JP2022124616A - Temperature raising control device of battery - Google Patents
Temperature raising control device of battery Download PDFInfo
- Publication number
- JP2022124616A JP2022124616A JP2021022349A JP2021022349A JP2022124616A JP 2022124616 A JP2022124616 A JP 2022124616A JP 2021022349 A JP2021022349 A JP 2021022349A JP 2021022349 A JP2021022349 A JP 2021022349A JP 2022124616 A JP2022124616 A JP 2022124616A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- battery
- power
- voltage
- driving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Hybrid Electric Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
本発明は、バッテリの昇温制御装置に関する。 The present invention relates to a battery temperature increase control device.
走行用の電力を蓄える走行用バッテリを備えた電動車両においては、低温下において走行用バッテリの放電可能電力が制限され、十分に電動モータを駆動できないことがある。特許文献1には、高電圧バッテリ(走行用バッテリ)が所定温度よりも低いときに、高電圧バッテリを昇温させる制御装置が提案されている。当該制御装置は、発電機の駆動と電気装置の駆動とを交互に行い、高電圧バッテリの充電と放電とを周期的に繰り返すことで、高電圧バッテリを昇温させる。
2. Description of the Related Art In an electric vehicle equipped with a running battery that stores electric power for running, the electric power that can be discharged from the running battery is limited at low temperatures, and the electric motor may not be sufficiently driven.
走行用バッテリに充放電を繰り返し行わせることで、走行用バッテリにジュール熱を発生させて、走行用バッテリを昇温することができる。しかしながら、走行用バッテリが極低温のときには、走行用バッテリの充電可能電力及び放電可能電力が非常に小さくなる。この状態で、発電機の通常駆動又は電気装置の通常駆動により走行用バッテリの充電電力と放電電力を得ようとすると、充電電力及び放電電力が走行用バッテリの充電可能電力及び放電可能電力を超えてしまう恐れが生じる。 By repeatedly charging and discharging the driving battery, Joule heat can be generated in the driving battery and the temperature of the driving battery can be increased. However, when the running battery is at an extremely low temperature, the chargeable power and dischargeable power of the running battery are very small. In this state, if an attempt is made to obtain charging power and discharging power of the driving battery by normal driving of the generator or normal driving of the electric device, the charging power and discharging power of the driving battery will exceed the chargeable power and dischargeable power of the driving battery. There is a risk that the
本発明は、走行用バッテリが極低温のときでも走行用バッテリを昇温させることが可能なバッテリの昇温制御装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a battery temperature increase control device capable of increasing the temperature of a driving battery even when the driving battery is at an extremely low temperature.
本発明の一態様のバッテリの昇温制御装置は、
内燃機関であるエンジンと、駆動輪の動力を発生する電動モータと、走行用の電力を蓄積する走行用バッテリと、前記エンジンの動力を受けて前記走行用バッテリの充電電力を発生しかつ発電量を調整する調整回路を含んだ高電圧発電機と、前記走行用バッテリの出力電圧を電源として動作する高電圧負荷と、を備える電動車両に搭載されるバッテリの昇温制御装置であって、
前記走行用バッテリの温度が第1温度閾値以下の場合に、前記高電圧発電機の前記調整回路が非動作の状態で前記エンジンを駆動させる昇温制御部を備え、
前記昇温制御部による前記エンジンの駆動により、前記高電圧発電機の内部で生じた誘起電圧に基づく電力が前記高電圧発電機から前記走行用バッテリへ送られる。
A battery temperature increase control device according to one aspect of the present invention includes:
An engine that is an internal combustion engine, an electric motor that generates power for the driving wheels, a driving battery that stores electric power for driving, and an amount of electric power generated by receiving power from the engine to generate charging power for the driving battery. and a high-voltage load that operates using the output voltage of the running battery as a power supply.
a temperature increase control unit that drives the engine while the adjustment circuit of the high-voltage generator is in a non-operating state when the temperature of the running battery is equal to or lower than a first temperature threshold;
Electric power based on an induced voltage generated inside the high-voltage generator is sent from the high-voltage generator to the running battery by driving the engine by the temperature increase control unit.
