JP2022124981A - Bearing slide mechanism - Google Patents

Bearing slide mechanism Download PDF

Info

Publication number
JP2022124981A
JP2022124981A JP2021065515A JP2021065515A JP2022124981A JP 2022124981 A JP2022124981 A JP 2022124981A JP 2021065515 A JP2021065515 A JP 2021065515A JP 2021065515 A JP2021065515 A JP 2021065515A JP 2022124981 A JP2022124981 A JP 2022124981A
Authority
JP
Japan
Prior art keywords
bearing
sliding
cooling fluid
rotating shaft
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021065515A
Other languages
Japanese (ja)
Inventor
源一郎 高坂
Genichiro Kosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOEI GIKEN KK
Original Assignee
SOEI GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOEI GIKEN KK filed Critical SOEI GIKEN KK
Priority to JP2021065515A priority Critical patent/JP2022124981A/en
Publication of JP2022124981A publication Critical patent/JP2022124981A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

To solve the problem that for a bearing slide mechanism used for a rotary machine, a slide member is not available which can operate to slide in a liquid, including solid foreign matter and high-viscosity associative substance such as particles, fibrous substance etc., apt to stay in a bearing gap for a long time to high density, and a high-viscosity liquid.SOLUTION: There is provided a bearing slide mechanism that consists of a rotary shaft-side slide member fitted and fixed to a rotary shaft, and a fixed shaft-side slide member fitted to an outer circumference of the rotary shaft-side slide member in a freely rotatable and slidable state, wherein a cooling fluid flow passage where a cooling fluid flows is formed only on an outer circumferential surface of the rotary shaft-side slide member, and the cooling fluid flow passage is formed spirally.SELECTED DRAWING: Figure 3

Description

本発明は、回転機械に用いられる軸受摺動機構において、軸受隙間内の流動性を阻害する繊維状連続形態の異物或いは、粘土状等の高粘性異物を含有する流体中での運転時に、軸受摺動部の発熱現象により生じる軸受の抱き付き現象を防止するために、軸受隙間内に流入停滞し発熱の原因となる摺動部内停滞物質を、軸受隙間外に強制的に排出する機能を有した軸受摺動機構に関するものである。 The present invention relates to a bearing sliding mechanism used in a rotating machine. In order to prevent the bearing from sticking due to the heat generation phenomenon of the sliding part, it has a function to forcibly discharge the stagnant substances in the sliding part, which flow into the bearing gap and cause heat generation, to the outside of the bearing gap. It relates to a sliding bearing mechanism.

従来の滑り軸受組み合わせ摺動部形状について図1により説明する。滑り軸受の摺動面は回転軸1に嵌合固定された回転軸側摺動部材2を、回転摺動自在に嵌合させる固定軸側摺動部材3とで構成され、その固定軸側摺動部材3には冷却流体通過溝4が設けられている。 The shape of a conventional slide bearing combination sliding portion will be described with reference to FIG. The sliding surface of the sliding bearing is composed of a rotating shaft side sliding member 2 fitted and fixed to the rotating shaft 1 and a fixed shaft side sliding member 3 which is fitted so as to be rotatably slidable. A cooling fluid passage groove 4 is provided in the moving member 3 .

固定軸側摺動部材の摺動面での冷却流体通過溝4は、滑り軸受の摺動運転中に生ずる発熱を防止するための摺動面に対する潤滑液の供給、及び、摺動部材冷却のために必要不可欠であるが、従来の滑り軸受組み合わせでは、その冷却流体通過溝4は、円筒一体形状の固定軸側摺動部材3の摺動面を加工して設けた冷却流体通過溝4や、図2に示すような分割型摺動部材5を内面円周上に配置する方式では、摺動部材間の間隔、間隙6を調整して設けられていた。 The cooling fluid passage groove 4 on the sliding surface of the fixed-shaft-side sliding member serves to supply lubricating fluid to the sliding surface to prevent heat generation during the sliding operation of the sliding bearing and to cool the sliding member. However, in the conventional sliding bearing combination, the cooling fluid passage groove 4 is formed by processing the sliding surface of the fixed shaft side sliding member 3 integrally formed with a cylinder. In the method of arranging the split-type sliding members 5 on the inner circumference as shown in FIG.

特に回転機械としてポンプを例にとると、荷液に土砂等の固形粒子を大量に含む気液混合流体や非常に粘度の高い異物を大量を扱うポンプでは、滑り軸受の固定軸側摺動部材の摺動面上に冷却流体通過溝が配置されていたとしても、流体中に含まれる大量の異物が固定軸側摺動部材に設けられた冷却流体通過溝を埋め尽くし冷却流体の速やかな通過が妨げられ、摺動面における発熱が過大となり滑り軸受の摩耗や抱き付きが顕著になる。 Taking a pump as an example of a rotating machine, in particular, a pump that handles a large amount of gas-liquid mixed fluid containing a large amount of solid particles such as earth and sand, or a large amount of highly viscous foreign matter, requires the sliding member on the fixed shaft side of the slide bearing. Even if the cooling fluid passage grooves are arranged on the sliding surface of the fixed shaft side sliding member, a large amount of foreign matter contained in the fluid fills the cooling fluid passage grooves provided in the fixed shaft side sliding member, and the cooling fluid passes quickly. is hindered, heat generation on the sliding surface becomes excessive, and wear and sticking of the sliding bearing become conspicuous.

極めて滑らかな摺動面をもつ流体潤滑を前提とした滑り軸受において、摺動面に途切れない流体皮膜が形成されていれば、極めて安定した摺動特性を有するものであるが、固体粒子を含む気液混合流体中で摺動運転を行う場合、冷却潤滑液を軸受摺動部位に供給する配管内での気液混合流体中の固形粒子の目詰まり発生による冷却潤滑液不足や、固定軸受側摺動部材の摺動面と回転軸側摺動部材の摺動面との間の軸受隙間部に浸入した硬質固形粒子によって、摺動面において潤滑を司る流体被膜が欠損し、固定軸側摺動部材と回転軸側摺動部材が直接接触を起し、固形粒子による摺動面の異状摩耗えお生じたり、冷却不足による異状発熱による回転軸の過度な熱膨張を生じ、固定軸側摺動部材の摺動面と回転軸側摺動部材摺動面との間の隙間である軸受隙間が著しく減少し、最終的に両摺動面が固着して軸受機能を完全に失う事も少なくない。 Sliding bearings with an extremely smooth sliding surface that are designed for fluid lubrication will have extremely stable sliding characteristics if a continuous fluid film is formed on the sliding surface, but they contain solid particles. When performing sliding operation in a gas-liquid mixed fluid, solid particles in the gas-liquid mixed fluid clog the piping that supplies the cooling and lubricating fluid to the sliding parts of the bearing. Hard solid particles that enter the bearing gap between the sliding surface of the sliding member and the sliding surface of the rotating shaft side sliding member cause the fluid film that governs lubrication on the sliding surface to be lost, and the fixed shaft side sliding. Direct contact between the moving member and the sliding member on the rotating shaft side causes abnormal wear of the sliding surface due to solid particles, and excessive thermal expansion of the rotating shaft due to abnormal heat generation due to insufficient cooling. The bearing gap, which is the gap between the sliding surface of the moving member and the sliding surface of the sliding member on the rotating shaft side, is remarkably reduced, and it is less likely that the two sliding surfaces will eventually stick together and completely lose the bearing function. do not have.

このように、滑り軸受においては、破壊要因となる軸受摺動面における発熱を抑制し、滑り軸受における回転軸側摺動部材の摺動面と固定軸側摺動部材の摺動面との固体同士の直接接触を妨げる流体潤滑皮膜を形成させる冷却流体を持続的に供給することが必要不可欠である。 In this way, in the sliding bearing, heat generation on the sliding surface of the bearing, which is a cause of destruction, is suppressed, and the sliding surfaces of the sliding member on the rotating shaft side and the sliding surface on the fixed shaft side in the sliding bearing are solidified. A continuous supply of cooling fluid that forms a fluid lubricating film that prevents direct contact between them is essential.

滑り軸受における潤滑能力と冷却能力の強化向上には、摺動面に設ける冷却流体通過溝が大きな役割を有している。冷却流体通過溝の流路断面積が大きくなる程に摺動面に多くの冷却流体を供給することができ冷却効果は向上するが、付着性の高い異物が多く含まれる場合は、軸受摺動面への土砂等の固形粒子の異物介在物の侵入が多くなり、結果的に軸受摺動面の激しい摩耗を招くという欠陥を生じることとなる。 Cooling fluid passage grooves provided on the sliding surface play a major role in strengthening and improving the lubricating ability and cooling ability of the sliding bearing. The larger the flow passage cross-sectional area of the cooling fluid passage groove, the more cooling fluid can be supplied to the sliding surface and the cooling effect is improved. Foreign inclusions such as solid particles such as earth and sand enter the surface more often, resulting in a defect that severe wear of the sliding surface of the bearing is caused.

