JP2022105853A - Oxide sputtering target, and method of producing oxide sputtering target - Google Patents

Oxide sputtering target, and method of producing oxide sputtering target Download PDF

Info

Publication number
JP2022105853A
JP2022105853A JP2021000440A JP2021000440A JP2022105853A JP 2022105853 A JP2022105853 A JP 2022105853A JP 2021000440 A JP2021000440 A JP 2021000440A JP 2021000440 A JP2021000440 A JP 2021000440A JP 2022105853 A JP2022105853 A JP 2022105853A
Authority
JP
Japan
Prior art keywords
oxide
sputtering target
less
oxide sputtering
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021000440A
Other languages
Japanese (ja)
Inventor
晋 岡野
Susumu Okano
和泰 西村
Kazuyasu Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2021000440A priority Critical patent/JP2022105853A/en
Priority to PCT/JP2021/048909 priority patent/WO2022149557A1/en
Publication of JP2022105853A publication Critical patent/JP2022105853A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

To provide an oxide sputtering target capable of stably producing a uniform oxide film with little variation in film resistance in the initial/intermediate/final stages of film deposition by sputtering, and a method of producing the oxide sputtering target.SOLUTION: The oxide sputtering target constituted of a sintered oxide comprising Zn as a metal component as a primary component, in which the coefficient of variation of the specific resistance value in the thickness direction is 0.20 or less. The method of producing an oxide sputtering target comprises: a calcination step S02 of calcining raw material powder to be sintered; a crushing step S03 of crushing the calcined raw material powder to be sintered; and a sintering step S04 of sintering the crushed calcined raw material powder to be sintered to obtain a sintered body. The degree of vacuum in the calcination step is in a range of 15 Pa or less, the calcination temperature is in a range of 600°C or more and 1000°C or less, and the retention time at the calcination temperature is 2 hours or more and 6 hours or less.SELECTED DRAWING: Figure 1

Description

本発明は、金属成分としてZnを主成分とする酸化物焼結体からなる酸化物スパッタリングターゲット、および、この酸化物スパッタリングターゲットの製造方法に関する。 The present invention relates to an oxide sputtering target made of an oxide sintered body containing Zn as a main component as a metal component, and a method for manufacturing the oxide sputtering target.

従来、光ディスク等の光記録媒体においては、記録層や光反射膜を保護するために、保護膜が形成されている。
また、タッチパネルや太陽電池、有機ELディスプレイなどの電子デバイスにはパターニングされた配線膜や電極が広く使用されており、これら配線膜や電極においては、金属膜の上に保護膜が積層された構造とされている。
Conventionally, in an optical recording medium such as an optical disc, a protective film is formed in order to protect the recording layer and the light reflecting film.
In addition, patterned wiring films and electrodes are widely used in electronic devices such as touch panels, solar cells, and organic EL displays, and these wiring films and electrodes have a structure in which a protective film is laminated on a metal film. It is said that.

上述の保護膜として、例えば特許文献1,2に示すように、可視光の透過率に優れたITO膜やZnO膜などの酸化物膜が利用されている。
ここで、上述の酸化物膜は、酸化物スパッタリングターゲットを用いたスパッタ法によって成膜される。例えば、特許文献3,4には、スパッタ法により成膜されるZnO膜の特性を向上させるために、酸化物スパッタリングターゲットに各種元素を添加することが提案されている。
As the protective film described above, for example, as shown in Patent Documents 1 and 2, oxide films such as ITO film and ZnO film having excellent visible light transmittance are used.
Here, the above-mentioned oxide film is formed by a sputtering method using an oxide sputtering target. For example, Patent Documents 3 and 4 propose adding various elements to an oxide sputtering target in order to improve the characteristics of a ZnO film formed by a sputtering method.

特許文献3には、ZnOに、Tiと、Ga又はAlから選ばれる1種以上を添加した酸化物スパッタリングターゲットが記載されている。この特許文献3では、Ga又はAlの含有量は、(Ga+Al)/(Zn+Ti+Ga+Al)原子数比として0.03以下、Tiの含有量は、Ti/(Zn+Ti+Ga+Al)原子数比として0.05~0.25とされている。 Patent Document 3 describes an oxide sputtering target in which Ti and one or more selected from Ga or Al are added to ZnO. In this Patent Document 3, the content of Ga or Al is 0.03 or less as the atomic number ratio of (Ga + Al) / (Zn + Ti + Ga + Al), and the content of Ti is 0.05 to 0 as the atomic number ratio of Ti / (Zn + Ti + Ga + Al). It is said to be .25.

特許文献4には、ZnOに、TiとGaを添加した酸化物スパッタリングターゲットが記載されている。この特許文献4では、TiとGaの含有量は、Ti1.1at%以上又はGa4.5at%以上の範囲で、且つGaの含有量y(at%)が、Tiの含有量x(at%)で表される値(-2.5x+9.8)以下の範囲で且つチタンの含有量x(at%)で表される値(-0.5x+1.1)以上の範囲とされている。 Patent Document 4 describes an oxide sputtering target in which Ti and Ga are added to ZnO. In Patent Document 4, the Ti and Ga contents are in the range of Ti 1.1 at% or more or Ga 4.5 at% or more, and the Ga content y (at%) is the Ti content x (at%). It is in the range of the value represented by (-2.5x + 9.8) or less and the range of the value represented by the titanium content x (at%) (-0.5x + 1.1) or more.

