JP2022109497A - Method for producing aqueous solution of copper sulfate - Google Patents

Method for producing aqueous solution of copper sulfate Download PDF

Info

Publication number
JP2022109497A
JP2022109497A JP2021004847A JP2021004847A JP2022109497A JP 2022109497 A JP2022109497 A JP 2022109497A JP 2021004847 A JP2021004847 A JP 2021004847A JP 2021004847 A JP2021004847 A JP 2021004847A JP 2022109497 A JP2022109497 A JP 2022109497A
Authority
JP
Japan
Prior art keywords
copper
sulfuric acid
copper sulfate
container
copper material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021004847A
Other languages
Japanese (ja)
Other versions
JP6872833B1 (en
Inventor
綾香 竹腰
Ayaka Takekoshi
雄高 松崎
Yutaka Matsuzaki
寛之 辻
Hiroyuki Tsuji
崇人 西浦
Takahito Nishiura
義樹 村上
Yoshiki Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Recycle Center Corp
Original Assignee
Nippon Recycle Center Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Recycle Center Corp filed Critical Nippon Recycle Center Corp
Priority to JP2021004847A priority Critical patent/JP6872833B1/en
Application granted granted Critical
Publication of JP6872833B1 publication Critical patent/JP6872833B1/en
Publication of JP2022109497A publication Critical patent/JP2022109497A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method for simply and economically producing an aqueous copper sulfate solution containing little unreacted sulfuric acid from a copper material using sulfuric acid in an air atmosphere.SOLUTION: A method for producing an aqueous copper sulfate solution, characterized in that a copper material and sulfuric acid are fed into a container and heated at a predetermined ambient temperature to allow them to react in an oxygen-containing atmosphere; the reaction mixture is dried almost completely; water is added thereto to dissolve the copper sulfate so formed; and the resulting mixture is subjected to solid-liquid separation to remove remaining copper material.SELECTED DRAWING: Figure 1

Description

本発明は、酸素を含む雰囲気下で硫酸を用いて、簡便で経済的に銅箔等の銅材から未反応硫酸の少ない硫酸銅水溶液を製造する硫酸銅水溶液の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing an aqueous copper sulfate solution with little unreacted sulfuric acid from a copper material such as a copper foil simply and economically using sulfuric acid in an oxygen-containing atmosphere.

銅材である例えば銅箔はリチウムイオン電池、フレキシブルプリント配線板、PDP電磁波シールド・フィルム部材、抵抗内蔵基板など幅広く利用されており、それに伴い発生する銅箔スクラップのリサイクルが望まれている。 For example, copper foil, which is a copper material, is widely used in lithium-ion batteries, flexible printed wiring boards, PDP electromagnetic wave shielding film members, and substrates with built-in resistors.

硫酸銅水溶液は、銅めっき液、顔料、殺菌剤の原料、防腐剤として使用されており、また酸化銅や水酸化銅の合成原料にも使用できる。 Aqueous copper sulfate solutions are used as raw materials for copper plating solutions, pigments, disinfectants, and antiseptics, and can also be used as raw materials for synthesizing copper oxide and copper hydroxide.

従来、硫酸銅の製造には、熱濃硫酸で直接金属銅を溶解する方法が知られているが、材質、安全性の観点で特別仕様の溶解槽が必要であり、さらに発生する亜硫酸ガスの処理設備も要するため、設備費用が掛かりすぎるという欠点があった。 Conventionally, the method of dissolving metallic copper directly with hot concentrated sulfuric acid is known for the production of copper sulfate. Since processing facilities are also required, there is a disadvantage that the facility costs are too high.

また、金属銅を焼成して酸化銅として硫酸に溶解する方法も知られているが、酸化反応が進行しにくい、ランニングコストが大きくなるといった問題点があった。 Also known is a method of burning metallic copper to form copper oxide and dissolving it in sulfuric acid.

金属銅を硫酸に溶解させるために、酸化剤として過酸化水素を添加する方法も知られている。この方法によれば効率的に酸化反応が進むため、加熱操作を必要としないが、過酸化水素は、高価であり、経済的に難があった。また、自己分解しやすいため管理が難しく、投入時の気体発生や発熱といった点で安全性にも難があった。さらに、過酸化水素は生成した硫酸銅水溶液に残留しやすく、除去する工程を設ける必要があった。 A method of adding hydrogen peroxide as an oxidizing agent to dissolve metallic copper in sulfuric acid is also known. According to this method, since the oxidation reaction proceeds efficiently, no heating operation is required, but hydrogen peroxide is expensive and economically difficult. In addition, it is difficult to manage because it easily self-decomposes, and there was also a problem with safety in terms of gas generation and heat generation at the time of injection. Furthermore, hydrogen peroxide tends to remain in the aqueous solution of copper sulfate produced, and it was necessary to provide a step for removing it.

硫酸と酸化剤として空気を用いた方法として、特許文献1には、液温を65~85℃に維持した40~120メッシュの金属銅粉懸濁液に微細な空気泡を多量に導入しながら硫酸を添加し、金属銅粉を酸化溶解する硫酸銅水溶液の製造方法が開示されている。(特許文献1:特開平5-262523号公報)
さらに、特許文献2には、金属溶解塔に金属銅塊を充填し、金属溶解塔上部から加熱した硫酸を供給し、金属溶解塔の上部または下部から酸化剤を供給する硫酸銅水溶液の製造方法が開示されている。(特許文献2:特開2011-32126号公報)
As a method using sulfuric acid and air as an oxidizing agent, Patent Document 1 describes a method in which a large amount of fine air bubbles are introduced into a metal copper powder suspension of 40 to 120 meshes maintained at a liquid temperature of 65 to 85 ° C. A method for producing an aqueous copper sulfate solution is disclosed in which sulfuric acid is added to oxidize and dissolve metallic copper powder. (Patent Document 1: JP-A-5-262523)
Furthermore, in Patent Document 2, a metal dissolving tower is filled with metallic copper lumps, heated sulfuric acid is supplied from the upper part of the metal dissolving tower, and an oxidizing agent is supplied from the upper or lower part of the metal dissolving tower. is disclosed. (Patent Document 2: JP-A-2011-32126)

特開平5-262523号公報JP-A-5-262523 特開2011-32126号公報Japanese Unexamined Patent Application Publication No. 2011-32126

しかしながら、特許文献1、2共に加熱設備と液温の制御を有する溶液槽が必要であるため大掛かりな設備となり、設備コストが多大であるという課題を有する。 However, both of Patent Documents 1 and 2 require a heating facility and a solution bath having a liquid temperature control, so that the facility becomes a large-scale facility, and there is a problem that the facility cost is large.

