JP2022117650A - Method for collecting immature wood part of tree, wood powder particle suspension and its production method, and method for producing coating film using wood powder particle suspension - Google Patents

Method for collecting immature wood part of tree, wood powder particle suspension and its production method, and method for producing coating film using wood powder particle suspension Download PDF

Info

Publication number
JP2022117650A
JP2022117650A JP2021014263A JP2021014263A JP2022117650A JP 2022117650 A JP2022117650 A JP 2022117650A JP 2021014263 A JP2021014263 A JP 2021014263A JP 2021014263 A JP2021014263 A JP 2021014263A JP 2022117650 A JP2022117650 A JP 2022117650A
Authority
JP
Japan
Prior art keywords
wood
immature
wood flour
suspension
flour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021014263A
Other languages
Japanese (ja)
Other versions
JP7534737B2 (en
Inventor
泰士 藤澤
Hiroshi Fujisawa
聡 岩坪
Satoshi Iwatsubo
淳司 住岡
Junji Sumioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture filed Critical Toyama Prefecture
Priority to JP2021014263A priority Critical patent/JP7534737B2/en
Publication of JP2022117650A publication Critical patent/JP2022117650A/en
Application granted granted Critical
Publication of JP7534737B2 publication Critical patent/JP7534737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Debarking, Splitting, And Disintegration Of Timber (AREA)
  • Paints Or Removers (AREA)

Abstract

To provide a method for collecting immature wood parts of trees and a method for producing a wood powder particle suspension by mixing cellulose nanofibers with lignin or hemicellulose separated from wood powder.SOLUTION: A wet milling method of the invention facilitates the conventional very labor-intensive processes of micronization and nanofiberization by using immature wood parts that are easy to grind as raw materials and by performing fine grinding and classification processes. A wood powder particle suspension of the invention suitable for forming a coating film is produced by mixing the wood powder having a nanofiberized surface with cellulose nanofibers and lignin or hemicellulose separated from the wood powder in the suspension, and the average particle size of the wood powder in the suspension is 50 μm or less, and the concentration of the cellulose nanofiber contained in the suspension is 50% or less of the wood powder by weight. The coating film produced from the liquid has excellent adhesion to the base material and has excellent heat insulating properties and design properties that are characteristic of wood.SELECTED DRAWING: Figure 7

Description

特許法第30条第2項適用申請有り (1)富山県産業技術研究開発センター研究報告No.34 2020 P.3-4(発行日:令和2年7月20日 発行者:富山県産業技術研究開発センター) (2)北日本新聞(発行日:令和3年1月6日 発行者:北日本新聞社)Application for application of Article 30, Paragraph 2 of the Patent Law (1) Toyama Prefectural Industrial Technology Research and Development Center Research Report No. 34 2020 p. 3-4 (Publication date: July 20, 2020 Publisher: Toyama Prefectural Industrial Technology Research and Development Center)

本発明は、木の未成熟材の部分を採取する方法と、懸濁液中に木材の木粉から分離したセルロースナノファーバーとリグニンやヘミセルロースを混在させた木粉粒子懸濁液及びその製造方法並びに木粉粒子懸濁液を使用した塗膜の製造方法に関する。 The present invention provides a method for collecting immature wood from a tree, a wood flour particle suspension in which cellulose nanofibers separated from wood flour, lignin and hemicellulose are mixed in the suspension, and a method for producing the same. and a method for producing a coating film using a wood flour particle suspension.

セルロースナノファイバー(CNF)は、環境に優しい次世代の材料として着目され、チキソ性を負荷するゲルや添加剤、あるいはその強い強度から補強剤として様々な応用が試みられている。しかし、親水性(水に混ざりやすい性質)のCNFを疎水性(水に混ざりにくい性質)のプラスチックなどに混ぜるにはコストがかさむなど、製造コストなどに普及に向けた課題も残っている。
また、スギ木粉の製造に関する研究においては、スギ等の木粉の一部を、リグニンとセルロースナノファイバーからなるリグノセルロースナノファイバー(LCNF)にすることでCNFとリグニンの特長とを持たせることができ、その膜に木材由来の構造に特長を持たせることが研究されている。そして、この木粉を原材料にして適切な条件で混練型WPC用コンパウンドを製造すると、木粉は顔料オーダー(10μm以下)まで微細繊維化できることが報告され、混練型WPC用コンパウンドなどの応用技術が開発されてきた。
Cellulose nanofibers (CNF) have attracted attention as next-generation environmentally friendly materials, and various applications have been attempted as gels or additives that impose thixotropic properties, or as reinforcing agents due to their high strength. However, there are still issues such as manufacturing costs, such as the high cost of mixing CNF, which is hydrophilic (easy to mix with water), with hydrophobic plastic (hard to mix with water).
In addition, in research on the production of cedar wood powder, a part of wood powder such as cedar is made into lignocellulose nanofiber (LCNF) consisting of lignin and cellulose nanofiber, so that it has the characteristics of CNF and lignin. It is being studied to give the film a feature of the wood-derived structure. It has been reported that when this wood powder is used as a raw material to produce a compound for kneading WPC under appropriate conditions, the wood flour can be made into fine fibers of the order of pigments (10 µm or less). has been developed.

非特許文献1には、ナノファイバー製造の基本として、「木質組織を効果的にナノ化する方法としては、紙パルプ分野で行われている、叩解(こうかい)処理が有効と考えられた。叩解プロセスは、パルプ原料を水に浸漬し、機械的にせん断力や圧力を加えることで、太いパルプ繊維をさらに微細な繊維にしたり、表面の一部を毛羽立たせたりすることで(内部・外部フィブリル化)、繊維の絡まり合いや繊維間の水素結合の量を増大させて紙の強度を向上させる方法である。実験室的な叩解処理は、木粉やパルプを固形分濃度5wt%程度で水に分散させた後、ボールミルを用いた湿式粉砕で調製することができる。このような単純な湿式粉砕プロセスでは、その工程で精製等を行っていない。そのため、木質を原料として直接的にナノ解繊した場合、得られた 超微細繊維は、リグニンやヘミセルロースを含有したLCNFである。」と記載されている。
また、木質からの効率的ナノファイバー製造としては、「前項では、湿式ボールミル粉砕によるLCNF製造について述べたが、ボールミル処理は、大量・連続処理が困難であり、高コストなプロセスである。そこで種々の湿式粉砕方法について検討を行った結果、電動石臼タイプ(グラインダー)のディスク型粉砕機(スーパーマスコロイダー、増幸産業(株))が効果的であった(固形分濃度は5wt%程度)。しかし、試験を進めると原料として用いる樹種によってナノ解繊効率が大きく異なり、ボールミルと比較してせん断力の高くないディスクミルでは、広葉樹のような硬質な木質では効率が大きく低下した。装置の運転条件(ディスク間クリアランス、回転数等)を最適化させることも検討したが、より確実な方法として、原料となる木質組織を事前に脆弱化させることによる、効率化プロセスについて検討を進めた。その結果、予備的粗粉砕処理と水熱処理を組み合わせることで木質組織を脆弱化できることが分かった。・・・予備的粉砕処理としては湿式高速カッターミル(ミクロマイスター、増幸産業(株))や乾式でのカッターミル粉砕等による微細化(1mm~100μm程度)が効果を示した。水熱処理は、専用の圧力容器などを用いて100℃以上の加圧熱水により、木質成分を部分的に加水分解させる方法を用いた。前述したように、木質組織の強靱化要因として、積層した細胞壁構造とヘミセルロース等の接着作用がある。上記の予備粉砕処理では、強固な組織構造(タガ様の構造)が部分的に破壊され、水熱処理ではヘミセルロースが部分的に加水分解され、接着剤の作用が弱まる。これらプロセスにより、木質の強靱化要因は部分的に破壊または分解され、木質組織は大きく脆弱化する。最終段階として、ディスクミル処理を行うことで、効率的かつ効果的に木質組織をほぐしてナノファイバーが製造できる。」と記載されている。
In Non-Patent Document 1, as a basis for nanofiber production, it was thought that "as a method for effectively nanoizing the woody tissue, the beating treatment performed in the paper pulp field was considered effective. The beating process involves immersing pulp raw materials in water and mechanically applying shear force and pressure to make thick pulp fibers into finer fibers and to fluff some of the surfaces (internal and external). fibrillation), a method of increasing the amount of entanglement of fibers and hydrogen bonding between fibers to improve the strength of paper.In the laboratory beating process, wood flour and pulp are mixed at a solid content concentration of about 5 wt%. After being dispersed in water, it can be prepared by wet pulverization using a ball mill.In such a simple wet pulverization process, no purification etc. When defibrated, the ultrafine fibers obtained are LCNF containing lignin and hemicellulose."
In addition, as an efficient nanofiber production from wood, ``In the previous section, LCNF production by wet ball milling was described, but ball milling is a high-cost process that is difficult to perform in large quantities and continuously. As a result of examining the wet grinding method, it was found that an electric millstone type (grinder) disk type grinder (Super Mascolloider, Masuko Sangyo Co., Ltd.) was effective (solid content concentration is about 5 wt%). As the test progressed, the nano defibration efficiency varied greatly depending on the tree species used as the raw material, and in the disk mill, which has a lower shear force than the ball mill, the efficiency was greatly reduced for hard wood such as broad-leaved trees. We also considered optimizing (clearance between discs, number of rotations, etc.), but as a more reliable method, we investigated an efficient process by weakening the wood structure that is the raw material in advance.Results , It was found that the wood structure can be weakened by combining preliminary coarse pulverization and hydrothermal treatment....As preliminary pulverization, wet high-speed cutter mill (Micro Meister, Masuko Sangyo Co., Ltd.) and dry type can be used. The effect was shown by miniaturization (about 1 mm to 100 μm) by cutter mill pulverization, etc. Hydrothermal treatment involves partial hydrolysis of wood components with pressurized hot water at 100 ° C or higher using a special pressure vessel. As mentioned above, the factor that strengthens the woody tissue is the adhesive action of the laminated cell wall structure and hemicellulose, etc. In the above preliminary pulverization treatment, a strong tissue structure (hoop-like structure) is formed. Hydrothermal treatment partially hydrolyzes the hemicellulose, weakening the adhesive action, these processes partially destroy or degrade wood toughening factors, and greatly weaken the wood structure. As a final step, disc milling can efficiently and effectively loosen the woody tissue and produce nanofibers.”

ここで、非特許文献2には、「ボカスギ大径材の樹幹内強度分布の解明」と題して、ボカスギのヤング率などを測定した結果が示されている。図9に、非特許文献2における図2~図4を示している。
非特許文献2には、「1 背景 県内のスギ人工林では長伐期化が進んでいます。特に、県西部に多い挿木品種ボカスギは、樹齢60年生以上が6割を占め、丸太の末口直径が30cm以上に成長した大径材の出材が見込まれます(図1)。材の有効利用には、その特徴に応じた用途開発が必要ですが、大径化したボカスギの強度や材質については、これまで十分に分かっていません。そこで、大径化したボカスギ立木1本分について、材質の指標となる密度や仮道管長等と強度の指標となるヤング率を測定し、それらの樹幹内の分布を検討しました。」と記載されている。
また、「2 研究成果の概要 1)材質の樹幹内分布 樹齢62年生のボカスギ(樹高32.9m、胸高直径52cm)1本から4mごとに円盤を切り出し、密度、年輪幅、仮道管長(TL)、ミクロフィブリル傾角(MFA)を測定しました。一般的に樹幹内では、髄周辺の未成熟材の部分は柔軟で弱く、その周囲の成熟材の部分は堅固で強い性質があります。その境界である未成熟界を仮道管長とミクロフィブリル傾角の傾向から算出しました。さらに、実務的な判定指標を検討したところ、未成熟界は年輪幅6mm境界と概ね一致しました(図2、3)。この年輪幅6mm境界は、製材の日本農林規格(JAS)に採用されており、製材工場が使いやすい指標と言えます。密度は、樹高位置が高いほど高くなる傾向がみられました。半径方向(水平方向)では、髄から50mm付近でやや低いものの、概ね一定の傾向がみられました(図4)」と記載されている。
Here, in Non-Patent Document 2, the results of measuring the Young's modulus of Bokasugi, etc. are shown under the title of "Elucidation of the strength distribution in the trunk of large-diameter Bokasugi wood." 2 to 4 in Non-Patent Document 2 are shown in FIG.
In Non-Patent Document 2, "1 Background In the cedar plantations in the prefecture, the lengthening of the cutting period is progressing. Large-diameter timber with a mouth diameter of 30 cm or more is expected to be produced (Fig. 1). So far, we have not fully understood the material properties of a large-diameter Bokasugi tree, so we measured the density and tracheid length, which are indicators of the material, and the Young's modulus, which is an indicator of strength. We examined the distribution within the tree trunk.”
In addition, ``2 Overview of research results 1) Distribution of materials in the trunk From a 62-year-old Bokasugi (tree height: 32.9m, breast height diameter: 52cm), discs were cut every 4m, and the density, annual ring width, and tracheid length (TL) were cut out. ), the microfibril inclination (MFA) was measured.In general, within the trunk, the immature wood part around the pith is flexible and weak, and the mature wood part around it is firm and strong. The immature zone was calculated from the tendencies of the tracheid tube length and the microfibril inclination.Furthermore, when practical judgment indices were examined, the immature zone roughly coincided with the annual ring width of 6 mm (Figs. 2 and 3). ).This annual ring width 6 mm boundary is adopted by the Japanese Agricultural Standards (JAS) for lumber, and can be said to be an index that is easy for lumber mills to use.The density tended to increase as the height of the tree was higher. In the radial direction (horizontal direction), although it was slightly lower at around 50 mm from the pith, a generally constant trend was observed (Fig. 4).

また、非特許文献3には、「木材の心材・辺材、芯持材、未成熟材の理解」として題して、基本単語の概念が説明されている。以下、その要約部分を抜粋する(表1)。 In addition, in Non-Patent Document 3, the concept of basic words is explained under the title of "Understanding of heartwood/sapwood, core wood, and immature wood". Below is an excerpt from the summary (Table 1).

