JP2022106255A - Vehicle front and rear wheels turning angle control device - Google Patents

Vehicle front and rear wheels turning angle control device Download PDF

Info

Publication number
JP2022106255A
JP2022106255A JP2021001156A JP2021001156A JP2022106255A JP 2022106255 A JP2022106255 A JP 2022106255A JP 2021001156 A JP2021001156 A JP 2021001156A JP 2021001156 A JP2021001156 A JP 2021001156A JP 2022106255 A JP2022106255 A JP 2022106255A
Authority
JP
Japan
Prior art keywords
steering angle
wheel steering
rear wheel
vehicle
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021001156A
Other languages
Japanese (ja)
Inventor
卓磨 三浦
Takuma Miura
貴文 田代
Takafumi Tashiro
久志 杣田
Hisashi Somada
雄一郎 井戸
Yuichiro Ido
之進 江崎
Koreyuki Ezaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021001156A priority Critical patent/JP2022106255A/en
Publication of JP2022106255A publication Critical patent/JP2022106255A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

To provide, in a vehicle capable of steering front and rear wheels, a configuration that can minimize consumption power required for steering the front and rear wheels.SOLUTION: A front and rear wheels turning angle control device of a vehicle capable of steering front and rear wheels includes: means for determining a target traveling route at the time of turning of the vehicle; means for determining, of a combination of a front wheel turning angle and a rear wheel turning angle for realizing the target traveling route, a target combination of a front wheel turning angle and a rear wheel turning angle in which the sum of power consumption in a front wheel steering device and power consumption in a rear wheel steering device is the smallest; and means for controlling the front wheel turning angle and the rear wheel turning wheel to be the target combination.SELECTED DRAWING: Figure 1

Description

本発明は、前輪及び後輪の操舵が可能な自動車等の車両の前後輪のそれぞれの転舵角を制御する装置に係り、車両が目標経路に沿って又は目標の運動状態にて走行するように前後輪の転舵角を決定する装置に係る。 The present invention relates to a device that controls the steering angle of each of the front and rear wheels of a vehicle such as an automobile capable of steering the front wheels and the rear wheels, so that the vehicle travels along a target route or in a target motion state. It relates to a device for determining the steering angle of the front and rear wheels.

自動車等の車両に於いて、前輪だけでなく後輪の操舵装置が搭載されている場合には、車両の旋回時の運動を、前輪操舵のみの場合よりも、より詳細に制御することが可能となる。そこで、そのような前輪及び後輪の操舵が可能な車両の前後輪の転舵角を制御する技術が種々提案されている。例えば、特許文献1に於いては、運転者が複雑な操作をすることなく、車両の進行方向と車体の向きを個別に制御できるように、車両の旋回時の走行軌道上に自車両が将来通過する目標点を設定し、その設定した目標点に車両が向くように、現在の走行方向に対する車体角を決定し、決定した車体角となるように車輪を転舵する構成が提案されている。 When a vehicle such as an automobile is equipped with a steering device for not only the front wheels but also the rear wheels, it is possible to control the movement of the vehicle when turning in more detail than in the case of steering only the front wheels. Will be. Therefore, various techniques for controlling the steering angles of the front and rear wheels of a vehicle capable of steering such front wheels and rear wheels have been proposed. For example, in Patent Document 1, the own vehicle is placed on the traveling track when the vehicle is turning so that the driver can individually control the traveling direction of the vehicle and the direction of the vehicle body without performing complicated operations. It has been proposed to set a target point to pass, determine the vehicle body angle with respect to the current driving direction so that the vehicle faces the set target point, and steer the wheels to the determined vehicle body angle. ..

特開2006-123597JP 2006-123597

ところで、上記の如き前後輪の操舵が可能な車両に於いて、典型的には、前輪と後輪の操舵装置のそれぞれの作動には、電力が消費される。従って、エネルギーの節約の観点から、前後輪を転舵する場合に於いては、そのための消費電力をできるだけ小さくできることが好ましい。例えば、車両を或る経路に沿って旋回する場合に前後輪の転舵角の配分は前後輪の転舵可能な角度範囲内で任意に変更可能であるところ、その中で消費電力が最小となる配分が選択できるようになっていれば、車両に於ける消費エネルギーを節約できて有利である。 By the way, in a vehicle capable of steering the front and rear wheels as described above, electric power is typically consumed for each operation of the steering devices of the front wheels and the rear wheels. Therefore, from the viewpoint of energy saving, when steering the front and rear wheels, it is preferable that the power consumption for that purpose can be reduced as much as possible. For example, when turning a vehicle along a certain route, the distribution of the steering angles of the front and rear wheels can be arbitrarily changed within the steerable angle range of the front and rear wheels, but the power consumption is the minimum among them. It is advantageous to be able to save energy consumption in the vehicle if the distribution can be selected.

かくして、本発明の一つの課題は、前後輪の操舵が可能な車両に於いて、前後輪の転舵に要する消費電力を最小にすることのできる構成を提供することである。 Thus, one object of the present invention is to provide a configuration capable of minimizing the power consumption required for steering the front and rear wheels in a vehicle capable of steering the front and rear wheels.

本発明によれば、上記の課題は、前後輪の操舵が可能な車両の前後輪転舵角制御装置であって、
前記車両の旋回時の目標の走行経路を決定する手段と、
前記目標の走行経路を実現する前輪転舵角と後輪転舵角との組み合わせのうち、前輪操舵装置に於ける消費電力と後輪操舵装置に於ける消費電力の和が最小となる前輪転舵角と後輪転舵角との目標の組み合わせを決定する手段と、
前輪転舵角と後輪転舵角とを前記目標の組み合わせとなるように制御する手段と
を含む装置によって達成される。
According to the present invention, the above-mentioned problem is a front-rear wheel steering angle control device for a vehicle capable of steering front and rear wheels.
A means for determining a target travel route when the vehicle turns, and
Of the combinations of the front wheel steering angle and the rear wheel steering angle that realize the target traveling path, the front wheel steering that minimizes the sum of the power consumption of the front wheel steering device and the power consumption of the rear wheel steering device is minimized. A means of determining the target combination of the angle and the rear wheel steering angle,
It is achieved by a device including means for controlling the front wheel steering angle and the rear wheel steering angle so as to be a combination of the targets.

上記の構成に於いて、「旋回時の目標の走行経路」は、任意の態様にて与えられてよい。例えば、一つの態様に於いては、任意の手法にて、車両の旋回半径を決定し、その決定された車両の旋回半径が、旋回時の目標の走行経路を与える具体的な値として採用されてよい。その場合、車両の旋回半径は、例えば、前輪操舵車に於けるハンドルの操舵角と車両の旋回半径との一対一の関係を用いて決定されてよい。或いは、前輪操舵車に於けるハンドルの操舵角と車両のヨーレートとの一対一の関係などを用いて決定されるヨーレートが、旋回時の目標の走行経路を与える具体的な値として採用されてよい。別の態様としては、任意の形式の自動運転制御システムや運転支援システムなどにより決定される車両の走行予定の経路に於ける旋回経路を「旋回時の目標の走行経路」として採用し、かかる経路から車両の旋回半径又はヨーレートが算出されてもよい。「前記目標の走行経路を実現する前輪転舵角と後輪転舵角との組み合わせ」について、後の実施形態の欄に於いて説明される如く、前後輪の操舵が可能な車両に於いては、車両の運動を記述する運動方程式から、車両の旋回半径又はヨーレートが前輪転舵角と後輪転舵角との関数として与えられるので、旋回時の目標となる車両の旋回半径又はヨーレートが決定されると、それを実現する前輪転舵角と後輪転舵角との組み合わせが前輪転舵角と後輪転舵角のそれぞれの可変範囲内で種々決定される。一方、車両の前輪操舵装置と後輪操舵装置に於いては、それぞれ、前輪又は後輪の転舵にはそれぞれの転舵角に応じて電力が消費されることとなる。そこで、本発明の装置に於いては、上記の如く、目標の走行経路(例えば、目標の旋回半径又はヨーレート)を実現する前輪転舵角と後輪転舵角との組み合わせのうちで、前輪操舵装置と後輪操舵装置との消費電力の和が最小となるように前輪転舵角と後輪転舵角の組み合わせとなるように、前輪転舵角と後輪転舵角とを制御することにより、車両の操舵装置にて消費される電力の節約が図られる。 In the above configuration, the "target travel path when turning" may be given in any manner. For example, in one embodiment, the turning radius of the vehicle is determined by an arbitrary method, and the determined turning radius of the vehicle is adopted as a specific value that gives a target traveling path at the time of turning. It's okay. In that case, the turning radius of the vehicle may be determined, for example, by using the one-to-one relationship between the steering angle of the steering wheel and the turning radius of the vehicle in the front wheel steering vehicle. Alternatively, the yaw rate determined by using the one-to-one relationship between the steering angle of the steering wheel and the yaw rate of the vehicle in the front wheel steering vehicle may be adopted as a specific value that gives a target traveling path at the time of turning. .. As another aspect, a turning route in the planned traveling route of the vehicle determined by an arbitrary type of automatic driving control system or driving support system is adopted as a "target traveling route at the time of turning", and such a route is adopted. The turning radius or yaw rate of the vehicle may be calculated from. As described in the column of the later embodiment about "combination of the front wheel steering angle and the rear wheel steering angle that realizes the target traveling path", in a vehicle capable of steering the front and rear wheels. Since the turning radius or yaw rate of the vehicle is given as a function of the front wheel turning angle and the rear wheel turning angle from the motion equation describing the motion of the vehicle, the turning radius or yaw rate of the target vehicle at the time of turning is determined. Then, the combination of the front wheel steering angle and the rear wheel steering angle to realize it is variously determined within the respective variable ranges of the front wheel steering angle and the rear wheel steering angle. On the other hand, in the front wheel steering device and the rear wheel steering device of the vehicle, electric power is consumed for steering the front wheels or the rear wheels according to the respective steering angles. Therefore, in the apparatus of the present invention, as described above, among the combinations of the front wheel steering angle and the rear wheel steering angle that realize the target traveling path (for example, the target turning radius or yaw rate), the front wheel steering is performed. By controlling the front wheel steering angle and the rear wheel steering angle so that the combination of the front wheel steering angle and the rear wheel steering angle is obtained so that the sum of the power consumption between the device and the rear wheel steering device is minimized. The power consumed by the steering device of the vehicle can be saved.