本発明は上記の課題を解決するためになされたものであって、大掛かりな設備が不要であり、簡便で経済的に銅材から未反応硫酸の少ない硫酸銅水溶液を製造できる硫酸銅水溶液の製造方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and does not require large-scale equipment, and is capable of producing an aqueous copper sulfate solution with little unreacted sulfuric acid from a copper material simply and economically. The purpose is to provide a method.

上記目的は以下の手段によって達成される。
(1)容器に投入された銅材と硫酸を、酸素を含む雰囲気下で加熱して、銅材のモル数(MCu)と硫酸のモル数(Ms)とのモル比(MCu)/(Ms)が1を超えるよう反応させ、略完全に乾燥させたのち、生成された硫酸銅を、水を加えて溶解させ、残留銅材と固液分離することを特徴とする、硫酸銅水溶液の製造方法。
(2)前記銅材のモル数(MCu)と前記硫酸のモル数(MS)とのモル比(MCu)/(MS)が2以上であることを特徴とする前項1に記載の硫酸銅水溶液の製造方法。
(3)前記硫酸の濃度が10~70重量%の範囲にあることを特徴とする前項1または2に記載の硫酸銅水溶液の製造方法。
(4)酸素を含む雰囲気下での加熱が温度40~280℃の範囲で行われることを特徴とする前項1~3のいずれかに記載の硫酸銅水溶液の製造方法。
(5)前記銅材は、片状、粒状、粉状、チップ状のうちの少なくともいずれかの形態の多数の分割体によって構成されている前項1~4のいずれかに記載の硫酸銅水溶液の製造方法。
(6)得られる硫酸銅水溶液の銅のモル数(MCuP)と硫酸のモル数(MSP)とのモル比(MCuP)/(MSP) が0.93~1.00の範囲にあり、前記硫酸銅の濃度が1~50重量%の範囲にあることを特徴とする前項1~5のいずれかに記載の硫酸銅水溶液の製造方法。
The above objects are achieved by the following means.
(1) The copper material and sulfuric acid put into a container are heated in an atmosphere containing oxygen, and the molar ratio (M Cu ) of the number of moles of the copper material (M Cu ) and the number of moles of sulfuric acid (M s ) is /(M s ) is more than 1, and after almost completely drying, water is added to dissolve the generated copper sulfate, and solid-liquid separation from the residual copper material is performed. A method for producing an aqueous copper solution.
(2) The above item 1, wherein the molar ratio (M Cu )/(M S ) of the number of moles (M Cu ) of the copper material and the number of moles (M S ) of the sulfuric acid is 2 or more. A method for producing an aqueous solution of copper sulfate.
(3) The method for producing an aqueous copper sulfate solution according to (1) or (2) above, wherein the concentration of the sulfuric acid is in the range of 10 to 70% by weight.
(4) The method for producing an aqueous copper sulfate solution according to any one of (1) to (3) above, wherein the heating is carried out at a temperature of 40 to 280°C in an oxygen-containing atmosphere.
(5) The copper sulfate aqueous solution according to any one of the preceding items 1 to 4, wherein the copper material is composed of a large number of divided bodies in at least one of the form of flakes, granules, powder, and chips. Production method.
(6) The molar ratio (M CuP )/(M SP ) between the number of moles of copper (M CuP ) and the number of moles of sulfuric acid (M SP ) in the copper sulfate aqueous solution obtained is in the range of 0.93 to 1.00. 6. The method for producing an aqueous copper sulfate solution according to any one of items 1 to 5, wherein the concentration of the copper sulfate is in the range of 1 to 50% by weight.

前項(1)に記載の発明によれば、大掛かりな設備も必要とせず、容器と銅材、硫酸、汎用性の加熱乾燥設備があれば、簡単にフリーの硫酸が少ない硫酸銅溶液を製造できる。 According to the invention described in the preceding item (1), a copper sulfate solution containing little free sulfuric acid can be easily produced without the need for large-scale equipment, as long as there is a container, a copper material, sulfuric acid, and general-purpose heating and drying equipment. .

前項(2)に記載の発明によれば、銅材が過剰となるので、雰囲気中の酸素との接触効率が良くなり、反応が進行しやすくなり、反応後の硫酸銅溶液中にフリーの硫酸が少なくなる。 According to the invention described in the preceding item (2), since the copper material is excessive, the contact efficiency with oxygen in the atmosphere is improved, the reaction is facilitated, and free sulfuric acid is contained in the copper sulfate solution after the reaction. less.

前項(3)に記載の発明によれば、硫酸濃度が10重量%未満では硫酸の濃度が薄く、溶解速度が遅くなる場合があり、また70重量%を超えると硫酸の濃度が高く安全性が不利となってしまう恐れがあるため、10~70重量%の範囲で効率良く安全に反応させることができる。 According to the invention described in the preceding item (3), if the sulfuric acid concentration is less than 10% by weight, the concentration of sulfuric acid is low and the dissolution rate may be slow, and if it exceeds 70% by weight, the concentration of sulfuric acid is high and safety is impaired. Since there is a risk of being disadvantageous, the reaction can be efficiently and safely carried out in the range of 10 to 70% by weight.

前項(4)に記載の発明によれば、酸素を含む雰囲気下での加熱が温度40~280℃の範囲で行われるから、効率良く安全に反応させることができる。 According to the invention described in the preceding item (4), the heating in the atmosphere containing oxygen is performed at a temperature in the range of 40 to 280° C., so that the reaction can be carried out efficiently and safely.

前項(5)に記載の発明によれば、銅材は片状、粒状、粉状、チップ状のうちの少なくともいずれかの形態の多数の分割体によって構成されているから、銅材の単位重量当たりの表面積が大きくなる。このため、雰囲気中の酸素との接触効率が高まり反応が進行する。 According to the invention described in the preceding item (5), since the copper material is composed of a large number of split bodies in at least one of flake, granular, powder, and chip shapes, the unit weight of the copper material is Increased surface area. As a result, the efficiency of contact with oxygen in the atmosphere increases and the reaction proceeds.