Figure 2022117650000002
Figure 2022117650000002

リグノセルロースナノファイバーの製造と樹脂複合化技術 https://www.jstage.jst.go.jp/article/jjsk/81/0/81_23/_pdf/-char/jaProduction of lignocellulose nanofiber and resin composite technology https://www.jstage.jst.go.jp/article/jjsk/81/0/81_23/_pdf/-char/ja ボカスギ大径材の樹幹内強度分布の解明taffrc.pref.toyama.jp/nsgc/center/webfile/t1_98327e479120dfec4d4745c3bd8e0cc2.pdfClarification of strength distribution in trunk of large-diameter Bokasugi taffrc.pref.toyama.jp/nsgc/center/webfile/t1_98327e479120dfec4d4745c3bd8e0cc2.pdf 木材の心材・辺材、芯持材、未成熟材の理解https://kinomemocho.com/zatu_shinzai_shinmochizai.htmlUnderstanding heartwood, sapwood, core wood, and immature wood https://kinomemocho.com/zatu_shinzai_shinmochizai.html

本願発明者らは、木粉の一部をリグノセルロースナノファイバー(LCNF)にすることでCNFと両親媒性の特性を持つリグニンの特長を持たせることができ、それを膜にした場合、木粉由来の構造による優れた断熱性と、密着性(付着性)の特長を持たせることができると考えた。その応用としては、暑熱対策用の塗料やその風合いを活かした工芸的な高級品などが挙げられる。また、CNFは強固な水素結合により木粉粒子同士の強固な結合が付加でき、その研究開発を行った。
実験の結果、原料として用いる樹種によっては、ナノファイバーへの解繊効率が異なることや、木材の部位や含水率によって製造される木粉性状が異なった。また、ナノファイバーを含んでいない従来法の木粉を塗料に用いた場合、塗料中で微粉砕した木質粉が凝集、沈殿して、塗料化が困難だった(図10)。すなわち、始めは分散していても、時間の経過に伴って木質粉が凝集、沈殿してしまう点や、木粉同士が強固に結合して、均一な塗膜を形成するという塗料化は困難であった。なお、原料として用いる樹種によっては、せん断力が高い装置が必要になる課題もあった(非特許文献1)。さらに、この木粉を塗料原料とする場合は、バインダーとしてポリプロピレン樹脂などが大量に必要になり、水を加えながらの加工だけで塗料にするようなことは困難であった。また、温度条件などによっては、優れた断熱性を保持させることや、密着性(付着性)に優れた、薄い膜(塗膜)を製造することもできなかった(非特許文献1)。すなわち、セルロースナノファイバーを作製するには、機械的処理で数十回と非常に多く行う必要があるため、生産性が悪かった。また、必要以上に処理を行うと、乾燥過程で膜の収縮が大きく亀裂の問題や、基材との密着性が悪くなり良好な塗膜を形成することが出来なかった。
The inventors of the present application have found that by using lignocellulose nanofibers (LCNF) as part of wood flour, it is possible to impart the characteristics of lignin, which has amphiphilic properties with CNF, and when it is made into a film, wood We thought that it would be possible to provide excellent heat insulation and adhesion (adhesiveness) due to the powder-derived structure. Its applications include heat-resistant paints and high-class handicraft products that make the most of its texture. In addition, CNF can add strong bonds between wood flour particles by strong hydrogen bonds, and research and development was conducted on this.
As a result of the experiment, depending on the tree species used as the raw material, the fibrillation efficiency into nanofibers differs, and the properties of the wood flour produced differ depending on the part of the wood and the moisture content. In addition, when conventional wood powder containing no nanofibers was used as a paint, finely pulverized wood powder agglomerated and precipitated in the paint, making it difficult to make a paint (Fig. 10). In other words, even if it is dispersed at first, the wood powder aggregates and precipitates over time, and it is difficult to make a paint that forms a uniform coating film by firmly bonding the wood powder together. Met. In addition, depending on the tree species used as a raw material, there was also a problem that a device with high shearing force was required (Non-Patent Document 1). Furthermore, when this wood powder is used as a raw material for paint, a large amount of polypropylene resin or the like is required as a binder, and it has been difficult to make a paint by only processing while adding water. In addition, depending on the temperature conditions, it was not possible to maintain excellent heat insulation or to produce a thin film (coating film) with excellent adhesion (adherence) (Non-Patent Document 1). That is, in order to produce cellulose nanofibers, the mechanical treatment must be performed as many times as several tens of times, resulting in poor productivity. In addition, if the treatment is carried out more than necessary, the film shrinks significantly during the drying process, resulting in cracking problems and poor adhesion to the substrate, making it impossible to form a good coating film.

ここで、塗装材等に好適な木粉粒子懸濁液の原料としては、木材一般からでも採取可能であり、湿式粉砕法により加工することは可能ではあるが、特に木の未成熟材の部分において、水分がある程度保たれているものであれば、伐採された後の切り株であっても、根が付いている場合には、水の循環により水分量が確保されているので、より好ましいことを、本願発明者は、研究により明らかにした。
しかしながら、木の未成熟部分は、木の心材との区別が難しいことに加えて、水分量がある程度保持されている必要があることと、その木材の樹齢等によっては、より上記木粉粒子懸濁液の原料としては好適ではない原料が採取されてしまう恐れがあった。
Here, as a raw material for the wood powder particle suspension suitable for coating materials, etc., it is possible to collect from wood in general, and it is possible to process it by a wet pulverization method. In the above, if the stump retains a certain amount of moisture, even if it is a stump that has been cut down, if it has roots, the amount of moisture is ensured by the circulation of water, so it is more preferable. has been clarified by the inventors of the present application through research.
However, it is difficult to distinguish the immature part of the tree from the heartwood of the tree. In addition, it is necessary to retain a certain amount of moisture. There is a risk that a raw material that is not suitable as a raw material for the turbid liquid will be collected.

そこで本発明の目的は、木の未成熟部分が上記木粉粒子懸濁液の原料として好適であることと、その原料を採取する方法(木の未成熟材部分を採取する方法)を提供することを目的とする。また、本発明の目的は、密着性(付着性)に優れた薄い膜(塗膜)で断熱性(熱導電性)に優れた塗料や、水を加えながらの加工だけでも木粉塗膜にすることができる木粉粒子懸濁液及びその製造方法並びに塗膜の製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for extracting the raw material (a method for extracting the immature wood portion of a tree) in which the immature wood portion of the tree is suitable as a raw material for the wood powder particle suspension. The purpose is to In addition, the object of the present invention is to provide a paint that is a thin film (coating film) with excellent adhesion (adhesiveness) and has excellent heat insulation (thermal conductivity), and a wood powder coating film that can be formed by just processing while adding water. The object of the present invention is to provide a wood powder particle suspension, a method for producing the same, and a method for producing a coating film.

本願発明者らは、スギ、ヒノキなどの針葉樹およびミズナラなどの広葉樹を原料とすることで、容易にセルロースナノファイバー(CNF)化できることを発見し、その材料木粉粒子を用いることで木材由来の構造による優れた密着性(付着性)、断熱性(熱導電性)、意匠性(造膜性)を持つ膜が形成できることを見出した。なお、熱帯多雨林では、高温多湿のため土壌中の有機物はすぐに無機物に分解されてしまうが、針葉樹では気温が低いために土壌中の有機物はなかなか分解されずに残っている。
その膜(塗膜)は、木材由来の構造による優れた断熱性と、造膜性に優れる特長を持たせた暑熱対策用の塗料や、その風合いを活かした工芸的な高級品などへの応用が考えられる。さらに、CNFを含有させることで、硬さなどバルク木材より優れた特性を示す膜(塗膜)を作製することができた。
本発明は、スギ、ヒノキなどの針葉樹から又はミズナラなどの広葉樹から、未成熟材の部分を採取する木の未成熟材部分を採取する方法であって、地面から所定高さ位置で伐採された残りの根が付いた木の年輪を判断して、塗装剤(外壁塗装剤、床塗装剤、又は、これらの下地処理剤を含む。)、顔料、吸着剤、防黴(カビ)剤等の木粉粒子懸濁液の原料を切削により採取することを特徴とする木の未成熟材部分を採取する方法である。また、前記未成熟材の部分は、地面からの高さ位置が2m~3mであって、樹齢が約20~30年以上の場合には、その木材の中心から樹齢15年以内の部分であることを特徴とする請求項1記載の木の未成熟材部分を採取する方法である。
ここで、スギにおいてはその心材は粒径数μmが非常に多く、スギ等の根元部の心材は、細胞が未成熟(軟質)である(未成熟材を多く含む。)。この部分は、スギ等の部位によって、微細繊維化のしやすさが異なることや、熱伝導性が低いという特性や、吸湿の機能を有することが分かった。これらの部分は、木材の区分・分級によって、簡便に選別可能である。また、木材の種類によっては、心材や未成熟材の部分はその色調やにおいや年輪等によって選別が可能である(上記機能を見極めるためには、年輪による判断がより好ましい)。そして、前記請求項1又は2記載の木の未成熟材部分より採取したものから、塗装剤(外壁塗装剤、床塗装剤、又は、これらの下地処理剤を含む。)、顔料、吸着剤、防黴(カビ)剤等の懸濁液の原料に、湿式粉砕法により水分の調整(木粉量が水に対し1~20重量%)のみの調整を行なって、塗装剤(外壁塗装剤、床塗装剤、又は、これらの下地処理剤を含む。)、顔料、吸着剤、防黴(カビ)剤等の懸濁液に好適な木粉粒子懸濁液を製造することができる。
また、本発明は木材を衝撃粉砕機などで乾式粉砕した後、湿式粉砕法(木質粉よりも水の重量%が多い条件下で)で処理されるセルロースナノファーバーを含む木粉粒子の懸濁液において、ナノファイバー化された表面をもつ木粉と、懸濁液中に木粉から分離したセルロースナノファーバーとリグニンやヘミセルロースを混在させた状態の木粉粒子懸濁液で、木粉の平均粒径を50μm以下に、かつ、前記懸濁液に含まれるセルロースナノファイバーの濃度を重量比で木粉の50%以下にしたことを特徴とする木粉粒子懸濁液である。また、本発明は、木材を衝撃粉砕機などで乾式粉砕した後、次に湿式粉砕(木質粉よりも水の重量%が多い条件下で)で処理されるセルロースナノファーバーを含む木粉粒子の懸濁液において、原材料として切り出した木材を室内にて自然乾燥した後に、微粉砕と分級を行い、ナノファイバー化された表面をもつ木粉と、懸濁液中に木粉から分離したセルロースナノファーバーとリグニンやヘミセルロースを混在させた状態の木粉粒子懸濁液で、木粉の平均粒径を50μm以下に、かつ、前記懸濁液に含まれるセルロースナノファイバーの濃度を重量比で木粉の50%以下にしたことを特徴とする木粉粒子懸濁液の製造方法である。この場合の配合比としては、水80~99重量%、木粉(木質粉)が1~20重量%が好ましい。
本発明によれば、スギ等の針葉樹を微粒子用粉砕機で微粉砕すると、表面の一部がナノファイバー化して、水のみで塗料化でき、強固な木質膜を形成可能な塗料組成物となる。原材料はスギ等の木材の木粉と水のみであるため、安全性が高い。この材料は吸水性や吸油性や吸着性が良く、水による濡れ性に優れるため、ほかの材料と混ぜることでさまざまな用途での活用が可能となる。砥石によって構成された石臼(グラインダー)形式の摩砕機(電動石臼タイプのディスク型粉砕機)により微粒化することで、表面(表層、表裏面)のみを効率よく微粒化することができる。そして、前記木粉にリグニンやヘミセルロースを含有した状態で湿式にて磨り潰して、リグノセルロースナノファイバーとすることができる。なお、平均粒径50μm以下に磨り潰し(と毛羽立て)を行うようにするために、原料を水に浸漬しての叩解(こうかい)処理でも良いが、生産効率の点からは、前記石臼形式の摩砕機(電動石臼タイプのディスク型粉砕機)を使用することが好ましい。
これらスギ、ヒノキなどの針葉樹およびミズナラなどの広葉樹であって、地面からの高さが2m~3m付近で伐採された残りの根の付いた部分の未成熟部分であることがより好ましい。すなわち、伐採される前の地面からの高さが2m~3m以下の部分であっても良いが、伐採された後の山に放置されている根が付いた部分であっても何ら構わない。むしろ、伐採された後の根の付いた部分である方が、未成熟部分であることが認識しやすく(年輪等からも判断がし易く)、その抽出がし易いのみならず、根付いているために伐採されて根からの水の吸収が行われない部分とは異なり、山林に伐採されて放置されている場合でもあっても、若木の時に形成した未成熟細胞はそのまま活きており、組織的にもろく、湿式粉砕で微繊維状に粉砕されやすい(木粉塗料の材料に適しており)。樹齢に関係なくその経時変化などは全くない。たとえ、地中で数千年経過した神代スギなどでも塗料化が可能である(根が付いた状態であれば、水の供給があり、菌などで木繊維が分解されていない限りは、その未成熟部分を使用可能と考えられる)。根付いた状態の伐採の残りであれば、むしろ本来の未成熟状態にが若木の時からの状態で維持されていると言え、木粉塗料の材料等の木粉粒子懸濁液や、木粉粒子懸濁液を使用した塗膜の製造方法に適用されて好適なものである。これらの部分は、製材等においては、通常廃棄処分される部分であったり(非特許文献2)、山林で切り出すときに放置される部分であったりするが、その伐採の残りを利用できるので(前記未成熟部分が理想的な形で保存されていると言える。)、環境に優しい原料の発見として期待できる。
The inventors of the present application have found that conifers such as cedar and cypress and broadleaf trees such as Mizunara can be used as raw materials to easily convert cellulose nanofibers (CNF). It was found that a film having excellent adhesion (adherence), heat insulation (thermal conductivity), and design (film formation) can be formed by structure. In tropical rainforests, organic matter in the soil is quickly decomposed into inorganic matter due to the high temperature and humidity.
The film (coating film) is applied to paints for heat countermeasures that have excellent heat insulating properties and excellent film-forming properties due to the structure derived from wood, and to high-class handicrafts that make use of the texture. can be considered. Furthermore, by including CNF, it was possible to produce a film (coating film) that exhibits properties superior to bulk wood, such as hardness.
The present invention is a method for collecting immature wood from conifers such as Japanese cedar and Japanese cypress or from broadleaf trees such as Quercus crispula. Judging the annual rings of the tree with the remaining roots, coating agents (including exterior wall coating agents, floor coating agents, or these surface treatment agents), pigments, adsorbents, anti-mold agents, etc. A method for extracting immature wood from a tree, characterized by extracting a raw material for a wood powder particle suspension by cutting. In addition, the portion of immature wood has a height position of 2 m to 3 m from the ground, and when the tree is about 20 to 30 years old, it is a portion within 15 years old from the center of the wood. The method for collecting immature wood portions of trees according to claim 1, characterized in that:
Here, in Japanese cedar, the heartwood has a very large number of grain sizes of several μm, and the heartwood at the root of cedar and the like has immature (soft) cells (contains a large amount of immature wood). It was found that this part has different easiness of forming fine fibers depending on the part of the cedar, etc., has a characteristic of low thermal conductivity, and has a hygroscopic function. These parts can be easily sorted out by classifying and classifying the wood. In addition, depending on the type of wood, heartwood and immature wood can be sorted by their color tone, odor, annual rings, etc. (in order to ascertain the above functions, it is more preferable to judge by annual rings). Then, from the material collected from the immature wood portion of the tree according to claim 1 or 2, a coating agent (including an exterior wall coating agent, a floor coating agent, or a surface treatment agent thereof), a pigment, an adsorbent, Suspension raw materials such as antifungal (mold) agents are adjusted only by adjusting the moisture content (the amount of wood flour is 1 to 20% by weight relative to water) by a wet pulverization method, and coating agents (exterior wall coating agents, It is possible to produce a wood flour particle suspension suitable for suspensions of floor coating agents, or these surface treatment agents), pigments, adsorbents, anti-mold (mold) agents, and the like.
In addition, the present invention provides a suspension of wood flour particles containing cellulose nanofibers, which is processed by a wet grinding method (under conditions where the weight percentage of water is larger than that of wood flour) after dry grinding of wood with an impact grinder or the like. In the liquid, wood flour with a nanofiber surface and wood flour particle suspension in which cellulose nanofiber separated from wood flour, lignin and hemicellulose are mixed in the suspension. A suspension of wood flour particles characterized by having a particle diameter of 50 μm or less and a concentration of cellulose nanofibers contained in the suspension being 50% or less of wood flour by weight. In addition, the present invention provides wood powder particles containing cellulose nanofibers, which are processed by dry pulverizing wood with an impact pulverizer or the like and then wet pulverizing (under conditions where the weight percentage of water is higher than that of wood flour). In the suspension, wood cut as a raw material is naturally dried indoors, then finely pulverized and classified to obtain wood flour with a nanofiber surface and cellulose nanoparticles separated from the wood flour in the suspension. A wood flour particle suspension in which fiber and lignin or hemicellulose are mixed, wherein the average particle size of the wood flour is 50 μm or less, and the concentration of cellulose nanofibers contained in the suspension is the weight ratio of the wood flour is 50% or less of the wood flour particle suspension. In this case, the compounding ratio is preferably 80 to 99% by weight of water and 1 to 20% by weight of wood flour (wood powder).
According to the present invention, when coniferous trees such as cedar are pulverized by a fine particle grinder, a part of the surface is converted into nanofibers, and a coating composition that can be made into a coating with only water and can form a strong woody film is obtained. . It is highly safe because the raw materials are only wood powder from wood such as cedar and water. This material has good water absorption, oil absorption, and adsorption properties, and is excellent in wettability with water, so it can be used in various applications by mixing it with other materials. Only the surface (surface layer, front and back) can be efficiently atomized by atomizing with a grinder-type grinder (electric stone mill-type disk-type grinder) composed of a grindstone. Then, the wood flour containing lignin and hemicellulose can be wet ground to obtain lignocellulose nanofibers. In addition, in order to grind (and fluff) to an average particle size of 50 μm or less, the raw material may be immersed in water for beating treatment, but from the viewpoint of production efficiency, the stone mill It is preferable to use a type grinder (electric stone mill type disk type grinder).
Coniferous trees such as Japanese cedar and Japanese cypress and broadleaf trees such as Mizunara oak are more preferably immature rooted portions remaining after cutting at a height of about 2 to 3 m from the ground. That is, it may be a portion with a height of 2 m to 3 m or less from the ground before being felled, but it may be a portion with roots left on a mountain after being felled. Rather, it is easier to recognize that it is an immature part (it is easier to judge from the annual rings, etc.) in the part with roots after it has been cut down, and not only is it easier to extract it, but it is also rooted. The immature cells formed at the time of young trees are alive as they are, unlike the parts that are felled and do not absorb water from the roots, even if they are felled and left in the forest. It is relatively fragile and can be easily pulverized into fine fibers by wet pulverization (suitable as a material for wood powder paints). Regardless of the age of the tree, there is no change over time. Even Jindai cedar that has been in the ground for thousands of years can be turned into paint (if it has roots, there is a supply of water, and as long as the wood fibers are not decomposed by fungi, etc. immature parts may be used). If it is the remains of felling in a rooted state, it can be said that the original immature state is rather maintained in the state from when the tree was young. It is suitable for application to a coating film manufacturing method using a particle suspension. These parts are the parts that are usually discarded in lumber, etc. (Non-Patent Document 2), or the parts that are left unattended when they are cut in the forest, but the rest of the felling can be used ( It can be said that the immature part is preserved in an ideal form.), which is expected to lead to the discovery of environmentally friendly raw materials.