特開平07-114841号公報Japanese Unexamined Patent Publication No. 07-114841 特開2009-252576号公報Japanese Unexamined Patent Publication No. 2009-25576 特開2009-298649号公報Japanese Unexamined Patent Publication No. 2009-298649 特許第4295811号公報Japanese Patent No. 4295811

ところで、金属成分としてZnを主成分とする酸化物焼結体からなる酸化物スパッタリングターゲットにおいては、スパッタ成膜の初期/中期/終期で、成膜された酸化物膜の特性にばらつきが生じ、安定して酸化物膜を成膜できないことがあった。 By the way, in an oxide sputtering target made of an oxide sintered body containing Zn as a main component as a metal component, the characteristics of the formed oxide film vary depending on the initial / middle / final stage of the sputter film formation. In some cases, it was not possible to form an oxide film in a stable manner.

この発明は、前述した事情に鑑みてなされたものであって、スパッタ成膜の初期/中期/終期で特性のばらつきが少なく均一な酸化物膜を安定して成膜可能な酸化物スパッタリングターゲット、および、この酸化物スパッタリングターゲットの製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and is an oxide sputtering target capable of stably forming a uniform oxide film with little variation in characteristics at the initial / middle / final stage of sputtering deposition. An object of the present invention is to provide a method for producing the oxide sputtering target.

上記課題を解決するために、本発明者らが鋭意検討した結果、以下のような知見を得た。金属成分としてZnを主成分とする酸化物焼結体からなる酸化物スパッタリングターゲットにおいては、焼結時に表層部分が局所的に還元されてしまい、表層と内部とで還元状態が異なることがわかった。そして、この還元状態の違いによって、該ターゲットにおける比抵抗値が変動することがわかった。 As a result of diligent studies by the present inventors in order to solve the above problems, the following findings were obtained. It was found that in an oxide sputtering target composed of an oxide sintered body containing Zn as a main component as a metal component, the surface layer portion is locally reduced during sintering, and the reduced state differs between the surface layer and the inside. .. Then, it was found that the specific resistance value in the target fluctuates depending on the difference in the reduction state.

本発明の酸化物スパッタリングターゲットは、上述の知見に基づいてなされたものであって、金属成分としてZnを主成分とする酸化物焼結体からなり、厚さ方向における比抵抗値の変動係数が0.20以下であることを特徴としている。 The oxide sputtering target of the present invention is made based on the above-mentioned findings, and is composed of an oxide sintered body containing Zn as a main component as a metal component, and has a coefficient of variation of specific resistance value in the thickness direction. It is characterized by being 0.20 or less.

上述の構成の酸化物スパッタリングターゲットによれば、金属成分としてZnを主成分とする酸化物焼結体からなり、厚さ方向における比抵抗値の変動係数が0.20以下に抑えられているので、該ターゲットのスパッタ面となる表層と内部とで還元状態がそれぞれ大きく異なっておらず、スパッタが進行した場合であっても、成膜した酸化物膜の膜抵抗にばらつきが生じることが抑えられ、均一な酸化物膜を安定して成膜することが可能となる。 According to the oxide sputtering target having the above configuration, it is composed of an oxide sintered body containing Zn as a main component as a metal component, and the fluctuation coefficient of the specific resistance value in the thickness direction is suppressed to 0.20 or less. The reduction state does not differ significantly between the surface layer, which is the sputtered surface of the target, and the inside, and even when sputtering progresses, it is possible to suppress variations in the film resistance of the deposited oxide film. , It becomes possible to stably form a uniform oxide film.

ここで、本発明の酸化物スパッタリングターゲットにおいては、金属成分の合計を100原子%として、Gaが10.0原子%以上20.0原子%以下、Tiが0.5原子%以上5.0原子%以下、残部がZnおよび不可避不純物金属元素とされた割合で含有する酸化物からなることが好ましい。
この場合、上述の組成の酸化物で構成されているので、DC(直流)スパッタ法などの通常のスパッタ法により安定して酸化物膜を成膜することができる。また、金属との積層膜を作成した際に、耐環境性に優れた積層膜を得ることができる。
Here, in the oxide sputtering target of the present invention, Ga is 10.0 atomic% or more and 20.0 atomic% or less, and Ti is 0.5 atomic% or more and 5.0 atoms, where the total of the metal components is 100 atomic%. % Or less, preferably composed of an oxide contained in a ratio of Zn and an unavoidable impurity metal element in the balance.
In this case, since it is composed of an oxide having the above-mentioned composition, an oxide film can be stably formed by a normal sputtering method such as a DC (direct current) sputtering method. Further, when a laminated film with a metal is produced, a laminated film having excellent environmental resistance can be obtained.

また、本発明の酸化物スパッタリングターゲットにおいては、さらに、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、B、Al、In、Si、Ge、Sn、Pb、Sb、Bi及びランタノイド系列の元素からなる元素群より選ばれる少なくとも1種または2種以上の添加元素を合計で、金属成分の合計を100原子%として0.01原子%以上10.0原子%以下の範囲内で含有することが好ましい。
この場合、耐環境性がより向上し、抵抗値がより低減した酸化物膜を成膜することができる。
Further, in the oxide sputtering target of the present invention, further, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, B, Al, In, Si, Ge, Sn, At least one or two or more additive elements selected from the element group consisting of elements of the Pb, Sb, Bi and lanthanoid series are totaled, and the total of the metal components is 100 atomic%, which is 0.01 atomic% or more and 10.0 atoms. It is preferably contained in the range of% or less.
In this case, it is possible to form an oxide film having further improved environmental resistance and a lower resistance value.

