JP2022108208A - Mirror design method and astigmatism control mirror including reflection surface in which design formula in the design method is established - Google Patents

Mirror design method and astigmatism control mirror including reflection surface in which design formula in the design method is established Download PDF

Info

Publication number
JP2022108208A
JP2022108208A JP2021003117A JP2021003117A JP2022108208A JP 2022108208 A JP2022108208 A JP 2022108208A JP 2021003117 A JP2021003117 A JP 2021003117A JP 2021003117 A JP2021003117 A JP 2021003117A JP 2022108208 A JP2022108208 A JP 2022108208A
Authority
JP
Japan
Prior art keywords
point
axis direction
light source
intersection
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021003117A
Other languages
Japanese (ja)
Inventor
陽子 竹尾
Yoko Takeo
秀和 三村
Hidekazu Mimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2021003117A priority Critical patent/JP2022108208A/en
Publication of JP2022108208A publication Critical patent/JP2022108208A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

To manufacture a single mirror that allows free conversion of astigmatism by individually setting a light source position and a condensation position in the vertical direction and the horizontal direction, can be applied to a beam in an X-ray region by further reducing the condensation size, and can be suitably used as an optical system that deals with a beam with different characteristics in the vertical direction and the horizontal direction, and to provide a design method.SOLUTION: In a method for designing a mirror, an arbitrary point on a reflection surface is taken as M; the coordinates of the intersection of a first light source ray and an incident ray on the M point and the intersection of a second light source ray and the incident ray on the M point are represented by using L1x, L1y; the coordinates of the intersection of an emission ray from the M point and a first condensed ray and the intersection of the emission ray from the M point and a second condensed ray are represented by using L2x, L2y; and a design formula of the reflection surface is used which is derived based on these coordinates and the fact that a light path length from a light source position to a condensation position is constant in regard to arbitrary points on the reflection surface for an x-axis direction and a y-axis direction.SELECTED DRAWING: Figure 1

Description

本発明は、基材の中空内周面または外周面に反射面を形成して作製されるミラーの設計方法、および該設計方法における設計式が成り立つ反射面を備えた非点収差制御ミラーに関する。 The present invention relates to a method of designing a mirror manufactured by forming a reflecting surface on a hollow inner peripheral surface or an outer peripheral surface of a base material, and an astigmatism control mirror having a reflecting surface that satisfies the design formula in the designing method.

放射光軟X線ビームは、鉛直方向と水平方向とで特性が異なるという特徴がある。ビームサイズは、水平方向に比べて鉛直方向が小さくなる傾向にある。コヒーレント幅は、水平方向に比べて鉛直方向が大きくなる。さらに、軟X線ビームラインに広く普及している回折格子を用いた分光システムでは、ビームの鉛直方向の発散角が増大してしまう。また、使用される回折格子を含む分光器は、分光方向にのみ軟X線を集光させるため、光源位置が分光方向と集光させない方向とで異なる「非点収差」が生じる。 Synchrotron soft X-ray beams are characterized by different characteristics in the vertical direction and in the horizontal direction. The beam size tends to be smaller in the vertical direction than in the horizontal direction. The coherence width is larger in the vertical direction than in the horizontal direction. Furthermore, spectroscopy systems using diffraction gratings, which are prevalent in soft X-ray beamlines, increase the vertical divergence angle of the beam. In addition, since the spectroscope including the diffraction grating used condenses soft X-rays only in the spectroscopic direction, different "astigmatism" occurs between the light source position in the spectroscopic direction and the non-condensed direction.

従来、このような鉛直方向と水平方向とで特性の異なるビームを取り扱う光学系の手法としては、たとえば鉛直方向・水平方向の各方向を扱う2枚のミラーを配置した二段階集光光学系とし、鉛直方向と水平方向とで光源点を独立に設定して集光点を一致させる手法が用いられている。具体的には、2枚の楕円筒ミラーを鉛直・水平に配置する手法や、2枚のベントミラー(機械曲げ円筒ミラー)を配置することで近似形状を成立させる手法、ベントミラーとサジタルシリンダーミラーの2枚をいずれも水平方向に対向して配置する手法などが知られている。しかしながら、このような2枚のミラーを組み合わせる手法の場合、機構が複雑になるうえ、チャンバーが増えるのでコストアップとなり、調整も難しくなる。 Conventionally, as a technique for an optical system that handles beams with different characteristics in the vertical direction and the horizontal direction, for example, a two-stage condensing optical system with two mirrors that handle each direction in the vertical direction and the horizontal direction is used. , a technique is used in which the light source points are set independently in the vertical direction and the horizontal direction, and the condensing points are matched. Specifically, two elliptical cylinder mirrors are arranged vertically and horizontally, two bent mirrors (mechanically bent cylindrical mirrors) are arranged to establish an approximate shape, and a bent mirror and a sagittal cylinder mirror are used. is known as a method of arranging two sheets of . However, in the case of such a method of combining two mirrors, the mechanism becomes complicated, and the number of chambers increases, resulting in an increase in cost and difficulty in adjustment.

単一のミラーによって非点収差を除去できる可能性のあるものとしては、トロイダルミラーがある(非特許文献1)。しかしながら、トロイダルミラーは、既存の回転楕円ミラーを近似し、反射面の長手方向、短手方向それぞれに一様な曲率半径を設定することで作製を容易にしたミラーであり、非点収差を除去できたとしても、原理的に集光サイズが増大してしまうという欠点がある。 A toroidal mirror is one of the possibilities for eliminating astigmatism with a single mirror (Non-Patent Document 1). However, the toroidal mirror is an approximation of the existing spheroidal mirror, and it is a mirror that is easy to manufacture by setting a uniform radius of curvature in each of the longitudinal and lateral directions of the reflecting surface, eliminating astigmatism. Even if it can be done, there is a drawback that the focused light size increases in principle.

トロイダルミラーよりも集光サイズを小さくでき、かつ鉛直・水平で独立した光源・集光点を設定可能なミラーとして、Astigmatic off-axis mirror(AOミラー)も提案されている(非特許文献2)。このミラーは、一点から発散するビームを別の点に集光させるためには楕円曲線を、一点から発散するビームを平行化するためには放物線を、一点に向かって集光するビームを別の点に向かって集光するビームに変換するためには双曲線を、それぞれ反射面の稜線として適用するとの原則のもと、長手方向と短手方向で異なる円錐曲線を設定し,それらを滑らかにつなぐ曲面を求める形状としたものである。 An astigmatic off-axis mirror (AO mirror) has also been proposed as a mirror that can make the light collection size smaller than a toroidal mirror and that can set independent vertical and horizontal light sources and light collection points (Non-Patent Document 2). . This mirror has an elliptic curve to focus a beam diverging from one point to another point, a parabola to collimate a beam diverging from one point, and a different beam to another point. Based on the principle that each hyperbola is applied as the ridgeline of the reflecting surface in order to convert it into a beam condensing toward a point, different conic curves are set in the longitudinal direction and the lateral direction, and they are smoothly connected. It has a shape that requires a curved surface.

しかし、このAOミラーは、曲面を得るために長手方向の円錐曲線プロファイルを短手方向の円錐曲線の焦点を結ぶ直線(長軸)を中心に回転させることで定義されるミラーであり、反射面を軸対称形状に近似していることから、当該近似に起因して集光サイズの抑制に限界が生じる。波長の長いテラヘルツ領域のビームであれば問題ないが、X線領域のビームには対応できない。また、設計式が座標変換を数回含むなど、非常に複雑であり、パラメータも複雑で理解しにくく使いにくい。 However, this AO mirror is a mirror defined by rotating the longitudinal conic profile about a straight line (major axis) connecting the focal points of the transverse conic sections to obtain a curved surface. is approximated to an axially symmetrical shape, there is a limit to the suppression of the focused light size due to the approximation. There is no problem with long-wavelength beams in the terahertz region, but they cannot be used with beams in the X-ray region. In addition, the design formula is extremely complicated, including several coordinate transformations, and the parameters are also complex, difficult to understand, and difficult to use.

William A.Rense,T.Violett,「Method of Increasing the Speed of a Grazing-Incidence Spectrograph」,JOURNAL OF THE OPTICAL SOCIETY OF AMERICA,Vol.49,No2,1959年2月,p139-p141William A. Rense, T. Violett, "Method of Increasing the Speed of a Grazing-Incidence Spectrograph", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, Vol.49, No.2, February 1959, p139-p141 A. Wagner-Gentner , U.U. Graf, M. Philipp, D. Rabanus、「A simple method to design astigmatic off-axis mirrors」、Infrared Physics & Technology 50、 2007年、p42-p46A. Wagner-Gentner, U.U. Graf, M. Philipp, D. Rabanus, "A simple method to design astigmatic off-axis mirrors", Infrared Physics & Technology 50, 2007, p42-p46

そこで、本発明が前述の状況に鑑み、解決しようとするところは、単一のミラーであって、鉛直方向と水平方向とで独立して光源位置及び集光位置を設定でき、これにより非点収差の自由な変換が可能であり、また、集光サイズをより小さく抑えてX線領域のビームにも対応することができ、設計式も単純で、応用の幅も広く、鉛直方向と水平方向とで特性が異なるビームを取り扱う光学系として好適に用いることができるミラーを作製できる、ミラーの設計方法を提供する点にある。 Therefore, in view of the above-mentioned situation, the present invention aims to solve the problem by using a single mirror that can set the light source position and the light condensing position independently in the vertical direction and the horizontal direction. Aberrations can be freely converted, and the size of the focused beam can be kept smaller to support beams in the X-ray region. The design formula is simple, and the range of applications is wide. Vertical and horizontal directions are possible. The object of the present invention is to provide a method of designing a mirror that can fabricate a mirror that can be suitably used as an optical system that handles beams with different characteristics.

本発明者は、かかる現況に鑑み、鋭意検討した結果、非点収差をもつビームの性質を幾何光学的に表現する方法として、鉛直方向と水平方向とでそれぞれ「光源線」および「集光線」を新たに定義し、ミラーの反射面を経由するすべての入射光線は鉛直方向および水平方向の各「光源線」を通り、ミラーの反射面から放たれるすべての出射光線が鉛直方向および水平方向の「集光線」を通るとし、これに光源位置から集光位置までの「光路長」が一定であるFermatの原理を適用することで、上記課題を解決できるミラーの設計方法を提供できることを見出し、本発明を完成するに至った。 In view of the current situation, the present inventors have made intensive studies and found that as a method of geometrically expressing the properties of a beam with astigmatism, a "light source line" and a "condensed line" are used in the vertical and horizontal directions, respectively. , all incident rays passing through the reflective surface of the mirror pass through vertical and horizontal "source rays", and all outgoing rays emitted from the reflective surface of the mirror pass through the vertical and horizontal By applying Fermat's principle that the "optical path length" from the light source position to the condensed position is constant, it is possible to provide a mirror design method that can solve the above problems. , have completed the present invention.