上記の構成の前輪操舵装置と後輪操舵装置との消費電力の和を最小にする前輪転舵角と後輪転舵角の目標の組み合わせを決定する構成に於いて、より詳細には、まず、前後輪の各操舵装置に於いて各転舵角の変化に要する力(転舵力)、例えば、ラック・ピニオン形式の操舵装置の場合には、ラック軸力が、任意の手法により計測又は推定されてよい。そして、それらの転舵力(ラック軸力)の作用の下で、前後輪の各操舵装置での前後輪の転舵に要する消費電力の和を最小にする前輪転舵角と後輪転舵角の組み合わせが決定され、選択されてよい。かかる前輪転舵角と後輪転舵角の組み合わせの決定に際して、各操舵装置の消費電力は、通常、各転舵角の変化に要する転舵力が大きいほど、そして、転舵角が大きいほど、大きくなるので、例えば、前後輪のうちで転舵力が小さい方の転舵角の大きさをできるだけ大きくして、それが可変範囲の限界に達したときに、転舵力が大きい方の転舵角の大きさを増大するようになっていてよい。或いは、各転舵角が転舵力に反比例するように配分されてもよい。 In the configuration for determining the target combination of the front wheel steering angle and the rear wheel steering angle that minimizes the sum of the power consumption of the front wheel steering device and the rear wheel steering device having the above configuration, first, first, The force required to change each steering angle (steering force) in each steering device of the front and rear wheels, for example, in the case of a rack pinion type steering device, the rack axial force is measured or estimated by an arbitrary method. May be done. Then, under the action of those steering forces (rack axial forces), the front wheel steering angle and the rear wheel steering angle that minimize the sum of the power consumption required for steering the front and rear wheels in each steering device of the front and rear wheels are minimized. Combinations may be determined and selected. In determining the combination of the front wheel steering angle and the rear wheel steering angle, the power consumption of each steering device is usually such that the larger the steering force required for the change of each steering angle, and the larger the steering angle. Therefore, for example, the steering angle of the front and rear wheels with the smaller steering force should be made as large as possible, and when it reaches the limit of the variable range, the one with the larger steering force should be turned. The size of the rudder angle may be increased. Alternatively, each steering angle may be distributed so as to be inversely proportional to the steering force.

上記の構成に於いて、「目標の走行経路を実現する前輪転舵角と後輪転舵角との組み合わせ」について、旋回運動が定常旋回であり、車両のステア特性がニュートラルステア特性であるとしてよいときには、前輪転舵角δと後輪転舵角δとは、旋回半径ρとホイールベースlに対して
ρ=l/(δ-δ) …(a)
の関係を満たすこととなる。なお、ここで、前輪転舵角δと後輪転舵角δとは、左周りを正としたときに、旋回半径ρは、左旋回のときに正となる。従って、目標の走行経路として、旋回半径ρを与えた場合には、
δ-δ=l/ρ …(b)
を満たすように、前輪転舵角と後輪転舵角との組み合わせが決定されてよい。なお、前輪操舵車に於けるハンドルの操舵角δと車両の旋回半径との一対一の関係を用いて、前輪転舵角δと後輪転舵角δとは、
δ-δ=κ・δ …(c)
を満たすように前輪転舵角と後輪転舵角との組み合わせが決定されてよい(κは、比例係数)。
In the above configuration, regarding the "combination of the front wheel steering angle and the rear wheel steering angle that realize the target traveling path", the turning motion may be a steady turning and the steering characteristic of the vehicle may be a neutral steering characteristic. Occasionally, the front wheel steering angle δ f and the rear wheel steering angle δ r are ρ = l / (δ f − δ r )… (a) with respect to the turning radius ρ and the wheel base l.
Will satisfy the relationship. Here, the front wheel steering angle δ f and the rear wheel steering angle δ r are positive when the counterclockwise direction is positive, and the turning radius ρ is positive when the counterclockwise turning is left. Therefore, when the turning radius ρ is given as the target traveling path,
δ f − δ r = l / ρ… (b)
The combination of the front wheel steering angle and the rear wheel steering angle may be determined so as to satisfy the above conditions. Using the one-to-one relationship between the steering angle δ w of the steering wheel and the turning radius of the vehicle in the front wheel steering vehicle, the front wheel steering angle δ f and the rear wheel steering angle δ r are
δ f − δ r = κ ・ δ w … (c)
The combination of the front wheel steering angle and the rear wheel steering angle may be determined so as to satisfy (κ is a proportional coefficient).

ところで、上記の如き前後輪の操舵が可能な車両に於いては、前輪転舵角と後輪転舵角の配分を変えることで、旋回中の車両のスリップ角(車両の前後方向に対する進行方向の向き)を調節することが可能である。従って、もし車両の旋回経路上の周囲に障害物等が存在する場合に、車両のスリップ角を調節して車両が障害物等に接触しないように、前輪転舵角と後輪転舵角の配分が変更されてよい。例えば、旋回外方又は内方に障害物が存在する場合には、車両の後方又は前方の通過経路の旋回外方又は内方への膨らみが低減するように、上記の式(b)又は(c)等を保持しながら、前輪転舵角と後輪転舵角とを変化させるようになっていてよい(前輪転舵角と後輪転舵角は、車両のスリップ角の絶対値が低減するように補正されてよい)。車両の旋回経路上の周囲に障害物等の検出は、カメラ、LIDAR、クリアランスソナーなどの任意のセンサにより達成されてよい。具体的には、車体から側方の障害物までの距離の検出値に応じて、前後輪の転舵角の転舵可能範囲の限界値が調節されるようになっていてよい。 By the way, in a vehicle capable of steering the front and rear wheels as described above, by changing the distribution of the front wheel steering angle and the rear wheel steering angle, the slip angle of the vehicle during turning (in the traveling direction with respect to the front-rear direction of the vehicle). It is possible to adjust the orientation). Therefore, if there is an obstacle or the like around the turning path of the vehicle, the slip angle of the vehicle is adjusted so that the vehicle does not come into contact with the obstacle or the like, and the front wheel turning angle and the rear wheel turning angle are distributed. May be changed. For example, if there is an obstacle on the outside or inside of the turn, the above equation (b) or (b) or ( c) The front wheel steering angle and the rear wheel steering angle may be changed while maintaining the above (the front wheel steering angle and the rear wheel steering angle are such that the absolute value of the slip angle of the vehicle is reduced. May be corrected to). Detection of obstacles or the like around the vehicle's turning path may be accomplished by any sensor such as a camera, lidar, clearance sonar, or the like. Specifically, the limit value of the steerable range of the steering angles of the front and rear wheels may be adjusted according to the detected value of the distance from the vehicle body to the obstacle on the side.

かくして、上記の本発明の装置によれば、前後輪の操舵が可能な車両に於いて、前後輪の操舵に要する消費電力を節約しながら、車両を目標の走行経路に沿って走行させることが可能となる。特に、本発明の装置によれば、電力の節約が可能となるので、電気自動車やハイブリッド車に於いて、電力消費量を低減することができる点で有利である。 Thus, according to the above-mentioned apparatus of the present invention, in a vehicle capable of steering the front and rear wheels, the vehicle can be driven along a target travel path while saving the power consumption required for steering the front and rear wheels. It will be possible. In particular, according to the apparatus of the present invention, it is possible to save electric power, which is advantageous in that electric power consumption can be reduced in an electric vehicle or a hybrid vehicle.