本発明によれば、高電圧発電機の調整回路が非動作の状態でエンジンが駆動されることで、高電圧発電機の誘起電圧に基づき、高電圧発電機から小さい充電電力を出力させることができる。したがって、例えば極低温下で走行用バッテリの充電可能電力及び放電可能電力が非常に小さい場合でも、上記の小さい充電電力を用いることで充電可能電力を超えない範囲で走行用バッテリを充電することが可能となる。そして、このような充電と、走行用バッテリの放電とを繰り返すことで、極低温下の走行用バッテリを昇温できる。 According to the present invention, by driving the engine while the adjustment circuit of the high-voltage generator is inactive, it is possible to output small charging power from the high-voltage generator based on the induced voltage of the high-voltage generator. can. Therefore, even if the chargeable power and dischargeable power of the running battery are extremely small, for example, at extremely low temperatures, the running battery can be charged within a range that does not exceed the chargeable power by using the small charging power. It becomes possible. By repeating such charging and discharging of the driving battery, it is possible to raise the temperature of the driving battery under extremely low temperatures.
以下、本発明の実施形態について図面を参照して詳細に説明する。図1は、本発明の実施形態に係る昇温制御装置を搭載した電動車両を示すブロック図である。図1の電動車両1は、内燃機関であるエンジン3と、走行用の動力を発生する電動モータ6と、を有するHEV(Hybrid Electric Vehicle)である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an electric vehicle equipped with a temperature increase control device according to an embodiment of the present invention. The
電動車両1は、エンジン3又は電動モータ6によって駆動される駆動輪2と、エンジン3の動力を駆動輪2に伝達するトランスミッション5と、エンジン3を動かすための補機4と、走行用の電力を蓄積する走行用バッテリ(例えばリチウムイオン二次電池)10と、走行用バッテリ10の電力を変換して電動モータ6を駆動するインバータ7と、走行用バッテリ10の第1電圧よりも低い第2電圧(例えば12V系)で動作する低電圧負荷11と、第2電圧を供給する低電圧バッテリ(例えば鉛バッテリ)12と、走行用バッテリ10の第1電圧を低い第2電圧に変換するDC/DCコンバータ13と、エンジン3の動力を受けて走行用バッテリ10の充電電力を発生する高電圧発電機14と、走行用バッテリ10の第1電圧を電源電圧として動作する高電圧負荷15と、運転者による運転操作が入力される運転操作部16とを備える。走行用バッテリ10は、電力線L1を介してインバータ7と高電圧負荷15に第1電圧を供給する。高電圧発電機14は第1電圧用発電機と呼んでもよい。高電圧負荷15は第1電圧用負荷と呼んでもよい。
The
低電圧負荷11には、電動車両1の走行制御を行う走行制御部11Aと、極低温時に走行用バッテリ10の昇温処理を行う昇温制御部11Bと、走行用バッテリ10の管理を行うバッテリ管理部11Cと、が含まれる。補機4のうち電気で駆動される機器は、低電圧負荷11に含まれる。昇温制御部11Bと高電圧負荷15のスイッチ15aとを組み合わせた構成が、極低温下の走行用バッテリ10を昇温する昇温制御装置Eを構成する。
The low-
走行制御部11Aは、1つのECU(Electronic Control Unit)あるいは互いに連携して動作する複数のECUから構成される。走行制御部11Aは、運転操作部16からの信号を受け、当該信号に応じて補機あるいはインバータ7を制御することで、エンジン3又は電動モータ6から運転操作に応じた動力を出力させる。