さらに、本発明の酸化物スパッタリングターゲットにおいては、複合酸化物を有し、複合酸化物の存在比率が15%以上であることが好ましい。
この場合、複合酸化物の存在比率が15%以上とされているので、酸化物焼結体が緻密となり、スパッタリング時の割れや亀裂の発生をより確実に抑制できる。
Further, in the oxide sputtering target of the present invention, it is preferable that the oxide has a composite oxide and the abundance ratio of the composite oxide is 15% or more.
In this case, since the abundance ratio of the composite oxide is 15% or more, the oxide sintered body becomes dense, and cracks and cracks during sputtering can be more reliably suppressed.

本発明の酸化物スパッタリングターゲットの製造方法は、上述の酸化物スパッタリングターゲットを製造する酸化物スパッタリングターゲットの製造方法であって、焼結原料粉を仮焼成する仮焼成工程と、焼成した焼結原料粉を解砕する解砕工程と、解砕した焼結原料粉を焼結して焼結体を得る焼結工程と、を備えており、前記仮焼成工程における真空度が15Pa以下の範囲内、焼成温度が600℃以上1000℃以下の範囲内、焼成温度での保持時間が2時間以上6時間以下の範囲内とされていることを特徴としている。 The method for producing an oxide sputtering target of the present invention is a method for producing an oxide sputtering target for producing the above-mentioned oxide sputtering target, which is a temporary firing step of tentatively firing a sintered raw material powder and a calcined raw material. It includes a crushing step of crushing the powder and a sintering step of sintering the crushed sintered raw material powder to obtain a sintered body, and the degree of vacuum in the preliminary firing step is within the range of 15 Pa or less. It is characterized in that the firing temperature is within the range of 600 ° C. or higher and 1000 ° C. or lower, and the holding time at the firing temperature is within the range of 2 hours or more and 6 hours or less.

上述の構成の酸化物スパッタリングターゲットの製造方法によれば、焼結原料粉を仮焼成する仮焼成工程を備えており、仮焼成工程の焼成条件が上述のように規定されているので、焼結原料粉を一定程度還元処理することができ、その後の焼結工程における局所的な還元反応を抑制することができる。これにより、厚さ方向における還元度の差が小さくなり、厚さ方向における比抵抗値のばらつきを抑えることができる。 According to the method for manufacturing an oxide sputtering target having the above configuration, a calcination step of calcination raw material powder is provided, and the calcination conditions of the calcination step are defined as described above. The raw material powder can be reduced to a certain extent, and the local reduction reaction in the subsequent sintering step can be suppressed. As a result, the difference in the degree of reduction in the thickness direction becomes small, and the variation in the specific resistance value in the thickness direction can be suppressed.

ここで、本発明の酸化物スパッタリングターゲットの製造方法においては、前記焼結工程における真空度が15Pa以下の範囲内、焼結温度が900℃以上1100℃以下の範囲内、焼結温度での保持時間が2時間以上6時間以下の範囲内とされていることが好ましい。
この場合、焼結工程における焼結条件が上述のように規定されているので、複合酸化物を十分に生成することができ、緻密な酸化物焼結体を得ることができる。
Here, in the method for manufacturing an oxide sputtering target of the present invention, the degree of vacuum in the sintering step is within the range of 15 Pa or less, the sintering temperature is within the range of 900 ° C. or higher and 1100 ° C. or lower, and the sintering temperature is maintained. It is preferable that the time is within the range of 2 hours or more and 6 hours or less.
In this case, since the sintering conditions in the sintering step are defined as described above, the composite oxide can be sufficiently produced and a dense oxide sintered body can be obtained.

本発明によれば、スパッタ成膜の初期/中期/終期で特性のばらつきが少なく均一な酸化物膜を安定して成膜可能な酸化物スパッタリングターゲット、および、この酸化物スパッタリングターゲットの製造方法を提供することができる。 According to the present invention, an oxide sputtering target capable of stably forming a uniform oxide film with little variation in characteristics at the initial / middle / final stage of sputter film formation, and a method for manufacturing the oxide sputtering target are provided. Can be provided.

本実施形態である酸化物スパッタリングターゲットの製造方法を示すフロー図である。It is a flow figure which shows the manufacturing method of the oxide sputtering target which is this embodiment.

以下に、本発明の一実施形態である酸化物スパッタリングターゲット、および、酸化物スパッタリングターゲットの製造方法について説明する。 Hereinafter, an oxide sputtering target according to an embodiment of the present invention and a method for manufacturing the oxide sputtering target will be described.