本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。 Other objects and advantages of the invention will be apparent by the following description of preferred embodiments of the invention.

図1(A)は、本発明による車両の前後輪転舵角制御装置の好ましい実施形態が搭載される車両の模式図である。図1(B)は、本発明による車両の前後輪転舵角制御装置の一つの実施形態に於けるシステムの構成をブロック図の形式にて表した図である。FIG. 1A is a schematic view of a vehicle equipped with a preferred embodiment of a vehicle front / rear wheel steering angle control device according to the present invention. FIG. 1B is a diagram showing the configuration of a system in one embodiment of the vehicle front / rear wheel steering angle control device according to the present invention in the form of a block diagram. 図2(A)は、前後輪の操舵可能な車両に於ける前後輪の転舵角及びその他の車両の運動状態を記述する値の定義を説明する車両の模式的な平面図である。図2(B)は、車両の旋回時の旋回半径を説明する図である。FIG. 2A is a schematic plan view of a vehicle for explaining the definition of the steering angle of the front and rear wheels and other values describing the motion state of the vehicle in the steerable vehicle of the front and rear wheels. FIG. 2B is a diagram illustrating a turning radius when the vehicle turns. 図3(a)、(b)、(c)は、それぞれ、前後輪の操舵可能な車両に於ける前後輪の転舵角の配分の態様を説明する模式的な車両の平面図である。3 (a), (b), and (c) are schematic plan views of a vehicle illustrating the mode of distribution of the steering angles of the front and rear wheels in the steerable vehicle of the front and rear wheels, respectively. 図4(A)、(B)は、本実施形態の車両の前後輪転舵角制御装置に於いて、車両の走行経路の周囲に障害物が存在している場合の前後輪転舵角の補正について説明する模式的な車両の平面図である。4 (A) and 4 (B) show the correction of the front / rear wheel steering angle when an obstacle exists around the traveling path of the vehicle in the front / rear wheel steering angle control device of the vehicle of the present embodiment. It is a top view of the schematic vehicle to be described. 図5(A)は、本実施形態の車両の前後輪転舵角制御装置に於ける作動をフローチャートの形式に表した図である。図5(B)は、図5(A)のステップ4の前後輪転舵角の目標値を決定する処理をフローチャートの形式に表した図である。FIG. 5A is a diagram showing the operation of the vehicle front / rear wheel steering angle control device of the present embodiment in the form of a flowchart. FIG. 5B is a diagram showing the process of determining the target value of the front-rear wheel steering angle in step 4 of FIG. 5A in the form of a flowchart.

10…車両
12FL,FR,RL,RR…車輪
14…アクセルペダル
30…前輪操舵装置
32…ハンドル
32a…VGRS装置
34…前輪アクチュエータ
36L、R…前輪タイロッド
40…後輪操舵装置
44…後輪アクチュエータ
46L、R…後輪タイロッド
50…コンピュータ装置
70…車載カメラ
72…クリアランスソナー
10 ... Vehicle 12FL, FR, RL, RR ... Wheel 14 ... Accelerator pedal 30 ... Front wheel steering device 32 ... Handle 32a ... VGRS device 34 ... Front wheel actuator 36L, R ... Front wheel tie rod 40 ... Rear wheel steering device 44 ... Rear wheel actuator 46L , R ... Rear wheel tie rod 50 ... Computer device 70 ... In-vehicle camera 72 ... Clearance sonar

車両の構成
図1(A)を参照して、本実施形態の前後輪転舵角制御装置は、前後輪の操舵が可能な任意の自動車等の車両10に搭載されてよい。車両10に於いては、通常の態様にて、左右前輪12FL、12FRと、左右後輪12RL、12RRと、前輪又は後輪に制駆動力を発生する駆動装置(図示せず)と、各輪に制動力を発生する制動装置(図示せず)と、前輪12FL、12FRの舵角を制御するための前輪操舵装置30と、後輪12RL、12RRの舵角を制御するための後輪操舵装置40と搭載される。駆動装置に於いては、通常の態様にて、運転者によるアクセルペダル(図示せず)の踏込みに応答して、或いは、運転支援装置や自動運転装置などの任意の制御装置の加減速要求に応答して、駆動トルクが、エンジン又は電動機である原動機(エンジンと電動機との双方を有するハイブリッド式の駆動装置であってもよい。)から動力伝達機構を介して、前輪12FL、12FR又は後輪12RL、12RR或いはそれらの両方へ伝達されるよう構成されていてよい。制動装置は、運転者によりブレーキペダル(図示せず)の踏込みに応答して各輪に制動力を与える任意の形式のものであってよい。そして、前輪操舵装置30、後輪操舵装置40は、それぞれ、任意の方式のアクチュエータ34、44を駆動することによって、力(転舵力)を各輪に取り付けられたタイロッド36L、R、46L、Rへ伝達して、前輪12FL、12FR及び後輪12RL、12RRの舵角を変化できるよう構成されていてよい。アクチュエータ34、44は、典型的には、ラック・ピニオン型のアクチュエータであってよく、ピニオンの回転によってラックが軸方向に駆動されて、前輪12FL、12FR及び後輪12RL、12RRの向きが転向する機構であってよいが、これに限定されない。なお、本実施形態の車両10に於いて、前輪操舵装置30、後輪操舵装置40は、後に説明されるコンピュータ装置50からの制御指令C_δf、C_δrに応じてアクチュエータ34、44が作動し、前輪12FL、12FR及び後輪12RL、12RRを転舵するよう構成される。また、前輪操舵装置30のアクチュエータ34は、運転者によって操舵されるハンドル32の回転がVGRS(Variable Gear Ratio Steering:可変ギヤ比ステアリング)装置32aを介して伝達され、作動可能となっていてもよい。
With reference to FIG. 1A of the vehicle configuration , the front / rear wheel steering angle control device of the present embodiment may be mounted on a vehicle 10 such as an arbitrary automobile capable of steering the front / rear wheels. In the vehicle 10, in a normal manner, the left and right front wheels 12FL and 12FR, the left and right rear wheels 12RL and 12RR, a drive device (not shown) that generates a controlling driving force on the front wheels or the rear wheels, and each wheel. A braking device (not shown) that generates braking force, a front wheel steering device 30 for controlling the steering angles of the front wheels 12FL and 12FR, and a rear wheel steering device for controlling the steering angles of the rear wheels 12RL and 12RR. It is mounted with 40. In the drive device, in a normal manner, in response to the driver's depression of the accelerator pedal (not shown), or in response to an acceleration / deceleration request of any control device such as a driving support device or an automatic driving device. In response, the drive torque is from the engine or motor, which is an electric motor (which may be a hybrid drive unit having both an engine and a motor), via a power transmission mechanism, front wheels 12FL, 12FR or rear wheels. It may be configured to be transmitted to 12RL, 12RR, or both. The braking device may be of any type in which the driver applies braking force to each wheel in response to depression of the brake pedal (not shown). The front wheel steering device 30 and the rear wheel steering device 40 drive the actuators 34 and 44 of any type, respectively, to apply a force (steering force) to the tie rods 36L, R, 46L, respectively. It may be configured so that the steering angles of the front wheels 12FL and 12FR and the rear wheels 12RL and 12RR can be changed by transmitting to R. The actuators 34, 44 may typically be rack and pinion type actuators, in which the rotation of the pinion drives the rack axially to redirect the front wheels 12FL, 12FR and the rear wheels 12RL, 12RR. It may be a mechanism, but it is not limited to this. In the vehicle 10 of the present embodiment, in the front wheel steering device 30 and the rear wheel steering device 40, the actuators 34 and 44 are operated in response to the control commands C_δf and C_δr from the computer device 50 described later, and the front wheels are operated. It is configured to steer 12FL, 12FR and rear wheels 12RL, 12RR. Further, the actuator 34 of the front wheel steering device 30 may be operable by transmitting the rotation of the steering wheel 32 steered by the driver via the VGRS (Variable Gear Ratio Steering) device 32a. ..

