JP2022113472A - Hardness measuring method and hardness measuring device - Google Patents

Hardness measuring method and hardness measuring device Download PDF

Info

Publication number
JP2022113472A
JP2022113472A JP2021009752A JP2021009752A JP2022113472A JP 2022113472 A JP2022113472 A JP 2022113472A JP 2021009752 A JP2021009752 A JP 2021009752A JP 2021009752 A JP2021009752 A JP 2021009752A JP 2022113472 A JP2022113472 A JP 2022113472A
Authority
JP
Japan
Prior art keywords
absorbance
hardness
component
reagent
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021009752A
Other languages
Japanese (ja)
Other versions
JP7459810B2 (en
Inventor
涼 松村
Ryo Matsumura
裕介 ▲浜▼田
Yusuke Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2021009752A priority Critical patent/JP7459810B2/en
Publication of JP2022113472A publication Critical patent/JP2022113472A/en
Application granted granted Critical
Publication of JP7459810B2 publication Critical patent/JP7459810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

To provide a hardness measuring method and hardness measuring device which can accurately measure hardness to high hardness.SOLUTION: A hardness measuring method measures hardness of test water. The hardness measuring method includes the steps of: repeating injection of a predetermined amount of chelate type reagent to the test water and measurement of absorbance of the test water in measurement light having two wavelengths a plurality of times; calculating a complex absorbance component that is a component of absorbance by a chelate complex obtained by combining the reagent and a hardness component on the basis of the absorbance of the measurement light having the two wavelengths; and calculating the hardness of the test water on the basis of a change in the complex absorbance component accompanying the injection of the reagent.SELECTED DRAWING: Figure 3

Description

本発明は、硬度測定方法及び硬度測定装置に関する。 The present invention relates to a hardness measuring method and a hardness measuring device.

検水中の測定対象の溶質と結合して発色又は変色する呈色反応を示す試薬を用い、試薬の呈色に伴う検水の吸光度の変化を測定することによって検水中の測定対象の濃度を測定する濃度測定方法が利用されている。さらに、このような呈色反応を利用する濃度測定を自動的に行う濃度測定装置も市販されている。一般的な濃度測定装置は、試料を注液した容量数mLの測定セルに対し、試薬の注入及び測定光の投光による吸光度の測定を自動的に行う。 Using a reagent that exhibits a color reaction that develops or changes color by binding with the solute of the target to be measured in the sample water, the concentration of the target to be measured in the sample water is measured by measuring the change in absorbance of the sample water that accompanies the coloring of the reagent. A concentration measurement method that Furthermore, densitometers that automatically measure densities using such color reactions are also available on the market. A general concentration measuring device automatically measures the absorbance by injecting a reagent into a measurement cell having a capacity of several mL into which a sample is injected and by projecting measurement light.

試薬は、測定対象に応じて選択されるが、硬度を測定する場合、例えば特許文献1に記載されるように、硬度成分と結合してキレート錯体を形成するキレート型の試薬が用いられ得る。 A reagent is selected according to the object to be measured. When measuring hardness, a chelate-type reagent that forms a chelate complex by binding to a hardness component may be used, as described in Patent Document 1, for example.

特許第4168557号公報Japanese Patent No. 4168557

特にキレート型の試薬を用いる場合、未反応の試薬も測定光を吸収し得るため、試薬を過剰に注入すると測定誤差が大きくなる可能性がある。また、キレート型の試薬は、硬度や妨害成分の濃度によっては、キレート型生成の反応が定量的に進まずに、未反応の試薬が残っている段階で吸光度の測定が行われ得る。特に、測定する検水の硬度が高い場合、これらの要因による測定誤差が大きくなりやすい。 In particular, when a chelate-type reagent is used, unreacted reagents can also absorb measurement light, so excessive injection of reagents may increase measurement errors. In addition, depending on the hardness and the concentration of interfering components, the chelate-type reagent does not allow the chelate-type generation reaction to proceed quantitatively, and the absorbance can be measured at the stage where unreacted reagent remains. In particular, when the sample water to be measured has a high hardness, measurement errors due to these factors tend to increase.

係る実情に鑑みて、本発明は、高硬度まで精度よく硬度を測定できる硬度測定方法及び硬度測定装置を提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide a hardness measuring method and a hardness measuring apparatus capable of measuring hardness up to high hardness with high accuracy.

本発明の一態様に係る硬度測定方法は、検水の硬度を測定する硬度測定方法であって、前記検水への所定量のキレート型の試薬の注入及び前記検水の2波長の測定光における吸光度の測定を複数回繰り返す工程と、前記2波長の測定光の吸光度に基づいて、前記試薬と硬度成分とが結合したキレート錯体による吸光度の成分である錯体吸光度成分を算出する工程と、前記試薬の注入に伴う前記錯体吸光度成分の変化に基づいて、前記検水の硬度を算出する工程と、を備える。 A hardness measurement method according to an aspect of the present invention is a hardness measurement method for measuring the hardness of sample water, wherein a predetermined amount of a chelate-type reagent is injected into the sample water and measurement light of two wavelengths of the sample water is used. a step of repeating the absorbance measurement a plurality of times; a step of calculating a complex absorbance component, which is a component of absorbance due to a chelate complex in which the reagent and the hardness component are combined, based on the absorbance of the measurement light of the two wavelengths; and calculating the hardness of the test water based on the change in the absorbance component of the complex due to the injection of the reagent.

上述の硬度測定方法において、前記試薬の注入に伴う前記錯体吸光度成分の変化を、前記錯体吸光度成分の変化量と前記硬度成分と結合していない前記試薬による吸光度の成分である未錯体吸光度成分の変化量との関係から判断してもよい。 In the hardness measurement method described above, the change in the complex absorbance component accompanying the injection of the reagent is the amount of change in the complex absorbance component and the uncomplexed absorbance component, which is the absorbance component of the reagent that is not bound to the hardness component. It may be determined from the relationship with the amount of change.

上述の硬度測定方法において、前記硬度を算出する工程は、予め設定される近似式に基づいて、前記錯体吸光度成分の複数のデータから、前記試薬の注入回数を増大したときの前記錯体吸光度成分の収束値を推定する工程を含んでもよい。 In the hardness measurement method described above, the step of calculating the hardness is based on a preset approximation formula, and from a plurality of data of the complex absorbance component, the complex absorbance component when the number of injections of the reagent is increased. A step of estimating a convergence value may be included.

上述の硬度測定方法において、前記複数のデータとして、前記試薬の注入回数が小さいものを除外してもよい。 In the hardness measurement method described above, the plurality of data may exclude data with a small number of injections of the reagent.

上述の硬度測定方法において、前記試薬の注入及び前記吸光度の測定をする工程、前記錯体吸光度成分を算出する工程、並びに前記収束値を推定する工程を繰り返し行い、前記収束値の最新の推定値と前回の推定値との差が予め設定される収束閾値以下となった場合に、前記収束値の最新の推定値から前記硬度を算出してもよい。 In the hardness measurement method described above, the steps of injecting the reagent and measuring the absorbance, calculating the complex absorbance component, and estimating the convergence value are repeated, and the latest estimated value of the convergence value and The hardness may be calculated from the latest estimated value of the convergence value when the difference from the previous estimated value becomes equal to or less than a preset convergence threshold.