すなわち本発明は、以下の発明を包含する。
(1) 基材の中空内周面または外周面に反射面を形成して作製されるミラーの設計方法であって、前記基材の前記内周面または外周面の中心軸をz軸、これに直交する断面をxy平面とし、入射ビームが、z軸上所定位置からz軸方向に沿ってL1x変位した位置に、x軸方向の光源をもち、かつ前記z軸上所定位置からz軸方向に沿ってL1y変位した位置に、y軸方向の光源をもち、出射ビームが、x軸方向について前記z軸上所定位置からz軸方向に沿ってL2x変位した位置に集光し、かつy軸方向について前記z軸上所定位置からz軸方向に沿ってL2y変位した位置に集光し、ミラーを経由するすべての入射光線が、x軸方向における前記光源の位置を通り該x軸方向とz軸方向の双方に直交する方向に延びる第1の光源線、及びy軸方向における前記光源の位置を通り該y軸方向とz軸方向の双方に直交する方向に延びる第2の光源線を通過し、ミラーから放たれるすべての出射光線が、x軸方向における前記集光する位置を通り該x軸方向とz軸方向の双方に直交する方向に延びる第1の集光線、及びy軸方向における前記集光する位置を通り該y軸方向とz軸方向の双方に直交する方向に延びる第2の集光線を通過するとし、ミラーの反射面上の任意の点をMとして、第1の光源線とM点への入射光線との交点、及び第2の光源線とM点への入射光線との交点の各座標を、前記L1x、L1yを用いて表わし、且つ、前記M点からの出射光線と第1の集光線との交点、及びM点からの出射光線と第2の集光線との交点の各座標を、前記L2x、L2yを用いて表わし、これら座標、及び前記x軸方向及び前記y軸方向についてそれぞれ反射面上の任意の点に関して光源位置から集光位置までの光路長が一定であること、に基づき導かれる反射面の設計式を用いてミラーを設計することを特徴とする、ミラーの設計方法。
That is, the present invention includes the following inventions.
(1) A method for designing a mirror manufactured by forming a reflecting surface on a hollow inner peripheral surface or an outer peripheral surface of a base material, wherein the central axis of the inner peripheral surface or the outer peripheral surface of the base material is the z-axis. , the incident beam has a light source in the x-axis direction at a position displaced L 1x along the z-axis direction from a predetermined position on the z-axis, and a light source in the x-axis direction from the predetermined position on the z-axis to the z-axis having a light source in the y-axis direction at a position displaced L 1y along the direction, and the emitted beam is condensed at a position displaced L 2x along the z-axis direction from the predetermined position on the z-axis in the x-axis direction; In addition, all the incident light rays that are condensed in the y-axis direction from the predetermined position on the z-axis to a position displaced by L 2y along the z-axis direction and pass through the mirrors pass through the position of the light source in the x-axis direction and the x A first light source line extending in a direction orthogonal to both the axial direction and the z-axis direction, and a second light source line extending in a direction orthogonal to both the y-axis direction and the z-axis direction through the position of the light source in the y-axis direction. a first converging ray in which all the output rays that pass through the light source line and are emitted from the mirror extend in a direction orthogonal to both the x-axis direction and the z-axis direction through the converging position in the x-axis direction; M , the coordinates of the intersection of the first light source line and the light ray incident on the point M, and the coordinates of the intersection of the second light source line and the light ray incident on the point M, using the L 1x and L 1y , and , the coordinates of the intersection of the outgoing light beam from the point M and the first condensed light beam, and the coordinates of the intersection point of the outgoing light beam from the point M and the second condensed light beam using the L 2x and L 2y , Using a reflecting surface design formula derived based on these coordinates and the fact that the optical path length from the light source position to the condensing position is constant with respect to any point on the reflecting surface in the x-axis direction and the y-axis direction. A method of designing a mirror, characterized in that the mirror is designed by

(2) 前記第1の光源線、前記第2の光源線を、それぞれy軸方向に延びる直線S、x軸方向に延びる直線Sとし、前記第1の集光線、前記第2の集光線を、それぞれy軸方向に延びる直線F、x軸方向に延びる直線Fとし、前記x軸方向の光源位置からM点までの入射長は、前記第2の光源線Sとz軸との交点Py0を中心とし且つ第1の光源線Sとz軸との交点Px0を通ってx軸に直交する方向に延びる円弧を、第1の光源線Sを軸に回転させた回転円弧面を等位相面A1xとして、前記入射光線と該等位相面A1xとの2つの交点のうち第2の光源線Sに近い側の交点からM点までの距離として求め、M点から前記x軸方向の集光位置までの出射長は、前記第2の集光線Fとz軸との交点Qy0を中心とし且つ第1の集光線Fとz軸との交点Qx0を通ってx軸に直交する方向に延びる円弧を、第1の集光線Fを軸に回転させた回転円弧面を等位相面A2xとして、前記出射光線と該等位相面A2xとの2つの交点のうち第2の集光線Fに近い側の交点からM点までの距離として求め、前記y軸方向の光源位置からM点までの入射長は、前記第1の光源線Sとz軸との交点Px0を中心とし且つ第2の光源線Sとz軸との交点Py0を通ってy軸に直交する方向に延びる円弧を、第2の光源線Sを軸に回転させた回転円弧面を等位相面A1yとして、前記入射光線と該等位相面A1yとの2つの交点のうち第1の光源線Sに近い側の交点からM点までの距離として求め、M点から前記y軸方向の集光位置までの出射長は、前記第1の集光線Fとz軸との交点Qx0を中心とし且つ第2の光源線Fとz軸との交点Qy0を通ってy軸に直交する方向に延びる円弧を、第2の集光線Fを軸に回転させた回転円弧面を等位相面A2yとして、前記出射光線と該等位相面A2yとの2つの交点のうち第1の集光線Fに近い側の交点からM点までの距離として求め、これにより前記x軸方向及びy軸方向のそれぞれの集光に関して入射長と出射長の和である光路長を算出してなる、(1)記載のミラーの設計方法。 (2) A straight line S x extending in the y -axis direction and a straight line Sy extending in the x-axis direction are used as the first light source line and the second light source line, respectively, and the first converging line and the second converging line Let the light rays be a straight line F x extending in the y -axis direction and a straight line F y extending in the x-axis direction. and extending in a direction orthogonal to the x -axis through the intersection point Px0 of the first light source line S x and the z-axis is rotated about the first light source line S x as an axis. With the arc surface of rotation as the equal phase surface A 1x , the distance from the two intersections of the incident light beam and the equal phase surface A 1x on the side closer to the second light source line Sy to the point M, The emission length from the point M to the condensed position in the x -axis direction is centered on the intersection Qy0 of the second condensed light Fy and the z -axis and the intersection of the first condensed light Fx and the z-axis. A circular arc passing through Q x0 and extending in a direction perpendicular to the x -axis is rotated about the first condensed ray F x as an arc plane A 2x . The distance from the point of intersection on the side closer to the second condensed ray F y out of the two points of intersection with to the M point, and the incident length from the light source position in the y-axis direction to the M point is the first light source line The second light source line Sy is the equiphase surface A1y , which is rotated around the axis, and from two intersections of the incident light beam and the equiphase surface A1y , the intersection on the side closer to the first light source line Sx to point M and the emission length from the point M to the condensed position in the y-axis direction is centered on the intersection point Qx0 between the first condensed light Fx and the z -axis, and the second light source line Fy and A circular arc extending in a direction perpendicular to the y -axis through the intersection point Qy0 with the z-axis is rotated around the second condensed light beam Fy as an equiphase plane A2y , and the emitted light beam and the It is obtained as the distance from the two intersections with the equiphase surface A 2y that is closer to the first condensed ray F x to the point M, and the incident The method of designing a mirror according to (1), wherein the optical path length is calculated as the sum of the length and the exit length.

(3) 前記入射光線と等位相面A1xとの2つの交点のうち第2の光源線Sに近い側の交点からM点までの距離は、前記入射光線と前記第1の光源線Sとの交点Pから前記M点までの距離を求めるとともに、該距離に、前記交点Pから前記等位相面A1xを定義している前記円弧までの距離を加算又は減算して求め、前記出射光線と等位相面A2xとの2つの交点のうち第2の集光線Fに近い側の交点からM点までの距離は、前記出射光線と前記第1の集光線Fとの交点Qから前記M点までの距離を求めるとともに、該距離に、前記交点Qから前記等位相面A2xを定義している前記円弧までの距離を加算又は減算して求め、前記入射光線と等位相面A1yとの2つの交点のうち第1の光源線Sに近い側の交点からM点までの距離は、前記入射光線と前記第2の光源線Sとの交点Pから前記M点までの距離を求めるとともに、該距離に、前記交点Pから前記等位相面A1yを定義している前記円弧までの距離を加算又は減算して求め、前記出射光線と等位相面A2yとの2つの交点のうち第1の集光線Fに近い側の交点からM点までの距離は、前記出射光線と前記第2の集光線Fとの交点Qから前記M点までの距離を求めるとともに、該距離に、前記交点Qから前記等位相面A2yを定義している前記円弧までの距離を加算又は減算して求める、(2)記載のミラーの設計方法。 (3) The distance from the two intersections of the incident light ray and the equiphase plane A 1x on the side closer to the second light source line Sy to point M is the distance between the incident light ray and the first light source line S Obtaining the distance from the intersection point P x with x to the M point, and adding or subtracting the distance from the intersection point P x to the arc defining the equal phase plane A 1x to the distance, Of the two intersections of the output light beam and the equiphase plane A 2x , the distance from the intersection on the side closer to the second condensed ray Fy to point M is The distance from the intersection point Qx to the M point is obtained, and the distance from the intersection point Qx to the arc defining the equal phase surface A2x is obtained by adding or subtracting to the distance, and the incident ray and the equiphase surface A1y , the distance from the point of intersection closer to the first light source line Sx to the point M is the intersection point Py to the M point, and add or subtract the distance from the intersection point P y to the arc defining the equal phase surface A 1y to the distance, and obtain the same phase as the emitted ray Of the two intersections with the surface A 2y , the distance from the intersection closer to the first condensed ray Fx to the point M is the distance from the intersection Qy of the emitted ray and the second condensed ray Fy to the M The mirror design method according to (2), wherein the distance to the point is obtained, and the distance from the intersection point Qy to the arc defining the equal phase surface A2y is added or subtracted to the distance. .

(4) 前記設計式が、前記x軸方向について光源点から集光点までの光路長が一定であることから導かれる第1の式f(x,y,z)=0と、前記y軸方向について光源点から集光点までの光路長が一定であることから導かれる第2の式f(x,y,z)=0とを重みづけした、下記式からなる、(1)~(3)の何れかに記載のミラーの設計方法。 (4) The design formula is a first formula f x (x, y, z) = 0 derived from the fact that the optical path length from the light source point to the condensing point is constant in the x-axis direction, and the y (1) obtained by weighting the second formula f y (x, y, z) = 0 derived from the fact that the optical path length from the light source point to the condensing point is constant in the axial direction. A method for designing a mirror according to any one of (3).

Figure 2022108208000002
Figure 2022108208000002

(5) (1)~(4)の何れかに記載の前記設計式が成り立つ反射面を有するミラーであって、前記L1xとL1yの値が異なり、且つ前記L2xとL2yの値が一致しており、非点収差をもつ入射ビームから一点に集光する出射ビームが得られる、非点収差制御ミラー。 (5) A mirror having a reflecting surface satisfying the design formula according to any one of (1) to (4), wherein the values of L 1x and L 1y are different, and the values of L 2x and L 2y is matched to provide a converging output beam from an astigmatic input beam.

(6) (1)~(4)の何れかに記載の前記設計式が成り立つ反射面を有するミラーであって、前記L1xとL1yの値が一致し、且つ前記L2xとL2yの値が異なっており、一点から発散する入射ビームから非点収差をもつ出射ビームが得られる、非点収差制御ミラー。 (6) A mirror having a reflecting surface that satisfies the design formula according to any one of (1) to (4), wherein the values of L 1x and L 1y match, and the values of L 2x and L 2y Astigmatism control mirrors with different values to provide an astigmatic output beam from an input beam diverging from a single point.

本発明に係るミラーの設計方法によれば、単一のミラーであって、鉛直方向と水平方向とで独立して光源位置及び集光位置を設定でき、これにより非点収差の自由な変換が可能なミラーを作製できる。また、集光サイズをより小さく抑えてX線領域のビームにも対応することができる。さらに、設計式も単純で、応用の幅も広く、鉛直方向と水平方向とで特性が異なるビームを取り扱う光学系として好適に用いることができるミラーを作製できる。 According to the method of designing a mirror according to the present invention, a single mirror is used, and the light source position and the light condensing position can be set independently in the vertical direction and the horizontal direction, thereby freely converting astigmatism. possible mirrors can be made. In addition, it is possible to cope with beams in the X-ray region by suppressing the size of the focused light. Furthermore, the design formula is simple, the range of applications is wide, and a mirror can be manufactured that can be suitably used as an optical system for handling beams with different characteristics in the vertical direction and in the horizontal direction.