また、本発明の塗膜の製造方法は、原材料として切り出した木材を室内にて自然乾燥した後に、微粉砕と分級を行い、次にナノファイバー化された表面をもつ木粉と、懸濁液中に木粉から分離したセルロースナノファーバーとリグニンやヘミセルロースを混在させた状態の木粉粒子懸濁液を作製し、その木粉の平均粒径を50μm以下に、かつ、含まれるセルロースナノファイバーの濃度を重量比で木粉の50%以下にした木粉粒子懸濁液を使用して塗膜を形成することを特徴とする。
ここで、前記木粉粒子は、スギ、ヒノキなどの針葉樹およびミズナラなどの広葉樹における未成熟材を使用した木粉粒子懸濁液と、前記針葉樹における成熟材を使用した木粉粒子懸濁液とを混合するものであり、これら同種のものを使用して、前記前記針葉樹における辺材又は成熟材を使用した木粉粒子懸濁液を下塗り塗膜として製膜した後、前記針葉樹における心材又は未成熟材を使用した木粉粒子懸濁液を使用して上塗り塗膜とすることを特徴とする。本発明によれば、密着性等の他、吸湿性に優れ、凹凸感の意匠性を高めることができる。
また、前記未成熟材の割合として少なくとも20重量%以上含むことが好ましい。前記未成熟材の粒径(粉砕した粒径)は、樹高が低い部位の方が処理木粉のアスペクト比が低く、微粉砕化しやすくなる。一方、辺材、心材では、辺材の方が処理木粉のアスペクト比が高く、微粉砕化しやすくなる。
ここで、本発明で使用する未成熟材、成熟材、辺材、芯材について説明する。図1と表1に示すように、「心材」とは、スギ等の木材としての丸太の横断面で中心部の濃色の部分を心材(赤身)と呼ぶ。心材には心材物質が形成されていて一般に腐りにくい。また、「未成熟材」とは、中心からある程度の年数までは繊維の長さも短く、強度も小さく、製材しても欠点の出やすい部分が続くが、これを未成熟材といい、針葉樹では中心から10~15年輪程度とされている。なお未成熟材の外側を成熟材と呼ぶ。専門的には、「成熟期の形成層によって形成された木部を成熟材、未成熟期の形成層によって形成された木部を未成熟材」と定義している(非特許文献3)。なお、心材は、樹木が10年ほどの齢に達すると幹や仇などの中心部から形成されるが、未成熟材は、樹齢に関係なく成長する初期から形成されるものである。
本発明によれば、セルロースを含有した状態で平均粒径50μm以下にすることにより、木材由来の構造による優れた密着性(付着性)、断熱性、吸湿性、意匠性(造膜性)等に優れる特長を持たせることが可能になる。より具体的には、木粉表面で部分的にCNF化した微細繊維が(表層が部分的にCNF化する、或いは、表面が毛羽立つ状態になる)、塗膜を形成する過程で物理的に絡み合い(表面のCNFが絡み合って、或いは、表面の毛羽立ちが絡み合った状態になる)、水素結合などでさらに強固に結合したと推察される。
また、次の効果があることが推測された。(1)前記木材に含まれる含有水分は有機成分を含み、種特有であるが、その抽出成分は木粉同士を強固に結合する。(2)基材に対しては、基材との密着性を高める成分、バインダーの役割を果たす成分、或いは、上塗りに適した成分が含まれる。
以上の効果のため、この懸濁液を塗料として使用した場合には、密着性(付着性)や速乾性(超速乾性)や吸湿性に優れ、市販のアルミ塗装用アクリル樹脂とほぼ同等の値を示すと考えられる。
更なる膜特性や塗りやすさのの向上には、別途CNFを添加することも有効であった。
また、熱伝導率が0.06W/mKとグラスウールと同等の木粉塗膜(塗料膜、塗装用膜、塗膜)が製造できた。さらに、木質粉によっては防黴(カビ)性能に優れた膜とすることができ、この木粉塗料で塗装すると、表面に凹凸のある独自の意匠感のある塗膜が形成された。したがって、外壁塗装剤や床塗装剤、又は、これらの下地処理剤としての使用に好適である。
そして、スギ、ヒノキ、ミズナラなどの木材では、その地面からの高さが2m~3m以内の部分を使用することが好ましい。未成熟の部分(10~15年輪程度)は、百年経過しても強度は低いままで変化しない。また、樹齢60年以上では、心材部A2のほとんどは未成熟材A3ということになる(図1)。また、地面からの高さが2m~3m以内の部分では、土の部分に近いことから、土壌中の有機成分も吸収して多く含まれていると考えられる。これらの部分は、製材等では廃棄処分とされたり、伐採の際に山林に放置されたりするものではあるので、そのリサイクルは、環境に優しい材料の利用と言える。未成熟材(軟質)A3は微細化がしやすく、木材の区分・分級によって(種にもよるが、色調やにおいが異なる場合が多い)、簡便に選別が可能なため、製造も容易である。また、これらの部分は、木の色合いが残っており、屋内の壁や柱などに塗る際も使いやすく、アルミ材などの金属にも塗れる。これらの特徴から本発明の液は、製造コストも低く抑えられ、一般に使われている塗料と同程度で製造できる。
In addition, in the method for producing a coating film of the present invention, wood cut out as a raw material is naturally dried indoors, then finely pulverized and classified, and then wood flour having a nanofiber surface and a suspension A wood flour particle suspension is prepared in which cellulose nanofibers separated from wood flour, lignin and hemicellulose are mixed therein, and the average particle size of the wood flour is 50 μm or less, and the cellulose nanofibers contained are A coating film is formed by using a wood flour particle suspension having a concentration of 50% or less of wood flour by weight.
Here, the wood powder particles include a wood powder particle suspension using immature materials of conifers such as Japanese cedar and Japanese cypress and broad-leaved trees such as Mizunara, and a wood powder particle suspension using mature materials of the conifers. Using these same types, after forming a wood powder particle suspension using the sapwood or mature wood of the conifer as an undercoat film, the heartwood or untreated wood of the conifer It is characterized by using a wood powder particle suspension using mature wood as a top coat film. According to the present invention, in addition to adhesion and the like, it is excellent in hygroscopicity, and it is possible to enhance the design of unevenness.
Moreover, it is preferable that the content of the immature material is at least 20% by weight or more. Regarding the particle size (pulverized particle size) of the immature wood, the aspect ratio of the treated wood flour is lower in the portion where the height of the tree is lower, making it easier to pulverize. On the other hand, with respect to sapwood and heartwood, sapwood has a higher aspect ratio of the treated wood flour and is easily pulverized.
Here, immature wood, mature wood, sapwood and core wood used in the present invention will be explained. As shown in FIG. 1 and Table 1, the "heartwood" refers to the dark-colored central portion of the cross section of a log such as cedar wood. A heartwood substance is formed in the heartwood and is generally resistant to decay. In addition, "immature wood" refers to the part where the fiber length is short and the strength is small until a certain age from the center, and defects are likely to appear even if lumbered. It is said that there are about 10 to 15 annual rings from the center. The outside of immature wood is called mature wood. Technically, "the wood formed by the cambium in the mature stage is defined as mature wood, and the wood formed by the cambium in the immature stage is defined as immature wood" (Non-Patent Document 3). Heartwood is formed from the central part such as the trunk and the reed when the tree reaches about 10 years of age, but immature wood is formed from the initial stage of growth regardless of the age of the tree.
According to the present invention, by making the average particle size 50 μm or less in a state containing cellulose, excellent adhesion (adhesion), heat insulation, moisture absorption, design (film formation), etc. due to the structure derived from wood are obtained. It is possible to give excellent features to More specifically, fine fibers that are partially CNF-ized on the surface of wood flour (the surface layer is partially CNF-ized, or the surface becomes fluffy) are physically entangled in the process of forming a coating film. (The CNFs on the surface are entangled, or the fluffs on the surface are entangled), and it is presumed that they are bonded more firmly by hydrogen bonding or the like.
In addition, it was presumed that there would be the following effects. (1) The moisture contained in the wood contains organic components, which are specific to the species, but the extracted components firmly bind the wood flour together. (2) For the base material, it contains a component that enhances adhesion to the base material, a component that acts as a binder, or a component that is suitable for overcoating.
Due to the above effects, when this suspension is used as a paint, it has excellent adhesion (adhesiveness), quick drying (ultra-quick drying), and moisture absorption, and has almost the same value as commercially available acrylic resin for aluminum painting. is considered to indicate
It was also effective to add CNF separately to further improve film properties and ease of application.
Also, a wood powder coating film (a coating film, a coating film, a coating film) having a heat conductivity of 0.06 W/mK, which is equivalent to that of glass wool, could be produced. Furthermore, depending on the wood powder, it is possible to form a film with excellent antifungal properties. Therefore, it is suitable for use as an exterior wall coating agent, a floor coating agent, or a surface treatment agent for these.
In the case of lumber such as cedar, cypress, and mizunara, it is preferable to use a portion whose height from the ground is within 2 m to 3 m. The immature part (about 10 to 15 annual rings) remains low in strength even after 100 years. In addition, most of the heartwood A2 is immature wood A3 in trees aged 60 years or older (Fig. 1). In addition, since the portion within 2 m to 3 m in height from the ground is close to the soil portion, it is considered that the organic component in the soil is also absorbed and contained in large amounts. These parts are disposed of as waste in the lumbering process, or are left in the forests during felling, so their recycling can be said to be the use of environment-friendly materials. Immature wood (soft) A3 is easy to refine, and can be easily sorted by classification and classification of wood (although it depends on the species, color tone and smell are often different), making it easy to manufacture. . In addition, these parts retain the color of the wood, making it easy to use when painting indoor walls and pillars, as well as metals such as aluminum. Due to these characteristics, the liquid of the present invention can be manufactured at a low cost, and can be manufactured at the same level as a commonly used paint.