従来の滑り軸受における冷却流体通過溝において、摺動面における潤滑機能と摺動によって発生する発熱を除去するためには、冷却流体通過溝の導通が確保されていることが前提となるが、冷却流体通過溝内に異物が停滞することによって冷却流体の導通が妨げられる状態となれば、滑り軸受の摺動による発熱が軸受部に留まり、最終的には滑り軸受の抱き付き破壊に到る場合が少なくない。
更に、滑り軸受が断続的に気中運転に晒される場合、冷却流体通過溝に停滞滞留した異物が乾燥固化することで、冷却流体通過溝内に強固に固着すれば、更に短時間の軸受摺動による発熱により回転側摺動部材の膨脹が生じ、軸受の抱き付き破壊に至る。
In order to remove the heat generated by the lubricating function and sliding on the sliding surface in the cooling fluid passage grooves of conventional sliding bearings, it is a premise that the cooling fluid passage passages are ensured. If foreign matter stays in the fluid passage grooves and the conduction of the cooling fluid is obstructed, the heat generated by the sliding of the sliding bearing stays in the bearing, and eventually the sliding bearing is broken. are not few.
Furthermore, when the sliding bearing is intermittently exposed to air operation, the foreign matter stagnating in the cooling fluid passage dries and solidifies. Due to the heat generated by the motion, the rotation-side sliding member expands, leading to the failure of the bearing.

従来の滑り軸受における冷却流体通過溝の本数は、固定軸側摺動部材3が円筒形一体構造の場合は3~5本の事が多く、冷却流体通過溝の流体通過断面積の確保に限界があるのが実状である。図2に示すような、この問題を解決するために考案された固定軸側摺動部材3が固定軸受内周に等間隔に複数配置されている摺動部材分割構造の場合は、冷却流体通過溝6の本数は固定軸側摺動部材3の分割数に相当する本数となるが、分割数を増やす程、摺動面における流体潤滑皮膜の形成性が低下するために、摺動時において流体潤滑状態を保つ事が困難となる問題点があった。 The number of cooling fluid passage grooves in conventional sliding bearings is often 3 to 5 when the fixed shaft side sliding member 3 has a cylindrical integral structure, and there is a limit to securing the fluid passage cross-sectional area of the cooling fluid passage grooves. It is the actual situation that there is As shown in FIG. 2, in the case of a sliding member divided structure in which a plurality of fixed shaft side sliding members 3 are arranged at equal intervals on the inner circumference of the fixed bearing, which was devised to solve this problem, cooling fluid passage The number of grooves 6 corresponds to the number of divisions of the fixed-shaft-side sliding member 3. However, as the number of divisions increases, the ability to form a fluid lubricating film on the sliding surface decreases. There was a problem that it was difficult to maintain a lubricating state.

特に、硬質粒子等の混入が想定されるスラリー環境下において使用される滑り軸受では、固定軸側摺動部材と回転軸側摺動部材の共に超硬合金やセラミックス等の超硬質の脆性材料を摺動部材に用いる事が多く、円筒形状の脆性材料の軸方向に溝を増やす事は、異常運転時に発生する振動や衝撃によって破損する事が避けられない。円筒形状に分割型摺動部材を配置した分割構造の軸受を用いる場合は、硬質材料が分割配置されている事による摺動面の不連続性により、固定側軸受の製作段階において軸受内周面の真円度、同芯度を保つ事が困難となる。更に、分割型摺動部材を持つ固定側軸受は、使用時間が長くなる程、真円度、同芯度が大きく狂うという問題を抱えている。そのために、固定軸側摺動部材と回転軸側摺動部材の局部接触が生じやすく、局部的な破損が避けられないという問題点があった。 In particular, for sliding bearings that are used in a slurry environment where hard particles are expected to enter, both the fixed shaft side sliding member and the rotating shaft side sliding member are made of ultra-hard brittle materials such as cemented carbide and ceramics. It is often used for sliding members, and increasing grooves in the axial direction of a cylindrical brittle material inevitably causes damage due to vibrations and shocks that occur during abnormal operation. When using a split-structure bearing in which split-type sliding members are arranged in a cylindrical shape, the discontinuity of the sliding surface due to the split arrangement of the hard material may It becomes difficult to maintain the roundness and concentricity of Furthermore, the fixed-side bearing having the split-type sliding member has the problem that the longer it is used, the more the out-of-roundness and the concentricity are degraded. Therefore, there is a problem that the fixed shaft side sliding member and the rotating shaft side sliding member are likely to come into local contact, and local damage is unavoidable.

一般に、滞留性の高い異物を含む流体環境下における耐摩耗性の確保と摺動発熱の抑制には、摺動表面における円滑な潤滑と冷却に必要な流体の継続的な供給を実現することが重要であるが、固定軸側摺動部材に冷却流体通過溝を配置する構造では、冷却流体通過溝に滞留する異物の排出と、流体潤滑皮膜を確保することで摺動材同士の直接接触を避け高硬度材料の特性である脆性による材料の急激な破壊を招くという問題を解決するに到っていない。 In general, in order to ensure wear resistance and suppress sliding heat generation in a fluid environment containing foreign matter with high stagnation, it is necessary to realize a continuous supply of the fluid necessary for smooth lubrication and cooling on the sliding surface. It is important to note that in the structure in which the cooling fluid passage grooves are arranged in the fixed shaft side sliding member, direct contact between the sliding members is prevented by discharging foreign matter that remains in the cooling fluid passage grooves and by ensuring a fluid lubricating film. However, the problem of sudden breakage of materials due to brittleness, which is a characteristic of high-hardness materials, has not yet been solved.

解決しようとする問題点は、回転機械に用いる軸受摺動機構において、長時間の軸受隙間内に滞留しやすい粒子や、繊維状物質等の固形異物、及び高粘性会合物質を高濃度で含む液体中、並びに高粘性液体中での摺動運転を可能とする摺動部材がなく、軸受摺動時において固形異物や高粘性物質が滞留することで、摺動発熱による軸受の異常温度上昇、並びに、軸受摺動を司る潤滑流体の供給不良により、滑り軸受を形成する材料の著しい破損によって滑り軸受の機能を一気に失うことを抑止する手法が無いという欠点がある。
そのために、滑り軸受破壊の大きな因子である軸受隙間内温度上昇による抱き付きを遅延させるために停滞しやすい固形異物を多く含む流体であっても、継続的に軸受隙間内に摺動発熱の冷却と、潤滑皮膜形成を司る流体を安定的に供給し、更に、軸受隙間内に滞留固着した固形異物を強制的に排出させることによって、滞留性の固形異物や高粘性会合物質を多く含む液体中でも著しい破壊を伴わない軸受摺動機構が求められているが、それを満足するものがない。
The problem to be solved is that in a bearing sliding mechanism used in a rotating machine, a liquid containing a high concentration of particles that tend to stay in the bearing gap for a long time, solid foreign matter such as fibrous substances, and highly viscous association substances There is no sliding member that enables sliding operation in medium to high-viscosity liquids, and solid foreign matter and high-viscosity substances accumulate when the bearing slides, causing abnormal temperature rise in the bearing due to heat generated by sliding. However, there is no method for suppressing sudden loss of the function of the sliding bearing due to significant damage of the material forming the sliding bearing due to insufficient supply of the lubricating fluid that governs the sliding of the bearing.
Therefore, even if the fluid contains a large amount of solid foreign matter that tends to stagnate, it is possible to continuously cool the heat generated by sliding in the bearing clearance to delay the clinging due to the temperature rise in the bearing clearance, which is a major factor in breaking the sliding bearing. By stably supplying the fluid that governs the formation of the lubricating film and forcibly discharging the solid foreign matter that remains and adheres in the bearing gap, There is a demand for a bearing sliding mechanism that does not cause significant damage, but there is nothing that satisfies this requirement.