本発明に係るミラーの設計方向における「光源線」、「集光線」を示す概念図。FIG. 4 is a conceptual diagram showing a “light source line” and a “condensed light line” in the design direction of the mirror according to the present invention; サジタル光源線S上の交点P近傍の等位相面A1xを示す概念図。FIG. 4 is a conceptual diagram showing an equiphase plane A 1x in the vicinity of an intersection point Px on the sagittal light source line Sx . メリディオナル光源線S上の交点P近傍の等位相面A1yを示す概念図。FIG. 2 is a conceptual diagram showing an equiphase surface A 1y near an intersection point P y on a meridional light source line Sy ; 基材の中空内周面または外周面に反射面が形成されたミラーの模式図。FIG. 3 is a schematic diagram of a mirror in which a reflecting surface is formed on the hollow inner peripheral surface or the outer peripheral surface of a base material; 円錐曲線を稜線として持つ回転体ミラーを用いてビームを集光する例を示す図。FIG. 4 is a diagram showing an example of condensing a beam using a rotator mirror having a conic curve as a ridgeline; 円錐曲線を稜線として持つ回転体ミラーを用いてビームを拡散する例を示す図。FIG. 4 is a diagram showing an example of diffusing a beam using a rotating body mirror having a conic curve as a ridgeline; 幾何光学に基づく光線追跡計算方法を説明する説明図。Explanatory drawing explaining the ray tracing calculation method based on geometric optics. 波動光学に基づく回折積分計算方法を説明する説明図。Explanatory drawing explaining the diffraction integral calculation method based on wave optics. 実施例1のミラーの光学系配置を示す模式図。4 is a schematic diagram showing the optical system arrangement of the mirror of Example 1. FIG. 実施例1の反射面の半径分布を示し、(a)は縦軸をz座標、横軸をφ座標に設定したときの半径r(z,φ)の二次元分布、(b)は(a)中において一点鎖線で示したφ=0°(z軸方向(長手方向))の反射面の半径プロファイル、(c)は(a)中の破線で表したz=0(周方向)における反射面の半径プロファイルを示す図。Shows the radius distribution of the reflecting surface of Example 1, (a) is a two-dimensional distribution of the radius r (z, φ) when the vertical axis is set to the z coordinate and the horizontal axis is set to the φ coordinate, (b) is (a ), the radial profile of the reflective surface at φ = 0° (z-axis direction (longitudinal direction)) indicated by a dashed line in (c) is the reflection at z = 0 (circumferential direction) indicated by a dashed line in (a) Fig. 3 shows a radial profile of a face; 実施例1の集光性能のシミュレーション結果を示し、(a)は幾何光学に基づいて集光面における光線のばらつきを計算した結果、(b)は波動光学に基づいて計算された集光面における二次元強度分布を示す図。Shows the simulation results of the light collection performance of Example 1, (a) is the result of calculating the variation of light rays on the light collection surface based on geometric optics, and (b) is the result on the light collection surface calculated based on wave optics. The figure which shows two-dimensional intensity distribution. 実施例2のミラーの光学系配置を示す模式図。FIG. 8 is a schematic diagram showing the optical system arrangement of the mirrors of Example 2; 実施例2の反射面の半径分布を示し、(a)は縦軸をz座標、横軸をφ座標に設定したときの半径r(z,φ)の二次元分布、(b)は(a)中において一点鎖線で示したφ=0°(z軸方向(長手方向))の反射面の半径プロファイル、(c)は(a)中の破線で表したz=0(周方向)における反射面の半径プロファイルを示す図。Shows the radius distribution of the reflecting surface of Example 2, (a) is a two-dimensional distribution of the radius r (z, φ) when the vertical axis is set to the z coordinate and the horizontal axis is set to the φ coordinate, (b) is (a ), the radial profile of the reflective surface at φ = 0° (z-axis direction (longitudinal direction)) indicated by a dashed line in (c) is the reflection at z = 0 (circumferential direction) indicated by a dashed line in (a) Fig. 3 shows a radial profile of a face; 実施例2の集光性能のシミュレーション結果を示し、(a)は幾何光学に基づいてx軸方向集光面における光線のばらつきを計算した結果、(b)は波動光学に基づいて計算されたx軸方向集光面における二次元強度分布、(c)は幾何光学に基づいてy軸方向集光面における光線のばらつきを計算した結果、(d)は波動光学に基づいて計算されたy軸方向集光面における二次元強度分布を示す図。The simulation results of the light collection performance of Example 2 are shown, (a) is the result of calculating the variation of light rays on the light collection surface in the x-axis direction based on geometric optics, and (b) is the x calculated based on wave optics. Two-dimensional intensity distribution on the axial light-collecting plane, (c) is the result of calculation of the light ray dispersion on the y-axis direction light-collecting plane based on geometrical optics, and (d) is the y-axis direction calculated based on wave optics. The figure which shows the two-dimensional intensity distribution in a condensing surface.

本発明のミラーの設計方法は、基材の中空内周面または外周面に反射面を形成して作製されるミラーの設計方法である。以下、本発明にかかるミラーの設計方法を、代表的な実施形態を挙げながら説明する。 The method of designing a mirror of the present invention is a method of designing a mirror manufactured by forming a reflecting surface on a hollow inner peripheral surface or an outer peripheral surface of a base material. The mirror design method according to the present invention will be described below with reference to typical embodiments.

本発明は、非点収差の自由な変換を目的とし,『光は光学的距離が最短となる経路を通る』というFermatの原理に基づいて,より精度の高いミラーの設計を行う。Fermatの原理は、集光(あるいは拡散)ミラーに限定した場合、『ミラー表面(反射面)の任意の点に関して,光源点からの距離と集光点までの距離の和は一定である』という表現に変換することが可能である。入射ビーム又は出射ビームが非点収差を持つ場合、光路長一定の法則を直ちに適用することはできなくなる。なぜならば,非点収差を持つビームはその名の通り単一の光源点あるいは集光点を持たないためである。本発明では、「光源線」と「集光線」を新たに定義することを着想し、非点収差を持つビームの性質を幾何光学的に表現することを可能にすることで実現した設計手法である。 The present invention aims at free conversion of astigmatism, and designs mirrors with higher precision based on Fermat's principle that ``light travels along the path with the shortest optical distance''. Fermat's principle is that when limited to a condensing (or diffusing) mirror, "For any point on the mirror surface (reflecting surface), the sum of the distance from the light source point and the distance to the condensing point is constant." It is possible to convert to a representation. If the incoming or outgoing beam has astigmatism, the law of constant optical path length cannot be readily applied. This is because an astigmatic beam, as the name suggests, does not have a single source point or focal point. In the present invention, we conceived of newly defining "light source line" and "condensed light", and this is a design method realized by making it possible to express the properties of a beam with astigmatism in geometrical optics. be.

図1は、「光源線」、「集光線」を示す概念図である。基材の内周面または外周面の中心軸をz軸、これに直交する断面をxy平面とし、入射ビームが、z軸上所定位置からz軸方向に沿ってL1x変位した位置に、x軸方向(本例では水平方向)の光源をもち、かつ前記z軸上所定位置からz軸方向に沿ってL1y変位した位置に、y軸方向(本例では鉛直方向)の光源をもつとする。また、出射ビームは、x軸方向(水平方向)について前記z軸上所定位置からz軸方向に沿ってL2x変位した位置に集光し、かつy軸方向(鉛直方向)について前記z軸上所定位置からz軸方向に沿ってL2y変位した位置に集光するとする。 FIG. 1 is a conceptual diagram showing a "light source line" and a "condensed line". Let the central axis of the inner or outer peripheral surface of the base material be the z-axis, and the cross section perpendicular to it be the xy plane. Having a light source in the axial direction (horizontal direction in this example) and having a light source in the y-axis direction (vertical direction in this example) at a position displaced by L1y along the z-axis direction from the predetermined position on the z-axis do. In addition, the emitted beam is condensed at a position displaced by L2x along the z-axis from a predetermined position on the z-axis in the x-axis direction (horizontal direction), and is converged on the z-axis in the y-axis direction (vertical direction). Assume that the light is condensed at a position displaced by L 2y along the z-axis direction from a predetermined position.

そして、ミラーを経由するすべての入射光線は、x軸方向(水平方向)における前記光源の位置を通り該x軸方向(水平方向)とz軸方向の双方に直交する方向に延びる第1の光源線(S)、及びy軸方向(鉛直方向)における前記光源の位置を通り該y軸方向(鉛直方向)とz軸方向の双方に直交する方向に延びる第2の光源線(S)を通過すると考える。このように第1の光源線(S)、第2の光源線(S)を定義する。 All incident light rays passing through the mirror pass through the position of the light source in the x-axis direction (horizontal direction) and extend in a direction orthogonal to both the x-axis direction (horizontal direction) and the z-axis direction. a line (S x ) and a second light source line (S y ) passing through the position of the light source in the y-axis direction (vertical direction) and extending in a direction orthogonal to both the y-axis direction (vertical direction) and the z-axis direction; considered to pass through Thus, the first light source line (S x ) and the second light source line (S y ) are defined.

さらに、ミラーから放たれるすべての出射光線は、x軸方向(水平方向)における前記集光する位置を通り該x軸方向(水平方向)とz軸方向の双方に直交する方向に延びる第1の集光線(F)、及びy軸方向(鉛直方向)における前記集光する位置を通り該y軸方向(鉛直方向)とz軸方向の双方に直交する方向に延びる第2の集光線(F)を通過すると考える。このように第1の集光線(F)、第2の集光線(F)を定義する。 Furthermore, all outgoing light rays emitted from the mirror pass through the condensed position in the x-axis direction (horizontal direction) and extend in a direction orthogonal to both the x-axis direction (horizontal direction) and the z-axis direction. and a second condensed ray ( F y ). Thus, the first condensed ray (F x ) and the second condensed ray (F y ) are defined.

なお、本例では、第1の光源線(Sx)、第2の光源線(Sy)、第1の集光線(Fx)、第2の集光線(Fy)をそれぞれ直線としているが、曲線であってもよい。また、図1では、L1x>L1y>0、かつL2x>L2y>0の場合を示しているが、L1xとL1yの大小関係が反転することや、L2xとL2yの大小関係が反転することも含まれ、これら定数が負の値をとることも可能である。L1xまたはL1yが負の値をとる場合、入射ビームは下流に向かって集光する途中でミラーの反射面によって反射される。L2xまたはL2yが負の値をとる場合、出射ビームはミラーよりも上流の位置から発散してきたような波面を持つ。 In this example, the first light source line (S x ), the second light source line (S y ), the first condensed line (F x ), and the second condensed line (F y ) are straight lines. may be curved. FIG. 1 shows a case where L 1x >L 1y >0 and L 2x >L 2y > 0 . Inversion of the magnitude relationship is also included, and it is possible for these constants to take negative values. If L 1x or L 1y take negative values, the incident beam will be reflected by the reflective surface of the mirror on the way to focusing downstream. If L 2x or L 2y takes negative values, the exit beam has a wavefront that appears to have diverged from a position upstream of the mirror.