本発明において、原料としては、スギ、ヒノキ、ミズナラを粉砕・分級した木粉を用いた。処理した懸濁液から膜を作製し、熱伝導特性、防黴試験、摩擦係数の試験を行った。前記木粉粒子は、スギ、ヒノキなどの針葉樹およびミズナラなどの広葉樹の木粉粒子である。これらは、樹齢は問わず、地面からの高さ位置が2m~3m付近で伐採された残りの根が付いた部分の前記未成熟材であることがより好ましい。また、200メッシュ(目開き75μm)の篩目を通過する粒度で分級することが好ましい。
(グラインダー処理によるリグノCNFの構造)
図2に条件を変えて作製したスギ木粉の顕微鏡像を示す。図2(a)は原料となる辺材部分A1のスギ木粉で、100μm程度の大きさで、歪な形態粒子と細かな微粒子が観察される。それを分級し粗い粒子を原料とした場合、図2(b)は、薄い色の20μm程度の粒子になっていたことを示す。辺材部分A1の分級微粒子の処理後は、粗い粒子の処理より細かな30~50μmの大きさの細かな粒子になったことを示す(図2(d))。一方、細かな心材部分A2をグラインダー処理したものは、CNFになっていると考えられる色の薄い数μmの粒子が非常に多いことを示す(図2(c))。本発明のCNF化には、これらの部位(心材A2と未成熟材A3)が適していることが分かった。
なお、スギ、ヒノキ、ミズナラの辺材A1を加えることも可能である。これにより、粗い粉砕でも、砥石を搭載した磨砕機等で互いに混ざり合わせることができる。上記のように未成熟材に辺材(或いは成熟材)を混合することで(未成熟材の割合として少なくとも20重量%以上含むことで)、断熱性に優れ、吸湿する機能を発揮し、凹凸感のある意匠性を給えることができる。
(レオメータによる木粉ゲルの粘弾性評価)
レオメータを用いて、スギの辺材A1の粒度を変えて調製した濃度が2%の木粉塗料(あるいは木材塗料)の粘度や貯蔵弾性率を調べ、その構造解析を行った。図3(a)は粗い木粉を原料とした場合と図3(b)は粒度の細かな木粉を原料とした場合の懸濁液の粘度ηのせん断速度dγ/dt依存性を示す。
レオメータのプレート間距離が200μmと大きい条件の測定で、粗い粒子を原料とした懸濁液のηは、1×103mPa・s以下の大きさであった。また、ηのdγ/dt依存性は少ない傾向があった。これは、この木粉塗料(あるいは木材塗料)はニュートン流体としての粘度特性をであることを示し、ナノファイバー化が余り進んでいないことを示している。一方、心材A2と未成熟材A3の細かな木粉を原料とした場合は、ηは2×10mPa・sと粗い場合の20倍以上もあり、また、ηのdγ/dt依存性も大きくなった。この液は、擬塑性流体としての特性を示していた。これらの結果からも、木材の材料の部位・粒度によって、解繊し易い部分とそうでない部分があることが分かった。ナノファイバー化しやすいのは、原材料の粒度が細かい方であり(心材A2と未成熟材A3)、この部位がリグノセルロースナノファイバーを作製するために、有効な原料となることが分かった。ここで、「擬塑性流体」とは、降伏値は持たず、力を加えることにより粘度が下がるものをいう。力を加えるまでは高い粘度を示すため、あたかもビンガム流体のような振る舞う性質を有する。ビンガム流体(塑性流体)とは、バターはナイフで力を加えるとトーストに塗ることができるが、ある程度の力を加えないと動き出すことはないが、このバターを流動させるために必要な力を降伏応力といい、その値を降伏値という。特に降伏値を持ちながら、流れ出すとニュートン流体のように一定の粘度となる挙動を示すものを「ビンガム流体(塑性流体)」という。
In the present invention, wood flour obtained by pulverizing and classifying Japanese cedar, Japanese cypress, and Mizunara oak was used as the raw material. Films were prepared from the treated suspensions and tested for heat transfer properties, mildew resistance and coefficient of friction. The wood flour particles are those of soft trees such as Japanese cedar and Japanese cypress and broad-leaved trees such as Mizunara oak. It is more preferable that these immature woods are the remaining roots attached to the tree, regardless of the age of the tree. Moreover, it is preferable to classify by the particle size which can pass through a sieve of 200 meshes (opening of 75 μm).
(Structure of ligno-CNF by grinder treatment)
FIG. 2 shows microscopic images of cedar wood powder prepared under different conditions. Fig. 2(a) shows cedar wood powder of sapwood portion A1, which is a raw material, and distorted shape particles and fine fine particles having a size of about 100 µm are observed. When this was classified and coarse particles were used as the raw material, FIG. 2(b) shows that the particles were light-colored and about 20 μm in size. After the treatment of the classified fine particles of the sapwood portion A1, fine particles with a size of 30 to 50 μm were formed, which is finer than the treatment of the coarse particles (FIG. 2(d)). On the other hand, the grinder-treated fine core material A2 shows a large number of light-colored particles of several μm, which are considered to be CNF (FIG. 2(c)). It was found that these sites (heartwood A2 and immature wood A3) are suitable for the CNF conversion of the present invention.
It is also possible to add sapwood A1 of Japanese cedar, Japanese cypress and Quercus crispula. As a result, even coarse pulverization can be mixed with each other by a grinding machine or the like equipped with a grindstone. By mixing sapwood (or mature wood) with immature wood as described above (at least 20% by weight or more as a proportion of immature wood), excellent heat insulation and moisture absorption function can be achieved, and unevenness can be achieved. A sense of design can be provided.
(Viscoelasticity evaluation of wood flour gel by rheometer)
Using a rheometer, the viscosity and storage elastic modulus of wood flour paint (or wood paint) with a concentration of 2% prepared by changing the particle size of sapwood A1 of Japanese cedar were investigated, and the structural analysis was performed. FIG. 3(a) shows the shear rate dγ/dt dependence of the viscosity η of the suspension when coarse wood flour is used as the raw material, and FIG.
Under the condition that the distance between the plates of the rheometer is as large as 200 μm, η of the suspension made from coarse particles was 1×10 3 mPa·s or less. In addition, there was a tendency for η to be less dependent on dγ/dt. This indicates that this wood flour paint (or wood paint) has viscosity characteristics as a Newtonian fluid, indicating that nanofiberization has not progressed so much. On the other hand, when fine wood flour of heartwood A2 and immature wood A3 is used as raw materials, η is 2×10 4 mPa s, which is more than 20 times that of the coarse case, and η depends on dγ/dt. got bigger. This liquid exhibited properties as a pseudoplastic fluid. From these results, it was found that there are parts that are easily defibrated and parts that are not, depending on the part and grain size of the wood material. It was found that raw materials with finer particle sizes (heart material A2 and immature wood A3) are more likely to be made into nanofibers, and this portion is an effective raw material for producing lignocellulose nanofibers. Here, the term "pseudoplastic fluid" refers to a fluid that does not have a yield value and whose viscosity decreases when a force is applied. Since it exhibits a high viscosity until a force is applied, it has the property of behaving like a Bingham fluid. Bingham fluid (plastic fluid) means that butter can be spread on toast by applying force with a knife, but it will not start to move unless a certain amount of force is applied, but it yields the force necessary to make this butter flow. It is called stress and its value is called yield value. In particular, fluids that exhibit a constant viscosity, like Newtonian fluids, while having a yield value are called "Bingham fluids (plastic fluids)."

(木材の部位の影響)
図2(d)のようにスギ辺材A1から調製したものは、粗い粒子の処理より細かな30~50μmの大きさの細かな粒子になった。一方、図2(c)のようにスギ心材A2やスギ未成熟材A3から調製したものは、数μmの粒子が非常に多く、微細繊維化にはこの部位が適していることが分かった。
スギ等の根元材の心材部A2やスギ未成熟材A3は、樹齢が若いときに形成した細胞組織が未成熟な未成熟材の割合が多く、強度性能も劣っていた(図1)。一方、根元材の辺材部A1は、樹齢が高く、細胞組織が成熟し、強度性能も高い成熟材の割合が大きい。スギ根元材の心材部A2sやスギ未成熟材A3が微細繊維化に適していると考えられる。これらの部位(心材A2と未成熟材A3)は、その色や年輪から容易に判定できるので、このように切り出して、材料を選定・選別することも容易である(非特許文献2参照)。そして、前記スギ、ヒノキ、ミズナラの辺材A1は、地面からの高さが2m以内の部分を使用したとしても、幹の部分が太く、これら部位(A1,A2,A3)は、その色や年輪から容易に判定でき、上記密着性(付着性)、熱伝導性、意匠性等に優れるという作用効果を有する。
(Influence of parts of wood)
As shown in FIG. 2(d), the material prepared from cedar sapwood A1 became finer particles with a size of 30 to 50 μm than the treatment of coarse particles. On the other hand, as shown in Fig. 2(c), the material prepared from the cedar heartwood A2 and the immature cedar material A3 contained a large number of particles of several µm, and it was found that this site is suitable for making fine fibers.
The heartwood A2 and the immature cedar A3 of the root material of cedar, etc., had a high ratio of immature wood with immature cell tissues formed when the tree was young, and the strength performance was inferior (Fig. 1). On the other hand, the sapwood portion A1 of the root wood has a large proportion of mature wood that is old, has a mature cell structure, and has high strength performance. It is considered that the core material A2s of the cedar root material and the immature cedar material A3 are suitable for making fine fibers. These parts (heartwood A2 and immature wood A3) can be easily determined from their colors and annual rings, so it is easy to cut out and select and sort materials (see Non-Patent Document 2). The sapwood A1 of the cedar, cypress, and mizunara oak has a thick trunk even if the height of the sapwood A1 from the ground is within 2 m, and these parts (A1, A2, A3) have different colors and It can be easily determined from annual rings, and has the effect of being excellent in the adhesion (adhesiveness), thermal conductivity, design, and the like.

(原材料木粉の粒度および部位の影響)
粒度の粗い木粉(粒度:60メッシュパス-100メッシュオン(目開き150~250μm)と、粒度の細かい木粉(200メッシュパス(目開き75μmパス))から調製した木粉塗料と、部位(スギ心材およびスギ辺材、粒度:200メッシュパス)を変えて調製した木粉塗料の解繊状態を顕微鏡にて観察した。
(原材料木粉の粒度の影響)
図2(b)のように粒度の粗い木粉を原料とした場合は、20μm程度の粒子になっていた。一方、図2(c)のように粒度の細かい木粉を原料とした場合は、数μmの粒子が非常に多く、微細化には粒度の細かい木粉の方が適していることが分かった。
前記木材をピンミル粉砕(ピンディスク回転式の粉砕機により)すると、前記木材を構成する早材部や柔細胞などの軟質な組織は、粒径の小さな木粉に粉砕され、反対に、晩材部などの堅い組織は、粒度が大きく粉砕されると考えられる。ナノファイバー化も同様に、軟質な部分の方がし易い傾向があると考えられる。
ここで、「晩材」とは、木材の一成長輪のうち、成長期の後期に形成される部分をいう。針葉樹では細胞壁が厚く直径の小さな仮道管が、また広葉樹では細い道管がそれぞれ形成される。この部分は密度が高く、しばしば濃い色にみえる。なお、年輪の中で生長の早い春にできる材部を早材(春材)と呼び、細胞の形も大きく細胞膜も薄い。夏以降の生長の遅くなる時期にできた材部を晩材(秋材、夏材)と呼び、細胞の形は小さく細胞膜は厚い。
(Influence of particle size and part of raw material wood flour)
Wood powder paint prepared from coarse-grained wood powder (particle size: 60 mesh pass-100 mesh on (opening 150 to 250 μm) and fine-grained wood powder (200 mesh pass (opening 75 μm pass)), and the site ( The fibrillation state of the wood powder paints prepared by changing the cedar core and cedar sapwood (particle size: 200 mesh pass) was observed under a microscope.
(Influence of particle size of raw material wood flour)
As shown in FIG. 2(b), when coarse-grained wood flour was used as the raw material, the particles were about 20 μm. On the other hand, when fine-grained wood flour is used as the raw material, as shown in Fig. 2(c), there are many particles of several micrometers, and it was found that fine-grained wood flour is more suitable for refining. .
When the wood is pulverized by a pin mill (using a pin disk rotary pulverizer), soft tissues such as early wood parts and parenchyma cells that make up the wood are pulverized into wood flour with a small particle size. It is thought that hard structures such as crucifixes have large grain sizes and are pulverized. In the same way, it is thought that nanofiber formation tends to be easier for soft portions.
Here, the term "latewood" refers to a portion of one growth ring of wood that is formed in the latter stage of the growing season. In coniferous trees, tracheids with thick cell walls and small diameters are formed, while in broadleaf trees, thin vessels are formed. This area is dense and often appears dark. In addition, the wood part that grows early in the spring in the annual rings is called early wood (spring wood), and the cell shape is large and the cell membrane is thin. The wood that grows after summer when growth slows down is called late wood (autumn wood, summer wood), and the cell shape is small and the cell membrane is thick.

本発明は前記スギ、ヒノキなどの針葉樹およびミズナラなどの広葉樹を原料とし(樹齢は問わず、地面からの高さ位置が2m~3m付近で伐採された残りの根が付いた部分の前記未成熟材であることがより好ましい。)、水のみを加えてかき混ぜて塗料化して(天然塗料化して)、性能を持たせたことを特徴とする。あるいはヒノキの未成熟材及び/又は心材を原料とした場合は、防黴(カビ)性能も持たせたことを特徴とする。ここで、前記はヒノキのであり、ヒノキオールなどの防黴(カビ)成分が表面に現れた塗膜とすることができる。
バイオマス材料である木粉の一部を、ナノファイバーの構造を付加したリグノセルロースナノファイバーにすることで、その塗膜は木材由来の構造による優れた断熱性と造膜性に優れる特長を有し、また、これを水性木材防腐剤や水性木材防虫剤としたり、防黴(カビ)性能に優れた木質膜としたり、また、顔料や吸着剤としたり、熱伝導率が0.06W/mKとグラスウールと同等の木粉塗膜(塗料膜、塗膜、塗膜)が製造できる。
The present invention uses conifers such as cedar and cypress and broadleaf trees such as Mizunara as raw materials (irrespective of the age of the tree, the immature part with the remaining roots cut at a height of about 2 m to 3 m from the ground). It is more preferable that it is wood.), and it is characterized by adding only water and stirring to make it into a paint (natural paint) to give it performance. Alternatively, when immature wood and/or heartwood of Japanese cypress is used as a raw material, it is characterized in that it also has antifungal performance. Here, the above is cypress, and it can be a coating film in which an antifungal (mold) component such as hinokiol appears on the surface.
By using lignocellulose nanofibers with a nanofiber structure as a part of wood flour, a biomass material, the coating has excellent heat insulation and film-forming properties due to the wood-derived structure. , In addition, it can be used as a water-based wood preservative or a water-based wood insect repellent, used as a woody film with excellent antifungal performance, used as a pigment or adsorbent, and has a thermal conductivity of 0.06 W / mK. A wood powder coating film (paint film, coating film, coating film) equivalent to glass wool can be produced.