本実施形態である酸化物スパッタリングターゲットは、例えば、光記録媒体の保護膜、あるいは、液晶表示素子、有機EL素子、太陽電池等の各種デバイスにおける水蒸気バリア膜、タッチパネルや太陽電池、有機ELディスプレイなどの電子デバイスにおける配線膜および電極の保護膜となる酸化物膜を成膜する際に用いられるものである。
この酸化物膜は、可視光の透過率に優れていることが求められており、本実施形態では、金属成分としてZnを主成分とする酸化物膜とされている。
The oxide sputtering target of the present embodiment is, for example, a protective film of an optical recording medium, a water vapor barrier film in various devices such as a liquid crystal display element, an organic EL element, and a solar cell, a touch panel, a solar cell, an organic EL display, and the like. It is used when forming an oxide film that serves as a wiring film and a protective film for electrodes in an electronic device.
This oxide film is required to have excellent visible light transmittance, and in the present embodiment, it is an oxide film containing Zn as a main component as a metal component.

本実施形態である酸化物スパッタリングターゲットは、金属成分としてZnを主成分とする酸化物焼結体からなる。
そして、本実施形態である酸化物スパッタリングターゲットにおいては、厚さ方向における比抵抗値の変動係数が0.20以下とされており、少なくともスパッタ面の厚さ方向において比抵抗値のばらつきが小さく抑えられている。また、厚さ方向における比抵抗値の変動係数は0.12以下が好ましく、更には厚さ方向における比抵抗値の変動係数は0.10以下がより好ましい。
なお、本実施形態では、酸化物スパッタリングターゲットは、平板形状をなしており、その厚さ方向の複数の点で比抵抗値を測定し、その平均値と標準偏差とから、下記の式によって変動係数が算出される。
(変動係数)=(標準偏差)/(平均値)
The oxide sputtering target of the present embodiment is made of an oxide sintered body containing Zn as a main component as a metal component.
In the oxide sputtering target of the present embodiment, the coefficient of variation of the specific resistance value in the thickness direction is 0.20 or less, and the variation of the specific resistance value is suppressed to be small at least in the thickness direction of the sputtered surface. Has been done. Further, the coefficient of variation of the specific resistance value in the thickness direction is preferably 0.12 or less, and the coefficient of variation of the specific resistance value in the thickness direction is more preferably 0.10 or less.
In the present embodiment, the oxide sputtering target has a flat plate shape, the specific resistance value is measured at a plurality of points in the thickness direction thereof, and the average value and the standard deviation are changed by the following formula. The coefficient is calculated.
(Coefficient of variation) = (standard deviation) / (mean value)

ここで、本実施形態である酸化物スパッタリングターゲットにおいては、金属成分の合計を100原子%として、Gaが10.0原子%以上20.0原子%以下、Tiが0.5原子%以上5.0原子%以下、残部がZnおよび不可避不純物金属元素とされた割合で含有する酸化物で構成されていてもよい。
また、Ga,Ti,Znに加えて、さらに、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、B、Al、In、Si、Ge、Sn、Pb、Sb、Bi及びランタノイド系列の元素からなる元素群より選ばれる少なくとも1種または2種以上の添加元素を合計で、金属成分の合計を100原子%として0.01原子%以上10.0原子%以下の範囲内で含有していてもよい。
Here, in the oxide sputtering target of the present embodiment, the total of the metal components is 100 atomic%, Ga is 10.0 atomic% or more and 20.0 atomic% or less, and Ti is 0.5 atomic% or more. It may be composed of an oxide containing 0 atomic% or less and the balance being Zn and an unavoidable impurity metal element.
In addition to Ga, Ti, and Zn, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, B, Al, In, Si, Ge, Sn, and Pb. , Sb, Bi and at least one or more additive elements selected from the element group consisting of elements of the lanthanoid series, 0.01 atomic% or more and 10.0 atomic% with the total metal component as 100 atomic%. It may be contained within the following range.

また、本実施形態である酸化物スパッタリングターゲットにおいては、複合酸化物を有し、複合酸化物の存在比率が15%以上であることが好ましい。なお、複合酸化物の存在比率の上限は50%以下であることが好ましい。なお、酸化物スパッタリングターゲットにおける複合酸化物の存在比率が15%以上である場合、厚さ方向における比抵抗値の変動係数は0.12以下が好ましい。
ここで、複合酸化物としては、例えば、Znの他にGa、Tiを含有する場合には、ZnGa,ZnTiO,ZnTiO等が挙げられる。
なお、複合酸化物の存在比率は、X線回折測定(XRD)による各相(単相酸化物、複合酸化物)のメインピークの強度から算出することができる。例えば、Znの他にGa、Tiを含有する場合には、ZnO相,Ga相,TiO相のピーク強度の合計Aと、上述の複合酸化物(ZnGa,ZnTiO,ZnTiO等)のピーク強度の合計Bとから、複合酸化物の存在比率は、以下の式で算出される。
複合酸化物の存在比率(%)=B/(A+B)×100
Further, in the oxide sputtering target of the present embodiment, it is preferable that the oxide has a composite oxide and the abundance ratio of the composite oxide is 15% or more. The upper limit of the abundance ratio of the composite oxide is preferably 50% or less. When the abundance ratio of the composite oxide in the oxide sputtering target is 15% or more, the coefficient of variation of the specific resistance value in the thickness direction is preferably 0.12 or less.
Here, as the composite oxide, for example, when Ga and Ti are contained in addition to Zn, ZnGa 2 O 4 , ZnTIO 3 , Zn 2 TIO 4 , and the like can be mentioned.
The abundance ratio of the composite oxide can be calculated from the intensity of the main peak of each phase (single phase oxide, composite oxide) by X-ray diffraction measurement (XRD). For example, when Ga and Ti are contained in addition to Zn, the sum A of the peak intensities of the ZnO phase, Ga 2O 3 phase, and TIO 2 phase and the above-mentioned composite oxide (ZnGa 2 O 4 , ZnTIO 3 and so on) From the total peak intensity B of Zn 2 TiO 4 etc.), the abundance ratio of the composite oxide is calculated by the following formula.
Absence ratio of composite oxide (%) = B / (A + B) × 100

次に、本実施形態である酸化物スパッタリングターゲットの製造方法について、図1のフロー図を参照して説明する。 Next, the method for manufacturing the oxide sputtering target according to the present embodiment will be described with reference to the flow chart of FIG.