上述の硬度測定方法において、前記試薬の注入に伴う前記錯体吸光度成分の直近の変化率が予め設定される飽和閾値以下である場合は、前記錯体吸光度成分の最新値を前記硬度に直接換算し、前記試薬の注入に伴う前記錯体吸光度成分の直近の変化率が前記飽和閾値を超える場合は、前記錯体吸光度成分の収束値を推定する工程を行ってもよい。 In the hardness measurement method described above, when the most recent rate of change in the complex absorbance component due to the injection of the reagent is equal to or lower than a preset saturation threshold, the latest value of the complex absorbance component is directly converted into the hardness, A step of estimating a convergence value of the complex absorbance component may be performed when the most recent rate of change of the complex absorbance component due to the injection of the reagent exceeds the saturation threshold.

上述の硬度測定方法において、前記2波長として、前記試薬と前記硬度成分との反応についての等吸収点より短い波長及び前記等吸収点より長い波長を用いてもよい。 In the hardness measurement method described above, the two wavelengths may be a wavelength shorter than the isosbestic point and a wavelength longer than the isosbestic point for the reaction between the reagent and the hardness component.

本発明の一態様に係る硬度測定装置は、検水の硬度を測定する硬度測定装置であって、前記検水を貯留する測定セルに所定量の試薬を注入する試薬注入部と、前記測定セルに2波長の測定光を投光して前記検水のそれぞれの前記波長における吸光度を測定する吸光度測定部と、前記2波長における吸光度に基づいて、前記試薬と硬度成分とのキレート錯体による吸光度の成分である錯体吸光度成分を算出する吸光度成分算出部と、前記試薬の注入に伴う前記錯体吸光度成分の変化に基づいて、前記硬度を算出する硬度算出部と、を備える。 A hardness measuring device according to an aspect of the present invention is a hardness measuring device that measures the hardness of sample water, and comprises a reagent injection unit that injects a predetermined amount of a reagent into a measurement cell that stores the sample water; an absorbance measuring unit that measures the absorbance at each of the wavelengths of the test water by projecting measurement light of two wavelengths to the absorbance measurement unit, and based on the absorbance at the two wavelengths, the absorbance of the chelate complex of the reagent and the hardness component. An absorbance component calculation unit that calculates a complex absorbance component, which is a component, and a hardness calculation unit that calculates the hardness based on a change in the complex absorbance component that accompanies injection of the reagent.

本発明によれば、高硬度まで精度よく硬度を測定できる硬度測定方法及び硬度測定装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the hardness measuring method and hardness measuring device which can measure hardness to high hardness with sufficient accuracy can be provided.

本発明の一実施形態に係る硬度測定装置の構成を示す模式図である。1 is a schematic diagram showing the configuration of a hardness measuring device according to an embodiment of the present invention; FIG. 2波長の吸光度と錯体吸光度成分及び未錯体吸光度成分との関係を示す図である。It is a figure which shows the relationship between the absorbance of 2 wavelengths, a complex absorbance component, and an uncomplex absorbance component. 本発明の一実施形態に係る硬度測定方法の手順を示すフローチャートである。4 is a flow chart showing the procedure of a hardness measuring method according to an embodiment of the present invention;

以下、本発明の実施形態について、図面を参照しながら説明する。図1は、本発明の一実施形態に係る硬度測定装置1の構成を示す模式図である。なお、図示する硬度測定装置1の各構成要素の形状は簡略化されており、各構成要素の寸法も見やすいよう調整されている。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of a hardness measuring device 1 according to one embodiment of the present invention. The shape of each component of the illustrated hardness measuring apparatus 1 is simplified, and the dimensions of each component are adjusted so as to be easy to see.

硬度測定装置1は、本発明の一実施形態に係る硬度測定方法を実行することにより、検水の硬度を測定する。硬度測定装置1は、測定セル2と、試薬注入部3と、吸光度測定部4と、吸光度成分算出部5と、硬度算出部6と、給水部7と、攪拌部8と、調整部9と、を備える。 The hardness measuring device 1 measures the hardness of sample water by executing the hardness measuring method according to one embodiment of the present invention. The hardness measurement device 1 includes a measurement cell 2, a reagent injection section 3, an absorbance measurement section 4, an absorbance component calculation section 5, a hardness calculation section 6, a water supply section 7, a stirring section 8, and an adjustment section 9. , provided.

測定セル2は、検水を貯留する容器である。測定セル2は、少なくとも部分的に吸光度測定部4の測定光を透過するよう形成される。測定セル2の容量は、試薬の消費量を抑制するために、精度を担保できる範囲内でできるだけ小さくすることが好ましい。具体的な測定セル2の容量としては、例えば2mL以上10mL以下とすることができる。 The measurement cell 2 is a container that stores test water. The measuring cell 2 is formed so as to be at least partially transparent to the measuring light of the absorbance measuring section 4 . It is preferable that the capacity of the measurement cell 2 be as small as possible within a range in which accuracy can be ensured in order to suppress consumption of the reagent. A specific capacity of the measurement cell 2 can be, for example, 2 mL or more and 10 mL or less.

試薬注入部3は、測定セル2に所定量の試薬を注入するよう構成される。具体例として、試薬注入部3は、試薬を貯留する試薬タンク31と、試薬を送出する薬注ポンプ32と、調整部9からの指令に応じて薬注ポンプを制御する薬注制御部33と、を有する構成とされ得る。 The reagent injection unit 3 is configured to inject a predetermined amount of reagent into the measurement cell 2 . As a specific example, the reagent injection unit 3 includes a reagent tank 31 that stores the reagent, a chemical injection pump 32 that delivers the reagent, and a chemical injection control unit 33 that controls the chemical injection pump according to commands from the adjustment unit 9. .

試薬注入部3によって注入される試薬としては、検水中の硬度成分とキレート結合してキレート錯体を形成することにより発色又は変色するキレート型の試薬が用いられる。かかるキレート型の試薬としては、例えばカルマガイト、エリオクロムブラックT、HSNN等を含む溶液を挙げることができる。また、試薬は、例えば増感剤、減感剤等をさらに含み得る。 As the reagent injected by the reagent injection unit 3, a chelate-type reagent that develops or changes color by forming a chelate complex by forming a chelate bond with the hardness component in the test water is used. Examples of such chelate-type reagents include solutions containing calmagite, eriochrome black T, HSNN, and the like. Also, the reagent may further include, for example, a sensitizer, a desensitizer, and the like.