上記のように「光源線」及び「集光線」を定義することで、ミラーの反射面の任意の点について、その点を通る入射光線及び出射光線を定義することができる。すなわち、ミラーの反射面上の任意の点をM(x,y,z)とし、第1の光源線(S)とM点への入射光線との交点(P)、及び第2の光源線(S)とM点への入射光線との交点(P)の各座標を、前記した変位L1x、L1yを用いて下記式(1)、式(2)で表わすことができる。同様に、前記M点からの出射光線と第1の集光線(F)との交点(Q)、及びM点からの出射光線と第2の集光線(F)との交点(Q)の各座標を、前記した変位L2x、L2yを用いて下記式(3)、式(4)で表わすことができる。 By defining the "source ray" and "concentrated ray" as above, for any point on the reflecting surface of the mirror, we can define the incoming and outgoing rays passing through that point. That is, an arbitrary point on the reflecting surface of the mirror is M(x, y, z), the intersection point (P x ) between the first light source line (S x ) and the incident light ray to point M, and the second Each coordinate of the intersection point (P y ) between the light source line (S y ) and the light incident on the point M can be expressed by the following equations (1) and (2) using the displacements L 1x and L 1y . can. Similarly, the intersection point (Q x ) between the outgoing light beam from the point M and the first condensed light beam (F x ), and the intersection point ( Q y ) can be expressed by the following equations (3) and (4) using the displacements L 2x and L 2y described above.

Figure 2022108208000003
Figure 2022108208000003

Figure 2022108208000004
Figure 2022108208000004

そして、これらP、P、Q、Qの各座標、及び前記x軸方向及び前記y軸方向についてそれぞれ反射面上の任意の点に関して光源位置から集光位置までの光路長(入射長と出射長の和)が一定であることに基づき、反射面の設計式を導くことができる。 Then , the optical path length (incident A design formula for the reflecting surface can be derived based on the fact that the sum of the length and the output length) is constant.

本実施形態では、上記した光源線、集光線上の各交点P、P、Q、Qと反射面上の任意の点M(x,y,z)との距離をそのまま入射長または出射長とするのではなく、直線で定義した光源線、集光線の上記交点の座標を用いつつ、より正確な設計式が得られるように次のような光路長の補償を行っている。 In this embodiment, the distance between each intersection P x , P y , Q x , Q y on the light source line and condensed line and an arbitrary point M (x, y, z) on the reflecting surface is the incident length Alternatively, the following optical path length compensation is performed so as to obtain a more accurate design formula by using the coordinates of the intersection of the light source line and the condensed light defined by straight lines instead of using the emission length.

(光路長の補償)
通常の光源点と集光点が定義できる場合のFermatの原理を考える。光源点近傍の等位相面は光源点を中心とした球面であり、集光点近傍の等位相面は集光点を中心とした球面である。光線は常に等位相面に対して直交することを念頭に置くと、光路長一定の法則とは、光源点近傍の特定の等位相面上の任意の点と、それに対応する集光点近傍の特定の等位相面上の点を結ぶ光線の光学距離が一定であることと言い換えられる。本発明のような入射ビームに非点収差が含まれる場合にも、等位相面を考慮した補償を行うことで、より正確な設計式を導くことができる。
(Compensation for optical path length)
Let us consider Fermat's principle when we can define a normal light source point and a light focus point. The equiphase surface near the light source point is a spherical surface centered on the light source point, and the equiphase surface near the condensing point is a spherical surface centered on the condensing point. Bearing in mind that rays are always orthogonal to the equiphase surface, the law of constant optical path length means that any point on a particular equiphase surface near the source point and the corresponding point near the focal point In other words, the optical length of a ray connecting points on a specific equiphase plane is constant. Even when the incident beam includes astigmatism, as in the present invention, a more accurate design formula can be derived by performing compensation in consideration of the equal phase surface.

まず、入射側について、光源線S上の上記した交点Pに対応する近傍の等位相面を考える。光源線Sでは、光源線Sに向けて収束する波面が観察されるはずである。このような仮定のもとS上の位相を定義することは厳密にはできないが、ここではSとz軸との交点をPy0とおき、S上にはPy0からの距離に応じた位相分布が存在するもの、すなわち、ミラー(反射面)に入射する前のビームは、y軸方向(鉛直方向)には光源線Sに集約する波面を持つとする。この考えに基づき、図2に示すように、第2の光源線Sとz軸との交点Py0を中心とし且つ第1の光源線Sとz軸との交点Px0を通ってx軸に直交する方向に延びる円弧B1xを、第1の光源線Sを軸に回転させることで構成される回転円弧面を等位相面A1xとする。x軸方向の光源位置からM点までの入射長は、入射光線と該等位相面A1xとの2つの交点のうち第2の光源線Sに近い側の交点からM点までの距離として求めることがより正確である。 First, on the incident side, the near equiphase surface corresponding to the above-described intersection point Px on the light source line Sx is considered. At the source line Sx , a wavefront converging towards the source line Sy should be observed. Although it is not possible to strictly define the phase on Sx based on this assumption, here the intersection of Sy and the z -axis is defined as Py0, and the distance from Py0 on Sx is It is assumed that a beam having a corresponding phase distribution, that is, a beam before being incident on a mirror (reflection surface) has a wavefront converging on the light source line Sy in the y -axis direction (vertical direction). Based on this idea , as shown in FIG. 2, an x A rotating arc surface formed by rotating the arc B1x extending in the direction orthogonal to the axis about the first light source line Sx is assumed to be an equal phase surface A1x . The incident length from the light source position in the x-axis direction to point M is the distance from the two intersection points of the incident light beam and the equivalent phase surface A1x , which is closer to the second light source line Sy , to point M. Asking is more accurate.

ここでは、この入射光線と等位相面A1xとの2つの交点のうち第2の光源線Sに近い側の交点からミラーの反射面上のM点までの距離は、まず入射光線と前記第1の光源線Sとの交点PからM点までの距離を求めるとともに、該距離に、交点Pから前記等位相面A1xを定義している前記円弧B1xまでの距離、つまりPから円弧B1xに下した垂線の足をH1xとしてP1x間の距離を加算又は減算(本図の例では減算)して求めている。すなわち、下記式(5)のH1xM間の距離をx軸方向の入射長とする。この式が近似である理由は,点H1xが直線PM上に存在する保証がないためである。ただし、このような近似式以外の計算で求めるようにしても勿論よい。本例では、上記のようにPから円弧B1xに下した垂線の足をH1xとしてP1x間の距離を加算/減算して近似的に求めているが、円弧B1xに下した垂線ではなく、Pから、入射光線と該等位相面A1xとの2つの交点のうち第2の光源線Sに近い側の交点までの距離を用いて、より正確に算出するようにしてもよい。 Here, the distance from the two intersections of the incident light beam and the equiphase plane A 1x , which is closer to the second light source line Sy, to point M on the reflecting surface of the mirror is The distance from the intersection point Px with the first light source line Sx to point M is obtained, and the distance from the intersection point Px to the arc B1x defining the equal phase plane A1x , that is, The distance between P x H 1x is obtained by adding or subtracting (subtracting in the example of this figure) the foot of the perpendicular extending from P x to arc B 1 x as H 1 x. That is, let the distance between H1xM in the following formula (5) be the incident length in the x-axis direction. The reason why this expression is an approximation is that there is no guarantee that the point H1x exists on the straight line PxM . However, of course, it may be determined by calculation other than such an approximation formula. In this example, as described above, the foot of the perpendicular line extending from Px to the arc B1x is H1x, and the distance between PxH1x is added / subtracted to obtain an approximate value . The distance from Px to the two intersections of the incident ray and the equivalent phase plane A1x , which is closer to the second light source line Sy , than the perpendicular line obtained by can be

Figure 2022108208000005
Figure 2022108208000005

続いて、同じく入射側について、光源線S上の上記した交点Pに対応する近傍の等位相面を考える。光源線Sでは、光源線Sから発散してきた波面が観察されるはずである。このような仮定のもとS上の位相を定義することは厳密にはできないが、ここではSとz軸との交点をPx0とおき、S上にはPx0からの距離に応じた位相分布が存在するもの、すなわち、ミラー(反射面)に入射する前のビームは,x軸方向には光源線Sから発散する波面を持つとする。この考え方に基づき、図3に示すように、第1の光源線Sとz軸との交点Px0を中心とし且つ第2の光源線Sとz軸との交点Py0を通ってy軸に直交する方向に延びる円弧B1yを、第2の光源線Sを軸に回転させることにより構成される回転円弧面を、等位相面A1yとする。y軸方向の光源位置からM点までの入射長は、入射光線と該等位相面A1yとの2つの交点のうち第1の光源線Sに近い側の交点からミラーの反射面上のM点までの距離として求まる。 Subsequently, similarly on the incident side, the near equiphase surface corresponding to the above-described intersection point Py on the light source line Sy is considered. A wavefront diverging from the light source line Sx should be observed on the light source line Sy . Although it is not possible to strictly define the phase on Sy based on this assumption, here the intersection of Sx and z -axis is defined as Px0 , and the distance from Px0 on Sy is It is assumed that there is a corresponding phase distribution, that is, the beam before entering the mirror (reflection surface) has a wavefront diverging from the light source line Sx in the x-axis direction. Based on this idea , as shown in FIG . 3, y A rotating arc surface formed by rotating the arc B1y extending in the direction perpendicular to the axis about the second light source line Sy is assumed to be an equal phase surface A1y . The incident length from the light source position in the y-axis direction to point M is the distance between the two intersections of the incident light beam and the equivalent phase surface A1y , which is closer to the first light source line Sx , on the reflecting surface of the mirror. It is obtained as the distance to the M point.

入射光線と等位相面A1yとの2つの交点のうち第1の光源線Sに近い側の交点からM点までの距離は、まず入射光線と前記第2の光源線Sとの交点PからM点までの距離を求めるとともに、該距離に、交点Pから前記等位相面A1yを定義している前記円弧B1yまでの距離、つまりPから円弧B1yに下した垂線の足をH1yとしてP1y間の距離を加算又は減算(本例では加算)して求める。すなわち、下記式(6)のH1yM間の距離をy軸方向の入射長とする。 Of the two intersections between the incident light ray and the equiphase surface A1y , the distance from the intersection on the side closer to the first light source line Sx to the point M is The distance from P y to point M is obtained, and the distance from the intersection point P y to the arc B 1 y defining the equiphase surface A 1 y, that is, the perpendicular drawn from P y to the arc B 1 y is obtained by adding or subtracting (adding in this example) the distance between P y and H 1 y, with H 1 y being the foot of H 1 y. That is, let the distance between H 1y M in the following formula (6) be the incident length in the y-axis direction.

Figure 2022108208000006
Figure 2022108208000006

出射側についても、入射側と同様、第1の集光線F上の上記交点Qに対応する近傍の等位相面、第2の集光線F上の上記交点Qに対応する近傍の等位相面、をそれぞれ考える。第1の集光線Fでは、第2の集光線Fから発散する波面が観察されるはずである。このような仮定のもとF上の位相を定義することは厳密にはできないが、ここではFと光軸zの交点をQy0とおき,F上にはQy0からの距離に応じた位相分布が存在するものとみなす。また、第2の集光線Fでは、第1の集光線Fに向けて収束する波面が観察されるはずである。このような仮定のもとF上の位相を定義することは厳密にはできないが,ここではFと出射光軸zの交点をQx0とおき、F上にはQx0からの距離に応じた位相分布が存在するものとみなす。 On the output side, similarly to the incident side, an equiphase surface in the vicinity corresponding to the intersection point Qx on the first condensed beam Fx and an equiphase surface in the vicinity corresponding to the intersection point Qy on the second condensed beam Fy Consider the isophase surfaces, respectively. In the first focused beam Fx , a wavefront diverging from the second focused beam Fy should be observed. Although it is not possible to strictly define the phase on Fx based on this assumption, here the intersection of Fy and the optical axis z is defined as Qy0 , and the distance from Qy0 on Fx is It is assumed that there is a corresponding phase distribution. Also, in the second focused beam Fy , a wavefront converging towards the first focused beam Fx should be observed. Although it is not possible to strictly define the phase on Fy based on this assumption, here, the intersection of Fx and the output optical axis z is defined as Qx0 , and the distance from Qx0 on Fy is It is assumed that there exists a phase distribution corresponding to

これらの考えに基づき、入射側と同様、より正確な出射長を求める。具体的には、図示は省略するが、上記と同様に交点Qから等位相面を定義する円弧B2xまでの距離、つまりQから円弧B2xに下した垂線の足をH2xとしたH2x間の距離や、交点Qから等位相面を定義する円弧B2yまでの距離、つまりQから円弧B2yに下した垂線の足をH2yとしたQ2y間の距離を用いて加算または減算して補償を行い、下記式(7)、式(8)のようにx軸方向、y軸方向についてより正確な出射長を求めることができる。 Based on these considerations, a more accurate exit length will be obtained in the same way as for the incident side. Specifically, although illustration is omitted, the distance from the intersection point Qx to the arc B2x defining the equiphase plane, that is, the foot of the perpendicular from Qx to the arc B2x is set to H2x . The distance between H 2x Q x and the distance from the intersection point Q y to the arc B 2y defining the equiphase surface, that is, between Q y and H 2y where the foot of the perpendicular from Q y to the arc B 2y is H 2y Compensation is performed by addition or subtraction using the distance, and more accurate emission lengths in the x-axis direction and the y-axis direction can be obtained as in the following equations (7) and (8).