The
バッテリ管理部11Cは、走行用バッテリ10の温度、電圧、充放電電流等を測定し、走行用バッテリ10の温度、電圧、充放電電流、充電残量、充電可能電力Win、放電可能電力Wout等を管理する。
図2は、走行用バッテリの温度と充電可能電力及び放電可能電力との関係の一例を示す特性グラフである。走行制御部11Aは、充電可能電力Win及び放電可能電力Woutの範囲で、電動モータ6の力行運転及び回生運転の制御を行う。図2に示すように、充電可能電力Win及び放電可能電力Woutは、走行用バッテリ10の温度に依存し、極低温下では非常に小さな値となる。走行制御部11Aは、走行用バッテリ10が極低温である温度範囲WT1において、充電可能電力Win及び放電可能電力Woutが小さ過ぎるため電動モータ6の駆動による走行を不可と判別する。
FIG. 2 is a characteristic graph showing an example of the relationship between the temperature of the running battery and the chargeable power and dischargeable power. The
高電圧負荷15は、例えば空調装置などであり、第1電圧(高電圧)が伝送される電力線L1に接続される。空調装置であれば、高電圧負荷15には、電動コンプレッサと電動コンプレッサを駆動するインバータ回路とを含む。
The
高電圧負荷15には、非動作のまま電力線L1から電力を入力可能なスイッチ15aが含まれる。スイッチ15aは、具体的には、電力線L1と高電圧負荷15との接続及び切断を切り替えるパワー半導体素子又はリレーである。スイッチ15aを接続に切り替えることで、高電圧負荷15を非動作のまま、高電圧負荷15の動作電力よりも小さい電力を高電圧負荷15の高抵抗な電気回路に送り、小さな電力を消費させることができる。例えば高電圧負荷15が空調装置であれば、インバータ回路の各パワー半導体素子がオフのままインバータ回路に第1電圧が入力されることで、各パワー半導体素子の寄生容量に電流が流れて、小さな電力を消費させることができる。あるいは、高電圧負荷15の電源入力部に比較的に大きな電流を流す負荷がある場合には、スイッチ15aを低いデューティ比でオン・オフ制御することで、少量の電流を流して、非常に小さな電力を消費させることができる。
The high-
高電圧発電機14は、コイル又は永久磁石を有する発電部14aと、発電部14aの出力を整流しかつ出力電圧又は出力電力を調整する調整回路14bと、調整回路14bを制御する制御回路14cとを有する。調整回路14bはパワー半導体素子を含み、制御回路14cによってパワー半導体素子がスイッチング制御されることで、出力電圧又は出力電力が調整される。調整回路14bは、例えばレギュレータ回路であるが、三相交流電圧を受けて直流電圧を生成するインバータ回路であってもよい。制御回路14cは、エンジン3の状態に応じて(例えば始動時か動作中かに応じて)出力電力を切り替える機能を有していてもよい。また、制御回路14cは、デジタルインタフェースを有し、走行制御部11Aと相互に連携して出力電圧又は出力電力の調整を行う機能を有していてもよい。
The high-
調整回路14bのうちパワー半導体素子を駆動するケートドライバは、走行用バッテリ10から供給される第1電圧(高電圧)を電源として動作するため、安定した第1電圧の供給がないと動作不可となる。制御回路14cが調整回路14bを非動作としたまま、エンジン3が低速回転で駆動されると、発電部14aに当該低速回転の運動が入力され、発電部14aのコイルに誘起電圧が生じ、高電圧発電機14から当該誘起電圧に基づく小さい電力を出力させることができる。当該誘起電圧に基づく出力電力は、エンジン3の回転速度を調整することで、非常に小さな電力に制御することができる。エンジン3の回転速度は、低電圧バッテリ12を電源として動作する補機4によって制御される。したがって、走行用バッテリ10が安定した電力を供給できないときでも、昇温制御部11Bは、エンジン3の回転速度を安定的に制御して、高電圧発電機14から非常に小さな電力を出力させることができる。
The gate driver, which drives the power semiconductor element in the
昇温制御部11Bは、1つのECU又は互いに連携して動作する複数のECUから構成される。昇温制御部11Bは、走行制御部11A、バッテリ管理部11C又はこれら両方と統合されていてもよい。昇温制御部11Bには、バッテリ管理部11Cから走行用バッテリ10の温度の情報が送られる。昇温制御部11Bは、走行制御部11Aにエンジン3のアイドリング運転の駆動指令を出力でき、また、高電圧負荷15のスイッチ15aを切り替え制御できる。
The temperature