吸光度測定部4は、測定セル2に2波長の測定光を投光して検水のそれぞれの波長における吸光度を測定する。吸光度測定部4は、第1の波長の第1測定光を出射する第1発光素子41と、第2の波長の第2測定光を出射する第2発光素子42と、測定セル2を透過した第1測定光の光量を検出する第1受光素子43と、測定セル2を透過した第2測定光の光量を検出する第2受光素子44と、第1受光素子43及び第2受光素子44の測定値から測定セル2中の検水の第1の波長における吸光度及び第2の波長における吸光度を算出する吸光度演算部45と、を有する構成とされ得る。 The absorbance measurement unit 4 projects measurement light of two wavelengths onto the measurement cell 2 to measure the absorbance of the test water at each wavelength. The absorbance measuring unit 4 includes a first light emitting element 41 that emits a first measurement light of a first wavelength, a second light emitting element 42 that emits a second measurement light of a second wavelength, and the measurement cell 2. A first light receiving element 43 for detecting the light intensity of the first measurement light, a second light receiving element 44 for detecting the light intensity of the second measuring light transmitted through the measurement cell 2, and the first light receiving element 43 and the second light receiving element 44. and an absorbance calculator 45 for calculating the absorbance at the first wavelength and the absorbance at the second wavelength of the test water in the measurement cell 2 from the measured values.

第1の波長及び第2の波長としては、試薬と硬度成分との反応による吸光度の変化率の差が大きくなるような波長が選択されることが好ましい。より好ましくは、第1の波長及び第2の波長として、試薬と硬度成分との反応についての等吸収点より短い波長及び等吸収点より長い波長、つまり、試薬と硬度成分との反応が進むことで吸光度が減少する波長と試薬と硬度成分との反応が進むことで吸光度が増大する波長とが用いられる。このような波長の測定光を用いることによって、後述する吸光度成分算出部5による錯体吸光度成分と未錯体吸光度成分との算出をより正確に行うことができる。具体的には、呈色成分(呈色反応を担う色素成分)としてカルマガイトを含む試薬を用いる場合、例えば第1測定光として波長645nm以上665nm以下の赤色光、第2測定光として波長410nm以上430nm以下の紫色光を用いることができる。 As the first wavelength and the second wavelength, it is preferable to select wavelengths that increase the difference in the rate of change in absorbance due to the reaction between the reagent and the hardness component. More preferably, the first wavelength and the second wavelength are wavelengths shorter and longer than the isosbestic point for the reaction between the reagent and the hardness component, that is, the reaction between the reagent and the hardness component progresses. A wavelength at which the absorbance decreases and a wavelength at which the absorbance increases as the reaction between the reagent and the hardness component progresses are used. By using measurement light having such a wavelength, the complex absorbance component and the uncomplexed absorbance component can be calculated more accurately by the absorbance component calculator 5, which will be described later. Specifically, when a reagent containing Calmagite is used as a coloring component (a dye component responsible for a coloring reaction), for example, red light with a wavelength of 645 nm or more and 665 nm or less is used as the first measurement light, and wavelength of 410 nm or more and 430 nm is used as the second measurement light. The following violet lights can be used.

吸光度成分算出部5は、吸光度測定部4が測定した2波長における吸光度に基づいて、試薬と硬度成分とのキレート錯体による吸光度の成分である錯体吸光度成分及び硬度成分と結合していない試薬(呈色成分)による吸光度の成分である未錯体吸光度成分を算出する。 Based on the absorbance at the two wavelengths measured by the absorbance measurement unit 4, the absorbance component calculation unit 5 calculates the complex absorbance component, which is the component of the absorbance due to the chelate complex of the reagent and the hardness component, and the reagent that is not bound to the hardness component (present The uncomplexed absorbance component, which is the component of the absorbance due to the color component), is calculated.

検水中の錯体吸光度成分及び未錯体吸光度成分の値は、キレート錯体の濃度及び未錯体の濃度にそれぞれ比例し、その比例定数は試薬の種類によって定まる。また、吸光度測定部4の測定値は、錯体吸光度成分と未錯体吸光度成分との単純和と考えることができる。 The values of the complex absorbance component and the uncomplexed absorbance component in the test water are proportional to the concentration of the chelate complex and the concentration of the uncomplexed, respectively, and the constant of proportionality is determined by the type of reagent. Moreover, the measured value of the absorbance measuring unit 4 can be considered as a simple sum of the complex absorbance component and the uncomplexed absorbance component.

第1測定光における検水の吸光度の測定値をXs、キレート錯体による吸光度をXc、未錯体による吸光度をXb、単位濃度のキレート錯体による吸光度をXc、未錯体による吸光度をXbとし、第2測定光における検水の吸光度の測定値をYs、キレート錯体による吸光度をYc、未錯体による吸光度をYb、単位濃度のキレート錯体による吸光度をYc、未錯体による吸光度をYbとし、錯体吸光度成分をC、未錯体吸光度成分をBとすると、Xs=Xc+Xb=C・Xc+B・Xb、Ys=Yc+Yb=C・Yc+B・Ybとなる。この連立方程式を解くことによって、錯体吸光度成分C及び未錯体吸光度成分Bを算出することができる。 Let Xs be the absorbance of the test water under the first measurement light, Xc be the absorbance of the chelate complex, Xb be the absorbance of the uncomplexed, Xc 0 be the absorbance of the unit concentration of the chelate complex, Xb 0 be the absorbance of the uncomplexed, 2 Ys is the absorbance of the test water under the measurement light, Yc is the absorbance of the chelate complex, Yb is the absorbance of the uncomplexed, Yc 0 is the absorbance of the chelate complex at a unit concentration, Yb 0 is the absorbance of the uncomplexed complex, and the complex absorbance Assuming that the component is C and the uncomplexed absorbance component is B, Xs=Xc+Xb=C·Xc 0 +B·Xb 0 and Ys=Yc+Yb=C·Yc 0 +B·Yb 0 . By solving these simultaneous equations, the complex absorbance component C and the uncomplexed absorbance component B can be calculated.

図2に、2波長の吸光度と錯体吸光度成分及び未錯体吸光度成分との関係を示す。図では、第1波長(赤色)における吸光度を横軸、第2波長(紫色)における吸光度を縦軸に示す。図には、あるサンプルの検水の吸光度(Xs,Ys)と、単位濃度のキレート錯体のみを含む場合の吸光度(Xc,Yc)と、単位濃度の未錯体のみを含む場合の吸光度(Xb,Yb)と、を示す。検水のキレート錯体による吸光度(Xc,Yc)及び未錯体による吸光度(Xb,Yb)は、図示する座標平面において、検水の吸光度の測定値(Xs,Ys)のベクトルの、単位濃度のキレート錯体のみを含む場合の吸光度(Xc,Yc)の方向のベクトル成分及び単位濃度の未錯体のみを含む場合の吸光度(Xb,Yb)の方向のベクトル成分として把握することができる。 FIG. 2 shows the relationship between the absorbance at two wavelengths, the complex absorbance component and the uncomplex absorbance component. In the figure, the absorbance at the first wavelength (red) is shown on the horizontal axis, and the absorbance at the second wavelength (purple) is shown on the vertical axis. The figure shows the absorbance (Xs, Ys) of the test water of a certain sample, the absorbance (Xc 0 , Yc 0 ) when only the chelate complex is contained at a unit concentration, and the absorbance ( Xb 0 , Yb 0 ) and . The absorbance (Xc, Yc) due to the chelate complex and the absorbance (Xb, Yb) due to the uncomplexed sample water are the chelate of unit concentration of the vector of the measured absorbance (Xs, Ys) of the sample water in the coordinate plane shown. It can be grasped as a vector component in the direction of absorbance (Xc 0 , Yc 0 ) when only the complex is included and a vector component in the direction of absorbance (Xb 0 , Yb 0 ) when only the uncomplexed unit concentration is included.