Figure 2022108208000007
Figure 2022108208000007

(光路長の計算)
このようにして求めた入射長、出射長を用いて、x軸方向、y軸方向の各方向の集光についての光路長の計算を行う。まず、x軸方向の集光に着目した場合の入射長f1x(x,y,z)は,式(5)より下記式(9)~(11)のように計算される。
(Calculation of optical path length)
Using the incident length and the exit length obtained in this manner, the optical path length for converging light in each direction of the x-axis direction and the y-axis direction is calculated. First, the incident length f 1x (x, y, z) when condensing light in the x-axis direction is calculated from the equation (5) as shown in the following equations (9) to (11).

Figure 2022108208000008
Figure 2022108208000008

同様に、同じくx軸方向の集光に着目した出射長f2x(x,y,z)は、式(7.9)より下記式(12)~(14)で表される。 Similarly, the emission length f 2x (x, y, z) focusing on light collection in the x-axis direction is expressed by the following equations (12) to (14) from equation (7.9).

Figure 2022108208000009
Figure 2022108208000009

そして、x軸方向集光における光源点から集光点までの基準光路長をLと設定すると、x軸方向の集光に必要な条件式が、次の式(15)のように導かれる。 Then, if the reference optical path length from the light source point to the condensing point in the x -axis direction is set as Lx, the conditional expression necessary for condensing in the x-axis direction is derived as shown in the following equation (15). .

Figure 2022108208000010
Figure 2022108208000010

次に、y軸方向の集光に必要な条件式についても、同様の手順で導かれる。すなわち、y軸方向の集光に着目した入射長f1y(x,y,z)は、式(6)より下記式(16)のように求まる。 Next, a conditional expression necessary for condensing light in the y-axis direction is also derived by the same procedure. That is, the incident length f 1y (x, y, z) focusing on the condensed light in the y-axis direction is obtained from the equation (6) by the following equation (16).

Figure 2022108208000011
Figure 2022108208000011

同様に、y軸方向の集光に着目した出射長f2y(x,y,z)は、式(8)より以下の式(17)で表される。 Similarly, the emission length f 2y (x, y, z) focusing on the light collection in the y-axis direction is expressed by the following formula (17) based on the formula (8).

Figure 2022108208000012
Figure 2022108208000012

そして、y軸方向集光における光源点から集光点までの基準光路長をLと設定すると、y軸方向の集光に必要な条件式が、次の式(18)のように導かれる。 Then, when the reference optical path length from the light source point to the condensing point in the y -axis direction is set to Ly, the conditional expression necessary for condensing in the y-axis direction is derived as shown in the following equation (18). .

Figure 2022108208000013
Figure 2022108208000013

理想的には、式(15)のx軸方向の集光条件と、式(18)のy軸方向の集光条件とを同時に満たす点(x,y,z)の集合が、求めるミラーの反射面の形状となるが、このような連立方程式の解を設計式とすると、「L1x=L1yかつL2x=L2y」のような特殊な条件下でしか解が存在できなくなる。他の条件下でも成り立ち得る、より一般化した反射面の形状を表わす設計式を得るために、本発明者は、式(15)と式(18)を重みづけし、式(19)に示す新たな式f(x,y,z)を設計式とした。 Ideally, a set of points (x, y, z) that simultaneously satisfy the x-axis direction condensing condition of equation (15) and the y-axis direction condensing condition of equation (18) is the desired mirror. As for the shape of the reflecting surface, if the solution of such simultaneous equations is used as the design formula, the solution can only exist under special conditions such as "L 1x =L 1y and L 2x =L 2y ". In order to obtain a more general design equation representing the shape of the reflective surface that can also hold under other conditions, the inventors weighted equations (15) and (18) to give equation (19). A new formula f(x, y, z) was used as the design formula.

(設計式)
すなわち、設計式は、x軸方向について光源点から集光点までの光路長が一定であることから導かれる第1の式(x軸方向集光条件の式)であるf(x,y,z)=0(式(15))と、y軸方向について光源点から集光点までの光路長が一定であることから導かれる第2の式(y軸方向集光条件の式)であるf(x,y,z)=0(式(18))とを、α、βを用いて、下記(19)のように重みづけした式f(x,y,z)=0である。αは、x軸方向の集光に対する重みづけ係数、βは、y軸方向の集光に対する重みづけ係数である。
(design formula)
That is, the design formula is f x (x, y , z) = 0 (equation (15)) and the second equation (equation of the y-axis direction condensing condition) derived from the fact that the optical path length from the light source point to the condensing point is constant in the y-axis direction. A certain f y (x, y, z) = 0 (formula (18)) is weighted using α and β as shown in (19) below with the formula f (x, y, z) = 0 be. α is a weighting factor for condensed light in the x-axis direction, and β is a weighting factor for condensed light in the y-axis direction.

Figure 2022108208000014
Figure 2022108208000014

ここで、式(19)に式(9)から式(18)までを代入することで、反射面の設計式は式(20)に示す方程式として導出される。 Here, by substituting the equations (9) to (18) into the equation (19), the design equation of the reflecting surface is derived as the equation shown in the equation (20).

Figure 2022108208000015
Figure 2022108208000015

式(20)から分かるように、x軸方向、y軸方向に対して対称性の良い方程式が得られたことを確認できる。これまでの導出で『L1x>L1y>0かつL2x>L2y>0』を仮定してきたが,この仮定がなくとも、すなわち大小関係の逆転やそれぞれの設定値が負の値をとったとしても式(20)に示す同じ方程式(設計式)が導かれる。ただし、L1x、L1y、L2x、L2yの4定数はいずれも、正か負の値であって、0にすることはできない。 As can be seen from the equation (20), it can be confirmed that an equation having good symmetry with respect to the x-axis direction and the y-axis direction was obtained. In the derivation so far, we have assumed "L 1x > L 1y > 0 and L 2x > L 2y >0". However, the same equation (design equation) shown in Equation (20) is derived. However, the four constants L 1x , L 1y , L 2x , and L 2y are all positive or negative values and cannot be 0.

さらに、具体的な設計式は、基材の中空内周面または外周面から作製される反射面であることから基準点を設定し、その座標を代入することで、上記式(20)中の定数項「αL+βL」の設定を行うことで得られる。 Furthermore, the specific design formula is to set a reference point because the reflecting surface is made from the hollow inner peripheral surface or outer peripheral surface of the base material, and substitute the coordinates to obtain the above formula (20). It is obtained by setting the constant term “αL x +βL y ”.

基材の中空内周面または外周面に反射面が形成されたミラーの模式図を図4に示す。座標系の定義は図1と同じである。基準点M0x(r,0,0)、M0y(0,r,0)を設定する。ここでrは基準半径を表す定数である。まずM0x(r,0,0)が集光ミラー形状の陰関数表現である式(20)を満足させると仮定して、式(20)に基準点M0x(r,0,0)の座標を代入することにより、下記式(21)を得る。 FIG. 4 shows a schematic diagram of a mirror in which a reflecting surface is formed on the hollow inner peripheral surface or outer peripheral surface of a base material. The definition of the coordinate system is the same as in FIG. Set reference points M 0x (r 0 , 0, 0) and M 0y (0, r 0 , 0). where r0 is a constant representing the reference radius. First, assuming that M 0x (r 0 , 0, 0) satisfies Equation (20), which is an implicit function expression of the shape of the collector mirror, the reference point M 0x (r 0 , 0, 0) is added to Equation (20). ), the following equation (21) is obtained.

Figure 2022108208000016
Figure 2022108208000016

この式(21)が重みづけ係数αの設定にかかわらず成立するためには、L、Lはそれぞれ式(22)、式(23)を満たす必要がある。 In order for this equation (21) to hold regardless of the setting of the weighting factor α, L x and Ly must satisfy equations (22) and (23), respectively.

Figure 2022108208000017
Figure 2022108208000017

同様に、基準点M0yの座標を式(20)に代入することにより、式(24)を得る。この式(24)から、同じくL、Lに対する制限が式(25)、式(26)のように導かれる。 Similarly, by substituting the coordinates of the reference point M0y into the equation (20), the equation (24) is obtained. From this equation (24), restrictions on L x and Ly are similarly derived as in equations (25) and (26).

Figure 2022108208000018
Figure 2022108208000018

Figure 2022108208000019
Figure 2022108208000019

求めるL及びLは、上記したx軸方向の集光に対する重みづけ係数α、y軸方向の集光に対する重みづけ係数βを用いて、基準点M0xとM0yから導かれる値を重みづけ相加平均する。すなわち、L、Lは次の式(27)、(28)ように表される。 L x and L y to be obtained are weighted values derived from the reference points M 0x and M 0y using the weighting coefficient α for the light collection in the x-axis direction and the weighting coefficient β for the light collection in the y-axis direction. weighted arithmetic mean. That is, L x and Ly are represented by the following equations (27) and (28).

Figure 2022108208000020
Figure 2022108208000020

式(27)及び式(28)を式(20)に代入することで、ミラー反射面の設計式が下記式(29)に示す方程式として導出される。 By substituting equations (27) and (28) into equation (20), the design equation for the mirror reflecting surface is derived as equation (29) below.

Figure 2022108208000021
Figure 2022108208000021

(設計できるミラーの例)
式(29)の条件設定において、L1xとL1yの値を異なる値に設定し、且つL2xとL2yの値を一致する値(同じ値)に設定することで、非点収差をもつ入射ビームから一点に集光する出射ビームが得られる反射面を備える非点収差制御ミラーを設計することができる。逆に、L1xとL1yの値を一致する値に設定し、且つL2xとL2yの値を異なる値に設定することで、一点から発散する入射ビームから非点収差をもつ出射ビームが得られる反射面を備える非点収差制御ミラーを設計することができる。
(Examples of mirrors that can be designed)
In the condition setting of formula (29), by setting the values of L 1x and L 1y to different values and the values of L 2x and L 2y to match (the same value), it has astigmatism. An astigmatism control mirror can be designed with a reflective surface that provides a converging output beam from an incident beam. Conversely, by setting the values of L 1x and L 1y to match and the values of L 2x and L 2y to different values, an astigmatic output beam can be obtained from an incident beam diverging from a single point. An astigmatism control mirror can be designed with the resulting reflective surface.

また、設計式(式(29))を用いることで、x軸方向、y方向の両方向の光源・集光位置が一致する反射面を備えるミラーも設計できる。たとえば設計式(式(29))にL1x=L1y=L>0、且つL2x=L2y=L>0を代入することで、次の式(30)に示すように回転楕円面ミラーの式を得ることができる。 Also, by using the design formula (Formula (29)), it is possible to design a mirror having a reflecting surface in which the light source and light condensing positions in both the x-axis direction and the y-axis direction match. For example, by substituting L 1x =L 1y =L 1 >0 and L 2x =L 2y =L 2 >0 into the design formula (formula (29)), a spheroid is obtained as shown in the following formula (30). We can obtain the equation of the surface mirror.