(焼結原料粉形成工程S01)
まず、酸化亜鉛粉等の原料粉を準備する。例えば、Znの他にGa、Tiを含有する場合には、酸化亜鉛粉の他に酸化ガリウム粉と酸化チタン粉を準備し、これらを所定の割合となるように秤量して、ボールミル等の混合装置を用いて混合することにより、焼結原料粉を得る。
(Sintered raw material powder forming step S01)
First, raw material powder such as zinc oxide powder is prepared. For example, when Ga and Ti are contained in addition to Zn, gallium oxide powder and titanium oxide powder are prepared in addition to zinc oxide powder, weighed so as to have a predetermined ratio, and mixed with a ball mill or the like. By mixing using an apparatus, a sintered raw material powder is obtained.

(仮焼成工程S02)
次に、焼結原料粉を仮焼成する。本実施形態では、カーボン坩堝内に焼結原料粉を挿入し、真空雰囲気で仮焼成する。この仮焼成工程S02により、焼結原料粉の全体を微還元処理しておく。なお、仮焼成工程S02においては、COガス、Hガス等の還元雰囲気下で焼結原料粉を仮焼成してもよい。
ここで、仮焼成工程S02における真空度は15Pa以下の範囲内とされ、焼成温度は600℃以上1000℃以下の範囲内、焼成温度での保持時間が2時間以上6時間以下の範囲内とされている。
(Temporary firing step S02)
Next, the sintered raw material powder is tentatively fired. In the present embodiment, the sintered raw material powder is inserted into the carbon crucible and temporarily fired in a vacuum atmosphere. In this temporary firing step S02, the entire sintered raw material powder is slightly reduced. In the temporary firing step S02, the sintered raw material powder may be temporarily fired in a reducing atmosphere such as CO gas or H2 gas.
Here, the degree of vacuum in the temporary firing step S02 is within the range of 15 Pa or less, the firing temperature is within the range of 600 ° C. or higher and 1000 ° C. or lower, and the holding time at the firing temperature is within the range of 2 hours or more and 6 hours or less. ing.

(解砕工程S03)
次に、仮焼成工程S02によって仮焼成した焼結原料粉を、ボールミル装置等を用いて解砕する。
(Crushing step S03)
Next, the sintered raw material powder temporarily fired in the temporary firing step S02 is crushed using a ball mill device or the like.

(焼結工程S04)
解砕した焼結原料粉を成形型に充填し、加圧および加熱して焼結し、焼結体を得る。本実施形態では、ホットプレス装置によって焼結を行う。
なお、このときの焼結温度は900℃以上1100℃以下の範囲内、焼結温度での保持時間は2時間以上6時間以下の範囲内、加圧圧力は10MPa以上35MPa以下の範囲内とすることが好ましい。また、雰囲気は真空雰囲気(15Pa以下)とすることが好ましい。
焼結温度を900℃以上とすることで十分な密度が得ることができる。一方、焼結温度を1100℃以下とすることで、酸化亜鉛の昇華を抑え、組成ずれや焼結体割れの発生を抑制することができる。
(Sintering step S04)
The crushed sintered raw material powder is filled in a molding die, pressed and heated to be sintered, and a sintered body is obtained. In this embodiment, sintering is performed by a hot press device.
The sintering temperature at this time shall be in the range of 900 ° C. or higher and 1100 ° C. or lower, the holding time at the sintering temperature shall be in the range of 2 hours or longer and 6 hours or lower, and the pressurizing pressure shall be in the range of 10 MPa or higher and 35 MPa or lower. Is preferable. The atmosphere is preferably a vacuum atmosphere (15 Pa or less).
A sufficient density can be obtained by setting the sintering temperature to 900 ° C. or higher. On the other hand, by setting the sintering temperature to 1100 ° C. or lower, sublimation of zinc oxide can be suppressed, and composition deviation and occurrence of cracking of the sintered body can be suppressed.

(機械加工工程S05)
次に、得られた焼結体を機械加工する。これにより、本実施形態である酸化物スパッタリングターゲットが製造される。
(Machining process S05)
Next, the obtained sintered body is machined. As a result, the oxide sputtering target according to the present embodiment is manufactured.

以上のような構成とされた本実施形態である酸化物スパッタリングターゲットにおいては、金属成分としてZnを主成分とする酸化物焼結体からなり、厚さ方向における比抵抗値の変動係数が0.20以下に抑えられているので、スパッタが進行した場合であっても、成膜した酸化物膜の膜抵抗にばらつきが生じることが抑えられ、均一な酸化物膜を安定して成膜することが可能となる。 The oxide sputtering target of the present embodiment having the above configuration is composed of an oxide sintered body containing Zn as a main component as a metal component, and the coefficient of variation of the specific resistance value in the thickness direction is 0. Since it is suppressed to 20 or less, it is possible to suppress variations in the film resistance of the formed oxide film even when sputtering progresses, and to stably form a uniform oxide film. Is possible.