硬度算出部6は、試薬の注入に伴う錯体吸光度成分の変化に基づいて硬度を算出する。錯体吸光度成分の変化に基づいて硬度を算出することによって、試薬の過剰な注入を防止して硬度を精度よく測定できる。また、錯体吸光度成分の変化から硬度を算出することによって、必ずしも硬度成分の全量を試薬と反応させなくても硬度を比較的正確に算出できるため、試薬の注入回数を抑制できる。したがって、測定セル2のオーバーフロー(試薬の流出や検水中の硬度成分の希釈)が発生しにくいため、検水の硬度を高硬度まで高精度に測定できる。 The hardness calculator 6 calculates the hardness based on the change in the complex absorbance component that accompanies the injection of the reagent. By calculating the hardness based on the change in the absorbance component of the complex, it is possible to prevent excessive injection of the reagent and measure the hardness with high accuracy. Further, by calculating the hardness from the change in the absorbance component of the complex, the hardness can be calculated relatively accurately without reacting the entire amount of the hardness component with the reagent, so the number of injections of the reagent can be reduced. Therefore, overflow of the measurement cell 2 (outflow of the reagent and dilution of the hardness component in the test water) is unlikely to occur, so that the hardness of the test water can be measured with high accuracy up to a high hardness.

硬度算出部6は、試薬の注入に伴う錯体吸光度成分の変化を、未錯体吸光度成分の変化量と錯体吸光度成分の変化量との関係から判断してもよい。つまり、錯体吸光度成分を未錯体吸光度成分の関数として表すことによって、全ての硬度成分が試薬と結合した場合のキレート錯体の含有量における錯体吸光度成分を予測することができる。このように、未結合の硬度成分の減少により変化率が増大する未錯体吸光度成分を基準に判断することで、試薬の注入量の誤差が大きい場合等にも、試薬の注入に伴う錯体吸光度成分の変化量の減少を正確に検知できる。なお、「未錯体吸光度成分の変化量と錯体吸光度成分の変化量との関係から判断」とは、試薬の注入による未錯体吸光度成分及び錯体吸光度成分の変化量を算出することを要求するものではない。 The hardness calculator 6 may determine the change in the complex absorbance component due to the injection of the reagent from the relationship between the amount of change in the uncomplexed absorbance component and the amount of change in the complex absorbance component. That is, by expressing the complex absorbance component as a function of the uncomplexed absorbance component, it is possible to predict the complex absorbance component at the chelate complex content when all the hardness components are combined with the reagent. In this way, by making a judgment based on the uncomplexed absorbance component whose rate of change increases due to the decrease in the unbonded hardness component, even when there is a large error in the injection amount of the reagent, the complexed absorbance component accompanying the injection of the reagent can accurately detect a decrease in the amount of change in Note that "judgment from the relationship between the amount of change in the uncomplexed absorbance component and the amount of change in the complexed absorbance component" does not require calculation of the amount of change in the uncomplexed absorbance component and the complexed absorbance component due to the injection of the reagent. do not have.

具体的には、硬度算出部6は、予め設定される近似式に基づいて、錯体吸光度成分の複数のデータから、試薬の注入回数を増大したときの錯体吸光度成分の収束値を推定する収束値推定部61と、錯体吸光度成分の実測値(実測した吸光度から算出した値)又は収束値を硬度に換算する硬度換算部62を有する構成とされ得る。 Specifically, the hardness calculation unit 6 calculates the convergence value for estimating the convergence value of the complex absorbance component when the number of injections of the reagent is increased from a plurality of data of the complex absorbance component based on a preset approximation formula. The configuration may include an estimating unit 61 and a hardness conversion unit 62 that converts the actually measured value (value calculated from the actually measured absorbance) of the complex absorbance component or the convergence value into hardness.

収束値推定部61は、試薬の注入に伴う錯体吸光度成分の変化、つまり錯体吸光度成分の複数のデータを用いて予め設定される近似式の係数を特定するフィッティングを行い、フィッティングした近似式から導出される試薬の注入回数を増大したときの錯体吸光度成分の収束値、つまり全ての硬度成分が試薬と結合した場合のキレート錯体の含有量における錯体吸光度成分の推定値から検水の硬度を算出するよう構成され得る。このように、予め設定される近似式に基づいて錯体吸光度成分の収束値を推定することによって、試薬の注入量を確実に抑制することができ、かつ硬度成分と試薬との反応が定量的に進まない場合であっても、硬度を比較的迅速かつ正確に測定できる。 The convergence value estimating unit 61 performs fitting to specify coefficients of an approximation formula preset using a change in the complex absorbance component due to the injection of the reagent, that is, a plurality of data of the complex absorbance component, and derives from the fitted approximation formula. Calculate the hardness of the sample water from the convergence value of the complex absorbance component when the number of times of injection of the reagent used is increased, that is, the estimated value of the complex absorbance component at the content of the chelate complex when all the hardness components are combined with the reagent can be configured as In this way, by estimating the convergence value of the complex absorbance component based on a preset approximation formula, the injection amount of the reagent can be reliably suppressed, and the reaction between the hardness component and the reagent can be quantified. Even if it does not progress, hardness can be measured relatively quickly and accurately.

なお、錯体吸光度成分の複数のデータとしては、試薬の注入回数が小さいものを除外することが好ましい。具体的には、試薬の注入回数が所定数に満たないデータを除外してもよく、試薬の注入に伴う錯体吸光度成分の変化率が所定値を超えるデータを除外してもよい。検水中の硬度や妨害成分の濃度が高い場合には、試薬の注入回数が小さいときにキレート反応が定量的に進まずに適切に発色しないことで誤差が大きくなりやすい。このため、試薬の注入回数が小さいときのデータを除外して、試薬の注入回数が大きいときのデータに基づいて収束値を推定することで、硬度や妨害成分の濃度が高い場合でも硬度を比較的正確に測定できる。 In addition, it is preferable to exclude data with a small number of injections of the reagent from the plurality of data of the absorbance component of the complex. Specifically, data in which the number of injections of the reagent is less than a predetermined number may be excluded, and data in which the change rate of the complex absorbance component due to the injection of the reagent exceeds a predetermined value may be excluded. If the sample water has a high hardness or a high concentration of interfering components, the chelate reaction does not proceed quantitatively and the color is not appropriately developed when the number of injections of the reagent is small, which tends to increase the error. Therefore, by excluding the data when the number of reagent injections is small and estimating the convergence value based on the data when the number of reagent injections is large, the hardness can be compared even when the concentration of hardness and interfering components is high. can be measured accurately.