本発明の目的とするところは、滞留しやすい粒子や繊維状物質等の固形異物及び高粘性会合物質を含む液体中、並びに高粘性液体中で使用される軸受摺動機構が、非常に高濃度の固形異物を含んだ条件下に於いても安定した摺動特性を維持するために、軸受隙間内に停滞する固形異物を強制的に排出させることによって、滑り軸受の摺動発熱の冷却と流体潤滑皮膜の形成をを司る流体を安定的に供給し、固形異物が多く含まれる荷液中においても過度の摩耗や破壊を所持させない軸受摺動機構を提供することであり、特に立軸ポンプにおいては荷液による潤滑を前提とした水中軸受であり、軸受近傍に粘着物質が堆積し軸受部が堆積物により埋没する可能性が危惧されているポンプ、並びに、雨水だけでなく大量の糞尿を含む高濃度下水を扱うポンプ等でも良好な摺動特性を示し、しかも、ポンプ停止中に軸受隙間内に残留した固形異物をポンプ運転と同時に強制的に排出させることにより安定的な摺動特性を維持する軸受摺動機構を提供することにある。 The object of the present invention is to provide a bearing sliding mechanism that is used in liquids containing solid foreign substances such as particles and fibrous substances that tend to stagnate and highly viscous associative substances, as well as in highly viscous liquids. In order to maintain stable sliding characteristics even under conditions containing solid foreign matter, by forcibly discharging the solid foreign matter stagnating in the bearing clearance, the sliding heat generated by the slide bearing is cooled and fluidized. To provide a bearing sliding mechanism that stably supplies a fluid that governs the formation of a lubricating film and does not cause excessive wear or breakage even in a cargo liquid that contains a large amount of solid foreign matter, especially in a vertical shaft pump. It is a submersible bearing that assumes lubrication by cargo liquid, and there is concern that sticky substances may accumulate near the bearing and the bearing part may be buried by sediments. It exhibits good sliding characteristics even with pumps that handle concentrated sewage, and maintains stable sliding characteristics by forcibly discharging solid foreign matter remaining in the bearing gap while the pump is stopped at the same time as the pump is running. An object of the present invention is to provide a bearing sliding mechanism.

上記の目的を達するために、上記請求項1に記載の発明は、滞留しやすい粒子や繊維状物質等の固形異物及び高粘性会合物質を含む液体中、並びに高粘性液体中で使用される軸受摺動機構にあって、図3に示すように軸受下部から上部に向けて、回転軸断面に対して20°~40°の傾斜角7を保ちながら回転軸側摺動面上を螺旋状に周回して導通した本発明の冷却流体流路8を確保した上で、固定側摺動部材9の摺動面に滞留しやすい粒子や繊維状物質等の固形異物や高粘性会合物質を含む液体、並びに高粘性液体の通過溝を全く設けない完全な連続面で形成し、この固定軸側摺動部材9と回転摺動自在に嵌合させた回転軸側摺動部材10を、金属材料もしくは容積率50%以上を占める炭素材料を用いることを特徴とする滑り軸受の組み合わせ摺動部材としたものである。 In order to achieve the above object, the invention as set forth in claim 1 provides a bearing for use in liquids containing solid foreign matter such as particles and fibrous substances that tend to stagnate, highly viscous associative substances, and in highly viscous liquids. In the sliding mechanism, as shown in FIG. 3, from the lower part of the bearing to the upper part, it spirals on the rotating shaft side sliding surface while maintaining an inclination angle 7 of 20° to 40° with respect to the cross section of the rotating shaft. After securing the cooling fluid flow path 8 of the present invention that is circulated and conducted, liquid containing solid foreign substances such as particles and fibrous substances that tend to stay on the sliding surface of the fixed side sliding member 9 and high viscosity association substances , and a rotating shaft side sliding member 10 which is formed of a completely continuous surface without any passage groove for a highly viscous liquid and is fitted to the fixed shaft side sliding member 9 so as to rotate and slide freely is made of a metal material or A combined sliding member of a slide bearing characterized by using a carbon material occupying a volume ratio of 50% or more.

従来の固形粒子や繊維状物質等の固形異物及び高粘性会合物質を含む液体中、並びに高粘性液体中での使用を想定する滑り軸受組み合わせ摺動部材にあっては、固定軸側摺動部材として、超硬合金、窒化珪素(Si)、炭化珪素(SiC)、炭化タングステン(WC)、アルミナ(Al)、クロミア(CrO、Cr)、ジルコニア(ZrO)のセラミックスのいずれか1つを用いた固定軸側摺動部材は、高硬度、高耐食性を有するが、それと組み合わせる回転軸側摺動部材として超硬合金、セラミックス溶射金属を用いると、摺動発熱の冷却と摺動面における流体潤滑皮膜の形成を司る冷却流体を供給するための流路は、固定軸側摺動部材を回転軸方向に貫通する溝形状で配置するしかなく、滞留しやすい粒子や繊維状物質等の固形異物及び高粘性会合物質を含む液体中、並びに高粘性液体中で使用されると、固定軸受側に設けられた冷却流体通過溝に流体中に含まれる異物が堆積停滞し、軸受隙間への安定した冷却流体の供給が阻害されることにより、流体潤滑皮膜の喪失による硬質材料同士の強度の局部接触による凝着摩耗の発生に伴う摺動面性状の変化による摺動特性の大幅な変化や、摺動発熱による摺動部の異常温度上昇による回転軸側摺動部材の熱膨張による軸受隙間の喪失による抱き付き現象を生じたり、回転軸側摺動部材を保持固定する金属製回転軸の熱膨脹によって回転軸側摺動部材への引っ張り応力負荷による回転軸摺動部材料の破断の発生を招くといった等の不具合があったが、このような不具合を本発明は確実に解消できる。In conventional slide bearing combination sliding members that are assumed to be used in liquids containing solid foreign matter such as solid particles and fibrous substances and highly viscous associative substances, as well as in highly viscous liquids, the fixed shaft side sliding member as cemented carbide, silicon nitride ( Si3N4 ), silicon carbide (SiC), tungsten carbide (WC), alumina ( Al2O3 ) , chromia ( CrO2, Cr2O3 ), zirconia ( ZrO2 ) has high hardness and high corrosion resistance. The flow path for supplying the cooling fluid that governs the cooling of heat generation and the formation of a fluid lubricating film on the sliding surface can only be arranged in the shape of a groove penetrating the fixed shaft side sliding member in the direction of the rotating shaft, and is likely to remain. When used in liquids containing solid foreign matter such as particles and fibrous substances and high-viscosity association substances, or in high-viscosity liquids, foreign matter contained in the fluid accumulates in the cooling fluid passage grooves provided on the fixed bearing side. Stagnation and obstruction of the stable supply of the cooling fluid to the bearing gaps lead to adhesion wear due to strong local contact between hard materials due to the loss of the fluid lubricating film, which causes sliding deterioration due to changes in the sliding surface properties. Significant change in dynamic characteristics and abnormal temperature rise of the sliding part due to heat generated by sliding may cause the bearing clearance loss due to thermal expansion of the sliding member on the rotating shaft side, which may cause a sticking phenomenon, or hold the sliding member on the rotating shaft side. There have been problems such as the occurrence of breakage of the material of the sliding portion of the rotating shaft due to the tensile stress load on the sliding member on the rotating shaft side caused by the thermal expansion of the fixed metal rotating shaft. can be resolved for sure.

従来の滑り軸受組み合わせ摺動部形状の概念図Conceptual diagram of conventional slide bearing combination sliding part shape 分割型摺動部材を採用した滑り軸受組み合わせ摺動部形状の概念図Conceptual diagram of the shape of sliding part combined with slide bearing that adopts split-type sliding member 軸受隙間内停滞物質を強制排出する軸受摺動機構の概念図Conceptual diagram of a bearing sliding mechanism that forcibly discharges stagnant substances in the bearing clearance 滑り軸受回転側摺動部材外周面の冷却流体流路を平面展開した第1概念図A first conceptual diagram of the cooling fluid flow path on the outer peripheral surface of the sliding member on the rotation side of the plain bearing, developed from a plane. 滑り軸受回転側摺動部材外周面の冷却流体流路を平面展開した第2概念図A second conceptual diagram of the cooling fluid flow path on the outer peripheral surface of the sliding member on the rotation side of the sliding bearing, which is developed from a plane. 本発明の軸受摺動機構を適用した渦巻ポンプの断面図Sectional view of a centrifugal pump to which the bearing sliding mechanism of the present invention is applied 本発明の軸受摺動機構を適用した縦型斜流ポンプの断面図Sectional view of a vertical mixed flow pump to which the bearing sliding mechanism of the present invention is applied 本発明の有効性実証のため軸受摺動実験装置の一部切断側面図Partially cut side view of a bearing sliding test device for demonstrating the effectiveness of the present invention.