各種木材原料を磨砕機(増幸産業株式会社のマスコロイダー)で微細化処理して、木粉塗料を調製し、その性能を評価した。その結果、以下のことが明らかとなった。
1.原材料の木粉粒度または部位によって、上記砥石を搭載した磨砕機で微細化されやすさが異なり、粉砕しやすい原材料がほど、粒子が細かくなると同時に表面のナノファイバー化が進行し易い傾向があった。
2.本発明の調製した木粉塗料は、一般塗料と同等の密着性(付着性)があった。
3.本発明の木粉塗料の塗膜を常温から160℃の範囲で加熱プレスすると、非常に硬度の高い塗膜になった。すなわち、加熱プレス処理を施すことにより、リグノセルロース成分が樹脂化して、表面硬度が高くなるが、加熱温度が160℃でが最も高くなった(後述)。なお、常温でプレスしても、密着性の優れた塗膜が形成可能である。
4.本発明の木粉塗料の塗膜は、熱伝導率が低く断熱性にすぐれていた。
5.本発明のヒノキ心材から調製した塗膜は、防黴(カビ)性能にすぐれていた。
6.本発明の木粉塗料は、独特な意匠感(凹凸)のある塗膜が形成できた。特に、未成熟材に辺材(或いは成熟材)を混合すること、凹凸感のある意匠性を給えることができた。
Various wood raw materials were pulverized with a grinder (Mascolloider manufactured by Masuko Sangyo Co., Ltd.) to prepare wood powder paints, and their performance was evaluated. As a result, the following facts were clarified.
1. Depending on the particle size or part of the wood powder of the raw material, the easiness of pulverization by the grinder equipped with the above-mentioned grindstone differs. .
2. The wood powder paint prepared according to the present invention had adhesion (adhesiveness) equivalent to that of general paint.
3. When the coating film of the wood powder coating material of the present invention was hot-pressed at a temperature ranging from room temperature to 160°C, the coating film had a very high hardness. That is, the heat press treatment turned the lignocellulose component into a resin and increased the surface hardness, but the highest temperature was obtained at a heating temperature of 160°C (described later). Even if pressed at room temperature, a coating film with excellent adhesion can be formed.
4. The coating film of the wood flour paint of the present invention had low thermal conductivity and excellent heat insulation.
5. The coating film prepared from the cypress heartwood of the present invention was excellent in antifungal performance.
6. The wood powder paint of the present invention was able to form a coating film with a unique sense of design (unevenness). In particular, by mixing immature wood with sapwood (or mature wood), it was possible to provide a textured design.

本発明の木の未成熟材部分を採取する方法によれば、地面から所定高さ位置で伐採された残りの根が付いた部分の木材であっても、その伐採された面の年輪、色、臭い等から所定の水分量が含まれていることを判断して、塗装剤(外壁塗装剤、床塗装剤、又は、これらの下地処理剤を含む。)、顔料、吸着剤、防黴(カビ)剤等の木粉粒子懸濁液の原料を切削により容易に採取することが可能になる。
また、本発明の木粉粒子懸濁液の製造方法によれば、ナノファイバー化が容易なスギ、ヒノキの針葉樹を原料として粉砕することで、その懸濁液中のCNF含有量を多くすることができ、かつ、歪な微粒子の残存量を少なくすることができるために、その木粉微粒子を使用した場合の塗膜は、膜密度が上がり木材由来の構造による優れた断熱性、造膜性に優れる特長を持たせることができること、木粉から密着性に優れた塗膜が製造できること、塗膜係数が0.14というような非常に小さくできること、ヒノキの高い防黴(カビ)性能が発揮されることなどが確認できた。地面からの高さが2m以内の部分である前記スギ、ヒノキ、ミズナラの未成熟材であっても同様である。これらのことから本懸濁液は、水性塗料、水系塗料、粉体塗料や、合成樹脂塗料などの原料などに使用することができる。
そして、1.断熱性、密着性に優れること、2.接触感、平滑性に優れること、3.合成樹脂、無機系との複合化が容易であること、ヒノキの場合は4.抗菌性や防カビ性などの有効成分を有していることから、防食、防腐、防黴、防蟻、防汚、防水、殺菌などの塗膜形成成分(塗膜形成組成物)として使用、遮熱、撥水、蛍光、蓄光、迷彩、有害化学物質吸着などの塗膜形成成分(塗膜形成組成物)として使用、平滑化、光沢付与、彩色、模様、意匠、景観創出などの塗膜形成成分(塗膜形成組成物)として使用可能である。また、塗装剤(外壁塗装剤、床塗装剤、又は、これらの下地処理剤にも適用可能であり、これらを複数層の塗膜とすることで、密着性や意匠性を高めることができる。
なお、ポリプロピレン系樹脂やアルキド系樹脂、不飽和ポリエステル系樹脂、メラミン系樹脂、尿素系樹脂(アミノ樹脂)、フェノール系樹脂、エポキシ系樹脂、塩化ビニル系樹脂、アクリル系樹脂、アクリルウレタン系樹脂、アクリルシリコーン系樹脂、フッ素系樹脂などの場合は、懸濁液と混合して用いることもできる。
According to the method of extracting the immature wood portion of the tree of the present invention, even if the remaining rooted wood that has been cut at a predetermined height above the ground has annual rings and color on the cut surface, , Judging that it contains a predetermined amount of moisture from the smell, etc., paint agents (including exterior wall paint agents, floor paint agents, or these surface treatment agents.), pigments, adsorbents, anti-mildew ( It becomes possible to easily collect the raw material of the wood powder particle suspension such as the mold agent by cutting.
In addition, according to the method for producing the wood flour particle suspension of the present invention, the CNF content in the suspension is increased by pulverizing the coniferous trees such as cedar and cypress, which are easily made into nanofibers, as raw materials. and the residual amount of distorted fine particles can be reduced, so the coating film when using the wood powder fine particles has an increased film density and excellent heat insulation and film-forming properties due to the structure derived from wood. A coating film with excellent adhesion can be produced from wood flour, the coating coefficient can be as small as 0.14, and the high anti-mold performance of hinoki is demonstrated. It was confirmed that The same applies to immature materials such as Japanese cedar, Japanese cypress, and Mongolian oak whose height from the ground is within 2 m. For these reasons, the present suspension can be used as a raw material for water-based paints, water-based paints, powder paints, synthetic resin paints, and the like.
And 1. 2. excellent heat insulation and adhesion; 3. excellent touch feeling and smoothness; It must be easy to combine with synthetic resins and inorganic materials. Since it has active ingredients such as antibacterial and antifungal properties, it is used as a coating film-forming component (coating film-forming composition) for anticorrosion, antiseptic, antifungal, anti-termite, antifouling, waterproof, sterilization, etc. Used as a coating film-forming component (coating film-forming composition) for heat shielding, water repellency, fluorescence, phosphorescence, camouflage, adsorption of harmful chemical substances, smoothing, glossing, coloring, pattern, design, landscape creation, etc. It can be used as a forming component (coating film forming composition). In addition, it can be applied to coating agents (exterior wall coating agents, floor coating agents, or these surface treatment agents, and by forming these into a multi-layer coating film, adhesion and design can be improved.
Polypropylene resins, alkyd resins, unsaturated polyester resins, melamine resins, urea resins (amino resins), phenol resins, epoxy resins, vinyl chloride resins, acrylic resins, acrylic urethane resins, In the case of acrylic silicone resins, fluorine resins, etc., they can be used by mixing with the suspension.

本発明で使用する未成熟材、成熟材、辺材、芯材を説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining immature wood, mature wood, sapwood, and core wood which are used by this invention. 条件を変えて作製したスギ木粉の顕微鏡像を示す図である。FIG. 4 is a diagram showing microscope images of cedar wood powder produced under different conditions. グラインダー処理した木粉懸濁液の粘度ηのせん断速度dγ/dt依存性を示す図である。FIG. 10 is a graph showing shear rate dγ/dt dependence of viscosity η of a wood flour suspension processed by a grinder. 本発明で使用する木材の部分とそれを用いた製造方法と木粉塗膜とした場合の防黴(カビ)性能と木粉塗膜とした場合の熱伝導率を示す図である。FIG. 1 is a diagram showing a portion of wood used in the present invention, a manufacturing method using the same, antifungal performance when a wood powder coating film is formed, and thermal conductivity when a wood powder coating film is formed. 木質粉の部分CNF化を示す図である。It is a figure which shows partial CNF conversion of wood flour. 各種塗膜のJIS Z 2911試験の結果を示す図である。FIG. 2 shows the results of JIS Z 2911 test of various coating films. 塗装方法を変えて試作した木粉塗料塗装アルミ板の外観を示す図である。FIG. 10 is a diagram showing the appearance of wood powder paint-coated aluminum plates that were experimentally produced by changing the coating method. 塗装アルミ板の塗膜の原材料別の平面引っ張り強さを示す図であるFIG. 4 is a diagram showing the planar tensile strength of the coating film of the coated aluminum plate for each raw material. 非特許文献2における図2~図4を示す図である。2 to 4 in Non-Patent Document 2. FIG. 従来の問題点を示す図である。It is a figure which shows the conventional problem.

以下、本発明を適用した実施形態について、図面を参照して詳細に説明する。 Embodiments to which the present invention is applied will be described in detail below with reference to the drawings.

(木粉の部分のCNF化)
図5(a)は、木粉の部分CNF化について説明する図であり、図5(b)は木粉塗膜の形成について説明する図である。
まず、原材料木紛を、前記の部位を選別してピンミル粉砕(S1)すると、微細繊維化に適した木紛が得られる。次に、微細繊維化に適した木粉に湿式グラインダー処理を行う(S2)。湿式グラインダー処理では、使用する臼の粗さは#46以下、あるいは、#46~#120の範囲である。
このようにして、部分CNF化した木粉が得られる(S3)。部分CNF化した木粉は、拡大図をS4に示すように、表面のみCNF化(表面を毛羽立たせるか、髭が生じたような微粒化)された木粉である。木粉粒子の平均粒径としては、10μm以下が好ましく(あるいは3~10μm)の微粒子化を図ることが好ましい(図5(a))。
S4に示す表面のみCNF化された木粉は、図5(b)に示すように、木粉の表面のCNFが絡み合って強固に結合し(図5(a)において、表面のみCNF化(表面の毛羽立たせた部分)Baは3μm以下)、バインダーとして働き、高硬度で断熱性に優れた塗膜を形成する。原材料はスギ等の木材の木粉と水のみであるため、安全性が高い。吸水性や吸油性が良く、水による濡れ性に優れるため、他の材料(等)と混ぜることでさまざまな用途での使用が可能となる。
なお、この場合の基材(塗装用基材)K1としては、特に限定されず、一般的に使用されている種々の基材(アクリル製やアルミ製の合成樹脂製の基材)を用途に応じて適宜選択して使用することができる。
(Conversion of wood flour to CNF)
FIG. 5(a) is a diagram for explaining the partial conversion of wood flour into CNF, and FIG. 5(b) is a diagram for explaining the formation of a wood flour coating film.
First, the raw material wood powder is pulverized by a pin mill (S1) after sorting out the above-mentioned parts, thereby obtaining wood powder suitable for making fine fibers. Next, the wood flour suitable for making fine fibers is subjected to a wet grinder treatment (S2). In wet grinder processing, the roughness of the mortar used is #46 or less, or in the range of #46 to #120.
In this way, a partially CNF-converted wood flour is obtained (S3). Partially CNFized wood flour is wood flour that has been CNFized only on the surface (atomized such that the surface is fluffed or whiskered), as shown in an enlarged view in S4. The average particle size of the wood powder particles is preferably 10 μm or less (or preferably 3 to 10 μm) (FIG. 5(a)).
As shown in FIG. 5(b), the wood flour in which only the surface is CNF-ized as shown in S4 is strongly bound by entanglement of the CNFs on the surface of the wood flour (in FIG. 5(a), only the surface is CNFized (surface The fluffed portion (Ba is 3 μm or less) functions as a binder and forms a coating film with high hardness and excellent heat insulation. It is highly safe because the raw materials are only wood powder from wood such as cedar and water. It has good water absorption and oil absorption, and excellent wettability with water, so it can be used in various applications by mixing it with other materials (etc.).
In this case, the substrate (coating substrate) K1 is not particularly limited, and various commonly used substrates (substrates made of synthetic resin such as acrylic or aluminum) can be used. It can be selected and used as appropriate.

(木粉塗料・木材塗料の調製)
富山県産ボカスギ、ヒノキの根元丸太材および岩手県産ミズナラ材から、表2に示す原材料を切り出し、室内にて自然乾燥した後、ピンミル粉砕装置(グラインダー)で微粉砕・振動篩で分級して、平均粒径500μm以下の木粉を調製した。次に、湿式法にてこの木粉を上記砥石(摩耗輪G#80またはG#46)を搭載した磨砕機に投入し、3回処理を繰返し、木粉塗料(固形分10%)を調製した。その結果、全ての原材料にて木粉塗料(あるいは木材塗料)が製造可能であることを確認した。ここで使用した富山県産ボカスギ、ヒノキは、富山県西部に多い挿木品種であり、樹齢60年生以上が6割を占め、胸高直径が40cm以上に成長した大径材である。
表2には、各種木材から調整した木粉塗料の種類を示す。ここで、「メッシュ」とは、篩の網目の大きさを表す単位で、1インチ(2.54cm)がいくつに仕切られているか、すなわちこの中に何本の網目が通っているかを表す値(新JIS)のことである。表2(a)の(1)に示す微粉砕処理前の木粉粒度が「粗い」とは、60~100メッシュの篩目(目開き150~200μm)を通過する粒度であり、(2)に示す木粉粒度が「細かい」とは、200メッシュ(目開き75μm)(新JIS)の篩目を通過する粒度である。また、(3)に示すマスコロイダー摩耗輪Noは、数が大きいほど細かく微粉砕される。なお、「マスコロイダー」は、増幸産業株式会社の製品名である。
(Preparation of wood powder paint/wood paint)
Raw materials shown in Table 2 are cut out from Bokasugi from Toyama Prefecture, cypress root logs from Iwate Prefecture, and mizunara oak from Iwate Prefecture. , wood flour having an average particle size of 500 μm or less was prepared. Next, this wood powder is put into a grinder equipped with the above grindstone (wear wheel G#80 or G#46) by a wet method, and the treatment is repeated three times to prepare a wood powder paint (solid content 10%). did. As a result, it was confirmed that wood flour paints (or wood paints) could be produced from all raw materials. The Bokasugi and Hinoki cypress produced in Toyama Prefecture used here are cutting varieties that are common in the western part of Toyama Prefecture.
Table 2 shows the types of wood powder paints prepared from various types of wood. Here, "mesh" is a unit that indicates the mesh size of a sieve, and indicates how many parts 1 inch (2.54 cm) is divided into, that is, how many meshes pass through it. (new JIS). The "coarse" wood powder particle size before fine pulverization shown in (1) of Table 2 (a) is the particle size that passes through a 60 to 100 mesh sieve (opening 150 to 200 μm), and (2) The "fine" wood powder particle size shown in 1 is a particle size that passes through a sieve of 200 mesh (opening of 75 μm) (new JIS). Further, the larger the masscolloider wear wheel No. shown in (3), the finer it is pulverized. "Mascolloider" is a product name of Masuko Sangyo Co., Ltd.