また、本実施形態において、金属成分の合計を100原子%として、Gaが10.0原子%以上20.0原子%以下、Tiが0.5原子%以上5.0原子%以下、残部がZnおよび不可避不純物金属元素とされた割合で含有する酸化物からなる場合には、DC(直流)スパッタ法などの通常のスパッタ法により安定して酸化物膜を成膜することができる。また、耐環境性と耐アルカリ性に優れた酸化物膜を成膜することができる。 Further, in the present embodiment, assuming that the total of the metal components is 100 atomic%, Ga is 10.0 atomic% or more and 20.0 atomic% or less, Ti is 0.5 atomic% or more and 5.0 atomic% or less, and the balance is Zn. When the oxide film is composed of an oxide contained in a proportion of an unavoidable impurity metal element, an oxide film can be stably formed by a normal sputtering method such as a DC (DC) sputtering method. In addition, an oxide film having excellent environmental resistance and alkali resistance can be formed.

Zn,Ga,Tiに加えて、さらにZr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、B、Al、In、Si、Ge、Sn、Pb、Sb、Bi及びランタノイド系列の元素からなる元素群より選ばれる少なくとも1種または2種以上の添加元素を合計で、金属成分の合計を100原子%として0.01原子%以上10.0原子%以下の範囲内で含有する場合には、耐環境性がより向上し、抵抗値がより低減した酸化物膜を成膜することができる。 In addition to Zn, Ga, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, B, Al, In, Si, Ge, Sn, Pb, Sb, The total of at least one or two or more additive elements selected from the element group consisting of Bi and lanthanoid series elements, and the total of the metal components is 100 atomic%, and the range is 0.01 atomic% or more and 10.0 atomic% or less. When it is contained inside, an oxide film having higher environmental resistance and a lower resistance value can be formed.

さらに、本実施形態において、複合酸化物を有し、複合酸化物の存在比率が15%以上である場合には、酸化物焼結体が緻密となり、スパッタリング時の割れや亀裂の発生をより確実に抑制できる。 Further, in the present embodiment, when the composite oxide is contained and the abundance ratio of the composite oxide is 15% or more, the oxide sintered body becomes dense and cracks and cracks are more surely generated during sputtering. Can be suppressed.

本実施形態である酸化物スパッタリングターゲットの製造方法においては、焼結原料粉を仮焼成する仮焼成工程S02を備えており、仮焼成工程S02における真空度が15Pa以下の範囲内、焼成温度が600℃以上1000℃以下の範囲内、焼成温度での保持時間が2時間以上6時間以下の範囲内とされているので、予め焼結原料粉を微還元することができ、その後の焼結工程における局所的な還元反応を抑制することができる。これにより、少なくともスパッタ面の厚さ方向における還元度の差が小さくなり、該厚さ方向における比抵抗値のばらつきを抑えることができる。 The method for producing an oxide sputtering target according to the present embodiment includes a tentative firing step S02 for tentatively firing the sintered raw material powder, in which the degree of vacuum in the tentative firing step S02 is within the range of 15 Pa or less and the firing temperature is 600. Since the holding time at the firing temperature is within the range of 2 hours or more and 6 hours or less within the range of ° C. or higher and 1000 ° C. or lower, the sintering raw material powder can be slightly reduced in advance, and in the subsequent sintering step. The local reduction reaction can be suppressed. As a result, at least the difference in the degree of reduction in the thickness direction of the sputtered surface becomes small, and the variation in the specific resistance value in the thickness direction can be suppressed.

また、本実施形態において、焼結工程S04における真空度が15Pa以下の範囲内、焼結温度が900℃以上1100℃以下の範囲内、焼結温度での保持時間が2時間以上6時間以下の範囲内とされている場合には、複合酸化物を十分に生成することができ、緻密な酸化物焼結体をえることができる。 Further, in the present embodiment, the degree of vacuum in the sintering step S04 is within the range of 15 Pa or less, the sintering temperature is within the range of 900 ° C. or higher and 1100 ° C. or lower, and the holding time at the sintering temperature is 2 hours or longer and 6 hours or lower. When it is within the range, the composite oxide can be sufficiently produced and a dense oxide sintered body can be obtained.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、本実施形態では、平板形状のスパッタリングターゲットとして説明したが、これに限定されることはなく、円筒形状のスパッタリングターゲットであってもよい。この場合の厚さ方向は、円筒の径方向となる。
Although the embodiments of the present invention have been described above, the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the invention.
For example, in the present embodiment, the description is given as a flat plate-shaped sputtering target, but the present invention is not limited to this, and a cylindrical-shaped sputtering target may be used. In this case, the thickness direction is the radial direction of the cylinder.

また、本実施形態では、光記録媒体の保護膜、あるいは、液晶表示素子、有機EL素子、太陽電池等の各種デバイスにおける水蒸気バリア膜、タッチパネルや太陽電池、有機ELディスプレイなどの電子デバイスにおける配線膜および電極の保護膜となる酸化物膜を成膜する際に用いられるものとして説明したが、これに限定されることはなく、その他の用途で用いられる膜を成膜するものとしてもよい。 Further, in the present embodiment, a protective film for an optical recording medium, a steam barrier film for various devices such as a liquid crystal display element, an organic EL element, and a solar cell, and a wiring film for an electronic device such as a touch panel, a solar cell, and an organic EL display. Although it has been described as being used when forming an oxide film as a protective film for an electrode, the present invention is not limited to this, and a film used for other purposes may be formed.