前項(6)に記載の発明によれば、モル比(MCuP)/(MSP) が0.93~1.00の範囲にあるフリーの硫酸が少ない硫酸銅溶液が得られる。 According to the invention described in the preceding item (6), a copper sulfate solution containing little free sulfuric acid and having a molar ratio (M CuP )/(M SP ) in the range of 0.93 to 1.00 can be obtained.

図1は、本発明の一実施形態にかかる硫酸銅水溶液の製造方法の概略手順を示すフローチャートである。FIG. 1 is a flow chart showing a schematic procedure of a method for producing an aqueous copper sulfate solution according to one embodiment of the present invention. 容器に投入された銅材と硫酸の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state of the copper material and sulfuric acid which were thrown into the container. 実施例1の反応前の銅箔と硫酸の写真画像である。1 is a photographic image of copper foil and sulfuric acid before reaction in Example 1. FIG.

図1に示すように、本発明による硫酸銅溶液の製造方法の実施の形態では、原料として、銅材の一例としての銅箔と硫酸を用意し、銅箔を粉砕して小片状の多数の分割体を生成し(ステップS1)、粉砕した銅箔と硫酸とを容器に投入し、酸素を含む雰囲気下で加熱乾燥して反応させ(ステップS2)、硫酸銅を生成する。次に、生成した硫酸銅に水を加えて撹拌溶解し(ステップS3)、固液分離(ステップS4)により未反応の残留銅箔を除去して、硫酸銅水溶液を得る。 As shown in FIG. 1, in the embodiment of the method for producing a copper sulfate solution according to the present invention, copper foil as an example of a copper material and sulfuric acid are prepared as raw materials, and the copper foil is pulverized into a large number of small pieces. (Step S1), pulverized copper foil and sulfuric acid are placed in a container, heated and dried in an oxygen-containing atmosphere to react (Step S2), and copper sulfate is produced. Next, water is added to the generated copper sulfate and dissolved by stirring (step S3), and unreacted residual copper foil is removed by solid-liquid separation (step S4) to obtain an aqueous solution of copper sulfate.

図2に示すように、銅材2と硫酸3が投入される容器1の材質は、硫酸に耐性があり耐熱性のものであれば良く、ガラス製、磁製、プラスチック、繊維強化プラスチック(FRP)、フッ素樹脂などが使用される。ガラスもしくはフッ素樹脂をコーティングした金属容器でも良い。また容器1の形状は、底の浅いトレー状のものが望ましい。底の浅い容器1は開口面積が大きいため、雰囲気中の酸素との接触効率が高くなり、反応が速やかに進行しやすい。底の深い容器も使用できるが、反応に時間がかかる。 As shown in FIG. 2, the material of the container 1 into which the copper material 2 and the sulfuric acid 3 are charged should be resistant to sulfuric acid and heat-resistant. ), fluororesin and the like are used. A metal container coated with glass or fluorine resin may be used. Further, the shape of the container 1 is desirably a tray-like one with a shallow bottom. Since the container 1 with a shallow bottom has a large opening area, the efficiency of contact with oxygen in the atmosphere is high, and the reaction tends to progress rapidly. A deep-bottomed vessel can also be used, but the reaction takes longer.

容器1に投入された銅材2と硫酸3を加熱し乾燥するための加熱乾燥設備の種類は特に制限されず、酸素を含む雰囲気下で使用できるものであれば良い。酸素を含む雰囲気としては限定はされないが空気雰囲気(空気中)を挙げることができる。具体的な加熱乾燥設備として、空気雰囲気下で使用できる定温恒温器や定温乾燥器、電気炉などが使用され、銅材の溶解促進の為に空気と積極的に接触させる送風機能を有するものが望ましい。 The type of heating and drying equipment for heating and drying the copper material 2 and sulfuric acid 3 put into the container 1 is not particularly limited as long as it can be used in an atmosphere containing oxygen. The atmosphere containing oxygen includes, but is not limited to, an air atmosphere (in the air). As specific heating and drying equipment, a constant temperature constant temperature oven, a constant temperature dryer, an electric furnace, etc. that can be used in an air atmosphere are used, and those that have an air blowing function to positively contact the air to promote dissolution of the copper material. desirable.

銅材2の量は硫酸3のモル数に対して1を超えれば良く、望ましくは2倍量以上である。過剰分は残留銅箔として回収され、再び原料として使用できる。 The amount of the copper material 2 should be more than 1 with respect to the number of moles of the sulfuric acid 3, desirably at least twice the amount. The excess is recovered as residual copper foil and can be reused as a raw material.

短時間で、未反応硫酸の少ない硫酸銅溶液を得るためには、より過剰量の銅材2を使用すれば良いが、容器1が大きくなる。銅材2をなるべく小さく粉砕することで嵩を減らすことができる。
銅材
本実施形態に用いる銅材2は例えば銅箔であるが、上述の通り、銅箔は多数の片状の分割体に粉砕して用いるのが望ましい。反物や一枚のシート状のものは、銅箔の単位重量当たりの表面積が小さいので硫酸3や空気との接触効率が低下し、未反応硫酸が残りやすくなる。銅箔は表面処理された箔、あるいはカーボン等が付着した箔も適切な前処理を施すことで使用できる。
In order to obtain a copper sulfate solution containing less unreacted sulfuric acid in a short period of time, an excessive amount of the copper material 2 should be used, but the size of the container 1 is increased. The volume can be reduced by pulverizing the copper material 2 as small as possible.
copper material
The copper material 2 used in this embodiment is, for example, a copper foil. As described above, the copper foil is desirably pulverized into a large number of split pieces. Since the surface area per unit weight of the copper foil is small in rolls and sheets, the efficiency of contact with the sulfuric acid 3 and air decreases, and unreacted sulfuric acid tends to remain. As the copper foil, a surface-treated foil or a foil to which carbon or the like is adhered can be used by subjecting it to an appropriate pretreatment.