以下、本発明の実施形態を図面に従って説明する。図4は本発明の第1実施形態に係わる軸受摺動機構における回転側摺動部材外周面の平面展開図を示す。この組み合わせは固定軸側摺動部材9の摺動面に冷却流体を通過流路を全く有さないことを特徴とする固定軸側摺動部材9と、回転軸側摺動材の摺動面外周を螺旋状に旋回しながら回転軸側摺動材の下部から上部に配置された本発明の冷却流体流路8が設けられた回転軸側摺動部材10を用いたものであり、この軸受摺動機構は、従来例の組み合わせに比較して、滞留しやすい粒子や繊維状物質等の固形異物及び高粘性会合物質を含む液体中、並びに高粘性液体中での回転軸1の軸回転11によって、本発明の冷却流体流路8に大量の異物が混入したとしても、螺旋状の前記冷却流体流路8が螺旋旋回することにより、前記冷却流体流路8内に滞留する異物が軸受溝内ですくい上げられる方向13に強制的に運ばれ、軸受外に排出されるために、滑り軸受において摺動発熱の冷却と流体潤滑皮膜の形成を司る流体の欠損に起因する抱き付き現象に到らないことである。 An embodiment of the present invention will be described below with reference to the drawings. FIG. 4 shows a plan developed view of the outer peripheral surface of the rotation-side sliding member in the bearing sliding mechanism according to the first embodiment of the present invention. In this combination, the sliding surface of the fixed-shaft-side sliding member 9 and the sliding surface of the rotating-shaft-side sliding member are characterized by having no flow path for the cooling fluid. The rotating shaft side sliding member 10 provided with the cooling fluid flow path 8 of the present invention arranged from the lower part to the upper part of the rotating shaft side sliding member while spirally turning around the outer circumference is used. Compared to the combination of the conventional example, the sliding mechanism is capable of rotating the rotating shaft 1 in a liquid containing solid foreign substances such as particles and fibrous substances that tend to stay together, highly viscous association substances, and in a highly viscous liquid. Therefore, even if a large amount of foreign matter enters the cooling fluid flow path 8 of the present invention, the spiral cooling fluid flow path 8 spirally turns the foreign matter remaining in the cooling fluid flow path 8 into the bearing groove. Since it is forcibly transported in the direction 13 where it is scooped up inside and discharged outside the bearing, it leads to a sticking phenomenon due to lack of fluid that controls the cooling of sliding heat generation and the formation of fluid lubricating film in the sliding bearing. It is not.

本発明の大きな特徴は、固形粒子や繊維状物質等の固形異物及び高粘性会合物質を含む液体中、並びに高粘性液体中での使用において、摺動発熱の冷却と流体潤滑皮膜の形成に必要不可欠な流体の供給する冷却流体通過溝や流路を固定軸側摺動部材の摺動面に設けず、回転軸側摺動部材の摺動面上を螺旋状に設けられた流路8で確保しようとするものである。一般の滑り軸受では、固定軸側摺動部材3に放射状に配置された冷却流体通過溝4を設けることにより、摺動面に摺動発熱の冷却と流体潤滑皮膜を形成させるための流体を供給する構造となっているが、固定軸受側に設けられた固定した冷却流体通過溝4に流体中に含まれる異物の停滞が生じ流体の供給が滞る危険性が排除出来ない。しかし、本発明の冷却流体流路8が回転軸側摺動部材10の表面に螺旋状に設けられている滑り軸受では、軸が回転している時に作用する前記冷却流体流路8の溝内の滞留物質を強制排出する効果を利用するものである。
更に、前記冷却流体流路8に侵入して軸受摺動面を激しく摩耗させる可能性のある硬質粒子を含む荷液も、螺旋旋回している前記冷却流体流路8の有する強制排出機能によって、摺動面の摩耗量を抑制し、高粘度流体中での使用下における粘性流体の軸受隙間内の滞留をも防止し、軸受摺動部における異常発熱を抑制し滑り軸受の抱き付き破壊に至らせないことが特徴である。
A major feature of the present invention is that it is necessary for cooling sliding heat generation and forming a fluid lubricating film in liquids containing solid foreign matter such as solid particles and fibrous substances and highly viscous associative substances, as well as in highly viscous liquids. Cooling fluid passage grooves or channels for supplying the essential fluid are not provided on the sliding surface of the fixed-shaft-side sliding member, but the flow-path 8 is spirally provided on the sliding surface of the rotating-shaft-side sliding member. trying to ensure. In general sliding bearings, by providing cooling fluid passage grooves 4 arranged radially in the fixed shaft side sliding member 3, fluid is supplied to cool the heat generated by sliding and to form a fluid lubricating film on the sliding surface. However, it is impossible to eliminate the risk that foreign matter contained in the fluid will stagnate in the cooling fluid passage groove 4 that is fixed on the fixed bearing side and the supply of the fluid will be interrupted. However, in the sliding bearing in which the cooling fluid flow path 8 of the present invention is spirally provided on the surface of the rotating shaft side sliding member 10, the inside of the groove of the cooling fluid flow path 8 acting when the shaft is rotating It utilizes the effect of forcibly discharging the retained substances of the
Furthermore, the forced discharge function of the helical cooling fluid flow passage 8 also prevents cargo liquid containing hard particles that may enter the cooling fluid flow passage 8 and severely wear the sliding surface of the bearing. It suppresses the amount of wear on the sliding surface, prevents viscous fluid from accumulating in the bearing gap when used in high-viscosity fluid, suppresses abnormal heat generation in the sliding part of the bearing, and prevents the sliding bearing from being stuck and broken. It is characterized by not being able to

以上のことから、固形粒子や繊維状物質等の固形異物及び高粘性会合物質を含む液体中、並びに高粘性液体中で取り扱われる回転機械の軸受摺動機構として図3に示すような回転軸側摺動部材10の摺動面に前記摺動部材10の下部から上部に向けて螺旋状に摺動面を周回する本発明の冷却流体流路8を設ける組み合わせは、固形粒子や繊維状物質等の固形異物、及び高粘性会合物質を含む液体中、並びに高粘性液体中のような軸受内の冷却流体流路を閉塞させる物質が過剰に含まれる状態において、軸受の冷却流路を閉塞させる停滞物質を軸受内から前記冷却流体流路8を通して強制的に排出させる点に優れている。 From the above, it can be concluded that the rotating shaft side as shown in FIG. A combination in which the cooling fluid flow path 8 of the present invention spirally circling the sliding surface of the sliding member 10 from the bottom to the top of the sliding member 10 is provided on the sliding surface of the sliding member 10 is solid particles, fibrous substances, etc. stagnation that blocks the cooling flow path of the bearing in a liquid containing solid foreign matter and highly viscous associative substances, and in a state in which an excessive amount of substances that block the cooling fluid flow path in the bearing, such as in a high-viscosity liquid, is included. It is excellent in that substances are forcibly expelled from the bearing through the cooling fluid channel 8 .

更に、滑り軸受が流体中で摺動運転する際に発生する摺動熱の除去には、固定軸側摺動部材9と回転軸側摺動部材10が摺動する軸受隙間部への安定した冷却流体の供給が重要な因子となる。図1に示すような一般の固定軸側摺動部材3に設けられている流体通過溝4では、通過断面積が大きい場合では冷却流体の通過流速が低下し、通過断面積が小さい場合は冷却流体の通過抵抗が増大する。そのために、流動性が悪く固形粒子や繊維状物質等の固形異物及び高粘性会合物質を含む液体中、並びに高粘性液体中での使用では常に流体通過溝への異物の停滞による閉息の危険性が常に排除できない。本発明では、図3に示すように回転する回転軸スリーブ側摺動部材10の表面に螺旋状の冷却流体流路8を設けているために、本発明の冷却流体流路8を閉塞させる可能性がある異物を排出するのに極めて有効であり、軸受隙間部の摺動面には冷却を司る冷却流体が滞りなく供給される。更に、回転軸側摺動部材10表面に設けられた螺旋状の溝の両側の摺動面12は非常に広い面積を確保しているために、摺動面に形成される流体皮膜の欠損も生じにくい特徴を持っている。 Furthermore, in order to remove the sliding heat generated when the sliding bearing slides in a fluid, stable heat is applied to the bearing gap where the fixed shaft side sliding member 9 and the rotating shaft side sliding member 10 slide. The supply of cooling fluid becomes an important factor. In the fluid passage groove 4 provided in the general fixed shaft side sliding member 3 as shown in FIG. Fluid passage resistance increases. Therefore, when used in a liquid with poor fluidity and containing solid foreign matter such as solid particles and fibrous substances and highly viscous associated substances, or in a highly viscous liquid, there is always a danger of suffocation due to the stagnation of foreign matter in the fluid passage groove. Gender cannot always be ruled out. In the present invention, as shown in FIG. 3, since the spiral cooling fluid channel 8 is provided on the surface of the rotating shaft sleeve side sliding member 10, the cooling fluid channel 8 of the present invention can be blocked. It is extremely effective in expelling foreign matter that has a tendency to be brittle, and the cooling fluid that governs cooling is smoothly supplied to the sliding surface of the bearing clearance. Furthermore, since the sliding surfaces 12 on both sides of the helical groove provided on the surface of the rotating shaft side sliding member 10 secure a very large area, the fluid film formed on the sliding surface may be damaged. It has unusual features.

言い換えれば、異物、固形粒子等を強制的に軸受外部に排出出来る経路を確保し、摩耗原因となる異物、固形粒子の摺動面への進入を防ぎ、摺動面に形成される潤滑を司る流体被膜の欠損を防ぐと共に、発生した摺動熱を速やかに除去することと、両立している点で非常に優れた特徴を持っている。 In other words, it secures a path that allows foreign matter and solid particles to be forcibly discharged outside the bearing, prevents foreign matter and solid particles that cause wear from entering the sliding surface, and controls the lubrication formed on the sliding surface. It has an extremely excellent feature in that it simultaneously prevents the loss of the fluid film and quickly removes the generated sliding heat.