以下に、本発明の作用効果について評価した評価試験の結果を説明する。 The results of the evaluation test for evaluating the action and effect of the present invention will be described below.

原料粉末として、平均粒径1μmで純度99.50mass%以上の酸化亜鉛(ZnO)粉末、平均粒径2μmで純度99.99mass%以上の酸化ガリウム(Ga)粉末、平均粒径15μmで純度99.00mass%以上の酸化チタン(TiO)粉末、を用意した。
これら原料粉末を表1に示される配合組成となるように秤量し、ボールミル装置で均一に混合し、焼結原料粉を得た。
As raw material powder, zinc oxide (ZnO) powder with an average particle size of 1 μm and a purity of 99.50 mass% or more, gallium oxide (Ga 2 O 3 ) powder with an average particle size of 2 μm and a purity of 99.99 mass% or more, and an average particle size of 15 μm. Titanium oxide (TiO 2 ) powder having a purity of 99.00 mass% or more was prepared.
These raw material powders were weighed so as to have the composition shown in Table 1 and mixed uniformly with a ball mill device to obtain sintered raw material powders.

得られた焼結原料粉をカーボン坩堝に充填し、表1に示す条件で仮焼成(真空焼成)を実施した。その後、仮焼成した焼結原料粉をボールミル装置で解砕した。
解砕後の焼結原料粉を、カーボン型に充填した状態で、ホットプレス装置に装入し、雰囲気:真空、圧力25MPa、表1に示す焼結温度および保持時間時間の条件でホットプレスした。
得られた焼結体を研削加工することにより、いずれも直径:178×126×6mmの寸法をもった表1の配合組成と同じ成分組成を有する本発明例1~8および比較例1~5の酸化物スパッタリングターゲットを作製した。
The obtained sintered raw material powder was filled in a carbon crucible, and temporary firing (vacuum firing) was carried out under the conditions shown in Table 1. Then, the calcined raw material powder that had been calcined was crushed by a ball mill device.
The sintered raw material powder after crushing was charged into a hot press device in a state of being filled in a carbon mold, and hot-pressed under the conditions of atmosphere: vacuum, pressure 25 MPa, sintering temperature and holding time time shown in Table 1. ..
By grinding the obtained sintered body, Examples 1 to 8 and Comparative Examples 1 to 5 of the present invention having the same composition as the compounding composition of Table 1 having a diameter of 178 × 126 × 6 mm. Oxide sputtering target was prepared.

得られた本発明例1~14および比較例1~5の酸化物スパッタリングターゲットについて、以下の項目について評価した。評価結果を表2に示す。 The obtained oxide sputtering targets of Examples 1 to 14 of the present invention and Comparative Examples 1 to 5 were evaluated for the following items. The evaluation results are shown in Table 2.

(複合酸化物の存在比率)
本発明例1~14および比較例1~5の酸化物スパッタリングターゲットから観察試料を採取し、X線回折測定(XRD)を実施し、実施形態に記載した手順により、各相のメインピークの強度から複合酸化物の存在比率を算出した。なお、X線回折測定(XRD)条件を以下に示す。
装置:理学電気社製(RINT-Ultima/PC)
管球:Cu
管電圧:40kV
管電流:40mA
走査範囲(2θ):10度~90度
スリット:発散(DS)2/3度、散乱(SS)2/3度、
受光(RS)0.8mm
測定ステップ幅:2θで0.04度
スキャンスピード:毎分2度
試料台回転スピード:30rpm
(Abundance ratio of composite oxide)
Observation samples were taken from the oxide sputtering targets of Examples 1 to 14 of the present invention and Comparative Examples 1 to 5, X-ray diffraction measurement (XRD) was performed, and the intensity of the main peak of each phase was according to the procedure described in the embodiment. The abundance ratio of the composite oxide was calculated from. The X-ray diffraction measurement (XRD) conditions are shown below.
Equipment: Made by Rigaku Denki Co., Ltd. (RINT-Ultima / PC)
Tube: Cu
Tube voltage: 40kV
Tube current: 40mA
Scanning range (2θ): 10 to 90 degrees Slit: Divergence (DS) 2/3 degree, Scattering (SS) 2/3 degree,
Light receiving (RS) 0.8 mm
Measurement step width: 0.04 degrees at 2θ Scan speed: 2 degrees per minute Sample table rotation speed: 30 rpm

また、測定した各相のメインピークを以下に示す。
ZnO:(101) ICDD 01-080-0074
TiO:(110) ICDD 01-076-1939
Ga:(111) ICDD 01-087-1901
ZnGa:(311) ICDD 01-086-0410
ZnTiO:(104) ICDD 00-026-1500
ZnTiO:(311) ICDD 00-025-1164
The main peaks of each measured phase are shown below.
ZnO: (101) ICDD 01-080-0074
TiO 2 : (110) ICDD 01-076-1939
Ga 2 O 3 : (111) ICDD 01-087-1901
ZnGa 2 O 4 : (311) ICDD 01-086-0410
ZnTIO 3 : (104) ICDD 00-026-1500
Zn 2 TiO 4 : (311) ICDD 00-025-1164