また銅材2として、粒状、粉状の形態の多数の分割体を用いても良い。さらに、銅箔以外にも、銅線、コイル等を前処理として片状あるいはチップ状に削ることで使用できる。なお、チップ状とは、片状、粒状、粉状以外の、厚さが片状よりも厚い全ての小塊をいい、銅切子、銅切削屑等も含まれる。また、銅材2を構成する分割体の形態の種類は1種類のみであっても良いし、2種類以上の形態の銅材を混合して用いても良い。また、銅粉や銅ダライ粉、銅切子、銅切削屑などは硫酸のモル数に対して2倍量よりさらに大過剰に入れることで、より反応性良く硫酸銅とすることができる。要は、銅材2として、片状、粉状、粒状、チップ状等の小サイズの分割体に分割し、これらの分割体の集合により銅材が構成されるのが望ましい。 Also, as the copper material 2, a large number of split bodies in the form of granules or powder may be used. Furthermore, other than copper foil, copper wires, coils, etc. can be used by shaving them into flakes or chips as a pretreatment. Note that the term "chip-like" refers to all small lumps having a thickness greater than that of flakes, excluding flakes, granules, and powders, and includes copper chips, copper shavings, and the like. Moreover, only one kind of form of the divided bodies constituting the copper material 2 may be used, or a mixture of two or more forms of the copper material may be used. Copper powder, copper turning powder, copper chips, copper shavings, and the like can be added in an amount greater than twice the molar amount of sulfuric acid, thereby forming copper sulfate with better reactivity. In short, it is desirable that the copper material 2 is divided into pieces of small size such as flakes, powders, granules, chips, etc., and the copper material is composed of an assembly of these divided bodies.

分割体の大きさは特に制限はないが、例えば片状の銅箔を使用する場合、20mm四方以下のサイズに粉砕するのが好ましい。一片の大きさが大きすぎると硫酸3や雰囲気中の酸素との接触効率が低くなるので処理に長時間を要する。銅箔を片状に粉砕する方法は、特に限定はなく、せん断式粉砕、摩砕式粉砕、衝撃式粉砕など、いずれの方法でも良く、もしくは2つ以上の方法を組み合わせても良い。
硫酸
本実施形態で用いる硫酸3は、濃度が10~70重量%であることが好ましく、さらには30重量%以上であることが好ましい。
Although the size of the divided body is not particularly limited, for example, when a piece of copper foil is used, it is preferable to pulverize it to a size of 20 mm square or less. If the size of one piece is too large, the efficiency of contact with the sulfuric acid 3 and oxygen in the atmosphere will be low, so the treatment will take a long time. The method of pulverizing the copper foil into flakes is not particularly limited, and may be any method such as shearing pulverization, grinding pulverization, impact pulverization, or a combination of two or more methods.
sulfuric acid
The sulfuric acid 3 used in this embodiment preferably has a concentration of 10 to 70% by weight, more preferably 30% by weight or more.

硫酸3の濃度が10重量%未満であると、溶解速度が遅くなる場合があり、容器も大きなものが必要となる。また生成する硫酸銅の量も少なくなるので生産性が不利となる恐れがある。 If the concentration of sulfuric acid 3 is less than 10% by weight, the dissolution rate may become slow, and a large container is required. Moreover, the amount of copper sulfate to be produced is also reduced, so there is a possibility that the productivity will be disadvantageous.

硫酸3の濃度が70重量%を超えて高すぎると、銅材2と反応する前に水が蒸発して濃硫酸となってしまう可能性が有り、安全性が不利となる恐れがある。
反応のメカニズム
銅材2と硫酸3の反応式は下記の通りである。
反応式:Cu + H2SO4 + 1/2O2→ CuSO4 + H2O
銅材2が硫酸3より過剰に存在しているため、図2の特に下側の一部拡大図に示すように、銅材2は液面31から露出している部分と液に浸かっている部分とがある。液面31から露出している銅材2は空気等の酸素を含む雰囲気に接触しているため酸素濃度が高い状態であるが、液中の銅材2は酸素濃度が低くなるため、銅材2間で酸素濃度を一定にしようとする働きが起こり、酸素濃淡電池の原理により銅材の酸化が進む。
If the concentration of the sulfuric acid 3 exceeds 70% by weight and is too high, there is a possibility that water will evaporate before reacting with the copper material 2, resulting in concentrated sulfuric acid, which is disadvantageous in terms of safety.
Reaction mechanism
The reaction formula of the copper material 2 and the sulfuric acid 3 is as follows.
Reaction formula: Cu + H2SO4 + 1 / 2O2CuSO4 + H2O
Since the copper material 2 exists in excess of the sulfuric acid 3, as shown in the partially enlarged view of the lower part of FIG. There are parts. Since the copper material 2 exposed from the liquid surface 31 is in contact with an atmosphere containing oxygen such as air, the oxygen concentration is high. A work to keep the oxygen concentration constant occurs between the two, and the copper material is oxidized according to the principle of the oxygen concentration cell.

以上の原理より、硫酸3中の水分が蒸発するにつれて、銅材2が液面から露出し、その露出している部分から銅材2の酸化が起こり、硫酸3と反応して硫酸銅が生成される。 Based on the above principle, as the water in the sulfuric acid 3 evaporates, the copper material 2 is exposed from the liquid surface, and oxidation of the copper material 2 occurs from the exposed portion, and reacts with the sulfuric acid 3 to produce copper sulfate. be done.

銅材2と硫酸3の酸素を含む雰囲気下での加熱温度、換言すれば銅材2と硫酸3の反応温度は40~280℃の範囲にあることが好ましい。この範囲にあると、反応が早く終了し、またプラスチック製の容器1が使用できるので経済的に有利となる。特に75~100℃の範囲にあることが好ましい。反応速度を優先する場合は、100~200℃の高温域で反応させると良い。 The heating temperature of the copper material 2 and the sulfuric acid 3 in an oxygen-containing atmosphere, in other words, the reaction temperature of the copper material 2 and the sulfuric acid 3 is preferably in the range of 40 to 280.degree. Within this range, the reaction is completed quickly, and the container 1 made of plastic can be used, which is economically advantageous. In particular, it is preferably in the range of 75 to 100°C. If priority is given to the reaction rate, the reaction should be carried out at a high temperature range of 100 to 200°C.