昇温制御部11Bは、走行用バッテリ10が低温であるときに、走行用バッテリ10の昇温を早める昇温処理を実行する。昇温処理では、図2のグラフに示されるように、走行用バッテリ10の温度と第1温度閾値Tth1と第2温度閾値Tth2との関係に基づいて処理内容が切り替えられる。第1温度閾値Tth1は、電動モータ6の駆動による走行が不可となる温度範囲WT1の上限値に基づく値である。上限値に基づく値とは、当該上限値に制御用の余裕値、補正値、誤差分、又はこれらのうち複数を加えた値を意味し、具体的には、上記上限値±5℃又は±10℃程度の範囲の値を意味してもよい。第2温度閾値Tth2は、温度範囲WT1は超えているが、走行用バッテリ10の充電可能電力Win及び放電可能電力Woutがまだ小さく、走行用バッテリ10が昇温されることが望まれる温度に設定される。
Temperature
<昇温処理>
図3は、昇温制御部が実行する走行用バッテリの昇温処理を示すフローチャートである。当該昇温処理は、電動車両1のシステム起動(起動ボタンのオン操作、イグニション電源のオン操作など)に基づいて開始される。あるいは、電動車両1のシステムが走行開始時刻の予約が可能な構成である場合、予約された走行開始時刻に基づく時刻(例えば走行開始時刻から昇温処理に費やされる予測時間を差し引いた時刻等)になった場合に、昇温処理が開始されてもよい。
<Temperature rising treatment>
FIG. 3 is a flowchart showing a process of increasing the temperature of the driving battery executed by the temperature increase controller. The temperature raising process is started when the system of the
昇温処理が開始されると、昇温制御部11Bは、走行用バッテリ10の温度が第1温度閾値Tth1(図2を参照)以下か否かを判別する(ステップS1)。その結果、第1温度閾値Tth1以下でなければ、昇温制御部11Bは、昇温処理を終了する。第1温度閾値Tth1を超えていれば走行用バッテリ10を昇温させずに電動モータ6の駆動が可能なので、ステップS1でNOと判別されて昇温処理が終了すると、その後、走行制御部11Aは、通常の起動処理を行って、通常の走行制御を実行する。なお、昇温制御部11Bは、ステップS1でNOと判別したら、走行用バッテリ10の温度をより望ましい温度にするため処理をステップS5に移行してもよい。
When the temperature increase process is started, temperature
一方、ステップS1でYESと判別すると、昇温制御部11Bは、高電圧発電機14の調整回路14bが非動作の状態のまま、エンジン3の始動指令を走行制御部11Aへ出力する(ステップS2)。当該始動指令により、調整回路14bが非動作の状態で、高電圧発電機14にエンジン3の回転運動が伝達され、当該回転運動によって高電圧発電機14内に誘起電圧が発生し、高電圧発電機14から小さな電力が出力される。
On the other hand, if YES is determined in step S1, the temperature
さらに、昇温制御部11Bは、高電圧負荷15のスイッチ15aがオンからオフ、そして、オフからオンへと繰り返し切り替わるように、スイッチ15aの切り替え制御を行う(ステップS3)。そして、昇温制御部11Bは、走行用バッテリ10の温度が第1温度閾値Tth1を超えたか判別し(ステップS4)、当該判別の結果がYESとなるまで、ステップS3の切り替え制御を繰り返す。
Furthermore, the temperature
ステップS3、S4のループ処理により、スイッチ15aのオンとオフとが繰り返し切り替えられることで、高電圧負荷15では、高電圧発電機14からの小さな発電電力を僅かに上回る電力の消費と、当該電力消費の中断とが繰り返される。そして、電力線L1に接続された走行用バッテリ10に、発電電力と消費電力との差分である小さな充電電力と小さな放電電力とが交互に入出力される。発電電力と消費電力とが共に小さな電力であるため、昇温制御部11Bは、上記の充電電力及び放電電力を、極低温下の充電可能電力Win及び放電可能電力Woutを超えない範囲に抑えることができる。そして、ステップS3、S4のループ処理において、走行用バッテリ10の充放電が繰り返されることで、走行用バッテリ10でジュール熱が発生し、走行用バッテリ10の温度が上昇する。
By repeatedly switching on and off of the