また、硬度算出部6は、試薬の注入に伴う錯体吸光度成分の直近の変化率が予め設定される飽和閾値以下である場合は、硬度換算部62により実測された吸光度から算出された錯体吸光度成分の最新値を硬度に直接換算してもよく、試薬の注入に伴う錯体吸光度成分の直近の変化率が飽和閾値を超える場合は、収束値推定部61により錯体吸光度成分の収束値を推定し、推定された収束値を硬度換算部62により硬度に換算してもよい。試薬の注入に伴う錯体吸光度成分の変化率が小さく、実質的に全ての硬度成分が既に試薬と結合していると考えられる場合には、その時点での錯体吸光度成分の値を硬度に直接換算することで、演算負荷を軽減し、精度を低下させることなく迅速に硬度を導出できる。一方、錯体吸光度成分の変化率が十分に低下しておらず、検水中に試薬と未結合の硬度成分が残留していると考えられる場合には、錯体吸光度成分の収束値を推定することによって硬度を正確に導出できる。 Further, when the most recent change rate of the complex absorbance component due to the injection of the reagent is equal to or less than a preset saturation threshold, the hardness calculation unit 6 calculates the complex absorbance component from the absorbance actually measured by the hardness conversion unit 62. may be directly converted to the hardness, and when the most recent rate of change in the complex absorbance component due to the injection of the reagent exceeds the saturation threshold, the convergence value estimating unit 61 estimates the convergence value of the complex absorbance component, The estimated convergence value may be converted into hardness by the hardness conversion unit 62 . If the rate of change in the absorbance component of the complex due to the injection of the reagent is small and it is considered that substantially all the hardness components are already bound to the reagent, the value of the absorbance component of the complex at that time is directly converted to the hardness. By doing so, the calculation load can be reduced, and the hardness can be quickly derived without lowering the accuracy. On the other hand, if the change rate of the complex absorbance component has not sufficiently decreased and it is thought that the reagent and unbound hardness component remain in the test water, the convergence value of the complex absorbance component is estimated. Hardness can be accurately derived.

給水部7は、新たな検水を供給し、測定済みの検水を押し出して測定セル2内の検水を入れ換える。給水部7は、給水弁71を有する構成とされ得る。 The water supply unit 7 supplies new test water and pushes out the measured test water to replace the test water in the measuring cell 2 . The water supply unit 7 may be configured to have a water supply valve 71 .

攪拌部8は、検水を攪拌することで、測定セル2に注入された試薬を検水中に分散させる。攪拌部8は、例えばマグネチックスターラ等の公知の構成とされ得る。 The stirring unit 8 stirs the sample water to disperse the reagent injected into the measurement cell 2 into the sample water. The stirring unit 8 may have a known structure such as a magnetic stirrer.

調整部9は、硬度測定装置1において本発明の一実施形態に係る硬度測定方法を自動的に実行するよう、試薬注入部3、吸光度測定部4、吸光度成分算出部5、硬度算出部6、給水部7及び攪拌部8の動作タイミングを制御する。調整部9は、コンピュータ装置に適切なプログラムを実行させることにより実現することができ、薬注制御部33、吸光度演算部45、吸光度成分算出部5及び硬度算出部6と一体であってもよい。 The adjustment unit 9 controls the reagent injection unit 3, the absorbance measurement unit 4, the absorbance component calculation unit 5, the hardness calculation unit 6, It controls the operation timing of the water supply unit 7 and the stirring unit 8 . The adjustment unit 9 can be realized by causing a computer device to execute an appropriate program, and may be integrated with the chemical injection control unit 33, the absorbance calculation unit 45, the absorbance component calculation unit 5, and the hardness calculation unit 6. .

図3に、調整部9によって実行される硬度測定方法の手順を示す。この硬度測定方法は、検水導入工程(ステップS01)、ブランク測定工程(ステップS02)、試薬注入工程(ステップS03)、吸光度測定工程(ステップS04)、吸光度成分算出工程(ステップS05)、飽和確認工程(ステップS06)、実測値硬度換算工程(ステップS07)、データ数確認工程(ステップS08)、収束値推定工程(ステップS09)、推定値数確認工程(ステップS10)、収束値確認工程(ステップS11)、及び収束値硬度換算工程(ステップS12)を備える。 FIG. 3 shows the procedure of the hardness measurement method executed by the adjusting section 9. As shown in FIG. This hardness measurement method includes a test water introduction step (step S01), a blank measurement step (step S02), a reagent injection step (step S03), an absorbance measurement step (step S04), an absorbance component calculation step (step S05), and a saturation confirmation step. Step (step S06), measured value hardness conversion step (step S07), data number confirmation step (step S08), convergence value estimation step (step S09), estimated value number confirmation step (step S10), convergence value confirmation step (step S11), and a convergence value hardness conversion step (step S12).

ステップS01の検水導入工程では、給水部7により測定セル2の中に新たな検水を導入する。 In the test water introduction process of step S01, new test water is introduced into the measurement cell 2 by the water supply unit 7. As shown in FIG.

ステップS02のブランク測定工程では、吸光度測定部4によって、検水に試薬を注入する前の測定セル2の2波長における透過光強度を測定する。具体的には、第1発光素子41の発光時に第1受光素子43が受光する第1測定光の光量の検出、及び第2発光素子42の発光時に第2受光素子44が受光する第2測定光の光量の検出を順番に行う。これにより、測定セル2の汚れ、検水中の濁質等により自動調整した透過光強度を確認する。 In the blank measurement process of step S02, the absorbance measurement unit 4 measures the transmitted light intensity at two wavelengths of the measurement cell 2 before the reagent is injected into the test water. Specifically, detection of the light amount of the first measurement light received by the first light receiving element 43 when the first light emitting element 41 emits light, and second measurement light received by the second light receiving element 44 when the second light emitting element 42 emits light. Light quantity detection is performed in order. Thereby, the transmitted light intensity automatically adjusted according to the contamination of the measuring cell 2, turbidity in the test water, etc. is confirmed.

ステップS03の試薬注入工程では、試薬注入部3によって、測定セル2の中に予め設定される一定量の試薬を注入する。 In the reagent injection step of step S<b>03 , the reagent injection unit 3 injects a predetermined amount of reagent into the measurement cell 2 .

ステップS04の吸光度測定工程では、吸光度測定部4によって、試薬を注入した後の検水の2波長における透過光強度を測定し、吸光度を算出する。具体的には、第1発光素子41の発光時に第1受光素子43が受光する第1測定光の光量の検出、及び第2発光素子42の発光時に第2受光素子44が受光する第2測定光の光量の検出を順番に行い、吸光度演算部45により、ブランク測定工程で測定した測定セル2の汚れや検水中の濁質等により自動調整した透過光強度との比率により各波長における検水の吸光度を算出する。 In the absorbance measurement step of step S04, the absorbance measurement unit 4 measures the transmitted light intensity at two wavelengths of the test water after the reagent is injected, and calculates the absorbance. Specifically, detection of the light amount of the first measurement light received by the first light receiving element 43 when the first light emitting element 41 emits light, and second measurement light received by the second light receiving element 44 when the second light emitting element 42 emits light. The light quantity of light is detected in order, and the absorbance calculation unit 45 detects the transmitted light intensity at each wavelength based on the ratio of the transmitted light intensity automatically adjusted according to the dirt of the measurement cell 2 measured in the blank measurement process and the turbidity in the test water. Calculate the absorbance of

ステップS05の吸光度成分算出工程では、吸光度成分算出部5によって、2波長の測定光の吸光度に基づいて、試薬と硬度成分とが結合したキレート錯体による吸光度の成分である錯体吸光度成分C及び硬度成分と結合していない試薬(呈色成分)による吸光度の成分である未錯体吸光度成分Bを算出する。 In the absorbance component calculation step of step S05, the absorbance component calculator 5 calculates the complex absorbance component C and the hardness component, which are components of the absorbance due to the chelate complex in which the reagent and the hardness component are combined, based on the absorbance of the measurement light of two wavelengths. An uncomplexed absorbance component B, which is a component of absorbance due to a reagent (coloring component) that is not bound to , is calculated.