上記の本実施形態による前後輪転舵角制御装置の作動は、既に触れた如く、コンピュータ装置50により実現されてよい。コンピュータ装置50は、通常の形式の、双方向コモン・バスにより相互に連結されたCPU、ROM、RAM及び入出力ポート装置を有するコンピュータ及び駆動回路を含んでいてよく、後に説明される本実施形態の装置の各部の構成及び作動は、それぞれ、プログラムに従ったコンピュータ装置50の作動により実現されてよい。コンピュータ装置50には、本実施形態の作動のために、運転者に操舵されるハンドル32の操舵角δ、前輪アクチュエータ34、後輪アクチュエータ44に於ける転舵に要する力(転舵力、ラック・ピニオン型の場合には、ラック軸力)F、Fを推定するための情報(例えば、前輪軸重、後輪軸重、前輪転舵角、後輪転舵角など)が入力される。なお、後に説明される如く、走行経路周辺の障害物を避けるために前後輪の転舵角を補正する構成を採用する場合には、走行経路周辺の障害物を検出するために、車両周囲を撮像するための車載カメラ70、車両周囲の物体の存在又は更にそれまでの距離を検出するクリアランスソナー72、LIDARなどが装備され、その検出情報がコンピュータ装置50へ入力されてよい。また、図示していないが、コンピュータ装置50へは、本実施形態の車両に於いて実行されるべき各種制御、例えば、挙動安定化制御など、に必要な種々のパラメータ、例えば、各輪車輪速、アクセルペダル・ブレーキペダルの踏込量、ヨーレート、横加速度などの各種検出信号が入力され、各種の制御指令が対応する装置へ出力されるようになっていてもよい。そして、コンピュータ装置50は、後に説明される態様にて決定された前後輪の目標転舵角δf_t、δr_tを実現するべく、アクチュエータ34、44へ制御指令C_δ、C_δを送信するよう構成される。 As already mentioned, the operation of the front / rear wheel steering angle control device according to the present embodiment may be realized by the computer device 50. The computer apparatus 50 may include a computer and a drive circuit having a CPU, ROM, RAM and an input / output port apparatus connected to each other by a bidirectional common bus in the usual form, and the present embodiment described later will be described. The configuration and operation of each part of the device may be realized by the operation of the computer device 50 according to the program. The computer device 50 has a steering angle δ w of the handle 32 steered by the driver for the operation of the present embodiment, a force (steering force, steering force,) required for steering in the front wheel actuator 34 and the rear wheel actuator 44. In the case of the rack pinion type, information for estimating the rack axial force) F f and F r (for example, front wheel axle weight, rear wheel axle weight, front wheel steering angle, rear wheel steering angle, etc.) is input. .. As will be described later, when a configuration is adopted in which the steering angles of the front and rear wheels are corrected in order to avoid obstacles around the travel route, the surroundings of the vehicle are laid out in order to detect obstacles around the travel route. An in-vehicle camera 70 for taking an image, a clearance sonar 72 for detecting the presence or distance of an object around the vehicle, LIDAR, and the like may be provided, and the detection information may be input to the computer device 50. Further, although not shown, the computer device 50 is subjected to various parameters necessary for various controls to be executed in the vehicle of the present embodiment, for example, behavior stabilization control, for example, wheel speed of each wheel. , Various detection signals such as accelerator pedal / brake pedal depression amount, yaw rate, lateral acceleration, etc. may be input, and various control commands may be output to the corresponding device. Then, the computer device 50 transmits control commands C_δ f and C_δ r to the actuators 34 and 44 in order to realize the target steering angles δ f _t and δ r _t of the front and rear wheels determined in the embodiment described later. It is configured to do.

装置の構成
図1(B)を参照して、本実施形態による前後輪転舵角制御装置は、概して述べれば、目標経路決定部、前輪転舵力推定部、後輪転舵力推定部、前後輪転舵角配分決定部を含む。
Configuration of the Device With reference to FIG. 1 (B), the front / rear wheel steering angle control device according to the present embodiment generally includes a target path determination unit, a front wheel steering force estimation unit, a rear wheel steering force estimation unit, and front / rear wheel rotation. Includes steering angle distribution determination unit.

より詳細には、目標経路決定部は、運転者に操舵されるハンドルの操舵角δ又は自動運転制御などの将来の車両の走行経路を決定する制御装置からの将来の目標の走行経路若しくは走行位置の情報を取得し、車両の将来の走行経路(目標経路)を決定するよう構成される。この点に関し、後に詳細に説明される如く、車両の走行経路については、旋回半径が前後輪の転舵角により与えられるので、目標経路として、目標の旋回半径が与えられてよい。或いは、旋回半径は、車速とヨーレートにより与えられるので、車速が検出できる場合には、目標経路として、目標のヨーレートが与えられてもよい。前輪転舵力推定部と後輪転舵力推定部とは、それぞれ、前輪アクチュエータ34、後輪アクチュエータ44に於いて、転舵角を変化させるのに要する力、即ち、転舵力F、Fを、任意の手法にて、例えば、後述の前後輪の軸重を参照し決定する手法などにて、推定するよう機能する。なお、転舵力は、単位転舵角当たりに必要な力又は仕事量であってよく、単位は、N(ニュートン)又はN・m(ニュートン・メートル)であってよい。アクチュエータがラック・ピニオン型のアクチュエータの場合には、ピニオンがラックを軸方向に変位させるラック軸力であってよい。 More specifically, the target route determination unit is a future target travel route or travel from a control device that determines the travel route of the future vehicle such as the steering angle δ w of the steering wheel steered by the driver or automatic driving control. It is configured to acquire position information and determine the vehicle's future travel route (target route). In this regard, as will be described in detail later, with respect to the traveling path of the vehicle, the turning radius is given by the steering angle of the front and rear wheels, so that the target turning radius may be given as the target path. Alternatively, since the turning radius is given by the vehicle speed and the yaw rate, the target yaw rate may be given as the target route when the vehicle speed can be detected. The front wheel steering force estimation unit and the rear wheel steering force estimation unit are the forces required to change the steering angle in the front wheel actuator 34 and the rear wheel actuator 44, that is, the steering forces F f and F, respectively. It functions to estimate r by an arbitrary method, for example, a method of determining by referring to the axle load of the front and rear wheels described later. The steering force may be a force or work amount required per unit steering angle, and the unit may be N (Newton) or Nm (Newton meter). When the actuator is a rack and pinion type actuator, the pinion may be a rack axial force that displaces the rack in the axial direction.

そして、前後輪転舵角配分決定部は、後に説明されるように、目標経路決定部からの目標経路を参照して、前後輪転舵角が満たすべき条件を決定し、前輪転舵力推定部と後輪転舵力推定部からの転舵力を参照して、前後輪転舵角が満たすべき条件のうちで前輪アクチュエータ34、後輪アクチュエータ44で消費される電力又はエネルギーが最小となるように前輪転舵角と後輪転舵角との目標値を決定し、それらの目標値が実現されるように、前輪アクチュエータ34、後輪アクチュエータ44へ制御指令C_δ、C_δを出力する。なお、前後輪転舵角が満たすべき条件の決定に於いて、車速が必要な場合には、車速情報が前後輪転舵角配分決定部へ入力されてよい。 Then, the front / rear wheel steering angle distribution determination unit determines the conditions to be satisfied by the front / rear wheel steering angle with reference to the target path from the target route determination unit, and the front wheel steering force estimation unit and the front wheel steering force estimation unit. With reference to the steering force from the rear wheel steering force estimation unit, the front wheel rotation is such that the power or energy consumed by the front wheel actuator 34 and the rear wheel actuator 44 is minimized among the conditions that the front and rear wheel steering angles must be satisfied. Target values for the steering angle and the rear wheel turning angle are determined, and control commands C_δ f and C_δ r are output to the front wheel actuator 34 and the rear wheel actuator 44 so that the target values are realized. If vehicle speed is required in determining the conditions under which the front / rear wheel steering angle should be satisfied, vehicle speed information may be input to the front / rear wheel steering angle distribution determination unit.

更に、本実施形態の前後輪転舵角制御装置は、車両の周囲又は走行経路の近傍に於いて障害物が存在する場合には、その障害物との接触を回避するように、前輪転舵角と後輪転舵角との目標値がそれぞれ修正されるようになっていてよい。そのために、カメラ又はクリアランスソナーを用いて検出された障害物の有無、距離の情報が前後輪転舵角配分決定部へ入力され、車両の走行経路の旋回外方又は内方に障害物が存在するときには、かかる障害物との接触を回避するように前輪転舵角と後輪転舵角との目標値が増減されてよい。 Further, the front / rear wheel steering angle control device of the present embodiment has a front wheel steering angle so as to avoid contact with the obstacle when an obstacle exists around the vehicle or in the vicinity of the traveling path. And the target values of the rear wheel steering angle may be corrected respectively. Therefore, the presence / absence of obstacles and distance information detected by using a camera or clearance sonar are input to the front / rear wheel steering angle distribution determination unit, and the obstacles exist outside or inside the turning of the vehicle's travel path. Occasionally, the target values of the front wheel steering angle and the rear wheel steering angle may be increased or decreased so as to avoid contact with such obstacles.