なお、昇温制御部11Bは、ステップS2aの処理により、DC/DCコンバータ13の動作を禁止することで、ステップS3、S4のループ処理中に、DC/DCコンバータ13が動作しないように制御してもよい。ステップS3、S4のループ処理中にDC/DCコンバータ13が動作すると、その分の消費電力により、充放電電力の適切な振り幅の制御が困難になる。したがって、DC/DCコンバータ13を非動作とすることで、当該ループ処理中の充放電制御を信頼性高く実現できる。
Note that the temperature
また、ステップS3、S4のループ処理中、走行制御部11Aは、エンジン3の動力のみで電動車両1の走行制御を行ってもよい。
Further, during the loop processing of steps S<b>3 and S<b>4 , the
ステップS3、S4のループ処理中、走行用バッテリ10の温度が上昇し、第1温度閾値Tth1を超えると、昇温制御部11Bは、ステップS4でYESと判別し、次のステップに処理を進める。ここで、走行用バッテリ10の温度は、温度範囲WT1を脱し、走行用バッテリ10の電力供給が可能となるため、当該電力供給により高電圧発電機14の調整回路14bが動作可能となり、高電圧発電機14の通常発電動作が可能となる。また、上記の電力供給及び高電圧発電機14の通常発電により、高電圧負荷15が通常動作可能となる。
During the loop processing of steps S3 and S4, when the temperature of the running
処理が次に進むと、昇温制御部11Bは、高電圧負荷15のスイッチ15aの切り替え制御を終了し、高電圧負荷15を運転者の操作に基づいて通常動作させる(ステップS5)。なお、運転者の操作がない場合には、ステップS5において、昇温制御部11Bが高電圧負荷15の通常動作を開始させてもよい。ステップS2aにおいてDC/DCコンバータ13の動作を禁止している場合には、昇温制御部11Bは、ステップS5aにおいてDC/DCコンバータ13の動作を許可する。当該許可により、その後、DC/DCコンバータ13が動作し、低電圧バッテリ12の電力が枯渇することを抑制できる。
When the process proceeds to the next step, the temperature
次に、昇温制御部11Bは、高電圧発電機14の制御回路14cに指令を出力し、発電電力を高電圧負荷15の消費電力を中心に繰り返し大小に変化させる(ステップS6)。そして、昇温制御部11Bは、走行用バッテリ10の温度が第2温度閾値Tth2を超えたか判別し(ステップS7)、当該判別の結果がYESとなるまで、ステップS6の発電電力の制御を繰り返す。
Next, the temperature
ステップS6、S7のループ処理により、高電圧発電機14の発電電力が高電圧負荷15の消費電力を中心に繰り返し大小に変化することで、当該発電電力と消費電力との差分が走行用バッテリ10の充電電力と放電電力となり、走行用バッテリ10で充放電が繰り返される。そして、当該充放電により走行用バッテリ10でジュール熱が発生し、走行用バッテリ10が昇温する。
Through the loop processing of steps S6 and S7, the generated power of the high-
ステップS6、S7のループ処理中、走行用バッテリ10の温度が上昇し、第2温度閾値Tth2を超えると、昇温制御部11Bは、ステップS7でYESと判別し、高電圧発電機14の発電電力の制御を終了する(ステップS8)。そして、昇温処理が終了する。その後、高電圧発電機14は通常動作となり、電動車両1の通常動作が実現される。
During the loop processing of steps S6 and S7, when the temperature of the running
<昇温動作>
図4は、走行用バッテリの温度が第1温度閾値より低いときの昇温動作を示すタイムチャートである。図5は、走行用バッテリの温度が第1温度閾値から第2温度閾値の間のときの昇温動作を示すタイムチャートである。
<Temperature rising operation>
FIG. 4 is a time chart showing the temperature raising operation when the temperature of the running battery is lower than the first temperature threshold. FIG. 5 is a time chart showing the temperature raising operation when the temperature of the running battery is between the first temperature threshold and the second temperature threshold.