Figure 2022108208000022
Figure 2022108208000022

また、設計式(式(29))にL1x=L1y=L<0、且つL2x=L2y=L>0を代入すれば、次の式(31)に示すように回転双曲面ミラーの式を得ることができる。 By substituting L 1x =L 1y =L 1 <0 and L 2x =L 2y =L 2 >0 into the design formula (formula (29)), the rotational twin We can get the formula for the curved mirror.

Figure 2022108208000023
Figure 2022108208000023

さらに上記式(30)または式(31)において、Lを正または負の無限大に設定することで、次の式(32)に示すように回転放物面ミラーの式を得ることができる。 Furthermore, by setting L1 to positive or negative infinity in the above equation (30) or (31), the following equation (32) for a parabolic mirror of revolution can be obtained. .

Figure 2022108208000024
Figure 2022108208000024

(設計限界)
まず、上述のとおり、L1x、L1y、L2xおよびL2yはいずれも0をとらない。また、例えばミラーの集光作用を鉛直方向のみに限定したとき、すなわち、L1x=+∞かつL2x=+∞のとき、L1y>0かつL1y>0かつα=0を与えた場合は、式(29)は次の式(33)の形になる。
(design limit)
First, as described above, none of L 1x , L 1y , L 2x and L 2y is zero. Further, for example, when the condensing action of the mirror is limited to the vertical direction only, that is, when L 1x =+∞ and L 2x =+∞, L 1y >0, L 1y >0, and α=0 are given. , Eq. (29) becomes the following Eq. (33).

Figure 2022108208000025
Figure 2022108208000025

式(33)は明確に楕円柱面の式である。2枚の楕円柱面ミラーが鉛直方向から光軸を挟み込むように配置されていることが読み取れ、設計の破綻を示す。破綻の理由は、鉛直方向と水平方向の双方に正の集光性能を持たせなかったことに起因する。ここで述べる正の集光性能とは、「ビームをより収束する方向に変化させる」能力である。この条件は、入射長をL、出射長をLとして次の式(34)で表現される。 Equation (33) is clearly the equation for the elliptic cylinder surface. It can be read that the two cylindric mirrors are arranged so as to sandwich the optical axis from the vertical direction, indicating a failure of the design. The reason for the failure is that it did not have positive condensing performance in both the vertical direction and the horizontal direction. Positive focussing performance, as discussed herein, is the ability to "turn the beam in a more convergent direction." This condition is expressed by the following equation (34) where L 1 is the incident length and L 2 is the outgoing length.

Figure 2022108208000026
Figure 2022108208000026

式(34)は、上流から発散する波面の曲率を正として定義した場合にミラーによる反射を経て曲率が減少することを示している。このときミラーの形状は凹となる。図5に,円錐曲線を稜線として持つ回転体ミラーを用いてビームを集光する例を挙げる。これらはいずれも式(34)を満たしている。中空型内面を利用するミラーを設計するためには、鉛直方向・水平方向ともに式(34)を満たすことが必要十分条件である。 Equation (34) shows that the curvature of the wavefront emanating from the upstream is defined as positive and the curvature decreases through reflection by the mirrors. At this time, the shape of the mirror becomes concave. FIG. 5 shows an example of condensing a beam using a rotating body mirror having a conic curve as a ridge line. All of these satisfy formula (34). In order to design a mirror that utilizes the inner surface of a hollow mold, it is a necessary and sufficient condition that Eq. (34) be satisfied in both the vertical and horizontal directions.

円錐曲線は、同様に、その凸プロファイルを利用して波面の曲率を増大させることもまた可能である。図6に円錐曲線の回転体を用いて波面の曲率を増大させる例の一覧を示す。これらの例ではいずれも以下の式(35)を満たしている。鉛直・水平両方向について波面の曲率を増大させるミラーを本方式で設計すると、それは『柱状形状の外面を使用するミラー』となる。 A conic section can also take advantage of its convex profile to increase the curvature of the wavefront. FIG. 6 shows a list of examples of increasing the curvature of the wavefront using a conic section of revolution. All of these examples satisfy the following formula (35). If a mirror that increases the curvature of the wavefront in both vertical and horizontal directions is designed using this method, it becomes a "mirror using a columnar outer surface".

Figure 2022108208000027
Figure 2022108208000027

波面の曲率が変化しないとき、すなわち1/L=-1/Lが成立するとき、ミラーの稜線は曲率を持たない直線的なプロファイルとなり、設計が破綻する。まとめると、1/L1x>-1/L2x、かつ1/L1y>-1/L2yを満たすことが、中空内周面ミラーの設計式が成り立つ条件となり、1/L1x<-1/L2x、かつ1/L1y<-1/L2yを満たすことが、外周面ミラーの設計式が成り立つ条件となる。 When the curvature of the wavefront does not change, that is, when 1/L 1 =−1/L 2 holds, the ridgeline of the mirror becomes a straight profile with no curvature and the design fails. In summary, satisfying 1/L 1x >−1/L 2x and 1/L 1y >−1/L 2y is the condition for the design formula of the hollow inner peripheral mirror to hold, and 1/L 1x <−1 /L 2x and 1/L 1y <−1/L 2y are the conditions for the design formula of the outer peripheral mirror to hold.

(断面プロファイル)
設計式(式(29))に、x=0またはy=0を代入することにより、反射面の断面プロファイルを確認することができる。たとえば、x=0、L1x>0、L1y>0、L2x>0、L2y>0のとき、yz平面とミラー反射面との交線(断面プロファイル)は次の式(36)、式(37)で表現される。式(36)は、y方向集光の光源点とy方向集光の集光点を焦点に持つ楕円関数を表している。式中のCは基準光路長を表す定数項である。
(cross-sectional profile)
By substituting x=0 or y=0 into the design formula (formula (29)), the cross-sectional profile of the reflecting surface can be confirmed. For example, when x = 0, L 1x > 0, L 1y > 0, L 2x > 0, and L 2y > 0, the line of intersection (cross-sectional profile) between the yz plane and the mirror reflection surface is given by the following equation (36), It is expressed by the formula (37). Equation (36) expresses an elliptic function whose focal points are the light source point of the y-direction condensed light and the y-direction condensed light condensed point. C in the formula is a constant term representing the reference optical path length.

Figure 2022108208000028
Figure 2022108208000028

以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。本実施形態では、光源線、集光線を直線として、直線とその近傍の等位相面間の距離を補償したが、このような補償は必ずしも必要ではない。また、円弧線やその他の曲線を光源線、集光線として、補償なしまたは上記補償以外の補償方法または近似方法で求めることも好ましい。反射面の設計式の原点の位置は異なる位置でもよい。座標変換しても勿論よい。 Although the embodiments of the present invention have been described above, the present invention is by no means limited to such embodiments, and can of course be embodied in various forms without departing from the gist of the present invention. In the present embodiment, the light source line and the condensed light are straight lines, and the distance between the straight lines and the equiphase planes in the vicinity thereof is compensated. However, such compensation is not necessarily required. It is also preferable to obtain arc lines and other curves as light source lines and condensed rays without compensation or by a compensation method other than the above compensation or an approximation method. The position of the origin of the design formula for the reflecting surface may be different. Needless to say, the coordinates may be transformed.

次に、上記した本発明にかかる非点収差制御ミラーの設計例として、非点収差の解消を目的としたミラー(実施例1)と、非点収差の付加を目的としたミラー(実施例2)の2種類のミラーの設計を行い、各ミラーについて幾何光学、波動光学の双方を用いてシミュレーションにより性能を確認した結果について説明する。 Next, as design examples of the astigmatism control mirror according to the present invention described above, a mirror for the purpose of eliminating astigmatism (Example 1) and a mirror for the purpose of adding astigmatism (Example 2) ) were designed, and the performance of each mirror was confirmed by simulation using both geometrical optics and wave optics.

(シミュレーション手法)
実際の中空形状ミラーの使用例を鑑みて、図7に示すように、ミラー(反射面)の全周(360°)のうち一部のみを軟X線ビームが照明する部分照明条件下での集光性能を計算した。設置条件は水平(x軸方向)偏向とした。幾何光学に基づく光線追跡計算では,図1で示したx軸方向、y軸方向の光源線を通る光線群を定義し、ミラーの反射面に入射させる。光源線の太さ、すなわち光源の大きさは0とする。反射面の有効範囲全体に均一に光線を出射する。
(Simulation method)
Considering the actual use of a hollow mirror, as shown in Fig. 7, the soft X-ray beam illuminates only part of the entire circumference (360°) of the mirror (reflecting surface) under partial illumination conditions. The light collection performance was calculated. The installation condition was horizontal (x-axis direction) deflection. In the ray tracing calculation based on geometrical optics, a group of rays passing through the light source lines in the x-axis direction and the y-axis direction shown in FIG. 1 is defined and made incident on the reflecting surface of the mirror. The thickness of the light source line, that is, the size of the light source is assumed to be zero. To emit light uniformly over the entire effective range of a reflective surface.

ミラーの反射面上の各位置における法線ベクトルn(x,y,z)は、式(29)で定義された関数f(x,y,z)の勾配ベクトルに対して平行な単位ベクトルである(式(38))。図7に示すように、入射光線はミラーの反射面の法線ベクトルに対称に反射し、集光面にまで伝搬する。このようにして集光面における光線のばらつきが評価される。 The normal vector n(x, y, z) at each position on the reflecting surface of the mirror is a unit vector parallel to the gradient vector of the function f(x, y, z) defined by equation (29). There is (equation (38)). As shown in FIG. 7, the incident light ray is symmetrically reflected to the normal vector of the reflecting surface of the mirror and propagates to the collecting surface. In this way, the dispersion of light rays on the condensing surface is evaluated.

Figure 2022108208000029
Figure 2022108208000029

波動光学に基づく回折積分計算では、ミラーの反射面に入射するビームの波面のx軸方向、y軸方向の曲率中心を,それぞれx軸方向集光の光源Sx、y軸方向集光の光源Sに一致させる。図8はその模式図である。太さの存在しない線光源を仮定し、反射面の有効領域全体に一様な強度をもってビームが入射するものとする。反射面上の点M(x,y,z)におけるビームの波動場U(x,y,z)は次の式(39)、式(40)になる。 In the diffraction integration calculation based on wave optics, the center of curvature in the x-axis direction and the y-axis direction of the wavefront of the beam incident on the reflecting surface of the mirror is defined as the x-axis direction light source S x and the y-axis direction light source S Match Sy . FIG. 8 is a schematic diagram thereof. A linear light source with no thickness is assumed, and the beam is assumed to be incident on the entire effective area of the reflective surface with uniform intensity. The wave field U M (x M , y M , z M ) of the beam at the point M (x M , y M , z M ) on the reflecting surface is given by the following equations (39) and (40).

Figure 2022108208000030
Figure 2022108208000030

式(39)においてλはビームの波長を表す任意の定数、Iは入射強度を表す任意の定数である。ミラーの反射面上の複素波動場U(x,y,z)を、以下の式(41)、式(42)に従って集光面上の座標Q(x,y,z)まで伝搬させる。 is an arbitrary constant representing the wavelength of the beam and I0 is an arbitrary constant representing the incident intensity. The complex wave field U M (x M , y M , z M ) on the reflecting surface of the mirror is converted to coordinates Q (x Q , y Q , z Q ).

Figure 2022108208000031
Figure 2022108208000031

式(41)において、dSは反射面上の微小面積を表し、θ(x,y,z)は反射面上の各位置における斜入射角を表す。出力するのは、Q上の複素波動場U(x,y,z)の絶対値の二乗である強度分布である(式(43))。以上の手順により、波動光学に基づいて集光面における強度分布が計算される。 In equation (41), dS represents a minute area on the reflecting surface, and θ( xM , yM , zM ) represents the oblique incidence angle at each position on the reflecting surface. The output is the intensity distribution that is the square of the absolute value of the complex wave field U Q (x Q , y Q , z Q ) over Q (equation (43)). By the above procedure, the intensity distribution on the condensing plane is calculated based on wave optics.