装置の作動
(1)前後輪転舵角の決定
当業者に於いて知られている如く、前後輪の操舵が可能な車両の旋回時の運動は、前輪転舵角と後輪転舵角とからそれぞれ決定される前輪横力と後輪横力とを用いた運動方程式によって記述されるところ、運動が定常円旋回であり、ステア特性がニュートラルステア特性であるとすると(この条件は、短い時間に於いて近似的に成立すると考えてよい。)、車両の運動は、下記の式(1)により記述される。
r=(V/l)(δ-δ) …(1)
ここに於いて、図2(A)の車両の平面図に記載されている如く、rは、ヨーレート、Vは、車速、lは、ホイールベース、δは、前輪転舵角、δは、後輪転舵角である。なお、ヨーレートr、車体スリップ角βは、図に於いて反時計回り(左周り)を正とし、横力は、左向きに正とし、前輪転舵角δ、後輪転舵角δは、車輪の回転面が車両の前後方向を向いているときを0とし、左周りに転舵したときを正、右周りに転舵したときを負としている。
Operation of the device (1) Determination of front and rear wheel steering angle As is known by those skilled in the art, the movement of a vehicle capable of steering the front and rear wheels during turning is determined from the front wheel steering angle and the rear wheel steering angle, respectively. As described by the equation of motion using the determined front wheel lateral force and rear wheel lateral force, if the motion is a steady circular turn and the steer characteristic is a neutral steer characteristic (this condition is in a short time). It can be considered that the motion is approximately established), and the motion of the vehicle is described by the following equation (1).
r = (V / l) (δ f -δ r )… (1)
Here, as described in the plan view of the vehicle of FIG. 2A, r is the yaw rate, V is the vehicle speed, l is the wheelbase, δ f is the front wheel steering angle, and δ r is. , Rear wheel steering angle. In the figure, the yaw rate r and the vehicle body slip angle β are positive in the counterclockwise direction (counterclockwise), the lateral force is positive in the left direction, and the front wheel steering angle δ f and the rear wheel steering angle δ r are When the rotating surface of the wheel is facing the front-rear direction of the vehicle, it is set to 0, when it is steered counterclockwise, it is positive, and when it is steered clockwise, it is negative.

上記の場合、図2(B)に描かれている如く、車両の走行経路の旋回半径ρは、
ρ=V/r=l/(δ-δ) …(2)
にて与えられるので、目標経路を旋回半径ρにより与えた場合には、目標経路に沿って車両が走行するために、前輪転舵角δと後輪転舵角δとの満たすべき条件は、
δ-δ=l/ρ …(3)
により、与えられることとなる。従って、自動運転制御や運転支援制御などに於いて、車両の将来の走行経路又は走行位置などの情報が決定される場合には、それらの位置情報から旋回半径ρを任意の手法により決定することにより、前輪転舵角δと後輪転舵角δとの満たすべき条件が、式(3)にて与えられることとなる。或いは、任意の制御によって、目標のヨーレートが与えられる場合には、式(2)を用いて、車速Vを参照して、前輪転舵角δと後輪転舵角δとの満たすべき条件が決定されてよい。又は更に、一般的によく見られる運転者の操舵するハンドルが前輪の操舵装置に直結され、ハンドルの操舵角δと前輪転舵角δとが一対一に対応している前輪操舵車両の場合、ハンドルの操舵角δと旋回半径ρは、
ρ=l/δ=l/κ・δ …(4)
により与えられるので(κは、比例係数)、前輪転舵角δと後輪転舵角δとの満たすべき条件は、ハンドルの操舵角δを用いて、
δ-δ=κ・δ …(5)
により与えられてもよい。かくして、上記の如く前輪転舵角δと後輪転舵角δとの満たすべき条件δ=δ-δ(以下、「前後輪転舵角条件」と称する。)が決定されると、前輪転舵角δと後輪転舵角δが、それぞれの可変範囲内に於いて、前後輪転舵角条件を満たす任意の組み合わせにて配分されれば、車両は、目標経路に沿って走行することとなる。[上記の式(1)にてヨーレートrが与えられる場合、車体スリップ角βの正負符号は、前輪転舵角δと後輪転舵角δの配分によるが、前輪横力と後輪横力との和の正負符号は、ヨーレートrの正負符号に一致する。従って、車両の重心は、ヨーレートrの方向へ移動することとなるので、上記の条件に於いて、車両の回頭方向と旋回方向とは常に一致する。]
In the above case, as shown in FIG. 2B, the turning radius ρ of the traveling path of the vehicle is
ρ = V / r = l / (δ f -δ r )… (2)
Therefore, when the target route is given by the turning radius ρ, the conditions to be satisfied between the front wheel steering angle δ f and the rear wheel steering angle δ r in order for the vehicle to travel along the target route are ,
δ f − δ r = l / ρ… (3)
Will be given by. Therefore, when information such as the future travel route or travel position of the vehicle is determined in automatic driving control, driving support control, etc., the turning radius ρ should be determined by an arbitrary method from the position information. Therefore, the conditions to be satisfied between the front wheel steering angle δ f and the rear wheel steering angle δ r are given by the equation (3). Alternatively, when the target yaw rate is given by arbitrary control, the conditions to be satisfied between the front wheel steering angle δ f and the rear wheel steering angle δ r are referred to by using the equation (2) and referring to the vehicle speed V. May be determined. Or, more commonly, in a front wheel steering vehicle in which the driver's steering wheel, which is commonly seen, is directly connected to the front wheel steering device, and the steering angle δ w of the steering wheel and the front wheel steering angle δ f have a one-to-one correspondence. If the steering angle δ w of the steering wheel and the turning radius ρ are
ρ = l / δ f = l / κ ・ δ w … (4)
Since (κ is a proportional coefficient), the conditions to be satisfied between the front wheel steering angle δ f and the rear wheel steering angle δ r are determined by using the steering angle δ w of the steering wheel.
δ f - δ r = κ ・ δ w … (5)
May be given by. Thus, when the condition δ t = δ f − δ r (hereinafter referred to as “front and rear wheel steering angle condition”) to be satisfied between the front wheel steering angle δ f and the rear wheel steering angle δ r is determined as described above. If the front wheel steering angle δ f and the rear wheel steering angle δ r are distributed in any combination that satisfies the front and rear wheel steering angle conditions within their respective variable ranges, the vehicle will be along the target route. It will run. [When the yaw rate r is given in the above equation (1), the positive and negative signs of the vehicle body slip angle β depend on the distribution of the front wheel steering angle δ f and the rear wheel steering angle δ r , but the front wheel lateral force and the rear wheel lateral force. The positive / negative sign of the sum with the force corresponds to the positive / negative sign of the yaw rate r. Therefore, since the center of gravity of the vehicle moves in the direction of the yaw rate r, the turning direction and the turning direction of the vehicle always match under the above conditions. ]

ところで、前輪及び後輪を転舵する際には、前輪アクチュエータ34、後輪アクチュエータ44に於いて、それぞれ、エネルギー、即ち、電力が消費されるところ、エネルギーの節約の観点から、前後輪の転舵に於いては、消費電力をできるだけ小さくできることが好ましい。そこで、本実施形態に於いては、上記の前後輪転舵角条件を満たしつつ、前輪アクチュエータ34と後輪アクチュエータ44に於ける消費電力が最小となるように前輪転舵角δと後輪転舵角δを配分し、これにより、消費電力の節約が図られる。 By the way, when steering the front wheels and the rear wheels, the front wheel actuator 34 and the rear wheel actuator 44 consume energy, that is, the electric power is consumed, and the front and rear wheels are rotated from the viewpoint of energy saving. In the steering, it is preferable that the power consumption can be reduced as much as possible. Therefore, in the present embodiment, the front wheel steering angle δ f and the rear wheel steering angle δ f and the rear wheel steering so as to minimize the power consumption in the front wheel actuator 34 and the rear wheel actuator 44 while satisfying the above-mentioned front and rear wheel steering angle conditions. The angle δ r is distributed, which saves power consumption.