図4は、昇温処理のステップS3、S4のループ処理中の動作を示す。当該期間において、高電圧発電機14には、調整回路14bが非動作の状態でエンジン3のアイドリング運転の動力が入力される。そして、高電圧発電機14において内部の誘起電圧によって小さな出力電力W1が発生する。
FIG. 4 shows the operation during the loop processing of steps S3 and S4 of the temperature raising process. During this period, power for idling operation of the
さらに、当該期間においては、昇温制御部11Bによる高電圧負荷15のスイッチ15aの切り替え制御が行われ、高電圧負荷15に通常の動作電力より小さい消費電力W2が生じる。さらに、上記の切り替え制御によって消費電力W2が大小に繰り返し変化する。
Further, during this period, switching control of the
そして、高電圧発電機14の出力電力W1と、高電圧負荷15の消費電力W2との差分が、走行用バッテリ10の充放電電力W3となる。ここで、出力電力W1と消費電力W2とは小さい値であるため、極低温時の充電可能電力Win及び放電可能電力Woutを超えない範囲で、充放電電力W3を繰り返し大小に変化させることができる。
The difference between the output power W1 of the high-
なお、図4の期間、走行用バッテリ10の温度が上昇するにしたがって、走行用バッテリ10の充放電可能電力Win、Woutの幅が広くなる。したがって、昇温制御部11Bは、走行用バッテリ10の温度が上昇するにしたがって、高電圧負荷15のスイッチ15aの切り替え態様を変化させることで、走行用バッテリ10の充放電電力W3の幅が広くなるように制御を行ってもよい。
During the period of FIG. 4, as the temperature of driving
図5は、昇温処理のステップS6、S7のループ処理中の動作を示す。当該期間においては、高電圧負荷15が通常動作することで、高電圧負荷15において通常の消費電力W2が生じる。また、高電圧発電機14では、昇温制御部11Bの制御によって、通常の発電動作がなされ、かつ、発電電力が制御されることで、比較的に大きく大小に変化する出力電力(発電電力)W1が発生する。
FIG. 5 shows the operation during the loop processing of steps S6 and S7 of the temperature raising process. During this period, normal power consumption W2 is generated in the
そして、高電圧発電機14の出力電力W1と高電圧負荷15の消費電力W2との差分が、走行用バッテリ10の充放電電力W3となる。出力電力W1と消費電力W2とは比較的に大きい値であるため、第1温度閾値Tth1以上まで昇温されることで比較的に大きくなった走行用バッテリ10の充電可能電力Win及び放電可能電力Woutに対応した比較的に大きな振れ幅の充放電電力W3を生成することが容易となる。
The difference between the output power W1 of the high-
なお、図5の期間、走行用バッテリ10の温度が上昇するにしたがって、走行用バッテリ10の充放電可能電力Win、Woutの幅が広くなる。したがって、昇温制御部11Bは、走行用バッテリ10の温度が上昇するにしたがって、高電圧発電機14の発電量の振れ幅を変化させることで、充放電電力W3の幅が広くなるように制御を行ってもよい。
During the period of FIG. 5, as the temperature of driving
以上のように、本実施形態の昇温制御装置Eによれば、昇温制御部11Bは、走行用バッテリ10の温度が第1温度閾値Tth1以下の場合に、高電圧発電機14の調整回路14bが非動作の状態でエンジン3を駆動させる。そして、当該エンジン3の駆動により、高電圧発電機14のコイルに生じた誘起電圧に基づく小さな電力を、高電圧発電機14から出力させることができる。したがって、当該小さな電力を利用することで、充放電可能電力Win、Woutが非常に小さい極低温時に、当該充放電可能電力Win、Woutを超えない範囲の電力で走行用バッテリ10を繰り返し充放電でき、極低温下の走行用バッテリ10を昇温させることができる。
As described above, according to the temperature increase control device E of the present embodiment, the temperature
さらに、本実施形態の昇温制御装置Eによれば、高電圧負荷15を非動作としたまま高電圧負荷15に電力を入力可能なスイッチ15aを備える。そして、昇温制御部11Bは、走行用バッテリ10の温度が第1温度閾値Tth1以下の場合に、スイッチ15aを制御することで高電圧負荷15の消費電力を繰り返し大小に変化させる制御を行う。したがって、スイッチ15aの制御によって、高電圧負荷15に動作時の消費電力よりも小さな消費電力を発生させることができる。そして、当該消費電力の制御と、高電圧発電機14から出力される小さな電力とを合わせることで、極低温時の充放電可能電力Win、Woutを超えない小さな充放電電力を生成でき、当該充放電電力によって、極低温下の走行用バッテリ10を昇温させることができる。
Further, according to the temperature increase control device E of the present embodiment, the
さらに、本実施形態の昇温制御装置Eによれば、走行用バッテリ10の温度が第1温度閾値Tth1を超えた場合に、昇温制御部11Bは、高電圧負荷15を通常動作させ、さらに、高電圧発電機14を発電動作させかつ発電電力を繰り返し大小に変化させる制御を行う。そして、当該制御の切り替えにより、比較的に大きな振れ幅を有する走行用バッテリ10の充放電電力を生成することができる。したがって、昇温により走行用バッテリ10の充放電可能電力Win、Woutが比較的に大きくなった場合に、当該場合に対応して走行用バッテリ10に比較的に大きな充放電を行わせ、走行用バッテリ10をより速やかに昇温することができる。
Furthermore, according to the temperature increase control device E of the present embodiment, when the temperature of the running