生成した硫酸銅を溶出させる水の量は、求める硫酸銅水溶液の濃度に依る。加えた硫酸のモル数と同量の硫酸銅ができるので、そこから計算して添加する水の量を決定する。この時、硫酸銅水溶液の濃度が溶解度以上となると溶け残りができる。 The amount of water for eluting the generated copper sulfate depends on the desired concentration of the copper sulfate aqueous solution. Since the same amount of copper sulfate is produced as the number of moles of sulfuric acid added, the amount of water to be added is determined by calculating from that. At this time, if the concentration of the aqueous solution of copper sulfate exceeds the solubility, there will be undissolved portions.

生成した硫酸銅は残留銅材と固着して塊となるので、水中で撹拌して溶出させる。反応後の容器に少量水を加えて静置しておくと、軟化して水に投入しやすくなる。 The generated copper sulfate adheres to the residual copper material and forms lumps, so it is eluted by stirring in water. If a small amount of water is added to the container after the reaction and allowed to stand still, it will soften and become easier to pour into water.

残留銅材は固液分離して除去する。分離方法は制限されず、残留銅材の粒径に合ったものを用いれば良い。固液分離方法に、特に制限はなく、通常、真空ろ過、加圧式ろ過や遠心分離が用いられる。 Residual copper material is removed by solid-liquid separation. The separation method is not limited, and a method suitable for the grain size of the residual copper material may be used. There are no particular restrictions on the solid-liquid separation method, and vacuum filtration, pressurized filtration, and centrifugation are usually used.

得られた硫酸銅水溶液は、銅のモル数(MCuP)と硫酸のモル数(MSP)とのモル比(MCuP)/(MSP) が0.93~1.00の範囲にあり、硫酸銅の濃度が1~50重量%の範囲にあるのが、0.93~1.00の範囲にあるフリーの硫酸が少ない硫酸銅溶液が得られることから望ましい。 The obtained copper sulfate aqueous solution has a molar ratio (M CuP )/(M SP ) of the number of moles of copper (M CuP ) to the number of moles of sulfuric acid (M SP ) in the range of 0.93 to 1.00. A copper sulfate concentration in the range of 1 to 50% by weight is desirable because a copper sulfate solution with less free sulfuric acid, which is in the range of 0.93 to 1.00, can be obtained.

以下、本発明の実施例を示すが、本発明は実施例に限定されない。
(実施例1)
硫酸銅水溶液(1)の製造
PP製の容器1(形状:角形、サイズ:195mm×133mm×40mm)に最大片2mm以下に粉砕した銅箔120gと濃度65重量%の硫酸100mLを投入した。この時、硫酸3の液量は少ないので容器底には溜まらず、銅箔に付着している状態である。図3に、容器1に投入された反応前の銅材(銅箔)2と硫酸3の写真画像を示す。
Examples of the present invention are shown below, but the present invention is not limited to the examples.
(Example 1)
Production of copper sulfate aqueous solution (1)
A PP container 1 (shape: square, size: 195 mm×133 mm×40 mm) was charged with 120 g of copper foil pulverized to a maximum piece of 2 mm or less and 100 mL of sulfuric acid having a concentration of 65% by weight. At this time, since the amount of the sulfuric acid 3 is small, it does not stay at the bottom of the container, but adheres to the copper foil. FIG. 3 shows a photographic image of the copper material (copper foil) 2 and the sulfuric acid 3 before the reaction which are put into the container 1 .

次に、容器1を75℃に設定した乾燥機で7時間静置して、略完全に乾燥させた。残留銅箔の表面に硫酸銅が析出しているので、水1000mLを入れたビーカー中で10分間撹拌しながら溶かし、Advantec社製5種Cのろ紙でろ過をして硫酸銅水溶液(1)を製造した。この時、反応に用いた銅材(銅箔)2と硫酸3のモル比(MCu/Ms)は2.12であった。 Next, the container 1 was allowed to stand still for 7 hours in a dryer set at 75° C. to dry substantially completely. Since copper sulfate is deposited on the surface of the residual copper foil, dissolve it in a beaker containing 1,000 mL of water while stirring for 10 minutes, filter with Advantec's 5-type C filter paper, and remove the copper sulfate aqueous solution (1). manufactured. At this time, the molar ratio (M Cu /M s ) of the copper material (copper foil) 2 and sulfuric acid 3 used in the reaction was 2.12.

得られた硫酸銅水溶液(1)は硫酸銅の濃度が25.2重量%、pHが2.59、モル比(MCuP)/(MSP)が0.990であり、ほとんどフリー硫酸のない硫酸銅溶液であった。
(実施例2)
硫酸銅水溶液(2)の製造
容器1としての磁性蒸発皿(形状:平皿、サイズ:φ15mm×41mm)に、最大片2mm以下に粉砕した銅箔30gと濃度65重量%の硫酸25mLを投入した。この時、硫酸3の液量は少ないので容器底には溜まらず、銅箔に付着している状態である。
The resulting copper sulfate aqueous solution (1) has a copper sulfate concentration of 25.2% by weight, a pH of 2.59, a molar ratio (M CuP )/(M SP ) of 0.990, and almost no free sulfuric acid. It was a copper sulfate solution.
(Example 2)
Production of copper sulfate aqueous solution (2)
Into a magnetic evaporating dish (shape: flat dish, size: φ15 mm×41 mm) as the container 1, 30 g of copper foil pulverized to a maximum piece of 2 mm or less and 25 mL of sulfuric acid having a concentration of 65% by weight were put. At this time, since the amount of the sulfuric acid 3 is small, it does not stay at the bottom of the container, but adheres to the copper foil.

次に、容器1を50℃に設定した電気炉で4時間静置して、略完全に乾燥させた。残留銅箔の表面に硫酸銅が析出しているので、水250mLを入れたビーカー中で10分間撹拌しながら溶かし、Advantec社製5種Cのろ紙でろ過をして硫酸銅水溶液(2)を製造した。この時、反応に用いた銅材(銅箔)2と硫酸3のモル比(MCu/Ms)は2.12であった。 Next, the container 1 was allowed to stand still for 4 hours in an electric furnace set at 50° C. to dry substantially completely. Since copper sulfate is precipitated on the surface of the residual copper foil, dissolve it in a beaker containing 250 mL of water while stirring for 10 minutes, filter with Advantec 5 type C filter paper, and remove the copper sulfate aqueous solution (2). manufactured. At this time, the molar ratio (M Cu /M s ) of the copper material (copper foil) 2 and sulfuric acid 3 used in the reaction was 2.12.