Figure 2022117650000003
Figure 2022117650000003

Figure 2022117650000004
Figure 2022117650000004

(木粉塗料の性状)
a)付着性(平面引っ張り強さ)
木粉塗料(あるいは木材塗料)塗装アルミ板の塗膜の外観と原材料別の平面引張り強さを図7および図8(a)に示す。木粉塗料塗膜の平面引張り強さは、すべての原材料で約12~14N/cmの範囲となり、既存のアルミ塗装用アクリル樹脂(約13N/cm)と比較して、ほぼ同等の塗膜の付着性を示した。上記砥石を搭載した磨砕機(砥石によって構成された石臼形式の摩砕機)によって、木粉表面で部分的にCNF化した微細繊維が、塗膜を形成する過程で物理的に絡み合い、水素結合などでさらに強固に結合したと推察される(図5)。
b)表面硬さ(鉛筆硬度)
木粉塗装したアルミ板の構成としては、図8(b)(c)に示すように、木粉塗料(あるいは木材塗料)とアクリル樹脂(アクリルプライマー)で塗装したアルミ板にプレス処理を行った。
プレス温度別の表面硬度(鉛筆硬度)を測定した。全ての原材料において、鉛筆硬度はプレス温度が高くなるとともに向上し、特に、プレス温度160℃では、鉛筆硬度は6H~7Hと非常に高くなった。市販のPC等に使用される硬質シートの鉛筆硬度が3H~4H、また、自動車塗膜JIS(JIS D 0202)で塗膜硬度の評価が最大5Hと規定されていることを鑑みても、160℃でプレスした木粉塗膜は、既存の塗膜と比較しても非常に硬い。また、常温でプレスすることも可能であり(焼き付けて塗装を行わずとも)、密着性に優れ、被塗装体の外観を綺麗にし、その表面を保護する効果を有する(図8(b)参照)機能を持たせることも可能であった。
(Properties of wood powder paint)
a) Adhesion (flat tensile strength)
Fig. 7 and Fig. 8(a) show the appearance of the coating film of the wood powder paint (or wood paint) coated aluminum plate and the planar tensile strength of each raw material. The planar tensile strength of the wood powder coating film is in the range of about 12 to 14 N/cm 2 for all raw materials, which is almost the same as the existing acrylic resin for aluminum coating (about 13 N/cm 2 ). It showed the adhesion of the membrane. Fine fibers partially converted to CNF on the surface of wood flour are physically entangled in the process of forming a coating film by a grinder equipped with the grindstone (a millstone-type grinder composed of grindstones), and hydrogen bonding, etc. It is presumed that the binding was even stronger at 1 (Fig. 5).
b) Surface hardness (pencil hardness)
As shown in Figs. 8(b) and 8(c), the structure of the aluminum plate coated with wood powder was obtained by pressing an aluminum plate coated with wood powder paint (or wood paint) and acrylic resin (acrylic primer). .
The surface hardness (pencil hardness) was measured at different press temperatures. For all the raw materials, the pencil hardness improved with increasing pressing temperature, especially at a pressing temperature of 160.degree. Hard sheets used in commercially available PCs and the like have a pencil hardness of 3H to 4H, and the automotive coating film JIS (JIS D 0202) specifies that the maximum coating film hardness evaluation is 5H. The wood powder coating film pressed at ℃ is very hard compared to existing coating films. In addition, it can be pressed at room temperature (without baking and painting), has excellent adhesion, makes the appearance of the object to be painted beautiful, and has the effect of protecting the surface (see FIG. 8 (b)). ) function.

Figure 2022117650000005
Figure 2022117650000005

Figure 2022117650000006
Figure 2022117650000006

鉛筆硬度は、プレス温度が高くなるととともに向上し、プレス温度160℃では6H~7Hと非常に高くなった。また、木の色合いが残っており、屋内の壁や柱などに塗る際も使いやすくなる。 The pencil hardness improved with increasing press temperature, and became very high at 6H to 7H at a press temperature of 160°C. In addition, the color of the wood remains, making it easy to use when painting indoor walls and pillars.

c)熱伝導性
前記スギ等を用いた木粉粒子懸濁液Mとすると、熱伝導性が低い断熱材としての応用が期待できる。懸濁液中のナノファイバーの量や木粉粒子の大きさによりその値が変化するかを調べるために、定常法-熱流計法にて熱伝導率を評価した。表4にスギの心材A2と未成熟材A3と、辺材A1の木粉塗料(あるいは木材塗料)を塗膜にした場合の結果を示す。
c) Thermal Conductivity The wood powder particle suspension M using cedar or the like can be expected to be applied as a heat insulating material with low thermal conductivity. In order to investigate whether the value changes with the amount of nanofibers in the suspension and the size of the wood powder particles, the thermal conductivity was evaluated by the steady-state method and the heat flow meter method. Table 4 shows the results when the wood powder paint (or wood paint) of the heartwood A2, the immature wood A3, and the sapwood A1 was used as a coating film.

Figure 2022117650000007
Figure 2022117650000007

木粉は、膜にならずパラパラの状態であるが、0.045W/(m・K)の非常に小さな熱伝導率を示した。辺材部分A1の膜はグラインダー処理することで、0.105W/(m・K)まで大きくなった。一方、心材部分A1と未成熟材A3では、その処理によって0.062から0.082W/(m・K)と少ししか増加しなかった。これは、辺材A1の方が粒子が細かく、かつ、ナノファイバー化している部分の体積が大きくなったことで、膜密度が向上したことを示している。以上のことから、スギの場合、断熱材として塗膜を使用する場合は、心材部分を使用した方が適していることが明らかになった。 Although the wood flour did not form a film and was in a flaking state, it exhibited a very small thermal conductivity of 0.045 W/(m·K). The film of the sapwood portion A1 was increased to 0.105 W/(m·K) by the grinder treatment. On the other hand, in the heartwood portion A1 and the immature wood A3, the increase was only slightly from 0.062 to 0.082 W/(m·K) due to the treatment. This indicates that the sapwood A1 has finer grains and a larger volume of the nanofiberized portion, thereby improving the film density. From the above, it was clarified that in the case of cedar, it is more suitable to use the core part when using a coating film as a heat insulating material.

d)木粉塗料の調製(水を含む木製微粒子Mを用いた塗料の調整)
富山県産ボカスギ、ヒノキの根元丸太材および岩手県産ミズナラ材から、表2に示す原材料を切り出し、室内にて自然乾燥した後、ピンミル粉砕装置で微粉砕・振動篩で分級して、粒径500μm以下の木粉を調製した。次に、この木粉を上記砥石(摩耗輪G#80またはG#46)を搭載した磨砕機に投入し、処理を3回繰返すことで、木粉塗料(固形分10%)を調製した。その結果、全ての原材料にて木粉塗料である木粉粒子懸濁液Mが製造可能であることを確認した。
d) Preparation of wood powder paint (preparation of paint using wood fine particles M containing water)
Raw materials shown in Table 2 are cut out from Bokasugi from Toyama Prefecture, cypress root logs from Iwate Prefecture, and mizunara oak from Iwate Prefecture, dried naturally indoors, then finely pulverized with a pin mill pulverizer and classified with a vibration sieve to obtain a particle size. A wood flour of 500 μm or less was prepared. Next, this wood powder was put into a grinder equipped with the grindstone (wear wheel G#80 or G#46), and the treatment was repeated three times to prepare a wood powder paint (solid content: 10%). As a result, it was confirmed that the wood powder particle suspension M, which is a wood powder paint, can be produced from all raw materials.

作製した木粉懸濁液(水を含む木製微粒子)Mから膜を作製し、その防黴(カビ)性能を試験した。スギを使用した塗膜と、ヒノキを使用した塗膜に関して、JIS Z 2911試験を行った。図6にその結果を示す。黒い部分が黴である。スギ塗膜の防黴(カビ)性能は、グラインダー処理によって4:(菌糸はよく発育し、発育部分の面積は試料の全面積の50%以上)から5:(菌糸の発育は激しく、試料全面を覆っている)に劣化したが、ヒノキ塗膜では、2:(肉眼でカビの発育が認められ、発育部分の面積は試料の全面積の25%未満)から0:(肉眼及び顕微鏡下でカビの発育は認められない)結果になった。スギはナノファイバー化により生分解性が高まり、黴が繁殖しやすくなったが、ヒノキは木材内部のヒノキオールなどの防黴成分が表面に現れ、その繁殖が抑制できたと考えられる。また、ヒノキには、その抽出した精油の中で、悪臭の成分と化学反応することで分解する(消臭効果)作用があるので、これを更に上記懸濁液に混合しても良い。 A membrane was produced from the produced wood flour suspension (wood particles containing water) M, and its antifungal performance was tested. A JIS Z 2911 test was performed on a coating film using Japanese cedar and a coating film using Japanese cypress. The results are shown in FIG. The black part is mold. The anti-mold (mold) performance of the cedar coating film varies from 4: (mycelium grows well, and the area of the growing part is 50% or more of the total area of the sample) to 5: (mycelium grows vigorously, and the entire surface of the sample However, the cypress coating showed 2: (mold growth was observed with the naked eye, and the area of the growing part was less than 25% of the total area of the sample) to 0: (with the naked eye and under a microscope No fungal growth was observed). The biodegradability of Japanese cedar was enhanced by making nanofibers, making it easier for mold to grow. In Hinoki, however, antifungal components such as hinokiol appeared on the surface of the wood, and it is thought that the growth of mold was suppressed. Hinoki cypress has the effect of chemically reacting with malodorous components in the extracted essential oil to decompose it (deodorant effect), so this may be further mixed with the suspension.

木粉粒子懸濁液Mから基材との密着性に優れた塗膜Mmを作製することができた。この塗膜Mmの熱伝導率や防黴特性を調べた結果、熱伝導率が0.1W/(m・K)以下と非常に小さく、高い断熱性能があることが確かめられた。その他、塗膜Mmの摩擦係数が0.14と非常に小さいことや、木の風合いもあることが確認でき、建築用の高機能性断熱膜あるいは、工芸的な応用展開が可能になることを示した。また、ヒノキの高い防黴性能も確認できた。これらの特長を活かした応用が期待できる。 A coating film Mm having excellent adhesion to the substrate was produced from the wood powder particle suspension M. As a result of examining the thermal conductivity and antifungal properties of this coating film Mm, it was confirmed that the thermal conductivity was as low as 0.1 W/(m·K) or less and that the coating film had high heat insulating performance. In addition, it can be confirmed that the coefficient of friction of the coating film Mm is as small as 0.14, and that it also has the texture of wood. Indicated. In addition, the high antifungal performance of Japanese cypress was also confirmed. Applications that take advantage of these features can be expected.

(木粉塗料の外観意匠)
塗装面に凹凸による意匠性を付与するために、スギ辺材および木粉塗料(あるいは木材塗料)に、混合する塗料と同じ部位から選別した粗木粉(32メッシュパス-60メッシュオン(目開き500μmパス-250μmオン))を、木粉塗料(木材塗料)の固形分に対して50%および100%混入した塗料を調製し、意匠感の異なる木粉塗料塗装アルミ板(厚さ1mm)に対して厚さ0.1~0.2mmの木粉塗膜Mmを試作した。その結果、表面に凹凸のある木粉塗料独自の意匠感のある塗膜を形成させることが可能となった(図7)。
ここで、下塗りの工程(中塗材・上塗材をの密着力を上げるために、下地をしっかり固めるための工程)をアクリル塗料で行い、その後、中塗り工程(模様つけ・弾力性付与・断熱性付与などの機能的な付加価値をもたせる場合に行われる工程)を、木粉粒子懸濁液(粒度の粗い木粉から調整)M1で行った(図7(a))。また、更に、上塗り工程(耐候性・遮熱性などを付与する工程)を木粉粒子懸濁液で、粒度の粗い木粉から調整)M2で行った。
また、基材(樹脂製基材)K1としてアルミ板(厚さ1mm)を使用したが、その他の化粧板を使用することができる(アクリル板等)。また、アクリル樹脂塗料のみならず、ポリウレタン樹脂塗料、フッ素樹脂塗料、エポキシ樹脂塗料、塩化ビニル樹脂塗料に、前記木粉粒子懸濁液Mを使用することができる。
また、本発明としては、前記スギ、ヒノキなどの針葉樹およびミズナラなどの広葉樹における心材又は未成熟材を使用した木粉粒子懸濁液と、前記針葉樹における辺材又は成熟材を使用した木粉粒子懸濁液とするものであり、これら同種のものを使用して、前記前記針葉樹における辺材又は成熟材を使用した木粉粒子懸濁液を下塗り塗膜として製膜した後、前記針葉樹における心材又は未成熟材を使用した木粉粒子懸濁液を使用して上塗り塗膜とする。上記未成熟材の割合としては、少なくとも20重量%以上含むことが好ましい。20重量%よりも少ないと、未成熟材の性能(密着性、断熱性等)が十分に発揮されないが、辺材(熟成材)との混合による場合、凹凸の意匠性には影響がなかった。
本発明を適用する木粉粒子懸濁液Mを用いて水性塗料とすると、水のみを加えるだけで、外壁塗装剤、床塗装剤、又は、これらの下地処理剤として塗装することができる。また、常温でプレスすることも可能であり(焼き付けて塗装を行わずとも)、密着性に優れ、被塗装体の外観を綺麗にし、その表面を保護する効果を有する(図8(b)参照)。
(Appearance design of wood powder paint)
In order to give the painted surface a design with unevenness, coarse wood powder (32 mesh pass - 60 mesh on (opening)) selected from the same part as the mixed paint is added to the cedar sapwood and wood powder paint (or wood paint) 500 μm pass-250 μm on)) was mixed with 50% and 100% of the solid content of the wood powder paint (wood paint), and the wood powder paint coated aluminum plate (thickness 1 mm) with different design feeling was prepared. On the other hand, a wood powder coating film Mm having a thickness of 0.1 to 0.2 mm was experimentally produced. As a result, it became possible to form a coating film with an uneven surface and a unique design feeling of wood flour paint (Fig. 7).
Here, the undercoating process (a process to firmly solidify the base to increase the adhesion of the intermediate coating material and top coating material) is performed with acrylic paint, and then the intermediate coating process (patterning, giving elasticity, heat insulation) A process to give functional added value such as imparting) was performed with wood flour particle suspension (prepared from wood flour with coarse particle size) M1 (Fig. 7(a)). Furthermore, the overcoating step (the step of imparting weather resistance, heat shielding properties, etc.) was performed with a wood powder particle suspension prepared from wood powder having a coarse particle size (M2).
Also, an aluminum plate (thickness 1 mm) was used as the base material (resin base material) K1, but other decorative boards (acrylic plate, etc.) can be used. Moreover, the wood powder particle suspension M can be used not only for acrylic resin coatings but also for polyurethane resin coatings, fluorine resin coatings, epoxy resin coatings, and vinyl chloride resin coatings.
The present invention also provides a wood powder particle suspension using the heartwood or immature wood of conifers such as Japanese cedar and Japanese cypress and broad-leaved trees such as Mizunara, and wood powder particles using the sapwood or mature wood of the conifers. Using these same types of suspensions, the wood powder particle suspension using the sapwood or mature wood of the coniferous tree is formed as an undercoat film, and then the heartwood of the coniferous tree. Alternatively, a wood flour particle suspension using immature wood is used as a top coat film. The ratio of the immature material is preferably at least 20% by weight or more. If the amount is less than 20% by weight, the properties of immature wood (adhesion, heat insulation, etc.) are not sufficiently exhibited, but when mixed with sapwood (ripened wood), there was no effect on the design of unevenness. .
When a water-based paint is prepared using the wood powder particle suspension M to which the present invention is applied, it can be applied as an exterior wall coating agent, a floor coating agent, or a surface treatment agent for these only by adding water. In addition, it can be pressed at room temperature (without baking and painting), has excellent adhesion, makes the appearance of the object to be painted beautiful, and has the effect of protecting the surface (see FIG. 8 (b)). ).