Figure 2022108208000032
Figure 2022108208000032

(実施例1のミラー設計)
表1に実施例1のミラー設計に用いた定数の一覧を示す。入射長がx軸方向(水平方向)とy軸方向(鉛直方向)とで異なり、出射長はx軸方向とy軸方向とで同一である。斜入射角が10mrad程度となるように、基準半径を5mmに設定した。光源線及び集光線とミラー(反射面)の配置を図9に示す。
(Mirror design of Example 1)
Table 1 shows a list of constants used in the mirror design of Example 1. The incident length is different in the x-axis direction (horizontal direction) and the y-axis direction (vertical direction), and the exit length is the same in the x-axis direction and the y-axis direction. The reference radius was set to 5 mm so that the oblique incident angle was about 10 mrad. FIG. 9 shows the arrangement of light source lines, condensed lines, and mirrors (reflecting surfaces).

Figure 2022108208000033
Figure 2022108208000033

ミラーの反射面形状を得るためには、式(29)の設計式で示した陰関数を解く。円筒座標系を用いて式(29)の解集合を得る。ここで、円柱座標系(z,φ,r)とデカルト座標系(x,y,z)は、次の式(44)の対応関係を持つものとする。 To obtain the reflecting surface shape of the mirror, the implicit function shown in the design formula of equation (29) is solved. We obtain the solution set of equation (29) using a cylindrical coordinate system. Here, it is assumed that the cylindrical coordinate system (z, φ, r) and the Cartesian coordinate system (x, y, z) have the correspondence of the following equation (44).

Figure 2022108208000034
Figure 2022108208000034

(実施例1の反射面の半径分布)
計算されたミラーの反射面の半径分布を図10に示す。図10(a)は,縦軸をz座標、横軸をφ座標に設定したときの半径r(z,φ)の二次元分布を示している。実施例1のミラーの反射面は、y軸方向(鉛直方向)とx軸方向(水平方向)とで直径が異なる潰れた中空型形状となる。
(Radius distribution of reflecting surface in Example 1)
FIG. 10 shows the calculated radius distribution of the reflecting surface of the mirror. FIG. 10(a) shows a two-dimensional distribution of the radius r(z, φ) when the vertical axis is the z coordinate and the horizontal axis is the φ coordinate. The reflecting surface of the mirror of Example 1 has a collapsed hollow shape with different diameters in the y-axis direction (vertical direction) and the x-axis direction (horizontal direction).

また、図10(a)中において一点鎖線で示したφ=0°(z軸方向(長手方向))の反射面の半径プロファイルを図10(b)に示す。これはx軸方向(水平方向)集光に対応した楕円関数である。また、図10(a)中の破線で表したz=0(周方向)における反射面の半径プロファイルを図10(c)に示す。ミラーの潰れに起因して周方向に二山の分布がついていることが読み取れる。 FIG. 10(b) shows the radial profile of the reflecting surface at φ=0° (z-axis direction (longitudinal direction)) indicated by the dashed line in FIG. 10(a). This is an elliptic function corresponding to the x-axis direction (horizontal direction) convergence. FIG. 10(c) shows the radial profile of the reflecting surface at z=0 (circumferential direction) indicated by the broken line in FIG. 10(a). It can be read that there are two peaks distributed in the circumferential direction due to the collapse of the mirror.

(実施例1の集光性能のシミュレーション結果)
次に、集光性能のシミュレーション結果を図11に示す。図11(a)は、幾何光学に基づいて集光面における光線のばらつきを計算した結果を示している。全光線が鉛直・水平ともに1nm以下の領域に集約されていることが確認できる。
(Simulation result of light collection performance of Example 1)
Next, FIG. 11 shows the simulation result of the light condensing performance. FIG. 11(a) shows the result of calculating the variation of light rays on the condensing surface based on geometrical optics. It can be confirmed that all light rays are concentrated in a region of 1 nm or less both vertically and horizontally.

また、図11(b)は、波動光学に基づいて計算された集光面における二次元強度分布を示している。光子エネルギーは300eVに設定した。ビームは430nm(x軸方向(水平方向))×170nm(y軸方向(鉛直方向))(FWHM)の領域に集光されている。 Also, FIG. 11(b) shows a two-dimensional intensity distribution on the condensing plane calculated based on wave optics. Photon energy was set at 300 eV. The beam is focused on an area of 430 nm (x-axis direction (horizontal direction))×170 nm (y-axis direction (vertical direction)) (FWHM).

(実施例2のミラー設計)
表2に実施例2のミラー設計に用いた定数の一覧を示す。入射長がx軸方向(水平方向)とy軸方向(鉛直方向)とで同じであるのに対し、出射長はx軸方向とy軸方向とで異なる値をもつ。基準半径rは、反射面への斜入射角が10mrad程度となるように設定した。光源線及び集光線とミラー(反射面)の配置を図12に示す。実施例1と同様、円筒座標系を用いて式(29)の解集合を得る。
(Mirror design of Example 2)
Table 2 shows a list of constants used in the mirror design of Example 2. While the incident length is the same in the x-axis direction (horizontal direction) and the y-axis direction (vertical direction), the exit length has different values in the x-axis direction and the y-axis direction. The reference radius r0 was set so that the oblique incident angle to the reflecting surface was about 10 mrad. FIG. 12 shows the arrangement of light source lines, condensed lines, and mirrors (reflecting surfaces). Similar to Example 1, a cylindrical coordinate system is used to obtain the set of solutions of Equation (29).

Figure 2022108208000035
Figure 2022108208000035

(実施例2の反射面の半径分布)
計算されたミラーの反射面の半径分布を図13に示す。実施例1のミラーと同様、y軸方向(鉛直方向)とx軸方向(水平方向)とで直径が異なる潰れた中空型形状となり、ミラーの潰れに起因して周方向に二山の分布がついていることが読み取れる。
(Radius distribution of reflecting surface of Example 2)
FIG. 13 shows the calculated radius distribution of the reflecting surface of the mirror. Similar to the mirror of Example 1, it has a crushed hollow shape with different diameters in the y-axis direction (vertical direction) and in the x-axis direction (horizontal direction). You can read what's on it.

(実施例2の集光性能のシミュレーション結果)
集光性能のシミュレーション結果を図14に示す。図14(a)は、幾何光学に基づいてx軸方向(水平方向)集光面(z=L2x)における光線のばらつきを計算した結果を示している。全光線がx軸方向(水平方向)幅1nm以下の領域に集約されていることが確認できる。
(Simulation result of light collection performance of Example 2)
FIG. 14 shows the simulation results of light collection performance. FIG. 14(a) shows the results of calculation of light ray variations on the x-axis direction (horizontal direction) condensing plane (z=L 2x ) based on geometrical optics. It can be confirmed that all rays are concentrated in a region with a width of 1 nm or less in the x-axis direction (horizontal direction).

また、図14(b)は、波動光学に基づいて計算されたx軸方向(水平方向)集光面における二次元強度分布を示している。光子エネルギーは300eVに設定した。ビームはx軸方向(水平方向)幅52μm(FWHM)の領域に集光されている。 FIG. 14(b) shows a two-dimensional intensity distribution in the x-axis direction (horizontal direction) condensing plane calculated based on wave optics. Photon energy was set at 300 eV. The beam is focused on a region with a width of 52 μm (FWHM) in the x-axis direction (horizontal direction).

同様に、y軸方向(鉛直方向)集光面(z=L2y)における集光性能のシミュレーション結果を図14(c),(d)に示す。y軸方向(鉛直方向)の集光幅は,幾何光学で130nm,波動光学で7.4μm(FWHM)であった。 Similarly, FIGS. 14(c) and 14(d) show simulation results of light collection performance on the y-axis direction (vertical direction) light collection plane (z=L 2y ). The light collection width in the y-axis direction (vertical direction) was 130 nm in geometrical optics and 7.4 μm (FWHM) in wave optics.

Claims (6)