得られた硫酸銅水溶液(2)は硫酸銅の濃度が23.3重量%、pHが1.42、モル比(MCuP)/(MSP)が0.987であり、ほとんどフリー硫酸のない硫酸銅溶液であった。
(実施例3)
硫酸銅水溶液(3)の製造
PP製の容器1(形状:角形、サイズ:167mm×117mm×36mm)に最大片が2mm以下に粉砕した銅箔65gと濃度65重量%の硫酸50mLを投入した。この時、硫酸3の液量は少ないので容器底には溜まらず、銅箔に付着している状態である。
The copper sulfate aqueous solution (2) thus obtained had a copper sulfate concentration of 23.3% by weight, a pH of 1.42, a molar ratio (M CuP )/(M SP ) of 0.987, and almost no free sulfuric acid. It was a copper sulfate solution.
(Example 3)
Production of copper sulfate aqueous solution (3)
In a PP container 1 (shape: square, size: 167 mm x 117 mm x 36 mm), 65 g of copper foil pulverized to a maximum piece of 2 mm or less and 50 mL of sulfuric acid having a concentration of 65% by weight were put. At this time, since the amount of the sulfuric acid 3 is small, it does not stay at the bottom of the container, but adheres to the copper foil.

次に、容器1を100℃に設定した電気炉で4時間静置して、略完全に乾燥させた。残留銅箔の表面に硫酸銅が析出しているので、水500mLを入れたビーカー中で10分間撹拌しながら溶かし、Advantec社製5種Cのろ紙でろ過をして硫酸銅水溶液(3)を製造した。この時、反応に用いた銅材(銅箔)2と硫酸3のモル比(MCu/Ms)は2.09であった。 Next, the container 1 was allowed to stand in an electric furnace set at 100° C. for 4 hours to dry substantially completely. Since copper sulfate is precipitated on the surface of the residual copper foil, dissolve it in a beaker containing 500 mL of water while stirring for 10 minutes, filter with Advantec 5 type C filter paper, and remove the copper sulfate aqueous solution (3). manufactured. At this time, the molar ratio (M Cu /M s ) of the copper material (copper foil) 2 and sulfuric acid 3 used in the reaction was 2.09.

得られた硫酸銅水溶液(3)は硫酸銅の濃度が22.9重量%、pHが1.94、モル比(MCuP)/(MSP)が0.972であり、ほとんどフリー硫酸のない硫酸銅溶液であった。
(実施例4)
硫酸銅水溶液(4)の製造
容器1としての磁性蒸発皿(形状:平皿、サイズ:φ15mm×41mm)に最大片2mm以下に粉砕した銅箔30gと濃度65重量%の硫酸25mLを投入した。この時、硫酸3の液量は少ないので容器底には溜まらず、銅箔に付着している状態である。
The resulting copper sulfate aqueous solution (3) has a copper sulfate concentration of 22.9% by weight, a pH of 1.94, a molar ratio (M CuP )/(M SP ) of 0.972, and almost no free sulfuric acid. It was a copper sulfate solution.
(Example 4)
Production of copper sulfate aqueous solution (4)
Into a magnetic evaporating dish (shape: flat plate, size: φ15 mm×41 mm) as the container 1, 30 g of copper foil pulverized to a maximum piece of 2 mm or less and 25 mL of sulfuric acid having a concentration of 65% by weight were put. At this time, since the amount of the sulfuric acid 3 is small, it does not stay at the bottom of the container, but adheres to the copper foil.

次に、容器1を40℃に設定した電気炉で8時間静置して、略完全に乾燥させた。残留銅箔の表面に硫酸銅が析出しているので、水250mLを入れたビーカー中で10分間撹拌しながら溶かし、Advantec社製5種Cのろ紙でろ過をして硫酸銅水溶液(4)を製造した。この時、反応に用いた銅材(銅箔)2と硫酸3のモル比(MCu/Ms)は2.12であった。 Next, the container 1 was allowed to stand in an electric furnace set at 40° C. for 8 hours to dry substantially completely. Since copper sulfate is precipitated on the surface of the residual copper foil, dissolve it in a beaker containing 250 mL of water while stirring for 10 minutes, filter with Advantec 5 type C filter paper, and remove the copper sulfate aqueous solution (4). manufactured. At this time, the molar ratio (M Cu /M s ) of the copper material (copper foil) 2 and sulfuric acid 3 used in the reaction was 2.12.

得られた硫酸銅水溶液(4)は硫酸銅の濃度が23.0重量%、pHが1.43、モル比(MCuP)/(MSP)が0.989であり、ほとんどフリー硫酸のない硫酸銅溶液であった。
(実施例5)
硫酸銅水溶液(5)の製造
PP製の容器1(形状:角形、サイズ:195mm×133mm×40mm)に最大片2mm以下に粉砕した銅箔40gと濃度10重量%の硫酸200mLを投入した。この時、銅箔は液に完全に浸かっている状態である。
The resulting copper sulfate aqueous solution (4) had a copper sulfate concentration of 23.0% by weight, a pH of 1.43, a molar ratio (M CuP )/(M SP ) of 0.989, and almost no free sulfuric acid. It was a copper sulfate solution.
(Example 5)
Production of copper sulfate aqueous solution (5)
In a PP container 1 (shape: square, size: 195 mm x 133 mm x 40 mm), 40 g of copper foil pulverized to a maximum piece of 2 mm or less and 200 mL of sulfuric acid having a concentration of 10% by weight were put. At this time, the copper foil is completely immersed in the liquid.