図5は本発明の第2実施形態に係わる軸受摺動機構における回転軸側摺動部材外周面の平面展開図を示す。この冷却流体流路8は図5に示すように、一体で製作した回転軸側摺動部材10の摺動面の表面を螺旋状に周回するように本発明の冷却流体流路8を複数本配置することにより構成する事も出来る。この場合においても、前記冷却流体流路8を螺旋状に複数配置する際には、回転軸の回転により流体が軸受端部から送り込まれ他端側に排出される様に、回転軸断面から20°~40°の傾斜角7を保ちながら回転軸側摺動面を等間隔で螺旋状に施すことにより構成する。 FIG. 5 shows a plan developed view of the outer peripheral surface of the rotating shaft side sliding member in the bearing sliding mechanism according to the second embodiment of the present invention. As shown in FIG. 5, the cooling fluid flow path 8 has a plurality of cooling fluid flow paths 8 of the present invention so as to helically circulate the surface of the sliding surface of the rotating shaft side sliding member 10 manufactured integrally. It can also be configured by arranging. In this case also, when a plurality of the cooling fluid passages 8 are arranged in a spiral shape, the fluid is fed from the bearing end by the rotation of the rotating shaft and is discharged to the other end side, so that the rotating shaft cross section is 20 degrees. The sliding surface on the rotating shaft side is provided in a helical shape at equal intervals while maintaining an inclination angle 7 of .degree. to 40.degree.

この第2実施形態に係わる滑り軸受組み合わせは、特に、大量の固形粒子や繊維状物質等の固形異物及び高粘性会合物質を含む液体中、並びに超高粘性液体中で取り扱われる回転機械において有効である。大量の異物が冷却流体中に含まれる場合、冷却流体通過溝内8からの異物排出能力向上に効果的なのは勿論であるが、トイレットペーパーの粕のような浮遊性繊維質異物を大量に含んだ流体、アスファルトのように非常に高粘度の流体、液体石鹸のような流体、水と油の乳化液のように冷却流体自体が極めて高い粘度の流体中で滑り軸受を運用する場合において極めて有効である。 The sliding bearing combination according to the second embodiment is particularly effective in rotary machines that are handled in liquids containing a large amount of solid foreign matter such as solid particles and fibrous substances, high-viscosity association substances, and ultra-high-viscosity liquids. be. When a large amount of foreign matter is contained in the cooling fluid, it is of course effective to improve the ability to discharge the foreign matter from the cooling fluid passage groove 8. It is extremely effective when operating sliding bearings in fluids with extremely high viscosity, such as fluids such as asphalt, fluids such as liquid soap, and fluids in which the cooling fluid itself has extremely high viscosity, such as emulsions of water and oil. be.

一般の滑り軸受の設計上の軸受隙間の決定においては、滑り軸受の運転時における摺動荷重、回転速度に加えて使用環境下における流体粘度が極めて重要な因子となる。低粘度流体中で使用する場合は、潤滑を司る流体潤滑皮膜の皮膜厚さは極めて薄くなり、高粘度流体中で使用する場合には、流体潤滑皮膜の皮膜厚さは極めて厚くなる。一般に滑り軸受における軸受隙間の決定は、その流体皮膜厚さが最大値となり、固定軸受内における回転軸の偏芯回転が最小となるように軸受隙間を定めるものであるが、低粘度流体中での使用を想定した小さな軸受隙間を有する滑り軸受を、高粘度流体中で使用すれば軸受隙間不足により摺動発熱が過剰となり滑り軸受の抱き付きを引き起こし破損を招くことなる。一方、高粘度流体中での使用を想定した大きな軸受隙間を有する滑り軸受を、低粘度流体中で使用すれば軸受隙間過剰により回転軸の偏芯が過剰となり大きな振動を伴うだけでなく、流体潤滑皮膜が欠損し、固定軸受側摺動部材と回転軸側摺動部材の固体同士の直接接触が生じ、滑り軸受の摩耗が加速度的に進行し破損を招くこととなる。 In determining the bearing clearance in designing a general sliding bearing, in addition to the sliding load and rotational speed during operation of the sliding bearing, the viscosity of the fluid under the operating environment is an extremely important factor. When used in a low-viscosity fluid, the film thickness of the fluid lubricating film that governs lubrication becomes extremely thin, and when used in a high-viscosity fluid, the film thickness of the fluid lubricating film becomes extremely thick. Generally, the bearing clearance of a sliding bearing is determined so that the fluid film thickness is maximized and the eccentric rotation of the rotating shaft in the fixed bearing is minimized. If a sliding bearing with a small bearing clearance intended for use in 1 is used in a high-viscosity fluid, the lack of bearing clearance causes excessive sliding heat generation, causing the sliding bearing to stick and cause damage. On the other hand, if a sliding bearing with a large bearing clearance intended for use in a high-viscosity fluid is used in a low-viscosity fluid, the excessive bearing clearance will cause excessive eccentricity of the rotating shaft, resulting not only in large vibrations, but also in fluid The lubricating film is lost, and direct contact occurs between the solids of the sliding member on the fixed bearing side and the sliding member on the rotating shaft side, and wear of the sliding bearing progresses at an accelerated rate, leading to breakage.

そのために、一般の滑り軸受を高濃度の異物や高粘性流体環境中で使用する場合は、固定軸受側摺動部材に冷却流体通過溝を多数配置することで流体の通過流路を確保する試みが一般的である。しかし、冷却流体通過溝内の高粘度流体の搬出力は外部流体の流速のみに委ねられているために、高粘度流体の速やかな搬出は困難である。 For this reason, when a general sliding bearing is used in an environment with a high concentration of foreign matter or a highly viscous fluid, an attempt has been made to secure a flow path for the fluid by arranging a large number of cooling fluid passage grooves in the sliding member on the fixed bearing side. is common. However, since the carrying force of the high-viscosity fluid in the cooling-fluid passage grooves depends only on the flow velocity of the external fluid, it is difficult to carry out the high-viscosity fluid quickly.

しかし、本発明による回転軸側摺動部材の摺動面の表面を螺旋状に周回するように複数本配置することにより構成した滑り軸受を用いれば、冷却流路自体が冷却流路内の高粘度冷却流体を強制的に排出することが可能であり冷却流路内における流体の流動性が高められることとなる。そのために、高粘度流体中で用いられる滑り軸受であっても、通常の滑り軸受よりも小さな軸受隙間を与える事が可能となり、結果的に扱う流体の粘度変化の幅が大きい場合でも、滑り軸受の発熱による抱き付きや、偏芯回転による振動、異状摩耗を抑制出来る点において優れている。 However, if a sliding bearing configured by arranging a plurality of sliding members spirally around the surface of the sliding surface of the rotating shaft side sliding member according to the present invention is used, the cooling flow path itself becomes high in the cooling flow path. It is possible to forcibly discharge the viscous cooling fluid, and the fluidity of the fluid in the cooling channel is enhanced. For this reason, even with sliding bearings used in high-viscosity fluids, it is possible to provide smaller bearing clearances than normal sliding bearings. It is excellent in that it can suppress clinging due to heat generation, vibration due to eccentric rotation, and abnormal wear.

ここに、本発明の軸受摺動機構の実用性を明らかにするために行った軸受摺動部材の摺動実験による効果について説明する。Here, the effect of the sliding test of the bearing sliding member conducted to clarify the practicality of the bearing sliding mechanism of the present invention will be described.

図8は本発明の軸受摺動機構における軸受摺動部材の摺動実験装置を示す。この実験装置によって行った試験は、既存する様々な組み合わせ摺動部材を用い、清水雰囲気、スラリー雰囲気、無潤滑雰囲気及び無潤滑域から急激な潤滑液流入を繰り返し行う使用環境下での、摺動特性と破壊形態を調査した。その結果、本発明の軸受摺動機構によるものが非常に優れていることが判明した。 FIG. 8 shows a sliding test device for the bearing sliding member in the bearing sliding mechanism of the present invention. The test conducted with this experimental device was conducted using various existing combinations of sliding members, and sliding was performed under a usage environment in which lubricating fluid was rapidly inflowed repeatedly from fresh water atmosphere, slurry atmosphere, non-lubricating atmosphere, and non-lubricating area. The characteristics and fracture morphology were investigated. As a result, it was found that the bearing slide mechanism of the present invention is very excellent.