ステップS06の飽和確認工程では、試薬の注入に伴う錯体吸光度成分の直近の変化率に基づいて、検水中の硬度成分と試薬とのキレート反応が飽和している否か、つまり実質的に全ての硬度成分が試薬と結合しているか否かを確認する。キレート反応が飽和していると判断される場合はステップS07に進み、キレート反応が飽和していないと判断される場合はステップS08に進む。 In the saturation confirmation step of step S06, based on the most recent change rate of the complex absorbance component accompanying the injection of the reagent, whether or not the chelate reaction between the hardness component and the reagent in the test water is saturated, that is, substantially all Check if the hardness component is bound to the reagent. When it is determined that the chelate reaction is saturated, the process proceeds to step S07, and when it is determined that the chelate reaction is not saturated, the process proceeds to step S08.

具体的には、飽和確認工程では、直近の試薬注入後に測定された最新の吸光度における錯体吸光度成分と前回の試薬注入後に測定された吸光度における錯体吸光度成分との変化率が予め設定される飽和閾値以下である状態が予め設定される確認回数以上連続する場合に、キレート反応が飽和していると判断することができる。このため、試薬注入工程、吸光度測定工程及び吸光度成分算出工程は、少なくとも複数回繰り返される。なお、確認回数は1回であってもよい。 Specifically, in the saturation confirmation step, the rate of change between the complex absorbance component in the latest absorbance measured after the most recent reagent injection and the complex absorbance component in the absorbance measured after the previous reagent injection is set in advance as a saturation threshold value. When the following states continue for a predetermined number of times or more, it can be determined that the chelate reaction is saturated. Therefore, the reagent injection step, the absorbance measurement step, and the absorbance component calculation step are repeated at least multiple times. Note that the number of confirmations may be one.

ステップS07の実測値硬度換算工程では、硬度換算部62によって、実測された吸光度から算出された錯体吸光度成分の最新値を硬度に直接換算する。 In the measured value hardness conversion step of step S07, the hardness conversion unit 62 directly converts the latest value of the complex absorbance component calculated from the measured absorbance into hardness.

ステップS08のデータ数確認工程では、実測された吸光度から算出された錯体吸光度成分のデータ数が次の収束値推定工程で収束値を推定するのに必要な数を満たしているか否かを確認する。つまり、データ数確認工程では、試薬注入工程及び吸光度測定工程の実行回数が予め設定される収束計算可能回数以上であるか否かを確認する。錯体吸光度成分のデータ数が必要数以上である場合にはステップS09に進み、錯体吸光度成分のデータ数が必要数に満たない場合はステップS03に戻る。 In the data number confirmation step of step S08, it is confirmed whether or not the number of data of the complex absorbance component calculated from the actually measured absorbance satisfies the number necessary for estimating the convergence value in the next convergence value estimation step. . That is, in the data number confirmation step, it is confirmed whether or not the number of execution times of the reagent injection step and the absorbance measurement step is equal to or greater than the preset convergence calculation possible number. If the number of data on the complex absorbance component is greater than or equal to the required number, the process proceeds to step S09, and if the number of data on the complex absorbance component is less than the required number, the process returns to step S03.

ステップS09の収束値推定工程では、収束値推定部61によって、予め設定される近似式に基づいて、錯体吸光度成分の複数のデータから、試薬の注入回数を増大したときの錯体吸光度成分の収束値を推定する。 In the convergence value estimating step of step S09, the convergence value estimating unit 61 calculates the convergence value of the complex absorbance component when the number of injections of the reagent is increased from a plurality of data of the complex absorbance component based on a preset approximation formula. to estimate

ステップS10の推定値数確認工程では、収束値推定工程で算出された錯体吸光度成分の収束値の推定値が複数存在するか否か、収束値推定工程の実行回数を確認する。このため、本実施形態において、錯体吸光度成分の収束値の推定は、少なくとも2回行われる。 In the step of confirming the number of estimated values in step S10, it is confirmed whether or not there are a plurality of estimated values of the convergence values of the complex absorbance components calculated in the convergence value estimation step, and the number of executions of the convergence value estimation step. Therefore, in the present embodiment, estimation of the convergence value of the complex absorbance component is performed at least twice.

ステップS11の収束値確認工程では、収束値の推定値が確からしい値であるか否かを判定する。具体例として、収束値確認工程では、収束値の最新の推定値と前回の推定値との差が予め設定される収束閾値以下である場合に、両者の差が十分に小さく、推定値が確からしいと判断する。最新の推定値と前回の推定値との差が十分に小さく、推定値が確からしいと考えられる場合には、ステップS12に進み、最新の推定値とその前回の推定値との差が大きい場合には、試薬注入工程、吸光度測定工程、吸光度成分算出工程、及び収束値推定工程を繰り返すために、ステップS03に戻る。 In the convergence value confirmation step of step S11, it is determined whether or not the estimated value of the convergence value is a probable value. As a specific example, in the convergence value confirmation step, if the difference between the latest estimated value of the convergence value and the previous estimated value is equal to or less than a preset convergence threshold, the difference between the two is sufficiently small and the estimated value is confirmed. judge it to be true. If the difference between the latest estimated value and the previous estimated value is sufficiently small and the estimated value is considered probable, proceed to step S12, and if the difference between the latest estimated value and the previous estimated value is large , the process returns to step S03 in order to repeat the reagent injection step, absorbance measurement step, absorbance component calculation step, and convergence value estimation step.

ステップS12の収束値硬度換算工程では、硬度換算部62によって、錯体吸光度成分の収束値の最新の推定値を硬度に換算する。 In the convergence value hardness conversion step of step S12, the hardness conversion unit 62 converts the latest estimated value of the convergence value of the complex absorbance component into hardness.

このように、硬度測定装置1では、実測した吸光度により算出した錯体吸光度成分から実測値硬度換算工程において算出される硬度、又は錯体吸光度成分の収束値の推定値から収束値硬度換算工程において算出される硬度を、検水の硬度とする。 Thus, in the hardness measuring device 1, the hardness is calculated in the measured value hardness conversion step from the complex absorbance component calculated from the actually measured absorbance, or the convergence value calculated in the converged value hardness conversion step from the estimated value of the convergence value of the complex absorbance component. The hardness of the test water shall be the hardness of the test water.