次に、容器1を100℃に設定した乾燥機で16時間静置して、略完全に乾燥させた。残留銅箔の表面に硫酸銅が析出しているので、水160mLを入れたビーカー中で10分間撹拌しながら溶かし、Advantec社製5種Cのろ紙でろ過をして硫酸銅水溶液(5)を製造した。この時、反応に用いた銅材(銅箔)2と硫酸3のモル比(MCu/Ms)は3.23であった。 Next, the container 1 was allowed to stand still for 16 hours in a dryer set at 100° C. to dry substantially completely. Since copper sulfate is precipitated on the surface of the residual copper foil, dissolve it in a beaker containing 160 mL of water while stirring for 10 minutes, filter with Advantec 5-C filter paper, and remove the copper sulfate aqueous solution (5). manufactured. At this time, the molar ratio (M Cu /M s ) of the copper material (copper foil) 2 and sulfuric acid 3 used in the reaction was 3.23.

得られた硫酸銅水溶液(5)は硫酸銅の濃度が28.7重量%、pHが2.50、モル比(MCuP)/(MSP)が0.991であり、ほとんどフリー硫酸のない硫酸銅溶液であった。
(実施例6)
硫酸銅水溶液(6)の製造
容器1としてのガラス製の500mLビーカー(PYREX社製、外径×高さ:90×124mm)に最大片2mm以下に粉砕した銅箔30gと濃度65重量%の硫酸25mLを投入した。この時、硫酸3の液量は少ないので容器底には溜まらず、銅箔に付着している状態である。
The resulting copper sulfate aqueous solution (5) has a copper sulfate concentration of 28.7% by weight, a pH of 2.50, a molar ratio (M CuP )/(M SP ) of 0.991, and almost no free sulfuric acid. It was a copper sulfate solution.
(Example 6)
Production of copper sulfate aqueous solution (6)
Into a 500 mL glass beaker (manufactured by PYREX, outer diameter x height: 90 x 124 mm) as a container 1, 30 g of copper foil pulverized to a maximum piece of 2 mm or less and 25 mL of sulfuric acid having a concentration of 65% by weight were added. At this time, since the amount of the sulfuric acid 3 is small, it does not stay at the bottom of the container, but adheres to the copper foil.

次に、容器1を100℃に設定した乾燥機で16時間静置して、略完全に乾燥させた。残留銅箔の表面に硫酸銅が析出しているので、水200mLを入れたビーカー中で10分間撹拌しながら溶かし、Advantec社製5種Cのろ紙でろ過をして硫酸銅水溶液(6)を製造した。この時、反応に用いた銅材(銅箔)2と硫酸3のモル比(MCu/Ms)は2.12であった。 Next, the container 1 was allowed to stand still for 16 hours in a dryer set at 100° C. to dry substantially completely. Since copper sulfate is deposited on the surface of the residual copper foil, dissolve it in a beaker containing 200 mL of water while stirring for 10 minutes, filter with Advantec 5 type C filter paper, and remove the copper sulfate aqueous solution (6). manufactured. At this time, the molar ratio (M Cu /M s ) of the copper material (copper foil) 2 and sulfuric acid 3 used in the reaction was 2.12.

得られた硫酸銅水溶液(6)は硫酸銅の濃度が26.0重量%、pHが1.41、モル比(MCuP)/(MSP)が0.974であり、フリー硫酸の少ない硫酸銅溶液を得ることができた。
(実施例7)
硫酸銅水溶液(7)の製造
PP製の容器1(形状:角形、サイズ:195mm×133mm×40mm)に最大片2mm以下に粉砕した銅箔22gと濃度10重量%の硫酸200mLを投入した。この時、銅箔は液に完全に浸かっている状態である。
The resulting copper sulfate aqueous solution (6) had a copper sulfate concentration of 26.0% by weight, a pH of 1.41, a molar ratio (M CuP )/(M SP ) of 0.974, and a sulfuric acid solution containing little free sulfuric acid. A copper solution was obtained.
(Example 7)
Production of copper sulfate aqueous solution (7)
Into a PP container 1 (shape: square, size: 195 mm×133 mm×40 mm), 22 g of copper foil pulverized to a maximum piece of 2 mm or less and 200 mL of sulfuric acid having a concentration of 10% by weight were put. At this time, the copper foil is completely immersed in the liquid.

次に、容器1を100℃に設定した乾燥機で16時間静置して、略完全に乾燥させた。残留銅箔の表面に硫酸銅が析出しているので、水160mLを入れたビーカー中で10分間撹拌しながら溶かし、Advantec社製5種Cのろ紙でろ過をして硫酸銅水溶液(7)を製造した。この時、反応に用いた銅材(銅箔)2と硫酸3のモル比(MCu/Ms)は1.78であった。 Next, the container 1 was allowed to stand still for 16 hours in a dryer set at 100° C. to dry substantially completely. Since copper sulfate is precipitated on the surface of the residual copper foil, dissolve it in a beaker containing 160 mL of water while stirring for 10 minutes, filter with Advantec 5 type C filter paper, and remove the copper sulfate aqueous solution (7). manufactured. At this time, the molar ratio (M Cu /M s ) of the copper material (copper foil) 2 and the sulfuric acid 3 used in the reaction was 1.78.

得られた硫酸銅水溶液(7)は硫酸銅の濃度が26重量%、pHが0.92、モル比(MCuP)/(MSP)が0.897であり、少しフリー硫酸が残っていたが、硫酸銅溶液を得ることができた。 The resulting copper sulfate aqueous solution (7) had a copper sulfate concentration of 26% by weight, a pH of 0.92, a molar ratio (M CuP )/(M SP ) of 0.897, and a small amount of free sulfuric acid remained. However, a copper sulfate solution could be obtained.