すなわち、縦型の軸受実験装置は上部の電動機22によってトルク検出器23を介して回転軸24が回転するようにしてある。上記回転軸24は上部軸受25と下部供試軸受26によって回転自在に保持している。その下部供試軸受26の摺動部位には、回転軸24に着脱自在に固定した供試回転軸摺動部材27が摺動回転できるように挿入してある。上部軸受25と下部供試軸受26の中間位置には偏芯荷重発生用円板28を装着しており、この円板28には振れ回り荷重を発生させるための偏芯おもり29が半径方向に調節移動自在に固定してある。この偏芯おもり29を取り付けた円板28を上記回転軸24と共に回転させることによって、下部供試軸受26に振れ回りの軸受荷重を与える構造としてある。 That is, in the vertical bearing experimental apparatus, a rotating shaft 24 is rotated by an electric motor 22 on the upper side through a torque detector 23 . The rotating shaft 24 is rotatably held by an upper bearing 25 and a lower test bearing 26 . A test rotating shaft sliding member 27 detachably fixed to the rotating shaft 24 is inserted into the sliding portion of the lower test bearing 26 so as to be slidable and rotatable. An eccentric load generating disk 28 is mounted at an intermediate position between the upper bearing 25 and the lower test bearing 26, and an eccentric weight 29 for generating whirling load is attached to the disk 28 in the radial direction. It is fixed so that it can be freely adjusted and moved. By rotating the disk 28 to which the eccentric weight 29 is attached together with the rotating shaft 24, a whirling bearing load is applied to the lower test bearing 26. As shown in FIG.

また、上記下部供試軸受26は前後左右に移動自在の供試軸受設置箱30内に取外し自在に固定しており、その供試軸受設置箱30を一方向から加圧する拘束用の油圧ライン31により、下部供試軸受25に対して半径方向荷重を加えるようにしてある。また、供試軸受設置箱30の両端には振れ回りラジアル荷重計測用に右側ロードセル32および左側ロ-ドセル33を設置して軸受荷重を計測するようにしてある。さらに、下部供試軸受26の摺動状態を把握するために、上記左右のロードセル32、33による計測荷重、トルク検出器23による負荷トルクの他に、下部供試軸受26の近傍における回転軸24の振れ回り変位を計測するための変位計34、供試軸受設置箱30の振動加速度を計測するための振動加速度計35、供試軸受設置箱34内に設置された下部供試軸受26内部の各部温度計測用の上部温度計36、および下部温度計37がそれぞれ設置してある。さらに供試軸受設置箱30には、スラリー等潤滑媒体の供給ライン38を接続してある。 The lower test bearing 26 is detachably fixed in a test bearing installation box 30 which is movable in the front, rear, left and right directions. to apply a radial load to the lower test bearing 25 . A right side load cell 32 and a left side load cell 33 for measuring whirling radial load are installed at both ends of the test bearing installation box 30 to measure the bearing load. Furthermore, in order to grasp the sliding state of the lower test bearing 26, in addition to the load measured by the left and right load cells 32 and 33 and the load torque by the torque detector 23, the rotating shaft 24 near the lower test bearing 26 was measured. A displacement meter 34 for measuring the whirling displacement of the test bearing installation box 30 Vibration accelerometer 35 for measuring the vibration acceleration of the test bearing installation box 30 Inside the lower test bearing 26 installed in the test bearing installation box 34 An upper thermometer 36 and a lower thermometer 37 for measuring the temperature of each part are installed. Further, the test bearing installation box 30 is connected to a supply line 38 for lubricating medium such as slurry.

この滑り軸受実試験装置によって行った摺動試験においては、下部供試軸受は内径100ミリメートル、摺動長さ60ミリメートルの部位での回転摺動を行い、摺動面圧0.2MPa×摺動速度6m/sec×180分の水40リットルに浮遊性繊維質異物を最大400g(トイレットペーパー4ロール)を溶かした浮遊性異物混濁水における軸受摺動による軸受部の上昇温度の計測によって得られたデータを下記表1に示す。 In the sliding test conducted by this sliding bearing actual test device, the lower test bearing was rotated and slid at a portion with an inner diameter of 100 mm and a sliding length of 60 mm. Obtained by measuring the temperature rise of the bearing part due to the bearing sliding in floating foreign matter-contaminated water in which a maximum of 400 g (4 rolls of toilet paper) of floating fibrous foreign matter was dissolved in 40 liters of water at a speed of 6 m / sec x 180 minutes. The data are shown in Table 1 below.

表1並びに下記表2中の記号A、からOが従来の軸受冷却流体通過溝を設けた、滑り受摺動部材組み合わせであり、P、及びQが回転軸側摺動部材10に、摺動面外周を回転軸断面から30°の傾斜角7を保ち、摺動面外周を螺旋状に旋回しながら回転軸側摺動部材10の下部から上部に配置された本発明の冷却流体流路8が設けられた回転軸側摺動部材10を用いた本発明の軸受摺動機構であり、T、及びUが前記冷却流体流路8の傾斜角7を60°の急角度とした冷却流体流路8を採用した軸受摺動機構である。 Symbols A to O in Table 1 and Table 2 below are combinations of slide receiving sliding members provided with conventional bearing cooling fluid passage grooves, and P and Q are sliding members 10 on the rotating shaft side. The cooling fluid flow path 8 of the present invention is arranged from the bottom to the top of the rotating shaft side sliding member 10 while maintaining the inclination angle 7 of 30° from the rotating shaft cross section on the outer periphery of the surface and spirally turning the outer periphery of the sliding surface. is a bearing sliding mechanism of the present invention using a rotating shaft side sliding member 10 provided with T and U are the cooling fluid flow in which the inclination angle 7 of the cooling fluid flow path 8 is a steep angle of 60 ° It is a bearing sliding mechanism that employs a path 8 .

Figure 2022124981000002
Figure 2022124981000002

繊維質浮遊性異物を大量に含んだ荷液中で滑り軸受を回転摺動させると、従来の滑り軸受組み合わせ摺動部材の軸受では、軸受実試験装置のスラリー等潤滑媒体供給ライン38から供給される荷液中の繊維質浮遊性異物が試験装置の供試軸受設置箱30内底部に蓄積し、滑り軸受摺動部に潤滑を司る液体の供給が滞る事が確認されたが、前記回転軸側摺動部材10に、回転軸断面から30°の傾斜角7を保ち、螺旋状に旋回しながら回転軸側摺動部材10の下部から上部に配置された本発明の冷却流体流路8が設けられた回転軸側摺動部材10を用いた軸受摺動機構を用いると、供試軸受設置箱30内底部には繊維質浮遊性異物が停滞滞留することなく軸受摺動部から速やかに排出され、軸受摺動部には常に潤滑を司る液体が供給されている事が確認出来た。なお、前記傾斜角7を60°の急角度とした冷却流体流路8では、その効果は限定的であることを確認した。 When the sliding bearing is rotated and slid in a cargo liquid containing a large amount of fibrous floating foreign matter, in the bearing of the conventional sliding member combined with sliding bearings, the lubricating medium such as slurry is supplied from the supply line 38 of the actual bearing test device. It was confirmed that fibrous floating foreign matter in the cargo liquid accumulated in the bottom of the test bearing installation box 30 of the test apparatus, and the supply of the liquid that governs lubrication to the sliding portion of the sliding bearing was blocked. In the side sliding member 10, the cooling fluid flow path 8 of the present invention is arranged from the bottom to the top of the rotating shaft side sliding member 10 while maintaining an inclination angle 7 of 30° from the cross section of the rotating shaft and spirally turning. When the bearing sliding mechanism using the rotating shaft side sliding member 10 provided is used, the fibrous floating foreign matter is quickly discharged from the bearing sliding portion without stagnation at the inner bottom of the test bearing installation box 30. It was confirmed that the sliding part of the bearing was always supplied with a liquid that governs lubrication. In addition, it was confirmed that the effect of the cooling fluid flow path 8 having the steep inclination angle 7 of 60° was limited.

また、摺動面圧0.2MPa×摺動速度6m/sec×60分のISO VG460潤滑油中における軸受摺動による軸受部の上昇温度の計測によって得られたデータを下記表2に示す。 Table 2 below shows the data obtained by measuring the temperature rise of the bearing due to sliding in ISO VG460 lubricating oil at a sliding surface pressure of 0.2 MPa, a sliding speed of 6 m/sec, and 60 minutes.