以上の説明からあきらかなように、本発明に係る硬度測定方法は、検水への所定量のキレート型の試薬の注入及び検水の2波長の測定光における吸光度の測定を複数回繰り返す工程と、2波長の測定光の吸光度に基づいて、試薬と硬度成分とが結合したキレート錯体による吸光度の成分である錯体吸光度成分を算出する工程と、試薬の注入に伴う錯体吸光度成分の変化に基づいて、検水の硬度を算出する工程と、を備える。このように、錯体吸光度成分の変化に基づいて硬度を算出することによって、検水の硬度が高い場合であっても、測定セル2のオーバーフローを抑制して比較的正確に硬度を測定できる。 As is clear from the above description, the method for measuring hardness according to the present invention includes the steps of repeatedly injecting a predetermined amount of a chelate-type reagent into sample water and measuring the absorbance of the sample water with two wavelengths of measurement light. , calculating the complex absorbance component, which is the absorbance component of the chelate complex in which the reagent and the hardness component are combined, based on the absorbance of the measurement light of the two wavelengths; and calculating the hardness of the test water. By calculating the hardness based on the change in the absorbance component of the complex in this way, even if the hardness of the test water is high, the overflow of the measurement cell 2 can be suppressed and the hardness can be measured relatively accurately.

以上、本発明の硬度測定方法及び硬度測定装置の好ましい各実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。 Although preferred embodiments of the hardness measuring method and hardness measuring apparatus of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be modified as appropriate.

例えば、本発明に係る硬度測定方法及び硬度測定装置において、錯体吸光度成分の変化に基づいて硬度を算出する具体的な手順は、上述の実施形態に限られず、任意の変形が可能である。例として、本発明に係る硬度測定方法及び硬度測定装置における錯体吸光度成分の収束値の推定は、錯体吸光度成分を試薬の注入回数(注入量)の関数で表すことによって行ってもよい。 For example, in the hardness measuring method and hardness measuring device according to the present invention, the specific procedure for calculating the hardness based on the change in the absorbance component of the complex is not limited to the above-described embodiment, and arbitrary modifications are possible. As an example, estimation of the convergence value of the complex absorbance component in the hardness measurement method and the hardness measurement device according to the present invention may be performed by expressing the complex absorbance component as a function of the number of injections (injection amount) of the reagent.

また、上述の実施形態では、錯体吸光度成分の収束値を複数回推定して、収束値の推定値が確からしいか否かを判定するものとしたが、本発明に係る硬度測定方法及び硬度測定装置では、近似式と錯体吸光度成分のデータとの相関係数等によって収束値の推定値の適否を判定してもよく、収束値の推定値の適否を判定する工程を省略し、1回の収束値の推定によって硬度を算出するようにしてもよい。 Further, in the above-described embodiment, the convergence value of the complex absorbance component is estimated multiple times to determine whether or not the estimated convergence value is probable. In the apparatus, the propriety of the estimated convergence value may be determined by the correlation coefficient between the approximate expression and the data of the absorbance component of the complex, and the step of judging the propriety of the estimated convergence value may be omitted. The hardness may be calculated by estimating the convergence value.

上述の実施形態では、錯体吸光度成分及び未錯体吸光度成分を、単位濃度のキレート錯体による吸光度及び単位濃度の未錯体による吸光度でそれぞれ正規化した無次元数として説明したが、錯体吸光度成分及び未錯体吸光度成分は、吸光度の次元を有し、硬度に換算する段階で正規化される値、例えば第1波長における吸光度と第2波長における吸光度との組み合わせ等であってもよい。 In the above-described embodiments, the complex absorbance component and the uncomplexed absorbance component were described as dimensionless numbers normalized by the absorbance of the chelate complex at a unit concentration and the absorbance of the uncomplexed unit at a unit concentration, respectively. The absorbance component has the dimension of absorbance, and may be a value that is normalized in the step of converting to hardness, such as a combination of absorbance at a first wavelength and absorbance at a second wavelength.

本発明に係る硬度測定装置は、他の測定機能を実現するために、例えば第3の波長の発光素子及び受光素子等を有してもよい。また、硬度測定装置は、給水部を備えず、予め検水を入れたディスポーザブルセルを使用するものであってもよい。 The hardness measuring device according to the present invention may have, for example, a third wavelength light-emitting element and a light-receiving element, etc., in order to realize other measuring functions. Further, the hardness measuring device may use a disposable cell filled with test water in advance without a water supply unit.

1 硬度測定装置
2 測定セル
3 試薬注入部
4 吸光度測定部
41 第1発光素子
42 第2発光素子
43 第1受光素子
44 第2受光素子
45 吸光度演算部
5 吸光度成分算出部
6 硬度算出部
61 収束値推定部
62 硬度換算部
7 給水部
8 攪拌部
9 調整部
1 Hardness Measuring Device 2 Measuring Cell 3 Reagent Injecting Part 4 Absorbance Measuring Part 41 First Light Emitting Element 42 Second Light Emitting Element 43 First Light Receiving Element 44 Second Light Receiving Element 45 Absorbance Calculator 5 Absorbance Component Calculator 6 Hardness Calculator 61 Convergence Value estimation unit 62 Hardness conversion unit 7 Water supply unit 8 Stirring unit 9 Adjustment unit

Claims (8)