1 容器
2 銅材
3 硫酸
1 container 2 copper material 3 sulfuric acid

Claims (6)

容器に投入された銅材と硫酸を、酸素を含む雰囲気下で加熱して、銅材のモル数(MCu)と硫酸のモル数(Ms)とのモル比(MCu)/(Ms)が1を超えるよう反応させ、略完全に乾燥させたのち、生成された硫酸銅を、水を加えて溶解させ、残留銅材と固液分離することを特徴とする、硫酸銅水溶液の製造方法。 The copper material and sulfuric acid put into the container are heated in an atmosphere containing oxygen, and the molar ratio (M Cu ) / (M After reacting so that s ) exceeds 1 and drying almost completely, water is added to dissolve the generated copper sulfate, and solid-liquid separation is performed from the residual copper material. Production method. 前記銅材のモル数(MCu)と前記硫酸のモル数(MS)とのモル比(MCu)/(MS)が2以上であることを特徴とする請求項1に記載の硫酸銅水溶液の製造方法。 2. The sulfuric acid according to claim 1, wherein the molar ratio (M Cu )/(M S ) of the number of moles (M Cu ) of the copper material and the number of moles (M S ) of the sulfuric acid is 2 or more. A method for producing an aqueous copper solution. 前記硫酸の濃度が10~70重量%の範囲にあることを特徴とする請求項1または2に記載の硫酸銅水溶液の製造方法。 3. The method for producing an aqueous copper sulfate solution according to claim 1, wherein the concentration of said sulfuric acid is in the range of 10 to 70% by weight. 酸素を含む雰囲気下での加熱が温度40~280℃の範囲で行われることを特徴とする請求項1~3のいずれかに記載の硫酸銅水溶液の製造方法。 4. The method for producing an aqueous copper sulfate solution according to any one of claims 1 to 3, wherein the heating is performed at a temperature of 40 to 280°C in an atmosphere containing oxygen. 前記銅材は、片状、粒状、粉状、チップ状のうちの少なくともいずれかの形態の多数の分割体によって構成されている請求項1~4のいずれかに記載の硫酸銅水溶液の製造方法。 The method for producing an aqueous copper sulfate solution according to any one of claims 1 to 4, wherein the copper material is composed of a large number of divided bodies in at least one of the form of flakes, granules, powder and chips. . 得られる硫酸銅水溶液の銅のモル数(MCuP)と硫酸のモル数(MSP)とのモル比(MCuP)/(MSP) が0.93~1.00の範囲にあり、前記硫酸銅の濃度が1~50重量%の範囲にあることを特徴とする請求項1~5のいずれかに記載の硫酸銅水溶液の製造方法。 The molar ratio (M CuP )/(M SP ) between the number of moles of copper (M CuP ) and the number of moles of sulfuric acid (M SP ) in the copper sulfate aqueous solution obtained is in the range of 0.93 to 1.00, and the The method for producing an aqueous copper sulfate solution according to any one of claims 1 to 5, wherein the concentration of copper sulfate is in the range of 1 to 50% by weight.
JP2021004847A 2021-01-15 2021-01-15 Method for producing an aqueous solution of copper sulfate Active JP6872833B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021004847A JP6872833B1 (en) 2021-01-15 2021-01-15 Method for producing an aqueous solution of copper sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021004847A JP6872833B1 (en) 2021-01-15 2021-01-15 Method for producing an aqueous solution of copper sulfate

Publications (2)

Publication Number Publication Date
JP6872833B1 JP6872833B1 (en) 2021-05-19
JP2022109497A true JP2022109497A (en) 2022-07-28

Family

ID=75896335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021004847A Active JP6872833B1 (en) 2021-01-15 2021-01-15 Method for producing an aqueous solution of copper sulfate

Country Status (1)

Country Link
JP (1) JP6872833B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262523A (en) * 1992-03-17 1993-10-12 Sumitomo Metal Mining Co Ltd Production of copper sulfate solution
JP2011032126A (en) * 2009-07-31 2011-02-17 Jgc Catalysts & Chemicals Ltd Method for producing aqueous copper sulfate solution
JP2018188348A (en) * 2017-04-28 2018-11-29 Jx金属株式会社 Copper sulfate, copper sulfate solution, plating solution, manufacturing method of copper sulfate, manufacturing method of semiconductor circuit board, and manufacturing method of electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262523A (en) * 1992-03-17 1993-10-12 Sumitomo Metal Mining Co Ltd Production of copper sulfate solution
JP2011032126A (en) * 2009-07-31 2011-02-17 Jgc Catalysts & Chemicals Ltd Method for producing aqueous copper sulfate solution
JP2018188348A (en) * 2017-04-28 2018-11-29 Jx金属株式会社 Copper sulfate, copper sulfate solution, plating solution, manufacturing method of copper sulfate, manufacturing method of semiconductor circuit board, and manufacturing method of electronic device

Also Published As

Publication number Publication date
JP6872833B1 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
El-Nasr et al. Environmentally friendly synthesis of copper nanoparticles from waste printed circuit boards
EP2067748B1 (en) Process for producing iron arsenide compound with good crystallinity
JP2022542879A (en) Method for recovering lithium and other metals from waste ion batteries
US11390529B2 (en) Method for the manufacture of reduced graphene oxide from Kish graphite
Lee et al. Metallurgical process for total recovery of all constituent metals from copper anode slimes: a review of established technologies and current progress
Gautam et al. High added-value materials recovery using electronic scrap-transforming waste to valuable products
US3201223A (en) Method of preparation of silver powder having a protective gum coating
CN104843770A (en) Method of resource utilization of tin sludge
Li et al. Efficient cleaning extraction of silver from spent symbiosis lead-zinc mine assisted by ultrasound in sodium thiosulfate system
JP2022109497A (en) Method for producing aqueous solution of copper sulfate
JP5156224B2 (en) Manufacturing method of iron arsenic compounds
JP6874492B2 (en) Method of separating copper or zinc from the leaching object
US4936909A (en) Process for producing fine particulate metals
JPS6299406A (en) Production of copper powder
JPS61261202A (en) Manufacture of metal sulfide
US2870000A (en) Finely divided metal-containing substances and process for the preparation thereof
JP2020001996A (en) Method for producing nickel sulfate compound
Soare et al. Innovative approach for the valorization of useful metals from waste electric and electronic equipment (WEEE)
KR102508852B1 (en) Method for manufacturing tantalum chloride
CN100408234C (en) Production of cuprous oxide powder and bronze powder using sulfur dioxide reduction method
CN113753969A (en) Preparation method of spherical cobalt carbonate particles with superfine particle size
US4323390A (en) Process for converting brass scrap to copper powder
WO2014087707A1 (en) Copper (ii) oxide fine powder and method for producing same
CN110331282A (en) A kind of zinc hydrometallurgy leachate circulation cuprous ion dechlorination technique
Zheng et al. New Progresses in Efficient, Selective, and Environmentally Friendly Recovery of Valuable Metal from e‐Waste and Industrial Catalysts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210115

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210413

R150 Certificate of patent or registration of utility model

Ref document number: 6872833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250