Figure 2022124981000003
Figure 2022124981000003

軸受隙間を清水下及び260cStの粘性流体下での運用を想定した数値を与え、これを設計想定外となるISO VG460の超高粘性荷液中で従来の滑り軸受組み合わせ摺動部材の軸受では、摺動発熱による温度上昇が顕著となる。従来の滑り軸受組み合わせ摺動部材の軸受では、軸受部の軸回転では荷液である粘性流体を軸受下部から上部に搬出する力が得られないために、供試軸受設置箱30内の粘性流体は常時停滞した状態となるが、回転軸側摺動部材10に、前記30°の傾斜角7を保ち螺旋状に旋回した本発明の冷却流体流路8が設けられた回転軸スリーブ側摺動部材10を用いた軸受摺動機構を用いると、供試軸受設置箱30内の高粘性流体は軸回転による螺旋溝の流体搬出効果によって、停滞滞留することなく軸受摺動部を流動通過することで、摺動による発熱が速やかに排熱されている事が確認出来た。なお、前記傾斜角7を60°の急角度とした冷却流体流路8では、その効果は限定的であることを確認した。 Given the numerical value assuming operation under clear water and 260 cSt viscous fluid for the bearing clearance, in the ultra-high viscosity load of ISO VG460, which is beyond the design assumption, in the bearing of the conventional slide bearing combination sliding member, The temperature rise due to sliding heat generation becomes remarkable. In the conventional bearing of the slide bearing combination sliding member, the axial rotation of the bearing portion cannot obtain the force to carry the viscous fluid, which is the cargo liquid, from the lower part of the bearing to the upper part. However, the rotating shaft sleeve side sliding member 10 is provided with the cooling fluid passage 8 of the present invention that spirally turns while maintaining the inclination angle 7 of 30°. When the bearing sliding mechanism using the member 10 is used, the high-viscosity fluid in the test bearing installation box 30 flows through the bearing sliding part without stagnation due to the fluid carry-out effect of the spiral groove due to the rotation of the shaft. , it was confirmed that the heat generated by the sliding was quickly exhausted. In addition, it was confirmed that the effect of the cooling fluid flow path 8 having the steep inclination angle 7 of 60° was limited.

このように、回転軸側摺動部材10に、摺動面外周を螺旋状に旋回しながら回転軸側摺動部材10の下部から上部に配置された本発明の冷却流体流路8が設けられた回転軸側摺動部材10を用いた軸受摺動機構を用いると、軸受摺動部に停滞し軸受摺動部を閉塞させやすい異物を大量に含む荷液中においても、軸受隙間から速やかに異物を排出し、設計粘度を大幅に超える高粘性荷液中の摺動環境下においても、軸受摺動部に停滞しようとする高粘性荷液を速やかに排出する事が確認出来た。 In this way, the cooling fluid passage 8 of the present invention is provided in the rotating shaft side sliding member 10 and arranged from the lower part to the upper part of the rotating shaft side sliding member 10 while spirally turning around the outer periphery of the sliding surface. When the bearing sliding mechanism using the rotating shaft side sliding member 10 is used, even in a cargo liquid containing a large amount of foreign matter that tends to stay in the bearing sliding part and clog the bearing sliding part, It was confirmed that even in a sliding environment in a highly viscous cargo liquid that greatly exceeds the design viscosity, the high-viscosity cargo liquid that tends to stagnate in the sliding part of the bearing can be quickly discharged.

ここに、上記図3に開示した本発明の軸受摺動機構を、図6の縦型渦巻ポンプおよび図8の縦型斜流ポンプにそれぞれ実施した場合の有用性について説明する。 Here, usefulness when the bearing sliding mechanism of the present invention disclosed in FIG. 3 is applied to the vertical centrifugal pump shown in FIG. 6 and the vertical mixed flow pump shown in FIG. 8 will be described.

先ず、図6に示す縦型渦巻ポンプにおいては、上記本発明の軸受摺動機構を、流体搬出用羽根車14を回転駆動させるインペラシャフト15をポンプケーシング16内部で支える荷液潤滑型滑り軸受17として使用している。本来、この渦巻ポンプが扱う液種は決まっている場合が多いが、渦巻きポンプが使用される場所によっては、液種が清浄でない場合や、液種の性状が大きく異なる荷液を取り扱う場合がある。液種が清浄でない場合は、荷液潤滑型滑り軸受部には、混濁している滞留しやすい粒子や繊維状物質等の固形異物及び高粘性会合物質が滞留堆積し、冷却流体通過溝を閉塞させる危険性が排除出来ない。また、原油のように粘度が産地によって大きく異なる荷液を扱う場合、特に高粘性液体を荷液として扱う場合、滑り軸受に与えられた軸受隙間では摺動発熱の冷却に十分な冷却流体量が確保出来ず、軸受摺動部の発熱により滑り軸受の抱き付きが引き起こされ、滑り軸受破損の危険性が排除出来ない。
しかし、本発明によって軸受隙間部に滞留し冷却流体の流れを妨げる流体中の異物や、高粘性流体の排出が促進されるために、この問題を解消することができた。
First, in the vertical centrifugal pump shown in FIG. 6, the bearing sliding mechanism of the present invention is provided with a cargo-liquid lubrication type slide bearing 17 for supporting the impeller shaft 15 for rotationally driving the impeller 14 for carrying out the fluid inside the pump casing 16 . are used as In most cases, the type of liquid handled by the centrifugal pump is fixed, but depending on the location where the centrifugal pump is used, the type of liquid may not be clean, or liquids with greatly different properties may be handled. . If the liquid is not clean, solid foreign matter such as turbid particles, fibrous substances, and highly viscous aggregates accumulate in the liquid-lubricated sliding bearing, clogging the cooling fluid passage grooves. The danger of doing so cannot be ruled out. Also, when handling liquids such as crude oil whose viscosity varies greatly depending on the place of production, especially when handling highly viscous liquids as cargo liquids, the amount of cooling fluid sufficient to cool the heat generated by sliding is not sufficient in the bearing clearance provided in the slide bearing. If it is not possible to secure it, heat generated in the sliding part of the bearing will cause the sliding bearing to stick, and the risk of damage to the sliding bearing cannot be ruled out.
However, according to the present invention, this problem can be solved because the foreign matter in the fluid that remains in the bearing gap and obstructs the flow of the cooling fluid and the highly viscous fluid can be discharged.

すなわち、本発明による軸受摺動機構を上記ポンプをはじめとする回転機械の滑り軸受に適用すれば、優れた無潤滑摺動特性、耐熱衝撃性、耐摩耗性を確保でき、通常運転環境において冷却不良による軸受の異常発熱の危険性を持ちながら使用されている回転機械に大きな信頼性を与えることができる。 That is, if the bearing sliding mechanism according to the present invention is applied to the sliding bearings of rotating machines such as the pumps, excellent non-lubricating sliding characteristics, thermal shock resistance, and wear resistance can be ensured, and cooling can be achieved in normal operating environments. It is possible to provide great reliability to rotating machines that are in use despite the risk of abnormal heat generation of bearings due to defects.

その他の用途に用いた本発明の軸受摺動機構としては、図7に示すように土砂スラリーの他に生活排水等を取り扱う縦型の斜流ポンプに用いる。この斜流ポンプでは、通常は雨水等の土砂等粒子を含む水を荷液として扱うことが多いが、近年は同時に生活排水を含む下水を荷液として扱う事も少なく無い。生活排水中は土砂を含む雨水とは異なり、荷液流体には媒体である水分と大きな密度差を持たない浮遊性異物を多く含んでいる。この異物は糞尿であったり、トイレットペーパー中に含まれる会合性の高い繊維質異物、粘度の高い洗剤、石鹸の溶解成分が多く含まれており、滑り軸受の軸受隙間や、滑り軸受内の冷却流体通過溝のような狭小路における流動性が極めて悪い物質である。このような環境下においてポンプ運転を行えば、流体搬出用羽根車18を回転駆動させるインペラシャフト19の中間軸受設置部位20に用いられる滑り軸受の軸受隙間及び冷却流体流路には、混濁している滞留しやすい粒子や繊維状物質等の固形異物及び高粘性会合物質が滞留堆積し、ポンプ運転後に中間軸受部に残留している固形異物及び高粘性会合物質が乾燥固化して軸受隙間内を埋め尽くした状態となり、滑り軸受摺動部においてポンプ内水位が上昇する迄に気中無潤滑運転に曝される部位では、軸受隙間部に残留して乾燥した固形異物等が異常発熱を来たし滑り軸受の抱き付きを発生する可能性が排除出来ない。また、固形異物及び高粘性会合物質を高濃度で含む荷液に常時晒されるポンプ最下部のインペラ保持部21に、高濃度の異物を含む潤滑条件下で従来の滑り軸受を使用すると異常発熱を来たし滑り軸受の抱き付きを発生する可能性が排除出来ないが、本発明の軸受摺動機構を装着することにより、荷液中に含まれる固形粒子や繊維状物質等の固形異物及び高粘性会合物質を速やかに滑り軸受摺動部外に排出することが可能となり、摺動部に十分な潤滑液を供給し軸受における抱き付きを誘発する摺動発熱を十分に冷却できる能力を確保できるようにした。 As a bearing slide mechanism of the present invention used for other applications, as shown in FIG. 7, it is used in a vertical mixed flow pump for handling domestic wastewater in addition to earth and sand slurry. In this mixed flow pump, water containing particles such as sediments such as rainwater is usually handled as cargo liquid in many cases, but in recent years sewage including domestic wastewater is also often handled as cargo liquid. Unlike rainwater, which contains sediment, domestic wastewater contains a large amount of floating contaminants that do not have a large density difference with water, which is the medium. This foreign matter includes excrement, highly associative fibrous foreign matter contained in toilet paper, highly viscous detergents, and dissolved components of soap. It is a substance with extremely poor fluidity in a narrow passage such as a fluid passage channel. If the pump is operated under such an environment, the cooling fluid flow path and the bearing gap of the sliding bearing used in the intermediate bearing installation portion 20 of the impeller shaft 19 that rotates the impeller 18 for carrying out the fluid become turbid. Solid foreign matter and highly viscous associative substances such as particles and fibrous substances that tend to stay in the air accumulate and accumulate, and after the pump runs, the solid foreign matter and highly viscous associative substances that remain in the intermediate bearing dry and solidify and flow through the bearing gap. In the area where the water level inside the pump rises, solid foreign matter remaining in the bearing gap causes abnormal heat generation and slippage. The possibility of bearing sticking cannot be ruled out. In addition, if a conventional sliding bearing is used for the impeller holding part 21 at the bottom of the pump, which is always exposed to a cargo liquid containing a high concentration of solid foreign matter and highly viscous associative substances, abnormal heat generation will occur if a conventional sliding bearing is used under lubrication conditions that include a high concentration of foreign matter. Although it cannot be ruled out that the sliding bearing may stick, the bearing sliding mechanism of the present invention prevents solid particles, fibrous substances, and other solid foreign substances and high-viscosity associations contained in the cargo liquid. It is possible to quickly discharge substances from the sliding parts of the sliding bearing, supply sufficient lubricating fluid to the sliding parts, and secure the ability to sufficiently cool the heat generated by sliding that induces sticking in the bearing. did.