前後輪の転舵において消費されるエネルギーEtotalは、転舵角が左右のいずれに於いて変化しても転舵力が同様であるとして、前輪及び後輪の転舵力F、F(図2(A)参照)を用いて、下記の式により与えられる。
total=F・T・|δ|+F・T・|δ| …(6)
ここで、|δ|、|δ|は、前輪転舵角δ、後輪転舵角δの大きさであり、Tは、比例係数である(簡単の為、前後輪で同一として仮定している。)。従って、前輪転舵角δと後輪転舵角δの配分は、上記の前後輪転舵角条件δを満たしつつ、式(6)が最小となるように決定されてよい。
The energy E total consumed in the steering of the front and rear wheels is the steering force of the front wheels and the rear wheels F f , F r , assuming that the steering force is the same regardless of whether the steering angle changes to the left or right. (See FIG. 2 (A)), given by the following equation.
E total = F f・ T ・ | δ f | + F r・ T ・ | δ r |… (6)
Here, | δ f | and | δ r | are the magnitudes of the front wheel steering angle δ f and the rear wheel steering angle δ r , and T is a proportional coefficient (for simplicity, the front and rear wheels are assumed to be the same). It is assumed.). Therefore, the distribution of the front wheel steering angle δ f and the rear wheel steering angle δ r may be determined so that the equation (6) is minimized while satisfying the above-mentioned front and rear wheel steering angle condition δ t .

前輪転舵角δと後輪転舵角δの具体的な配分方法について、前後輪転舵角条件δがδ-δにより与えられ、Etotalが、式(6)の如く前輪転舵角δ、後輪転舵角δの大きさの和で与えられるので、前後輪転舵角条件δが或る値のときには、図3(A)~(C)に描かれている如く、前後輪の転舵角が同相の場合(δとδの正負符号が同じ)よりも、前後輪の転舵角が逆相の場合(δとδの正負符号が逆)にEtotalが小さくなる。また、前輪及び後輪の転舵力F、Fのうち、いずれか一方が小さい場合には、その小さい方の転舵角を変化させて前後輪転舵角条件δを満たすようにすれば、Etotalが小さくなる。かくして、F<Fのときには、前輪転舵角δを旋回方向と同じ方向に大きくし、その可変範囲の限界|δ_lim|まで大きくしても前後輪転舵角条件δが達成されないときに、後輪転舵角δを旋回方向とは逆方向に転舵するようになっていてよい(図3(C)参照)。また、F>Fのときには、後輪転舵角δを旋回方向とは逆方向に大きくし、その可変範囲の限界|δ_lim|まで大きくしても前後輪転舵角条件δが達成されないときに、前輪転舵角δを旋回方向とは逆方向に転舵するようになっていてよい(図3(B)参照)。具体的な配分決定処理は、後述される。(より厳密には、前輪及び後輪の転舵力F、Fは、それぞれの転舵角δ、δの大きさにも依存する。このことを考慮する場合、エネルギーEtotalが最小となるようにする前輪転舵角δ、後輪転舵角δの配分は、転舵力の小さい方の車輪の転舵角が転舵力F、Fの大小関係の逆転する転舵角に到達しても前後輪転舵角条件δが達成されないときに、もう一方の車輪の転舵角の大きさが増大されるようにして決定されてよい。) Regarding the specific distribution method of the front wheel steering angle δ f and the rear wheel steering angle δ r , the front and rear wheel steering angle condition δ t is given by δ f − δ r , and E total is the front wheel rolling as shown in equation (6). Since it is given by the sum of the steering angle δ f and the rear wheel steering angle δ r , when the front and rear wheel steering angle condition δ t is a certain value, it is as shown in FIGS. 3 (A) to 3 (C). , When the steering angles of the front and rear wheels are in opposite phase (the positive and negative signs of δ f and δ r are opposite) than when the steering angles of the front and rear wheels are in phase (the positive and negative signs of δ f and δ r are the same). E total becomes smaller. If either of the steering forces F f and F r of the front wheels and the rear wheels is smaller, the steering angle of the smaller one is changed so that the front and rear wheel steering angle condition δ t is satisfied. If so, E total becomes smaller. Thus, when F f <F r , the front and rear wheel steering angle condition δ t is achieved even if the front wheel steering angle δ f is increased in the same direction as the turning direction and the limit of the variable range | δ f _ lim | is increased. When not, the rear wheel steering angle δ r may be steered in the direction opposite to the turning direction (see FIG. 3C). Further, when F f > F r , the rear wheel steering angle condition δ t is increased even if the rear wheel steering angle δ r is increased in the direction opposite to the turning direction and the limit of the variable range | δ r _lim | is increased. When this is not achieved, the front wheel steering angle δ f may be steered in the direction opposite to the turning direction (see FIG. 3B). The specific allocation determination process will be described later. (Strictly speaking, the steering forces F f and F r of the front wheels and the rear wheels also depend on the magnitudes of the steering angles δ f and δ r , respectively. Considering this, the energy E total The distribution of the front wheel steering angle δ f and the rear wheel steering angle δ r to be minimized is such that the steering angle of the wheel with the smaller steering force reverses the magnitude relationship of the steering force F f and F r . It may be determined so that the magnitude of the steering angle of the other wheel is increased when the front / rear wheel steering angle condition δ t is not achieved even when the steering angle is reached.)

なお、別の態様として、前後輪の転舵角を逆相にして、前後輪の転舵角を、前輪及び後輪の転舵力F、Fの逆比となるように配分してもよい。 As another aspect, the steering angles of the front and rear wheels are reversed in phase, and the steering angles of the front and rear wheels are distributed so as to be the inverse ratio of the steering forces F f and F r of the front wheels and the rear wheels. May be good.

(2)障害物回避のための前後輪転舵角の補正
前後輪の操舵が可能な車両に於いては、或る経路に沿って旋回する場合に、前輪転舵角と後輪転舵角の配分を変更すると、車体の姿勢、即ち、車体のスリップ角を変化させることが可能であり、旋回時に車体の通過する領域を調整することが可能である。そこで、上記の如く前後輪の転舵角を配分して車両を旋回させる際に、車両の走行経路の周辺にて障害物が検出された場合には、その障害物が車両に接触しないように、前後輪転舵角条件δを維持したまま、前輪転舵角と後輪転舵角の配分が変更されてよい。より具体的には、例えば、図4(A)の如く、後輪転舵角の大きさが大きいほど、車体のスリップ角の大きさが大きくなり、車体の後方が旋回外方へ膨らんだ軌跡を描き、車体の前方が旋回内方へ膨らんだ軌跡を描くこととなるので、車両の旋回外方又は内方に車両に接触するおそれのある障害物が検出されたときには、例えば、後に説明される処理手順に記載されている如く、車体のスリップ角の大きさを低減する方向に前輪転舵角と後輪転舵角の配分が変更されてよい。上記の場合の転舵角の変更量は、カメラやクリアランスソナーの検出情報を参照して、車両の旋回外方の縁の通過域が障害物の位置と重複しないように決定されてよい。
(2) Correction of front and rear wheel steering angle to avoid obstacles In vehicles that can steer front and rear wheels, distribution of front wheel steering angle and rear wheel steering angle when turning along a certain route. By changing, it is possible to change the posture of the vehicle body, that is, the slip angle of the vehicle body, and it is possible to adjust the area through which the vehicle body passes when turning. Therefore, when an obstacle is detected around the vehicle's travel path when turning the vehicle by allocating the steering angles of the front and rear wheels as described above, the obstacle should not come into contact with the vehicle. The distribution of the front wheel steering angle and the rear wheel steering angle may be changed while maintaining the front / rear wheel steering angle condition δ t . More specifically, for example, as shown in FIG. 4A, the larger the rear wheel steering angle, the larger the slip angle of the vehicle body, and the locus in which the rear of the vehicle body bulges outward. Since the front of the vehicle body will draw a trajectory that bulges inward, when an obstacle that may come into contact with the vehicle is detected on the outside or inside of the vehicle, for example, it will be explained later. As described in the processing procedure, the distribution of the front wheel steering angle and the rear wheel steering angle may be changed in the direction of reducing the size of the slip angle of the vehicle body. The amount of change in the steering angle in the above case may be determined by referring to the detection information of the camera or the clearance sonar so that the passing area of the outer edge of the turning of the vehicle does not overlap with the position of the obstacle.

(3)処理手順
本実施形態の前後輪転舵角制御装置による前後輪転舵角の配分は、任意の状況にて、例えば、運転者の要求に応じて、車載バッテリの低減時、或いは、任意の制御の要求に応じて、適宜、実行されてよい。また、本実施形態の制御は、特に、車速が低速域から中速域までの間や、隘路の通過時、切り返し時などに選択的に利用されてよい。
(3) Processing procedure The distribution of the front-rear wheel steering angle by the front-rear wheel steering angle control device of the present embodiment can be performed in any situation, for example, when the vehicle-mounted battery is reduced, or arbitrarily according to the driver's request. It may be executed as appropriate according to the request for control. Further, the control of the present embodiment may be selectively used especially when the vehicle speed is in the low speed range to the medium speed range, when passing through a bottleneck, when turning back, and the like.