検水の硬度を測定する硬度測定方法であって、
前記検水への所定量のキレート型の試薬の注入及び前記検水の2波長の測定光における吸光度の測定を複数回繰り返す工程と、
前記2波長の測定光の吸光度に基づいて、前記試薬と硬度成分とが結合したキレート錯体による吸光度の成分である錯体吸光度成分を算出する工程と、
前記試薬の注入に伴う前記錯体吸光度成分の変化に基づいて、前記検水の硬度を算出する工程と、
を備える、硬度測定方法。
A hardness measurement method for measuring the hardness of sample water,
a step of repeatedly injecting a predetermined amount of a chelate-type reagent into the test water and measuring the absorbance of the test water with two wavelengths of measurement light;
a step of calculating a complex absorbance component, which is an absorbance component of a chelate complex in which the reagent and the hardness component are combined, based on the absorbance of the measurement light of the two wavelengths;
calculating the hardness of the sample water based on the change in the complex absorbance component accompanying the injection of the reagent;
A hardness measurement method comprising:
前記試薬の注入に伴う前記錯体吸光度成分の変化を、前記錯体吸光度成分の変化量と前記硬度成分と結合していない前記試薬による吸光度の成分である未錯体吸光度成分の変化量との関係から判断する、請求項1に記載の硬度測定方法。 The change in the complex absorbance component due to the injection of the reagent is determined from the relationship between the amount of change in the complex absorbance component and the amount of change in the uncomplexed absorbance component, which is the absorbance component due to the reagent not bound to the hardness component. The hardness measuring method according to claim 1, wherein 前記硬度を算出する工程は、予め設定される近似式に基づいて、前記錯体吸光度成分の複数のデータから、前記試薬の注入回数を増大したときの前記錯体吸光度成分の収束値を推定する工程を含む、請求項1又は2に記載の硬度測定方法。 The step of calculating the hardness includes a step of estimating a convergence value of the complex absorbance component when the number of injections of the reagent is increased from a plurality of data of the complex absorbance component based on a preset approximation formula. 3. The method of measuring hardness according to claim 1 or 2, comprising: 前記複数のデータとして、前記試薬の注入回数が小さいものを除外する、請求項3に記載の硬度測定方法。 4. The hardness measuring method according to claim 3, wherein, as said plurality of data, data in which the number of injections of said reagent is small is excluded. 前記試薬の注入及び前記吸光度の測定をする工程、前記錯体吸光度成分を算出する工程、並びに前記収束値を推定する工程を繰り返し行い、前記収束値の最新の推定値と前回の推定値との差が予め設定される収束閾値以下となった場合に、前記収束値の最新の推定値から前記硬度を算出する、請求項3又は4に記載の硬度測定方法。 The step of injecting the reagent and measuring the absorbance, the step of calculating the complex absorbance component, and the step of estimating the convergence value are repeated, and the difference between the latest estimated value of the convergence value and the previous estimated value 5. The method of measuring hardness according to claim 3, wherein the hardness is calculated from the latest estimated value of the convergence value when is equal to or less than a preset convergence threshold. 前記試薬の注入に伴う前記錯体吸光度成分の直近の変化率が予め設定される飽和閾値以下である場合は、前記錯体吸光度成分の最新値を前記硬度に直接換算し、
前記試薬の注入に伴う前記錯体吸光度成分の直近の変化率が前記飽和閾値を超える場合は、前記錯体吸光度成分の収束値を推定する工程を行う、請求項3から5のいずれかに記載の硬度測定方法。
when the most recent rate of change of the complex absorbance component accompanying the injection of the reagent is equal to or lower than a preset saturation threshold, directly converting the latest value of the complex absorbance component into the hardness,
6. The hardness according to any one of claims 3 to 5, wherein the step of estimating a convergence value of the complex absorbance component is performed when the most recent change rate of the complex absorbance component due to the injection of the reagent exceeds the saturation threshold. Measuring method.
前記2波長として、前記試薬と前記硬度成分との反応についての等吸収点より短い波長及び前記等吸収点より長い波長を用いる、請求項1から6のいずれかに記載の硬度測定方法。 7. The hardness measuring method according to claim 1, wherein a wavelength shorter than an isosbestic point and a wavelength longer than the isosbestic point for the reaction between said reagent and said hardness component are used as said two wavelengths. 検水の硬度を測定する硬度測定装置であって、
前記検水を貯留する測定セルに所定量の試薬を注入する試薬注入部と、
前記測定セルに2波長の測定光を投光して前記検水のそれぞれの前記波長における吸光度を測定する吸光度測定部と、
前記2波長における吸光度に基づいて、前記試薬と硬度成分とのキレート錯体による吸光度の成分である錯体吸光度成分を算出する吸光度成分算出部と、
前記試薬の注入に伴う前記錯体吸光度成分の変化に基づいて、前記硬度を算出する硬度算出部と、
を備える、硬度測定装置。
A hardness measuring device for measuring the hardness of sample water,
a reagent injection unit for injecting a predetermined amount of reagent into the measurement cell storing the test water;
an absorbance measuring unit that projects measurement light of two wavelengths onto the measurement cell and measures the absorbance at each of the wavelengths of the test water;
an absorbance component calculation unit that calculates a complex absorbance component, which is a component of absorbance due to a chelate complex of the reagent and the hardness component, based on the absorbance at the two wavelengths;
a hardness calculation unit that calculates the hardness based on a change in the absorbance component of the complex due to the injection of the reagent;
A hardness measuring device.
JP2021009752A 2021-01-25 2021-01-25 Hardness measurement method and hardness measurement device Active JP7459810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021009752A JP7459810B2 (en) 2021-01-25 2021-01-25 Hardness measurement method and hardness measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021009752A JP7459810B2 (en) 2021-01-25 2021-01-25 Hardness measurement method and hardness measurement device

Publications (2)

Publication Number Publication Date
JP2022113472A true JP2022113472A (en) 2022-08-04
JP7459810B2 JP7459810B2 (en) 2024-04-02

Family

ID=82658010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021009752A Active JP7459810B2 (en) 2021-01-25 2021-01-25 Hardness measurement method and hardness measurement device

Country Status (1)

Country Link
JP (1) JP7459810B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201497A (en) 2000-11-24 2001-07-27 Miura Co Ltd Hardness-measuring method
DE102004015387B4 (en) 2004-03-26 2015-02-05 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Process for the photometric determination of the total hardness of aqueous solutions
JP2008082934A (en) 2006-09-28 2008-04-10 Miura Co Ltd Measuring method of test component concentration in water to be measured
JP5045333B2 (en) 2007-09-21 2012-10-10 東亜ディーケーケー株式会社 Titration device
EP2567215B1 (en) 2010-05-05 2018-03-21 Aqualysis Pty. Ltd. Colorimetric analytical method
US10845346B2 (en) 2015-05-29 2020-11-24 Water Lens, LLC Compositions, apparatus, and methods for determining hardness of water and magnesium ion in an analyte composition

Also Published As

Publication number Publication date
JP7459810B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
CA2054435C (en) Method of determining the content of hydrogen peroxide in an aqueous solution
WO2014096184A1 (en) Method for analyzing a sample of a body fluid
US20210190700A1 (en) Method for determining a parameter dependent on the concentration of at least one analyte in a sample liquid
US9863872B2 (en) Sample analyzer and method of selecting analysis regions of noise affected time series data for a target reaction
JP2022113472A (en) Hardness measuring method and hardness measuring device
Horstkotte et al. Sequential injection analysis for automation of the Winkler methodology, with real-time SIMPLEX optimization and shipboard application
JP5427362B2 (en) Method and apparatus for measuring hematocrit value or blood component concentration
CN104345033A (en) Apparatus and method for analyzing water quality
CA2804843C (en) Multiple time windows for extending the range of an assay
US10345321B2 (en) Automatic analyzer and method
US11885781B2 (en) Titration apparatus and titration method
US20210003601A1 (en) Method of operating an automatic analysis apparatus and automatic analysis apparatus
CN211718259U (en) Water quality analyzer
US10222322B2 (en) Colorimetric analyzer with improved error detection
US10836182B2 (en) Calibration of a sensor
Ostra et al. Process analytical chemistry in a nickel electroplating bath. Automated sequential injection for additive determination
JP2005201843A (en) Analyzer
JP2000321281A (en) Automatic analyzer
JP6920623B2 (en) Analytical instruments, programs, and analytical methods
JP5242542B2 (en) Metal concentration measuring method and metal concentration automatic management device
EP4086627A1 (en) Component measurement device, component measurement device set, and information processing method
WO2022034702A1 (en) Calibration curve generation method, autonomous analysis device, and calibration curve generation program
CN105849532A (en) Method for expanding the measurement range of photometric systems
US20210033630A1 (en) Method for testing, verifying, calibrating or adjusting an automatic analysis apparatus
JPH02223859A (en) Biochemical analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231020

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240304

R150 Certificate of patent or registration of utility model

Ref document number: 7459810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150