この水性塗料物を、実施例1~5(固形分で5~20重量%)及び、比較例1~3(固形分で25~50重量%)で調製し、高速ミキサーで2000rpmで5分間混合させた。 The water-based paints were prepared in Examples 1-5 (5-20% by weight solids) and Comparative Examples 1-3 (25-50% by weight solids) and mixed in a high-speed mixer at 2000 rpm for 5 minutes. let me

(基材への付着性の試験)
基材との付着性の試験は、アルミ板K1の中央に縦20cm×横10cmの帯状になるように塗装し、1~2時間室温で乾燥させた。次に実施例1~5と比較例1~3の懸濁液について、実施例に基づいて得られた木粉粒子懸濁液を、塗装器具を用いて塗装した。その後、常温プレスにより硬化させた塗膜を作製した(図8(b))。基材への付着性の評価は、刷毛で擦るようにしたときに、塗料の塗布状態が維持される場合を○、塗装部分が剥がれる場合を△、刷毛による擦ることなく時間の経過で剥がれる場合を×とする3段階で評価した。なお、樹齢60年以上のボカスギと、樹齢10年未満のボカスギとで、未成熟材の木粉粒子や成分において違いは生じなかった。また、なお、樹齢60年以上のミズナラと、樹齢10年未満のミズナラとで、未成熟材の木粉粒子や成分において違いは生じなかった。
(Adhesion test to substrate)
In the adhesion test to the base material, a strip of 20 cm long and 10 cm wide was coated on the center of the aluminum plate K1 and dried at room temperature for 1 to 2 hours. Next, for the suspensions of Examples 1 to 5 and Comparative Examples 1 to 3, the wood powder particle suspensions obtained based on the Examples were applied using a coating tool. After that, a coating film was produced by curing it with a normal temperature press (FIG. 8(b)). The evaluation of adhesion to the base material is as follows: ○ when the applied state of the paint is maintained when rubbed with a brush; △ when the painted part peels off; was evaluated in 3 stages with x. There was no difference in the wood flour particles and components of immature wood between Bokasugi 60 years old or more and Bokasugi 10 years old or less. In addition, there was no difference in the wood flour particles and components of the immature materials between the Mizunara oak trees of 60 years or older and the Mizunara oak trees of less than 10 years old.

(上塗り付着性試験)
上記実施例1~5と比較例1~3に基づき調整して得られた水溶性塗料を、エアスプレーにより、温度25℃、湿度70%の条件下でアクリル板K1に木粉粒子懸濁液を塗装し、常温プレスにより硬化させた塗膜を作製した(図8(b))。次に上塗り塗装として、常温プレスにより硬化させた塗膜を作製した(図8(b))。上塗りの付着性の評価は、刷毛で擦るようにしたときに、塗料の塗布状態が維持される場合を○、塗装部分が剥がれる場合を△、刷毛による擦ることなく時間の経過で剥がれる場合を×とする3段階で評価した。
(Topcoat adhesion test)
Water-soluble paints prepared according to Examples 1 to 5 and Comparative Examples 1 to 3 were air-sprayed onto acrylic plate K1 under the conditions of a temperature of 25°C and a humidity of 70% to obtain a suspension of wood powder particles. was applied and cured by pressing at room temperature to prepare a coating film (FIG. 8(b)). Next, as a top coating, a coating film cured by pressing at room temperature was produced (FIG. 8(b)). Evaluation of the adhesion of the topcoat is as follows: ○ when the coating state is maintained when rubbed with a brush; It was evaluated in three stages.

(吸着剤としての試験)
木材にはアンモニアガスなどを吸着する性能があり、その吸着性は吸湿性を測定することで明らかにすることができる。そこで、塗膜の吸着性としての試験として、上述した基材への付着性や上塗り付着性を行ったものを、塩化カリウム水溶液を挿入して湿度85%調整した所定の容器に入れて、吸湿性の測定を行った。この試験で吸湿性があることが明らかになれば、塗膜に木材と同様の吸着性があること、また、木粉粒子懸濁液が吸着剤として使用可能であることが示唆される。木材と同様の吸湿性があるものは○、やや吸湿性があるものは△、吸湿性が悪い場合を×とする3段階で評価した。その結果表5に示すように、前記木材の木粉粒子が1~20重量%で水または溶剤が80~99重量%の配合比である場合の実施例1~5では、基材K1への付着性、上塗り剤としての付着性、吸着剤の試験において、いずれも良好(◎)であった。
(Test as an adsorbent)
Wood has the ability to adsorb ammonia gas, etc., and its adsorption ability can be clarified by measuring its hygroscopicity. Therefore, as a test for the adsorption of the coating film, the adhesiveness to the base material and the topcoat adhesiveness described above were tested, and then placed in a predetermined container in which the humidity was adjusted to 85% by inserting an aqueous potassium chloride solution. sex measurements were taken. If this test reveals hygroscopicity, it suggests that the coating film has the same adsorptivity as wood, and that the wood flour particle suspension can be used as an adsorbent. The evaluation was made on the basis of a three-point scale: ◯ when having the same hygroscopicity as wood, Δ when slightly hygroscopic, and x when poor hygroscopicity. As a result, as shown in Table 5, in Examples 1 to 5 in which the wood powder particles of the wood were 1 to 20% by weight and the water or solvent was 80 to 99% by weight, the base material K1 Adhesion, adhesion as a topcoat, and adsorbent tests were all good (⊚).

Figure 2022117650000008
Figure 2022117650000008

(チクソトロピー)
チキソトロピー(チクソトロピー)とは、かき混ぜたり、振り混ぜたりすることにより、力を加えることで、粘度が下がる現象をいう。かき混ぜることによって、粘度が低下するという点では、擬塑性流体もチキソトロピーも同じであるが、2つの大きな違いは、与える力だけでなく、時間経過に伴い粘度が変化するか、しないかという点にある。チキソトロピーを示す流体は、一定の力をかけ続けることで粘度が下がったり、下がった粘度がある一定時間放置したりすると元に戻ったりする。なお、身近なものでチキソトロピーの性質を応用しているのが、ペンキなどの塗料になる。ペンキは、かき混ぜることにより、粘度が下がって塗りやすい状態となり、ハケやローラーで壁に容易に塗ることができる。ペンキを塗る前によくかき混ぜるというのは、単に色ムラをなくすだけでなく、チキソ性を引き出す作業でもある。さらに、壁に塗られたペンキは直後に粘度が上がり(元に戻り)、垂れない状態となって乾燥する。
本発明を水性湿潤塗料に適用すると、水性樹脂のようなバインダ、溶媒、必要に応じて顔料やその他の添加剤のような水性塗料成分と水とを含有している水性塗料となり、濡れ性を示すのに十分な程度に表面張力が低下され、さらにその表面張力が均一であり、表面張力の局部的なバラつきによる塗膜表面の粗さを抑え、優れたチクソトロピー性能を示す。
以上の結果から、本発明の木粉粒子懸濁液は、外壁塗装剤や床塗装剤、又は、これらの下地処理剤としての使用に好適である。下地処理剤としては、アクリル樹脂等の合成樹脂で外壁塗装や床塗装をする場合の前処理として使用するものであり、速乾性やアクリル樹脂等の合成樹脂との密着性や外壁や床材との密着性が要求されるが、本願発明の木粉粒子懸濁液を塗布することで、硬度の高い塗膜が形成できるとともに、常温によるプレス成型でも密着性に優れた塗膜を成型することができた。
(thixotropy)
Thixotropy refers to a phenomenon in which viscosity is reduced by applying force, such as by stirring or shaking. Pseudoplastic fluids and thixotropic fluids are the same in that the viscosity is reduced by stirring. be. Fluids exhibiting thixotropy decrease in viscosity when a constant force is continuously applied, and return to the original state when the decreased viscosity is left for a certain period of time. In addition, a familiar application of thixotropic properties is paint. Stirring the paint makes it less viscous and easier to apply, making it easier to apply to walls with a brush or roller. Stirring well before applying paint not only eliminates color unevenness, but also brings out thixotropic properties. In addition, the paint applied to the wall immediately becomes viscous (returns to its original state) and dries without dripping.
When the present invention is applied to a water-based wet paint, it becomes a water-based paint containing a binder such as a water-based resin, a solvent, and water-based paint components such as pigments and other additives as necessary, and water. The surface tension is reduced sufficiently to demonstrate the uniformity of the surface tension, suppressing the roughness of the coating film surface due to local variations in the surface tension, and exhibiting excellent thixotropic performance.
From the above results, the wood powder particle suspension of the present invention is suitable for use as an exterior wall coating agent, a floor coating agent, or a surface treatment agent for these. As a surface treatment agent, it is used as a pretreatment when painting exterior walls or floors with synthetic resins such as acrylic resins. However, by applying the wood powder particle suspension of the present invention, a coating film with high hardness can be formed, and a coating film with excellent adhesion can be formed even by press molding at room temperature. was made.

以上、本実施の形態では、主に塗膜や塗料組成物としてのCNFを含む木粉懸濁液の製造方法について説明した。本発明は、塗料、顔料、吸着剤等様々な塗膜に適用することができるもので、外壁塗装剤や床塗装剤、又は、これらの下地処理剤としての使用に好適である。更なる作業性の向上や膜特性の向上には、本発明の木粉粒子懸濁液に別途CNFを更に水分調整ながら添加することも可能である。 As described above, in the present embodiment, a method for producing a wood flour suspension containing CNF as a coating film or a coating composition has been mainly described. INDUSTRIAL APPLICABILITY The present invention can be applied to various coating films such as paints, pigments and adsorbents, and is suitable for use as an exterior wall coating agent, a floor coating agent, or a surface treatment agent for these. For further improvement of workability and film properties, it is possible to add CNF separately to the wood flour particle suspension of the present invention while further adjusting the water content.

A1 根元の辺材、
A2 心材、
A2s 根元の心材、
A3 未成熟材、
A3s 根元の未成熟材、
A4 成熟材、
M 木粉粒子懸濁液、
M1 木粉粒子懸濁液(粒度の粗い木粉から調整)、
M2 木粉粒子懸濁液(粒度の細かい木粉から調整)、
Mm 木粉塗膜(塗膜)、
Mt 塗料、
K1 基材(樹脂製基材)

A1 root sapwood,
A2 heartwood,
A2s root heartwood,
A3 immature wood,
A3s Immature wood at the base,
A4 mature wood,
M wood flour particle suspension,
M1 wood flour particle suspension (prepared from coarse wood flour),
M2 wood powder particle suspension (prepared from fine-grained wood powder),
Mm wood powder coating (coating film),
Mt paint,
K1 base material (resin base material)

Claims (14)