図5(A)を参照して、処理手順に於いては、まず、運転者のハンドル操舵角或いは自動運転制御若しくは運転支援制御の要求に基づいて、目標の走行経路が取得され(ステップ1)、目標走行経路を実現する前後輪転舵角条件δが決定される(ステップ2)。既に触れた如く、目標走行経路は、旋回経路ρ、ヨーレートrなどにより与えられ、その値から前後輪転舵角条件δが決定されてよく、或いは、式(5)により、運転者のハンドル操舵角δから直接に前後輪転舵角条件δが決定されてよい。 With reference to FIG. 5A, in the processing procedure, first, a target driving route is acquired based on the driver's steering angle or a request for automatic driving control or driving support control (step 1). , The front-rear wheel steering angle condition δ t that realizes the target driving route is determined (step 2). As already mentioned, the target travel path is given by the turning path ρ, yaw rate r, etc., and the front-rear wheel steering angle condition δ t may be determined from the values, or the driver's steering wheel steering may be determined by the equation (5). The front-rear wheel steering angle condition δ t may be determined directly from the angle δ w .

次いで、任意の手法により前後輪のアクチュエータに於ける転舵力F、Fが取得される(ステップ3)。具体的には、簡単には、例えば、転舵力F、Fは、それぞれ、前輪軸重W、後輪軸重Wが大きいほど、大きくなるので、前輪軸重W、後輪軸重Wを用いて、
=ξ・W; F=ξ・W …(7)
により与えられてよい。(ここで、ξ、ξは、係数である。車速の関数であってもよい。)
Next, the steering forces F f and F r in the actuators of the front and rear wheels are acquired by an arbitrary method (step 3). Specifically, for example, the steering forces F f and F r become larger as the front wheel axle weight W f and the rear wheel axle weight W r are larger, respectively, so that the front wheel axle weight W f and the rear wheel axle are larger, respectively. Using heavy Wr ,
F f = ξ f · W f ; F r = ξ r · W r … (7)
May be given by. (Here, ξ f and ξ r are coefficients. It may be a function of vehicle speed.)

上記の如く、前後輪転舵力F、Fが得られると、既に述べた如く、前後輪転舵角条件δ=δ-δを満たしつつ、前後輪の転舵において消費されるエネルギーEtotalが最小となるように、前後輪の転舵角が決定される(ステップ4)。かかる処理としては、一つの態様に於いては、図5(B)を参照して、まず、前輪転舵力Fと後輪転舵力Fとが比較され(ステップ11)、後輪転舵力Fが小さいときには、前後輪転舵角条件δが後輪転舵角δだけで達成できるか否か、即ち、前後輪転舵角条件δの絶対値が後輪転舵角の可変限界値δ_limよりも大きいか否かが判定され(ステップ12)、前後輪転舵角条件δが後輪転舵角δだけで達成できるときは、後輪転舵角の目標値δ_tが-δに設定される(後輪転舵角は、前後輪転舵角条件δに対して逆相である。)(ステップ13)。一方、前後輪転舵角条件δの絶対値が後輪転舵角の可変限界値δ_limよりも大きいときに、後輪転舵角の目標値δ_tが後輪転舵角の可変限界値δ_limに設定される(δ>0のときに、δ_t←-δ_lim、δ<0のときに、δ_t←+δ_lim)(ステップ15)。そして、前輪転舵角の目標値δf_tは、前後輪転舵角条件δから後輪転舵角の目標値δ_tの大きさを差し引いた値に設定される(ステップ14)(ステップ13のときには、δ_t=-δであるので、δf_t=0で、前輪は、転舵されない。)。 As described above, when the front and rear wheel steering forces F f and F r are obtained, as already mentioned, the energy consumed in the front and rear wheel steering while satisfying the front and rear wheel steering angle conditions δ t = δ f − δ r . The steering angles of the front and rear wheels are determined so that E total is minimized (step 4). As such processing, in one embodiment, first, the front wheel steering force F f and the rear wheel steering force F r are compared (step 11) with reference to FIG. 5 (B), and the rear wheel steering force F r is compared. When the force F r is small, whether or not the front / rear wheel steering angle condition δ t can be achieved only by the rear wheel steering angle δ r , that is, the absolute value of the front / rear wheel steering angle condition δ t is the variable limit value of the rear wheel steering angle. If it is determined whether or not it is larger than δ r _lim (step 12) and the front / rear wheel steering angle condition δ t can be achieved only by the rear wheel steering angle δ r , the target value δ r _t of the rear wheel steering angle is-. It is set to δ t (the rear wheel steering angle is opposite to the front / rear wheel steering angle condition δ t ) (step 13). On the other hand, when the absolute value of the front / rear wheel steering angle condition δ t is larger than the variable limit value δ r _lim of the rear wheel steering angle, the target value δ r _t of the rear wheel steering angle is the variable limit value δ of the rear wheel steering angle. It is set to r _lim (when δ t > 0, δ r _t ← −δ r _lim, when δ t <0, δ r _t ← + δ r _lim) (step 15). Then, the target value δ f _t of the front wheel steering angle is set to a value obtained by subtracting the size of the target value δ r _t of the rear wheel steering angle from the front / rear wheel steering angle condition δ t (step 14) (step 13). At this time, δ r _t = −δ t , so δ f _t = 0, and the front wheels are not steered.)

ステップ11に於いて、前輪転舵力Fが小さいときには、前後輪転舵角条件δが前輪転舵角δだけで達成できるか否か、即ち、前後輪転舵角条件δの絶対値が前輪転舵角の可変限界値δ_limよりも大きいか否かが判定され(ステップ16)、前後輪転舵角条件δが前輪転舵角δだけで達成できるときは、前輪転舵角の目標値δ_tがδに設定される(前輪転舵角は、前後輪転舵角条件δに対して同相である。)(ステップ17)。一方、前後輪転舵角条件δの絶対値が前輪転舵角の可変限界値δ_limよりも大きいときに、前輪転舵角の目標値δ_tが前輪転舵角の可変限界値δ_limに設定される(δ>0のときに、δ_t←+δ_lim、δ<0のときに、δ_t←-δ_lim)(ステップ18)。そして、後輪転舵角の目標値δ_tは、前後輪転舵角条件δから前輪転舵角の目標値δrf_tの大きさを差し引いた値に設定される(ステップ19-後輪転舵角は、前後輪転舵角条件δに対して逆相である。)(ステップ17のときには、δf_t=δであるので、δ_t=0で、後輪は、転舵されない。)。 In step 11, when the front wheel steering force F f is small, whether or not the front and rear wheel steering angle condition δ t can be achieved only by the front wheel steering angle δ f , that is, the absolute value of the front and rear wheel steering angle condition δ t . Is larger than the variable limit value δ f lim of the front wheel steering angle (step 16), and when the front and rear wheel steering angle condition δ t can be achieved only by the front wheel steering angle δ f , the front wheel steering angle is steered. The target value δ f _t of the angle is set to δ t (the front wheel steering angle is in phase with respect to the front / rear wheel steering angle condition δ t ) (step 17). On the other hand, when the absolute value of the front and rear wheel steering angle condition δ t is larger than the variable limit value δ f _ lim of the front wheel steering angle, the target value δ f _ t of the front wheel steering angle is the variable limit value δ of the front wheel steering angle. It is set to f _lim (when δ t > 0, δ f _t ← + δ f _lim, and when δ t <0, δ f _t ← −δ r _lim) (step 18). Then, the target value δ r _t of the rear wheel steering angle is set to a value obtained by subtracting the size of the target value δ rf _t of the front wheel steering angle from the front / rear wheel steering angle condition δ t (step 19-rear wheel steering). The angle is out of phase with respect to the front-rear wheel steering angle condition δ t .) (Since δ f _t = δ t in step 17, δ r _t = 0 and the rear wheels are not steered. ).

