造方法。
In a method for manufacturing a heat-resistant member which is composed of a cylindrical member extending in a horizontal direction and configured so that a billet, which is an object to be heated, can pass through the inner peripheral surface side,
a manufacturing step of molding and hardening the heat-resistant member from concrete or ceramics;
A method for manufacturing a heat-resistant member, further comprising: thereafter, applying a heat-resistant paint to at least a part of the inner peripheral surface of the heat-resistant member to form a coating film portion.
前記塗膜部は、二酸化ジルコニウムを主成分とする耐熱塗料により構成される請求項5に記載の耐熱部材の製造方法。 6. The method of manufacturing a heat-resistant member according to claim 5, wherein the coating film portion is made of a heat-resistant paint containing zirconium dioxide as a main component. 前記塗布工程の後に、
前記塗膜部を焼成させる焼成工程を備える請求項5または6に記載の耐熱部材の製造方法。
After the coating step,
7. The method for manufacturing a heat-resistant member according to claim 5, further comprising a baking step of baking the coating film portion.
前記塗布工程は、前記耐熱部材の内周面の全体に耐熱塗料が塗布されて前記塗膜部が形成される構成を有する請求項5~7のいずれかに記載の耐熱部材の製造方法。 The method for manufacturing a heat-resistant member according to any one of claims 5 to 7, wherein in the coating step, a heat-resistant paint is applied to the entire inner peripheral surface of the heat-resistant member to form the coating film portion.
JP2021023098A 2021-02-17 2021-02-17 Induction heating furnace and method for manufacturing heat-resistant member Active JP7225286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021023098A JP7225286B2 (en) 2021-02-17 2021-02-17 Induction heating furnace and method for manufacturing heat-resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021023098A JP7225286B2 (en) 2021-02-17 2021-02-17 Induction heating furnace and method for manufacturing heat-resistant member

Publications (2)

Publication Number Publication Date
JP2022125490A true JP2022125490A (en) 2022-08-29
JP7225286B2 JP7225286B2 (en) 2023-02-20

Family

ID=83058337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021023098A Active JP7225286B2 (en) 2021-02-17 2021-02-17 Induction heating furnace and method for manufacturing heat-resistant member

Country Status (1)

Country Link
JP (1) JP7225286B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575284A (en) * 1980-06-10 1982-01-12 Mitsubishi Motors Corp Induction heating oven
JPS63169328A (en) * 1986-12-30 1988-07-13 Riken Corp Guide rail for metal heating furnace
JPH01279786A (en) * 1988-04-30 1989-11-10 Daido Sanso Kk Pre-treating method for working metal material
JP2002146437A (en) * 2000-11-08 2002-05-22 Ngk Insulators Ltd Supporter for hot working
JP2003238965A (en) * 2002-02-22 2003-08-27 Jfe Steel Kk Furnace floor-covering agent for carbonization chamber of coke oven and method for operating coke oven
JP2011127135A (en) * 2009-12-15 2011-06-30 Daikin Industries Ltd Induction-heating method and induction-heating apparatus
JP2016183796A (en) * 2015-03-25 2016-10-20 アイチセラテック株式会社 Furnace core tube and furnace core refractory structure using the same, and induction heating furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575284A (en) * 1980-06-10 1982-01-12 Mitsubishi Motors Corp Induction heating oven
JPS63169328A (en) * 1986-12-30 1988-07-13 Riken Corp Guide rail for metal heating furnace
JPH01279786A (en) * 1988-04-30 1989-11-10 Daido Sanso Kk Pre-treating method for working metal material
JP2002146437A (en) * 2000-11-08 2002-05-22 Ngk Insulators Ltd Supporter for hot working
JP2003238965A (en) * 2002-02-22 2003-08-27 Jfe Steel Kk Furnace floor-covering agent for carbonization chamber of coke oven and method for operating coke oven
JP2011127135A (en) * 2009-12-15 2011-06-30 Daikin Industries Ltd Induction-heating method and induction-heating apparatus
JP2016183796A (en) * 2015-03-25 2016-10-20 アイチセラテック株式会社 Furnace core tube and furnace core refractory structure using the same, and induction heating furnace

Also Published As

Publication number Publication date
JP7225286B2 (en) 2023-02-20

Similar Documents

Publication Publication Date Title
US20140210144A1 (en) Composite degassing tube
JP7225286B2 (en) Induction heating furnace and method for manufacturing heat-resistant member
CN101219898A (en) Ceramic product baking and kiln-loading method
JP5743415B2 (en) Roll for hot metal plating
JP5546282B2 (en) Rotating body for molten metal stirring and molten metal degassing apparatus equipped with the same
CN109261889B (en) Titanium and titanium alloy casting and forming method thereof
JP5168080B2 (en) Unshaped refractories for vertical furnaces
JP2000212624A (en) Repair of lining refractory in torpedo ladle
JP7091383B2 (en) Manufacturing method of induction heating furnace and heat-resistant member
JP6201704B2 (en) Amorphous refractory precast structure and manufacturing method thereof
US20230174792A1 (en) Coating composition for metallic products and relative method
CN111876538A (en) Blast furnace bottom integral pouring repair structure and construction method
JP2011173741A (en) Method for producing cement-based building material
JP4303530B2 (en) Method for forming lining of nozzle refractory
KR880001928Y1 (en) Refractory liner curing device
JP6180380B2 (en) Manufacturing method of tundish weir
JP4441056B2 (en) Refractory block, manufacturing method thereof and molten metal container
JP4041215B2 (en) How to spray firewood refractories
JP5140025B2 (en) Method of spraying coating material on tundish
JP5795890B2 (en) Extrusion die and plate manufacturing method
JP4502398B2 (en) Immersion nozzle for continuous casting
JPH11123508A (en) Method for applying monolithic refractory to tundish
CN117655312A (en) Brick ladle pool wall casting repair method
JP2001317879A (en) Molten metal container wherein monolithic refractory has slits and manufacturing method therefor
JPH0332673B2 (en)

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20220111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230208

R150 Certificate of patent or registration of utility model

Ref document number: 7225286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350