スギ、ヒノキなどの針葉樹から又はミズナラなどの広葉樹から、未成熟材の部分を採取する木の未成熟材部分を採取する方法であって、地面から所定高さ位置で伐採された残りの根が付いた木の年輪から判断して、塗装剤(外壁塗装剤、床塗装剤、又は、これらの下地処理剤を含む。)、顔料、吸着剤、防黴(カビ)剤等の木粉粒子懸濁液の原料を切削により採取することを特徴とする木の未成熟材部分を採取する方法。 Extracting immature timber from conifers such as cedar and cypress or from broadleaf trees such as Quercus crispula A method of extracting immature timber from trees in which the remaining roots cut at a predetermined height above the ground are Judging from the tree rings attached, wood powder particle suspensions such as coating agents (exterior wall coating agents, floor coating agents, or these surface treatment agents), pigments, adsorbents, anti-mold agents, etc. A method for collecting immature wood from a tree, characterized in that the raw material for the turbid liquid is collected by cutting. 前記未成熟材の部分は、地面からの高さ位置が2m~3m付近であって、樹齢が約20~30年以上の場合には、その木材の中心から樹齢15年以内の部分であることを特徴とする請求項1記載の木の未成熟材部分を採取する方法。 The portion of immature wood has a height of about 2m to 3m from the ground, and if the tree is about 20 to 30 years old, it is a portion within 15 years old from the center of the wood. A method for harvesting immature wood portions of trees according to claim 1, characterized by: 前記請求項1又は2記載の方法で採取した木の未成熟材部分を、塗装剤(外壁塗装剤、床塗装剤、又は、これらの下地処理剤を含む。)、顔料、吸着剤、防黴(カビ)剤等の懸濁液の原料とし、湿式粉砕法により水分の調整(木粉量が水に対し1~20重量%)のみ行なって、塗装剤(外壁塗装剤、床塗装剤、又は、これらの下地処理剤を含む。)、顔料、吸着剤、防黴(カビ)剤等の懸濁液に好適な木粉粒子懸濁液を製造することを特徴とする請求項1又は2記載の方法で採取した木粉粒子懸濁液の製造方法。 The immature wood portion of the tree collected by the method according to claim 1 or 2 is treated with a coating agent (including an exterior wall coating agent, a floor coating agent, or a surface treatment agent for these), a pigment, an adsorbent, and an antifungal agent. (Mold) agents, etc., are used as raw materials for suspensions, and only water content is adjusted by a wet pulverization method (the amount of wood flour is 1 to 20% by weight relative to water), and coating agents (exterior wall coating agents, floor coating agents, or , including these surface treatment agents), pigments, adsorbents, anti-mold agents, and the like. A method for producing a wood powder particle suspension collected by the method of. 木材を衝撃粉砕機などで乾式粉砕した後、湿式粉砕法で処理されるセルロースナノファーバーを含む木粉粒子の懸濁液において、ナノファイバー化された表面をもつ木粉と、懸濁液中に木粉から分離したセルロースナノファーバーとリグニンやヘミセルロースを混在させた状態の木粉粒子懸濁液で、木粉の平均粒径を50μm以下に、かつ、前記懸濁液に含まれるセルロースナノファイバーの濃度を重量比で木粉の50%以下にしたことを特徴とする木粉粒子懸濁液。 In a suspension of wood flour particles containing cellulose nanofibers, which is treated by a wet grinding method after dry grinding wood with an impact grinder or the like, wood flour having a nanofiber surface and A wood flour particle suspension in which cellulose nanofibers separated from wood flour and lignin or hemicellulose are mixed, wherein the average particle size of the wood flour is 50 μm or less, and the cellulose nanofibers contained in the suspension are A wood flour particle suspension characterized by having a concentration of 50% or less of wood flour by weight. 前記木材は、スギ、ヒノキなどの針葉樹およびミズナラなどの広葉樹であり、前記木材の木粉粒子が前記木材の未成熟材を含む(樹齢は問わず、地面からの高さ位置が2m~3m付近で伐採された残りの根が付いた部分の木の未成熟材を含むことがより好ましい。)ことを特徴とする請求項4記載の木粉粒子懸濁液。 The wood includes conifers such as cedar and cypress and broad-leaved trees such as Mizunara, and the wood flour particles of the wood include immature wood of the wood (irrespective of the age of the tree, the height position from the ground is about 2 m to 3 m). 5. A wood flour particle suspension according to claim 4, characterized in that it more preferably contains immature wood of the remaining rooted part of the tree felled in . 前記木材は、スギ、ヒノキなどの針葉樹およびミズナラなどの広葉樹であり(樹齢は問わず、地面からの高さ位置が2m~3m付近で伐採された残りの根が付いた部分の前記木材の未成熟材を含むことがより好ましい。)、前記木材の木粉粒子が前記木材の成熟材と前記木材の未成熟材との混合であるとともに(未成熟材の割合として少なくとも20重量%以上含む。)、前記木材の成熟材と前記木材の未成熟材とは、地面からの高さ位置が2m~3m付近で伐採された残りの根が付いた部分の木の未成熟材を含むことを特徴とする請求項4又は5記載の木粉粒子懸濁液。 The wood is coniferous trees such as Japanese cedar and Japanese cypress, and broadleaf trees such as Mizunara oak. It is more preferable to include mature wood.), and the wood flour particles of the wood are a mixture of mature wood and immature wood (including at least 20% by weight of immature wood). ), wherein the mature wood and the immature wood include the immature wood of the remaining rooted part of the tree cut at a height of about 2 m to 3 m from the ground. The wood flour particle suspension according to claim 4 or 5. 前記木材の木粉粒子が1~20重量%で、水が80~99重量%の配合比であり、塗装剤(外壁塗装剤、床塗装剤、又は、これらの下地処理剤を含む。)、顔料、吸着剤、防黴(カビ)剤の用途に使用することを特徴とする請求項4ないし6のいずれか1項記載の木粉粒子懸濁液。 The wood powder particles of the wood are 1 to 20% by weight and the water is 80 to 99% by weight, and a coating agent (including an exterior wall coating agent, a floor coating agent, or a surface treatment agent thereof), 7. The wood flour particle suspension according to any one of claims 4 to 6, which is used as a pigment, an adsorbent and an antifungal agent. 木材を衝撃粉砕機などで乾式粉砕した後、次に湿式粉砕法で処理されるセルロースナノファーバーを含む木粉粒子の懸濁液において、原材料として切り出した木材を室内にて自然乾燥した後、微粉砕と分級を行い、ナノファイバー化された表面をもつ木粉と、懸濁液中に木粉から分離したセルロースナノファーバーとリグニンやヘミセルロースを混在させた状態の木粉粒子懸濁液で、木粉の平均粒径を50μm以下に、かつ、前記懸濁液に含まれるセルロースナノファイバーの濃度を重量比で木粉の50%以下にしたことを特徴とする木粉粒子懸濁液の製造方法。 After dry pulverizing the wood with an impact pulverizer or the like, it is then processed by a wet pulverization method. Wood flour with a nanofiber surface after pulverization and classification, and a wood flour particle suspension in which cellulose nanofibers separated from the wood flour, lignin, and hemicellulose are mixed in the suspension. A method for producing a wood flour particle suspension, characterized in that the average particle size of the powder is 50 μm or less, and the concentration of cellulose nanofibers contained in the suspension is 50% or less of the weight of the wood flour. . 前記湿式粉砕処理される木粉粒子は、スギ、ヒノキなどの針葉樹およびミズナラなどの広葉樹木粉粒子であり、200メッシュ(目開き75μm)より小さな篩目を通過する粒度で分級することを特徴とする請求項8記載の木粉粒子懸濁液の製造方法。 The wood powder particles to be wet-pulverized are powder particles of coniferous trees such as cedar and cypress and broad-leaved tree powder particles such as Mizunara oak, and are characterized by being classified by a particle size that passes through a sieve mesh smaller than 200 mesh (opening 75 μm). The method for producing a wood flour particle suspension according to claim 8. 前記木材は、スギ、ヒノキなどの針葉樹およびミズナラなどの広葉樹であり、前記木材の木粉微粒子が前記木材の未成熟材を含む(樹齢は問わず、地面からの高さ位置が2m~3m付近で伐採された残りの根が付いた木の未成熟材を含むことがより好ましい。)ことを特徴とする請求項5又は6記載の木粉粒子懸濁液の製造方法。 The wood is coniferous trees such as cedar and cypress and broad-leaved trees such as Quercus crispula, and the wood powder fine particles of the wood include immature wood of the wood (irrespective of the age of the tree, the height position from the ground is about 2 m to 3 m). 7. The method for producing a wood flour particle suspension according to claim 5 or 6, characterized in that it contains immature wood of trees with remaining roots that have been cut down. 前記木材は、スギ、ヒノキなどの針葉樹およびミズナラなどの広葉樹であり(樹齢は問わない。)、前記木材の木粉粒子が前記木材の成熟材と前記木材の未成熟材との混合であるとともに未成熟材の割合として少なくとも20重量%以上含む。)、前記木材の成熟材と前記木材の未成熟材とは、地面からの高さ位置が2m以下の部分である(地面からの高さ位置が2m~3m付近で伐採された残りの根が付いた部分の前記木材の未成熟材を含むことがより好ましい。)ことを特徴とする請求項5又は6記載の木粉粒子懸濁液の製造方法。 The wood is coniferous trees such as Japanese cedar and Japanese cypress and broad-leaved trees such as Mizunara oak (regardless of tree age), and the wood flour particles of the wood are a mixture of mature wood and immature wood. Contains at least 20% by weight of immature wood. ), the mature wood and the immature wood are parts with a height of 2 m or less from the ground (remaining roots cut at a height of 2 m to 3 m from the ground) 7. The method for producing a wood flour particle suspension according to claim 5 or 6, characterized in that immature wood of said wood in the attached portion is more preferably included. 前記木粉粒子が1~20重量%で、水が80~99重量%の配合比であり、塗装剤(外壁塗装剤、床塗装剤、又は、これらの下地処理剤を含む。)、顔料、吸着剤、防黴(カビ)剤の用途に使用することを特徴とすることを特徴とする請求項3ないし11のいずれか1項記載の木粉粒子懸濁液の製造方法。 The mixing ratio of the wood powder particles is 1 to 20% by weight and the water is 80 to 99% by weight, and the coating agent (including an exterior wall coating agent, a floor coating agent, or a surface treatment agent thereof), a pigment, 12. The method for producing a wood flour particle suspension according to any one of claims 3 to 11, characterized in that it is used as an adsorbent and an antifungal agent. アクリルやアルミニウムなどを含む合成樹脂製や金属の基材に塗布される塗膜の製造方法において、原材料として切り出した木材を室内にて自然乾燥した後、微粉砕と分級を行い、次に湿式粉砕法の処理にて、ナノファイバー化された表面をもつ木粉と、懸濁液中に木粉から分離したセルロースナノファーバーとリグニンやヘミセルロースを混在させた状態で、木粉の平均粒径を50μm以下に、かつ、前記懸濁液に含まれるセルロースナノファイバーの濃度を重量比で木粉の50%以下にした木粉粒子懸濁液を、前記合成樹脂製の基材に塗布した塗膜、及び常温でプレスして塗膜を形成することを特徴とする木粉粒子懸濁液を使用した塗膜の製造方法。 In the method of manufacturing coatings applied to synthetic resins and metal substrates containing acrylic and aluminum, wood cut as raw material is naturally dried indoors, finely pulverized and classified, and then wet pulverized. In the treatment of the method, the average particle size of the wood flour was reduced to 50 μm in a state where the wood flour with a nanofiber surface and the cellulose nanofiber separated from the wood flour, lignin and hemicellulose were mixed in the suspension. A coating film obtained by applying a wood flour particle suspension to the synthetic resin substrate below, wherein the concentration of cellulose nanofibers contained in the suspension is 50% or less by weight of the wood flour, and a method for producing a coating film using a suspension of wood flour particles, wherein the coating film is formed by pressing at room temperature. 前記湿式粉砕処理される木粉粒子は、スギ、ヒノキなどの針葉樹およびミズナラなどの広葉樹の木粉粒子であり(樹齢は問わず、地面からの高さ位置が2m~3m付近で伐採された残りの根が付いた部分の前記木材の未成熟材であることが好ましい。)、200メッシュ(目開き75μm)より小さな篩目を通過する粒度で分級を行い、次に湿式粉砕法の処理にて、ナノファイバー化された表面をもつ木粉と、懸濁液中に木粉から分離したセルロースナノファーバーとリグニンやヘミセルロースを混在させた状態で、木粉の平均粒径を10μm以下に微粉砕した木粉粒子懸濁液を、前記合成樹脂製の基材に塗布して常温でプレスして塗膜を形成することを特徴とする請求項13記載の木粉粒子懸濁液を使用した塗膜の製造方法。


The wood powder particles to be wet-pulverized are wood powder particles of conifers such as cedar and cypress and broad-leaved trees such as Mizunara (irrespective of the age of the tree, the height position from the ground is about 2 m to 3 m). It is preferable that it is an immature material of the above-mentioned wood in the part with the roots.), classified by a particle size that passes through a sieve mesh smaller than 200 mesh (opening 75 μm), and then by a wet pulverization method. , Wood flour having a nanofiber surface, and cellulose nanofibers separated from the wood flour and lignin and hemicellulose in a suspension are mixed, and the wood flour is pulverized to an average particle size of 10 μm or less. 14. The coating film using the wood flour particle suspension according to claim 13, wherein the wood flour particle suspension is applied to the synthetic resin substrate and pressed at room temperature to form the coating film. manufacturing method.


JP2021014263A 2021-02-01 2021-02-01 Wood flour particle suspension and its manufacturing method, and method for manufacturing a coating film using the wood flour particle suspension Active JP7534737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021014263A JP7534737B2 (en) 2021-02-01 2021-02-01 Wood flour particle suspension and its manufacturing method, and method for manufacturing a coating film using the wood flour particle suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021014263A JP7534737B2 (en) 2021-02-01 2021-02-01 Wood flour particle suspension and its manufacturing method, and method for manufacturing a coating film using the wood flour particle suspension

Publications (2)

Publication Number Publication Date
JP2022117650A true JP2022117650A (en) 2022-08-12
JP7534737B2 JP7534737B2 (en) 2024-08-15

Family

ID=82750434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021014263A Active JP7534737B2 (en) 2021-02-01 2021-02-01 Wood flour particle suspension and its manufacturing method, and method for manufacturing a coating film using the wood flour particle suspension

Country Status (1)

Country Link
JP (1) JP7534737B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3761534B2 (en) 2003-05-07 2006-03-29 哲郎 岡野 Larch lumber sorting system
JP2006307400A (en) 2005-05-02 2006-11-09 Kinousei Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai Liquid lignocellulose, method for producing the same and its application
JP6531604B2 (en) 2015-10-06 2019-06-19 王子ホールディングス株式会社 Composition comprising wood fiber
AU2018257311B2 (en) 2017-04-25 2020-03-12 Wood One Co., Ltd. Adhesive

Also Published As

Publication number Publication date
JP7534737B2 (en) 2024-08-15

Similar Documents

Publication Publication Date Title
Ayrilmis et al. Utilization of pine (Pinus pinea L.) cone in manufacture of wood based composite
Juliana et al. Properties of particleboard made from kenaf (Hibiscus cannabinus L.) as function of particle geometry
Chand et al. Tribology of natural fiber polymer composites
DE102006006655A1 (en) Cellulose- or lignocellulose-containing composites based on a silane-based composite as binder
Basta et al. Performance of rice straw‐based composites using environmentally friendly polyalcoholic polymers‐based adhesive system
Salari et al. Effect of nanoclay on some applied properties of oriented strand board (OSB) made from underutilized low quality paulownia (Paulownia fortunei) wood
Nasir et al. Physical and mechanical properties of medium-density fibreboards using soy—lignin adhesives
Chaowana et al. Bamboo: Potential material for biocomposites
Hidayat et al. Effect of wood species and layer structure on physical and mechanical properties of strand board
Buyuksari et al. Effect of pine cone ratio on the wettability and surface roughness of particleboard.
CN107009686A (en) A kind of stalk cellulose corrugated paper moistureproof with antibacterial and preparation method thereof
Wahab et al. Processing and properties of oil palm fronds composite boards from Elaeis guineensis
DE102008059527A1 (en) Effect MDF
Eshraghi et al. Waste paperboard in composition panels
Febrianto et al. Development of oriented strand board from acacia wood (Acacia mangium Willd): Effect of pretreatment of strand and adhesive content on the physical and mechanical properties of OSB
KR20190111171A (en) Brick composition comprising natural fiber and Method including the same
JP2022117650A (en) Method for collecting immature wood part of tree, wood powder particle suspension and its production method, and method for producing coating film using wood powder particle suspension
KR20110097289A (en) Wood panel using natural adhesive and fabricating method the same
Mukbaniani et al. BIOCOMPOSITE MATERIALS ON THE BASIS OF LEAVES.
Syamani et al. Utilization of citric acid as bonding agent in sembilang bamboo (Dendrocalamus giganteus Munro) particleboard production
Zakaria et al. The effects of pressure and pressing time on the mechanical and physical properties of oil palm empty fruit bunch medium density fibreboard
Xu et al. Influences of Layered Structure on Physical and Mechanical Properties of Kenaf Core Particleboard.
Grandgeorge et al. Adhesion in thermomechanically processed seaweed-lignocellulosic composite materials
Karim et al. Strength properties of mixed cocopeat fibres and Merawan Siput Jantan (Hopea odorata spp.) bonded with partial rubber latex adhesive and nano-SiO2 in particleboard manufacturing
CN109057231A (en) A kind of preparation method of environmental protection abrasive floor

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20210201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240724

R150 Certificate of patent or registration of utility model

Ref document number: 7534737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150