なお、前後輪の転舵角が決定された後、車両の近傍の障害物との接触を回避するための補正が実行されてよい。この点に関し、車両が旋回する場合に、(左旋回の場合も右旋回の場合も)車体スリップ角βの大きさを小さくすると、車両の走行経路の中心からの車両の前縁と後縁の軌跡の旋回内外の膨らみを小さくなる。また、前後輪転舵角条件δを一定に保つ場合、車体スリップ角βは、
β=δ-{(2Kr+mV2/l)/2(Kf+Kr)}・δ …(8)
(ここで、Kf、Krは、前輪、後輪のコーナリングパワーであり、mは、車両質量であり、Vは、車速である。)
により与えられ、前輪転舵角δの増減に一致する(dβ/dδ=1)。従って、旋回内外に車両と接触するおそれのある障害物が検出されたときには(ステップ5)、車体スリップ角β>0のときには(ステップ6)、βの絶対値を低減するべく、前輪転舵角の目標値δ_tが低減され、その分、後輪転舵角の目標値δ_tも低減され(ステップ7)、車体スリップ角β<0のときには、βの絶対値を低減するべく(車体スリップ角βを増大すべく)、前輪転舵角の目標値δ_tが増大され、その分、後輪転舵角の目標値δ_tも増大されてよい(ステップ8)。車体スリップ角βは、式(8)を用いて算出されてよい(Kf、Kr、l、mは、予め準備した定数が用いられてよく、車速Vは、任意の手法で検出した値が用いられてよい。)。かかる処理に於いて、転舵角の補正量は、それぞれ、車体の縁と障害物までの距離を考慮して適宜設定されてよい。
After the steering angles of the front and rear wheels are determined, corrections may be made to avoid contact with obstacles in the vicinity of the vehicle. In this regard, when the vehicle turns, if the size of the vehicle body slip angle β is reduced (whether it is a left turn or a right turn), the leading edge and the trailing edge of the vehicle from the center of the vehicle's travel path are reduced. The bulge inside and outside the turning of the locus is reduced. In addition, when the front-rear wheel steering angle condition δ t is kept constant, the vehicle body slip angle β is
β = δ f -{(2Kr + mV 2 / l) / 2 (Kf + Kr)} ・ δ t … (8)
(Here, Kf and Kr are the cornering powers of the front wheels and the rear wheels, m is the mass of the vehicle, and V is the vehicle speed.)
It is given by and corresponds to the increase / decrease of the front wheel steering angle δ f (dβ / dδ f = 1). Therefore, when an obstacle that may come into contact with the vehicle is detected inside or outside the turn (step 5), and when the vehicle body slip angle β> 0 (step 6), the front wheel turning angle is to be reduced in order to reduce the absolute value of β. The target value δ f _t of is reduced, and the target value δ r _t of the rear wheel turning angle is also reduced accordingly (step 7), and when the vehicle body slip angle β <0, the absolute value of β is reduced (vehicle body). (In order to increase the slip angle β), the target value δ f _t of the front wheel steering angle may be increased, and the target value δ r _t of the rear wheel steering angle may be increased accordingly (step 8). The vehicle body slip angle β may be calculated using the equation (8) (Kf, Kr, l, m may be constants prepared in advance, and the vehicle speed V may be a value detected by any method. May be done.). In such processing, the correction amount of the steering angle may be appropriately set in consideration of the distance between the edge of the vehicle body and the obstacle.

かくして、上記の如く、前後輪の転舵角の目標値が決定され、或いは、補正されると、前後輪の転舵角をそれぞれの目標値に一致させるように転舵角の制御すが実行される(ステップ9)。 Thus, when the target value of the steering angle of the front and rear wheels is determined or corrected as described above, the steering angle is controlled so as to match the steering angle of the front and rear wheels with the respective target values. Is done (step 9).

ところで、上記のステップ3、4の処理に於いて、転舵力F、Fが、転舵角δ、δの依存性を考慮して、より精密に推定され、それに基づいて、目標の転舵角δ_t、δ_tが決定されてもよい。その場合、例えば、転舵力は、δ_t、δ_tの絶対値の関数となり、
(|δ_t|)=ξ・W・(|δ_t|+d) …(9a)
(|δ_t|)=ξ・W・(|δ_t|+d) …(9b)
により与えられてよい(d、dは、転舵角が0のときの転舵力の大きさを与えるための定数である。)。そして、転舵角の目標値δ_t、δ_tは、前後輪転舵角条件δを満たしつつ、式(6)に於いて、転舵力F、Fを式(9a、b)にて与えた場合にエネルギーEtotalを最小にする組み合わせに決定されてよい。(例えば、F(|δ_t|)<F(0)が成立する範囲で前後輪転舵角条件δが達成される場合には、δ_tを変化させ、F(|δ_t|)=F(0)でも前後輪転舵角条件δが達成されない場合には、δ_tを変化させるようにして、目標の転舵角δ_t、δ_tを決定することが可能である。)
By the way, in the processes of steps 3 and 4 above, the steering forces F f and F r are estimated more precisely in consideration of the dependence of the steering angles δ f and δ r , and based on that, The target steering angles δ f _t and δ r _t may be determined. In that case, for example, the steering force is a function of the absolute values of δ f _t and δ r _t.
F f (| δ f _t |) = ξ f・ W f・ (| δ f _t | + d f )… (9a)
F r (| δ r _t |) = ξ r · W r · (| δ r _t | + dr )… (9b)
(D f , dr is a constant for giving the magnitude of the steering force when the steering angle is 0). Then, the target values δ f _t and δ r _t of the steering angle satisfy the front and rear wheel steering angle condition δ t , and in the equation (6), the steering forces F f and F r are expressed by the equations (9a, b). ) May be determined to be a combination that minimizes the energy E total . (For example, if the front-rear wheel steering angle condition δ t is achieved within the range where F f (| δ f _t |) <F r (0) is satisfied, δ f _t is changed and F f (| δ). If the front-rear wheel steering angle condition δ t is not achieved even with f _t |) = F r (0), the target steering angles δ f _t and δ r _t are determined by changing δ r _t. Is possible.)

以上の説明は、本発明の実施の形態に関連してなされているが、当業者にとつて多くの修正及び変更が容易に可能であり、本発明は、上記に例示された実施形態のみに限定されるものではなく、本発明の概念から逸脱することなく種々の装置に適用されることは明らかであろう。 Although the above description is made in relation to the embodiments of the present invention, many modifications and modifications can be easily made by those skilled in the art, and the present invention is limited to the embodiments exemplified above. It will be apparent that, without limitation, it applies to various devices without departing from the concept of the present invention.

Claims (1)

前後輪の操舵が可能な車両の前後輪転舵角制御装置であって、
前記車両の旋回時の目標の走行経路を決定する手段と、
前記目標の走行経路を実現する前輪転舵角と後輪転舵角との組み合わせのうち、前輪操舵装置に於ける消費電力と後輪操舵装置に於ける消費電力の和が最小となる前輪転舵角と後輪転舵角との目標の組み合わせを決定する手段と、
前輪転舵角と後輪転舵角とを前記目標の組み合わせとなるように制御する手段と
を含む装置。
It is a front / rear wheel steering angle control device for vehicles that can steer the front and rear wheels.
A means for determining a target travel route when the vehicle turns, and
Of the combinations of the front wheel steering angle and the rear wheel steering angle that realize the target traveling path, the front wheel steering that minimizes the sum of the power consumption of the front wheel steering device and the power consumption of the rear wheel steering device is minimized. A means of determining the target combination of the angle and the rear wheel steering angle,
A device including means for controlling the front wheel steering angle and the rear wheel steering angle so as to be a combination of the targets.
JP2021001156A 2021-01-06 2021-01-06 Vehicle front and rear wheels turning angle control device Pending JP2022106255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021001156A JP2022106255A (en) 2021-01-06 2021-01-06 Vehicle front and rear wheels turning angle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021001156A JP2022106255A (en) 2021-01-06 2021-01-06 Vehicle front and rear wheels turning angle control device

Publications (1)

Publication Number Publication Date
JP2022106255A true JP2022106255A (en) 2022-07-19

Family

ID=82448904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021001156A Pending JP2022106255A (en) 2021-01-06 2021-01-06 Vehicle front and rear wheels turning angle control device

Country Status (1)

Country Link
JP (1) JP2022106255A (en)

Similar Documents

Publication Publication Date Title
JP6179820B2 (en) Vehicle driving support control device
US10046802B2 (en) Driving assistance control apparatus for vehicle
JP3046108B2 (en) Steering force control method for vehicle with differential limiting device
JP5830554B2 (en) Control method for four-wheel steering vehicle
JP4369198B2 (en) Vehicle steering control device
US8892309B2 (en) Vehicle steering control apparatus
JP4556775B2 (en) Vehicle steering system
JP4215026B2 (en) Vehicle travel control device
JP5170496B2 (en) Electric power steering device
US10272943B2 (en) Control unit for vehicle and control method for vehicle
JP5227082B2 (en) Vehicle steering control device equipped with a four-wheel steering mechanism
WO2019240002A1 (en) Vehicle control device, vehicle control method, and vehicle control system
WO2013027573A1 (en) Vehicle cornering efficiency improving apparatus
JP5158211B2 (en) Power steering device
JP4876617B2 (en) Vehicle behavior control device
JP4024574B2 (en) Vehicle control device
JP5359351B2 (en) Behavior control device
JP2008239115A (en) Vehicle operation controller
JP2008141875A (en) Running system and drive control device
JP4148017B2 (en) Vehicle drive control device
JP2010158963A (en) Device and method for controlling vehicle
JP2022106255A (en) Vehicle front and rear wheels turning angle control device
JP5347500B2 (en) Vehicle control apparatus and vehicle control method
JP5163752B2 (en) Power steering device
JP4635578B2 (en) Vehicle behavior control device