特に公共性の高いポンプに求められる様々な性状の荷液への対応幅を確保することは、荷液性状が広い範囲で変動する運転が強要されるポンプにおいて、特に粘性の高い荷液運転時や、異物が大量に含まれた混濁液中での運転中において滑り軸受部の異常発熱による抱き付き現象によって引き起こされる滑り軸受機能喪失の抑止に大きな効果を与えることが可能となる。 In particular, securing the range of response to cargo liquids with various properties, which is required for highly public pumps, is important for pumps that are forced to operate in which the properties of cargo liquids fluctuate over a wide range, especially when operating highly viscous cargo liquids. In addition, it is possible to provide a great effect in suppressing the loss of sliding bearing function caused by the sticking phenomenon due to abnormal heat generation of the sliding bearing portion during operation in a turbid liquid containing a large amount of foreign matter.

それ以外の用途としては、雰囲気温度によって粘度が大きく変化するような荷液、非常に細かい粒子が高濃度な状態となった粘土質荷液、ゲル状荷液を扱うポンプ、攪拌機、電動機、スクリュー向けの滑り軸受としての適用可能性を有する。 Other applications include pumps, stirrers, electric motors, and screws that handle liquids whose viscosity changes greatly depending on the ambient temperature, clayey liquids with a high concentration of very fine particles, and gel-like liquids. It has applicability as a sliding bearing for

1 回転軸
2 回転軸側摺動部材
3 固定軸側摺動部材
4 冷却流体通過溝
5 固定軸側の分割型摺動部材
6 分割型摺動部材の配置間隙
7 回転軸側摺動部材摺動面に螺旋状に配置した本発明の冷却流体流路の、回転軸断面 に対する角度
8 本発明の冷却流体流路
9 固定軸側摺動部材
10 回転軸側摺動部材
11 回転軸の回転方向
12 回転軸側摺動部材の摺動面
13 流体通過溝内に滞留する異物の、軸回転により掬い上げられる方向
14 流体排出用羽根車
15 インペラシャフト
16 ポンプケーシング
17 荷液潤滑型滑り軸受
18 流体排出用羽根車
19 インペラシャフト
20 中間軸受設置部位
21 インペラ保持部
22 電動機
23 トルク検出器
24 回転軸
25 上部軸受
26 下部供試軸受
27 供試回転軸摺動部材
28 偏心荷重発生用円板
29 偏心おもり
30 供試軸受設置箱
31 拘束用油圧
32 右側ロードセル
33 左側ロードセル
34 変位計
35 振動加速度計
36 上部温度計
37 下部温度計
38 潤滑媒体供給ライン
REFERENCE SIGNS LIST 1 rotating shaft 2 rotating shaft side sliding member 3 fixed shaft side sliding member 4 cooling fluid passage groove 5 fixed shaft side split type sliding member 6 arrangement gap of split type sliding member 7 rotating shaft side sliding member sliding Angle of the cooling fluid channel of the present invention arranged spirally on the surface with respect to the cross section of the rotating shaft 8 Cooling fluid channel of the present invention 9 Fixed shaft side sliding member 10 Rotating shaft side sliding member 11 Rotating direction 12 Sliding surface 13 of rotating shaft side sliding member Direction in which foreign matter remaining in the fluid passage groove is scooped up by shaft rotation 14 Fluid discharge impeller 15 Impeller shaft 16 Pump casing 17 Liquid-lubricated slide bearing 18 Fluid discharge Impeller 19 Impeller shaft 20 Intermediate bearing installation part 21 Impeller holding part 22 Electric motor 23 Torque detector 24 Rotating shaft 25 Upper bearing 26 Lower test bearing 27 Test rotating shaft sliding member 28 Disc for generating eccentric load 29 Eccentric weight 30 Test bearing installation box 31 Restraining hydraulic pressure 32 Right load cell 33 Left load cell 34 Displacement gauge 35 Vibration accelerometer 36 Upper thermometer 37 Lower thermometer 38 Lubricating medium supply line

Claims (1)

回転軸に嵌合固定された回転軸側摺動部材と、該回転軸側摺動部材の外周に回転摺動自在に嵌め込まれる固定軸側摺動部材とから構成される摺動機構であって、前記回転軸側摺動部材の外周面にのみ冷却流体が流れる冷却流体流路が形成されるとともに、該冷却流体流路は、螺旋状に形成されていることを特徴とする軸受摺動機構。 A sliding mechanism comprising a rotating shaft-side sliding member fitted and fixed to a rotating shaft, and a fixed shaft-side sliding member fitted to the outer periphery of the rotating shaft-side sliding member so as to be rotatably slidable. A bearing sliding mechanism, wherein a cooling fluid passage through which a cooling fluid flows is formed only on an outer peripheral surface of said rotating shaft side sliding member, and said cooling fluid passage is formed in a spiral shape. .
JP2021065515A 2021-02-16 2021-02-16 Bearing slide mechanism Pending JP2022124981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021065515A JP2022124981A (en) 2021-02-16 2021-02-16 Bearing slide mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021065515A JP2022124981A (en) 2021-02-16 2021-02-16 Bearing slide mechanism

Publications (1)

Publication Number Publication Date
JP2022124981A true JP2022124981A (en) 2022-08-26

Family

ID=82942024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021065515A Pending JP2022124981A (en) 2021-02-16 2021-02-16 Bearing slide mechanism

Country Status (1)

Country Link
JP (1) JP2022124981A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131116U (en) * 1986-02-14 1987-08-19
JPH02173393A (en) * 1988-12-26 1990-07-04 Teikoku Denki Seisakusho:Kk Axial thrust relieving device for axial flow pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131116U (en) * 1986-02-14 1987-08-19
JPH02173393A (en) * 1988-12-26 1990-07-04 Teikoku Denki Seisakusho:Kk Axial thrust relieving device for axial flow pump

Similar Documents

Publication Publication Date Title
CA2851452C (en) Apparatus, system and method for sealing submersible pump assemblies
JP6603382B2 (en) Vertical shaft pump
CA2311096C (en) Bearing and bushing assembly
CA2109335A1 (en) Diamond bearing assembly
Litwin et al. The influence of polymer bearing material and lubricating grooves layout on wear of journal bearings lubricated with contaminated water
JP2022124981A (en) Bearing slide mechanism
BR102013003215A2 (en) Pump, separator device for a pump, and rotor shaft for a pump
JP2012132548A (en) Slide bearing combination slide member
CN107701495A (en) A kind of high-temperature melting salt pump self-lubricating bearing device
JP6411902B2 (en) Vertical shaft pump
JPS6349086B2 (en)
JP2009222208A (en) Bearing and pump having the same
JPS6073123A (en) Combined sliding member
JPH08135653A (en) Underwater bearing device
JP2018084193A (en) Vertical shaft pump
JP2016205545A (en) Slide bearing device and pump including the same
Rozeanu et al. Wear of hydrodynamic journal bearings
JP6994194B2 (en) Plain bearing device and pump equipped with it
JP6491215B2 (en) Vertical shaft pump
JPS60146916A (en) Combined sliding member
JP7025961B2 (en) Horizontal axis pump
JP2006170239A (en) Combination sliding member for sliding bearing
JPH0262417A (en) Bearing device in water
JPS6349087B2 (en)
JP2001263290A (en) Pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240514