さらに、本実施形態の昇温制御装置Eによれば、走行用バッテリ10の温度が第1温度閾値Tth1以下のときに、昇温制御部11Bは、DC/DCコンバータ13の動作を禁止する。当該禁止の制御によって、DC/DCコンバータ13の消費電力が走行用バッテリ10の充放電電力の誤差要素となることを抑制できるので、充放電可能電力Win、Woutを超えない範囲の充放電電力を信頼性高く生成することができる。
Furthermore, according to the temperature increase control device E of the present embodiment, the temperature
さらに、本実施形態の昇温制御装置Eによれば、第1温度閾値Tth1が、電動モータ6の駆動を不可とする走行用バッテリ10の温度範囲WT1の上限値に基づいて設定されている。したがって、電動モータ6を駆動できないような極低温の際に、上述した小さい充放電電力による走行用バッテリ10の昇温制御を遂行できる。
Furthermore, according to the temperature increase control device E of the present embodiment, the first temperature threshold Tth1 is set based on the upper limit value of the temperature range WT1 of the driving
以上、本発明の実施形態について説明した。しかし、本発明は上記実施形態に限られない。例えば、上記実施形態では、充放電電力を生成するために電力を消費させる高電圧負荷の一例として、空調装置を示したが、高電圧負荷は、例えば電動モータを駆動するインバータであってもよいし、また、第1電圧(高電圧)で駆動するエンジン始動モータであってもよいなど、走行用バッテリの出力電圧を電源として動作する機器であれば、いずれの機器が適用されてもよい。また、上記実施形態では、極低温下の走行用バッテリの放電電力を生成するために、高電圧負荷15に電力を消費させる構成を適用した例を示した。しかし、例えば放電専用の電気負荷(大きな抵抗など)を用いて放電電力を発生させてもよいなど、極低温下の走行用バッテリの放電電力は様々な構成により発生可能である。また、図示された充放電可能電力の値、各温度閾値の値などは一例に過ぎず、その他、実施形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。
The embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiments. For example, in the above embodiment, an air conditioner is shown as an example of a high-voltage load that consumes power to generate charging/discharging power, but the high-voltage load may be an inverter that drives an electric motor, for example. Also, any device may be applied as long as it operates using the output voltage of the running battery as a power source, such as an engine starting motor driven by the first voltage (high voltage). Further, in the above-described embodiment, an example is shown in which the high-
1 電動車両
2 駆動輪
3 エンジン
4 補機
5 トランスミッション
6 電動モータ
7 インバータ
E 昇温制御装置
10 走行用バッテリ
11 低電圧負荷
11A 走行制御部
11B 昇温制御部
11C バッテリ管理部
12 低電圧バッテリ
13 DC/DCコンバータ
14 高電圧発電機
14a 発電部
14b 調整回路
14c 制御回路
15 高電圧負荷
15a スイッチ
16 運転操作部
Win 充電可能電力
Wout 放電可能電力
Tth1 第1温度閾値
Tth2 第2温度閾値
REFERENCE SIGNS
Claims (5)
前記走行用バッテリの温度が第1温度閾値以下の場合に、前記高電圧発電機の前記調整回路が非動作の状態で前記エンジンを駆動させる昇温制御部を備え、
前記昇温制御部による前記エンジンの駆動により、前記高電圧発電機の内部で生じた誘起電圧に基づく電力が前記高電圧発電機から前記走行用バッテリへ送られることを特徴とするバッテリの昇温制御装置。 An engine that is an internal combustion engine, an electric motor that generates power for the driving wheels, a driving battery that stores electric power for driving, and an amount of electric power generated by receiving power from the engine to generate charging power for the driving battery. and a high-voltage load that operates using the output voltage of the running battery as a power supply.
a temperature increase control unit that drives the engine while the adjustment circuit of the high-voltage generator is in a non-operating state when the temperature of the running battery is equal to or lower than a first temperature threshold;
A temperature rise of a battery, wherein electric power based on an induced voltage generated inside the high voltage generator is sent from the high voltage generator to the driving battery by driving the engine by the temperature rise control unit. Control device.