基材の中空内周面または外周面に反射面を形成して作製されるミラーの設計方法であって、
前記基材の前記内周面または外周面の中心軸をz軸、これに直交する断面をxy平面とし、
入射ビームが、z軸上所定位置からz軸方向に沿ってL1x変位した位置に、x軸方向の光源をもち、かつ前記z軸上所定位置からz軸方向に沿ってL1y変位した位置に、y軸方向の光源をもち、
出射ビームが、x軸方向について前記z軸上所定位置からz軸方向に沿ってL2x変位した位置に集光し、かつy軸方向について前記z軸上所定位置からz軸方向に沿ってL2y変位した位置に集光し、
ミラーを経由するすべての入射光線が、x軸方向における前記光源の位置を通り該x軸方向とz軸方向の双方に直交する方向に延びる第1の光源線、及びy軸方向における前記光源の位置を通り該y軸方向とz軸方向の双方に直交する方向に延びる第2の光源線を通過し、
ミラーから放たれるすべての出射光線が、x軸方向における前記集光する位置を通り該x軸方向とz軸方向の双方に直交する方向に延びる第1の集光線、及びy軸方向における前記集光する位置を通り該y軸方向とz軸方向の双方に直交する方向に延びる第2の集光線を通過するとし、
ミラーの反射面上の任意の点をMとして、第1の光源線とM点への入射光線との交点、及び第2の光源線とM点への入射光線との交点の各座標を、前記L1x、L1yを用いて表わし、且つ、前記M点からの出射光線と第1の集光線との交点、及びM点からの出射光線と第2の集光線との交点の各座標を、前記L2x、L2yを用いて表わし、
これら座標、及び前記x軸方向及び前記y軸方向についてそれぞれ反射面上の任意の点に関して光源位置から集光位置までの光路長が一定であること、に基づき導かれる反射面の設計式を用いてミラーを設計することを特徴とする、ミラーの設計方法。
A method for designing a mirror manufactured by forming a reflecting surface on a hollow inner peripheral surface or an outer peripheral surface of a base material, comprising:
Let the central axis of the inner peripheral surface or the outer peripheral surface of the base material be the z-axis, and the cross section orthogonal to this be the xy plane,
The incident beam has a light source in the x-axis direction at a position displaced L1x along the z-axis direction from a predetermined position on the z-axis, and a position displaced L1y along the z-axis direction from the predetermined position on the z-axis has a light source in the y-axis direction,
The emitted beam is condensed at a position displaced L 2x along the z-axis direction from the predetermined position on the z-axis in the x-axis direction, and is L along the z-axis direction from the predetermined position on the z-axis in the y-axis direction. Condensed at a position displaced by 2y ,
All incident light rays passing through the mirror have a first light source line passing through the position of the light source in the x-axis direction and extending in a direction orthogonal to both the x-axis direction and the z-axis direction, and the light source line in the y-axis direction. passing through a second light source line extending in a direction orthogonal to both the y-axis direction and the z-axis direction through a position;
A first converging ray extending in a direction orthogonal to both the x-axis direction and the z-axis direction through the converging position in the x-axis direction, and the above-mentioned Suppose that a second condensed ray passes through the condensed position and extends in a direction orthogonal to both the y-axis direction and the z-axis direction,
Let M be an arbitrary point on the reflecting surface of the mirror, and let the coordinates of the intersection of the first light source line and the light ray incident on the point M and the intersection of the second light source line and the light ray incident on the point M be Expressed using the L 1x and L 1y , and the coordinates of the intersection of the outgoing ray from the point M and the first condensed ray, and the intersection of the outgoing ray from the M point and the second condensed ray , expressed using the L 2x and L 2y ,
Using a reflecting surface design formula derived based on these coordinates and that the optical path length from the light source position to the condensing position is constant with respect to any point on the reflecting surface in the x-axis direction and the y-axis direction. A method of designing a mirror, characterized in that the mirror is designed by
前記第1の光源線、前記第2の光源線を、それぞれy軸方向に延びる直線S、x軸方向に延びる直線Sとし、
前記第1の集光線、前記第2の集光線を、それぞれy軸方向に延びる直線F、x軸方向に延びる直線Fとし、
前記x軸方向の光源位置からM点までの入射長は、前記第2の光源線Sとz軸との交点Py0を中心とし且つ第1の光源線Sとz軸との交点Px0を通ってx軸に直交する方向に延びる円弧を、第1の光源線Sを軸に回転させた回転円弧面を等位相面A1xとして、前記入射光線と該等位相面A1xとの2つの交点のうち第2の光源線Sに近い側の交点からM点までの距離として求め、
M点から前記x軸方向の集光位置までの出射長は、前記第2の集光線Fとz軸との交点Qy0を中心とし且つ第1の集光線Fとz軸との交点Qx0を通ってx軸に直交する方向に延びる円弧を、第1の集光線Fを軸に回転させた回転円弧面を等位相面A2xとして、前記出射光線と該等位相面A2xとの2つの交点のうち第2の集光線Fに近い側の交点からM点までの距離として求め、
前記y軸方向の光源位置からM点までの入射長は、前記第1の光源線Sとz軸との交点Px0を中心とし且つ第2の光源線Sとz軸との交点Py0を通ってy軸に直交する方向に延びる円弧を、第2の光源線Sを軸に回転させた回転円弧面を等位相面A1yとして、前記入射光線と該等位相面A1yとの2つの交点のうち第1の光源線Sに近い側の交点からM点までの距離として求め、
M点から前記y軸方向の集光位置までの出射長は、前記第1の集光線Fとz軸との交点Qx0を中心とし且つ第2の光源線Fとz軸との交点Qy0を通ってy軸に直交する方向に延びる円弧を、第2の集光線Fを軸に回転させた回転円弧面を等位相面A2yとして、前記出射光線と該等位相面A2yとの2つの交点のうち第1の集光線Fに近い側の交点からM点までの距離として求め、
これにより前記x軸方向及びy軸方向のそれぞれの集光に関して入射長と出射長の和である光路長を算出してなる、
請求項1記載のミラーの設計方法。
The first light source line and the second light source line are a straight line S x extending in the y -axis direction and a straight line Sy extending in the x-axis direction, respectively;
The first condensed light and the second condensed light are a straight line F x extending in the y-axis direction and a straight line F y extending in the x-axis direction, respectively;
The incident length from the light source position in the x-axis direction to point M is centered at the intersection point Py0 between the second light source line Sy and the z-axis, and the intersection point P between the first light source line Sx and the z -axis. A circular arc passing through x0 and extending in a direction perpendicular to the x -axis is rotated around the first light source line Sx as an equiphase surface A 1x , and the incident light beam and the equiphase surface A 1x is the distance from the closest side of the second light source line Sy to the point M,
The emission length from the point M to the condensed position in the x -axis direction is centered on the intersection Qy0 of the second condensed light Fy and the z -axis and the intersection of the first condensed light Fx and the z-axis. A circular arc passing through Q x0 and extending in a direction perpendicular to the x -axis is rotated about the first condensed ray F x as an arc plane A 2x . is the distance from the point of intersection closer to the second condensed ray F y to the point M,
The incident length from the light source position in the y-axis direction to point M is centered at the intersection point P x0 between the first light source line S x and the z-axis, and the intersection point P between the second light source line Sy and the z-axis. A circular arc passing through y0 and extending in a direction perpendicular to the y -axis is rotated around the second light source line Sy , and the circular arc surface is defined as an equal phase plane A1y . is the distance from the point of intersection closer to the first light source line S x to the point M,
The emission length from the point M to the condensed position in the y-axis direction is centered on the intersection point Qx0 between the first condensed light beam Fx and the z -axis and the intersection point between the second light source line Fy and the z-axis. A circular arc passing through Q y0 and extending in a direction perpendicular to the y-axis is rotated about the second condensed light beam F y as an equiphase surface A 2y . is the distance from the intersection on the side closer to the first condensed ray F x to the point M,
With this, the optical path length, which is the sum of the incident length and the outgoing length, is calculated for each of the light collections in the x-axis direction and the y-axis direction.
The method of designing a mirror according to claim 1 .
前記入射光線と等位相面A1xとの2つの交点のうち第2の光源線Sに近い側の交点からM点までの距離は、前記入射光線と前記第1の光源線Sとの交点Pから前記M点までの距離を求めるとともに、該距離に、前記交点Pから前記等位相面A1xを定義している前記円弧までの距離を加算又は減算して求め、
前記出射光線と等位相面A2xとの2つの交点のうち第2の集光線Fに近い側の交点からM点までの距離は、前記出射光線と前記第1の集光線Fとの交点Qから前記M点までの距離を求めるとともに、該距離に、前記交点Qから前記等位相面A2xを定義している前記円弧までの距離を加算又は減算して求め、
前記入射光線と等位相面A1yとの2つの交点のうち第1の光源線Sに近い側の交点からM点までの距離は、前記入射光線と前記第2の光源線Sとの交点Pから前記M点までの距離を求めるとともに、該距離に、前記交点Pから前記等位相面A1yを定義している前記円弧までの距離を加算又は減算して求め、
前記出射光線と等位相面A2yとの2つの交点のうち第1の集光線Fに近い側の交点からM点までの距離は、前記出射光線と前記第2の集光線Fとの交点Qから前記M点までの距離を求めるとともに、該距離に、前記交点Qから前記等位相面A2yを定義している前記円弧までの距離を加算又は減算して求める、
請求項2記載のミラーの設計方法。
Of the two intersections of the incident light ray and the equiphase plane A 1x , the distance from the intersection closer to the second light source line Sy to point M is the distance between the incident light ray and the first light source line Sx . Obtaining the distance from the intersection point P x to the M point, and adding or subtracting the distance from the intersection point P x to the arc defining the equal phase plane A 1x to the distance,
Of the two intersections of the output light beam and the equiphase plane A 2x , the distance from the intersection on the side closer to the second condensed ray Fy to point M is Obtaining the distance from the intersection point Q x to the M point, and adding or subtracting the distance from the intersection point Q x to the arc defining the equal phase surface A 2x to the distance,
Of the two intersections of the incident light ray and the equiphase surface A1y , the distance from the intersection on the side closer to the first light source line Sx to point M is the distance between the incident light ray and the second light source line Sy Obtaining the distance from the intersection point P y to the M point, and adding or subtracting the distance from the intersection point P y to the arc defining the equal phase plane A 1y to the distance,
Of the two intersections of the output light beam and the equiphase surface A2y , the distance from the intersection on the side closer to the first condensed light Fx to point M is the distance between the output light beam and the second condensed light Fy . Obtaining the distance from the intersection point Q y to the M point, and adding or subtracting the distance from the intersection point Q y to the arc defining the equiphase surface A 2y to the distance,
3. The method of designing a mirror according to claim 2.
前記設計式が、
前記x軸方向について光源点から集光点までの光路長が一定であることから導かれる第1の式f(x,y,z)=0と、前記y軸方向について光源点から集光点までの光路長が一定であることから導かれる第2の式f(x,y,z)=0とを重みづけした、下記式からなる、請求項1~3の何れか1項に記載のミラーの設計方法。
Figure 2022108208000036
The design formula is
The first formula f x (x, y, z) = 0 derived from the fact that the optical path length from the light source point to the condensing point is constant in the x-axis direction, and the light condensing from the light source point in the y-axis direction The second formula f y (x, y, z) = 0 derived from the fact that the optical path length to the point is constant, is weighted by the following formula, according to any one of claims 1 to 3 How the mirror is designed as described.
Figure 2022108208000036
請求項1~4の何れか1項に記載の前記設計式が成り立つ反射面を有するミラーであって、
前記L1xとL1yの値が異なり、且つ前記L2xとL2yの値が一致しており、
非点収差をもつ入射ビームから一点に集光する出射ビームが得られる、非点収差制御ミラー。
A mirror having a reflecting surface that satisfies the design formula according to any one of claims 1 to 4,
the values of L 1x and L 1y are different, and the values of L 2x and L 2y are the same;
An astigmatism control mirror that provides a converging output beam from an astigmatic input beam.
請求項1~4の何れか1項に記載の前記設計式が成り立つ反射面を有するミラーであって、
前記L1xとL1yの値が一致し、且つ前記L2xとL2yの値が異なっており、
一点から発散する入射ビームから非点収差をもつ出射ビームが得られる、非点収差制御ミラー。
A mirror having a reflecting surface that satisfies the design formula according to any one of claims 1 to 4,
The values of L 1x and L 1y are the same, and the values of L 2x and L 2y are different,
An astigmatism control mirror that provides an astigmatic output beam from an input beam that diverges from a single point.
JP2021003117A 2021-01-12 2021-01-12 Mirror design method and astigmatism control mirror including reflection surface in which design formula in the design method is established Pending JP2022108208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021003117A JP2022108208A (en) 2021-01-12 2021-01-12 Mirror design method and astigmatism control mirror including reflection surface in which design formula in the design method is established

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021003117A JP2022108208A (en) 2021-01-12 2021-01-12 Mirror design method and astigmatism control mirror including reflection surface in which design formula in the design method is established

Publications (1)

Publication Number Publication Date
JP2022108208A true JP2022108208A (en) 2022-07-25

Family

ID=82556150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021003117A Pending JP2022108208A (en) 2021-01-12 2021-01-12 Mirror design method and astigmatism control mirror including reflection surface in which design formula in the design method is established

Country Status (1)

Country Link
JP (1) JP2022108208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022128516A (en) * 2017-12-18 2022-09-01 ミツミ電機株式会社 ranging camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022128516A (en) * 2017-12-18 2022-09-01 ミツミ電機株式会社 ranging camera

Similar Documents

Publication Publication Date Title
US10288481B2 (en) Spectrometer for generating a two dimensional spectrum
Sanchez del Rio et al. Aspherical lens shapes for focusing synchrotron beams
KR102133912B1 (en) Optical design method for x-ray focusing system using rotating mirror, and x-ray focusing system
Lu et al. Optimization method for ultra-wide-angle and panoramic optical systems
Sasián Method of confocal mirror design
JP2022108208A (en) Mirror design method and astigmatism control mirror including reflection surface in which design formula in the design method is established
US11217357B2 (en) X-ray mirror optics with multiple hyperboloidal/hyperbolic surface profiles
US6746128B2 (en) Ultra-high resolution imaging devices
WO2022153978A1 (en) Mirror design method, and astigmatism control mirror having reflection surface on which design equation in said method is established
Rachon et al. Geometrical aberration suppression for large aperture sub-THz lenses
WO2022153979A1 (en) Design method for mirror and astigmatism-control mirror having reflective surface that satisfies design formula in design method
Goldberg Analytic descriptions of parabolic X-ray mirrors
Chen et al. Aberration-reduced spherical concave grating holographically recorded by a spherical wave and a toroidal wave for Rowland circle mounting
JP2018132695A (en) Cassegrain-like telescope
Sutter et al. Ideal Cartesian oval lens shape for refocusing an already convergent beam
Lu et al. X-ray tests of a two-dimensional stigmatic imaging scheme with variable magnifications
Goldberg et al. Off-axis representation of hyperbolic mirror shapes for X-ray beamlines
Lu et al. Geometric characteristics of aberrations of plane-symmetric optical systems
Druzhin et al. Extremely fast aplanatic space telescope system with a 10-m-diameter spherical primary mirror
Kohn et al. On the Possibility of the Nanoscale Focusing of Synchrotron Radiation Using an Adiabatic Refractive Lens
Bennett Advanced laser-backlit grazing-incidence x-ray imaging systems for inertial confinement fusion research. I. Design
Moreno Optimized IR synchrotron beamline design
Vishnyakov et al. Normal-incidence imaging spectrograph based on an aperiodic spherical grating for the vacuum spectral region
Tiwari Compound refractive lenses for X-rays
Wang et al. Terahertz wide-angle metalens with nearly ideal object-image relation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231212