前記昇温制御部は、前記走行用バッテリの温度が前記第1温度閾値以下の場合に、更に、前記スイッチを制御して前記高電圧負荷に入力される電力を繰り返し大小に変化させることを特徴とする請求項1記載のバッテリの昇温制御装置。 further comprising a switch capable of inputting power to the high voltage load while the high voltage load is inactive;
When the temperature of the running battery is equal to or lower than the first temperature threshold, the temperature increase control unit further controls the switch to repeatedly change the power input to the high voltage load. 2. The battery temperature increase control device according to claim 1.
前記昇温制御部は、前記走行用バッテリの温度が、前記第1温度閾値より高く、かつ、前記第1温度閾値より高い第2温度閾値以下の場合に、前記高電圧負荷を動作させ、かつ、前記調整回路の制御により前記高電圧発電機の発電電力を繰り返し大小に変化させることを特徴とする請求項2記載のバッテリの昇温制御装置。 The temperature rise control unit is capable of outputting a load operation command and controlling the adjustment circuit,
The temperature increase control unit operates the high-voltage load when the temperature of the running battery is higher than the first temperature threshold and equal to or lower than a second temperature threshold higher than the first temperature threshold, and 3. A battery temperature rise control device according to claim 2, wherein the power generated by said high-voltage generator is repeatedly varied by controlling said adjustment circuit.
前記昇温制御部は、前記走行用バッテリの温度が前記第1温度閾値以下の場合に、前記DC/DCコンバータを停止させることを特徴とする請求項3記載のバッテリの昇温制御装置。 mounted on an electric vehicle further comprising: a low-voltage load that operates at a voltage lower than the voltage of the running battery; and a DC/DC converter that converts the voltage of the running battery to the low voltage,
4. The battery temperature increase control device according to claim 3, wherein the temperature increase control unit stops the DC/DC converter when the temperature of the running battery is equal to or lower than the first temperature threshold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021022349A JP2022124616A (en) | 2021-02-16 | 2021-02-16 | Temperature raising control device of battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021022349A JP2022124616A (en) | 2021-02-16 | 2021-02-16 | Temperature raising control device of battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022124616A true JP2022124616A (en) | 2022-08-26 |
Family
ID=82942089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021022349A Pending JP2022124616A (en) | 2021-02-16 | 2021-02-16 | Temperature raising control device of battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022124616A (en) |
-
2021
- 2021-02-16 JP JP2021022349A patent/JP2022124616A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3749143B2 (en) | Vehicle power supply | |
JP3566252B2 (en) | Hybrid vehicle and control method thereof | |
JP5307847B2 (en) | Vehicle power supply system | |
US10946751B2 (en) | Power supply device for vehicle | |
JP4735000B2 (en) | Motor drive device | |
JP5846073B2 (en) | Power system | |
JP2007221886A (en) | Charging/discharging controller of secondary battery | |
JP6072466B2 (en) | Vehicle power supply system | |
US20130066519A1 (en) | Electronic control device and vehicle control system | |
JP6523747B2 (en) | Power supply for vehicles | |
JP2017100521A (en) | Power supply device for vehicle | |
JP2016194253A (en) | Vehicular control device | |
JP6543069B2 (en) | Power supply for vehicles | |
JP2016078533A (en) | Engine starter | |
US11155221B2 (en) | Power supply device for vehicle | |
JP2006304390A (en) | Power unit for hybrid vehicle | |
JP2008001301A (en) | Controller of hybrid vehicle | |
JP2015534443A (en) | A method for recovering electrical energy by voltage smoothing on an in-vehicle electrical network | |
JP4638588B2 (en) | Power distribution method | |
EP2610995B1 (en) | Electric power generation control system for vehicle | |
JP5625715B2 (en) | Vehicle control apparatus and control method | |
JP2022124616A (en) | Temperature raising control device of battery | |
JP2007274840A (en) | Power unit and method of controlling power unit | |
JP7236341B2 (en) | vehicle power supply | |
JP2004278315A (en) | Engine starting control device |