(比抵抗)
本発明例1~14および比較例1~5の酸化物スパッタリングターゲットのスパッタ面、スパッタ面から1mm研削した面、2mm研削した面、3mm研削した面で、それぞれ比抵抗値を測定した。比抵抗値は、三菱化学株式会社製の低抵抗率計(Loresta-GP)を用い、四探針法で測定した。測定時の温度は23±5℃、湿度は50±20%にて測定した。
4点の測定結果から平均値および標準偏差を求め、比抵抗値の厚さ方向の変動係数を酸算出した。
(Specific resistance)
The specific resistance values were measured on the sputtered surface of the oxide sputtering targets of Examples 1 to 14 of the present invention and the surface ground by 1 mm from the sputtered surface, the surface grinded by 2 mm, and the surface grinded by 3 mm, respectively. The specific resistance value was measured by a four-probe method using a low resistivity meter (Loresta-GP) manufactured by Mitsubishi Chemical Corporation. The temperature at the time of measurement was 23 ± 5 ° C., and the humidity was 50 ± 20%.
The mean value and standard deviation were obtained from the measurement results of four points, and the coefficient of variation of the specific resistance value in the thickness direction was calculated by acid.

(酸化物膜の膜抵抗)
本発明例1~14および比較例1~5の酸化物スパッタリングターゲットを用いて、下記の条件にて、膜厚40nmの酸化物膜をガラス基板上にスパッタ成膜した。
電源:DC
電力:300W
全圧:0.67Pa
ガス:Ar:50.0sccm
(Membrane resistance of oxide film)
Using the oxide sputtering targets of Examples 1 to 14 of the present invention and Comparative Examples 1 to 5, an oxide film having a film thickness of 40 nm was sputtered onto a glass substrate under the following conditions.
Power supply: DC
Power: 300W
Total pressure: 0.67Pa
Gas: Ar: 50.0sccm

スパッタ成膜初期に成膜された酸化物膜と、スパッタ成膜開始から2時間経過時に成膜された酸化物膜について、以下のように膜抵抗を測定した。
膜抵抗は、三菱化学株式会社製の低抵抗率計(Loresta-GP)を用い、四探針法で測定した。
The film resistance of the oxide film formed at the initial stage of spatter film formation and the oxide film formed 2 hours after the start of spatter film formation was measured as follows.
The film resistance was measured by a four-probe method using a low resistivity meter (Loresta-GP) manufactured by Mitsubishi Chemical Corporation.

(スパッタ後の割れ・亀裂の有無)
上述の条件でスパッタ成膜を2時間実施した後の酸化物スパッタリングターゲットの割れおよび亀裂の有無を評価した。
スパッタリングターゲット表面において、長さ2mm以上の割れおよび亀裂が存在するものを、割れ・亀裂「有り」と評価し、長さ2mm以上の割れおよび亀裂が存在しないものを、割れ・亀裂「なし」と評価した。
(Presence / absence of cracks / cracks after spattering)
The presence or absence of cracks and cracks in the oxide sputtering target after the sputtering deposition was carried out for 2 hours under the above conditions was evaluated.
On the surface of the sputtering target, those having cracks and cracks having a length of 2 mm or more are evaluated as having cracks / cracks, and those having no cracks / cracks having a length of 2 mm or more are evaluated as having cracks / cracks. evaluated.

Figure 2022105853000002
Figure 2022105853000002

Figure 2022105853000003
Figure 2022105853000003

比較例1においては、仮焼成工程における焼成温度が400℃とされており、酸化物スパッタリングターゲットの比抵抗値の変動係数が0.210と大きくなった。これにより、スパッタ成膜初期に成膜された酸化物膜とスパッタ成膜開始から2時間経過時に成膜された酸化物膜とで、膜抵抗が大きく変化した。 In Comparative Example 1, the firing temperature in the temporary firing step was 400 ° C., and the coefficient of variation of the specific resistance value of the oxide sputtering target was as large as 0.210. As a result, the film resistance changed significantly between the oxide film formed at the initial stage of sputter film formation and the oxide film formed 2 hours after the start of sputter film formation.

比較例2においては、仮焼成工程における焼成温度での保持時間が1時間とされており、酸化物スパッタリングターゲットの比抵抗値の変動係数が0.220と大きくなった。これにより、スパッタ成膜初期に成膜された酸化物膜とスパッタ成膜開始から2時間経過時に成膜された酸化物膜とで、膜抵抗が大きく変化した。 In Comparative Example 2, the holding time at the firing temperature in the temporary firing step was set to 1 hour, and the coefficient of variation of the specific resistance value of the oxide sputtering target was as large as 0.220. As a result, the film resistance changed significantly between the oxide film formed at the initial stage of sputter film formation and the oxide film formed 2 hours after the start of sputter film formation.

比較例3においては、仮焼成工程を実施しておらず、酸化物スパッタリングターゲットの比抵抗値の変動係数が0.270と大きくなった。これにより、スパッタ成膜初期に成膜された酸化物膜とスパッタ成膜開始から2時間経過時に成膜された酸化物膜とで、膜抵抗が大きく変化した。 In Comparative Example 3, the temporary firing step was not carried out, and the coefficient of variation of the specific resistance value of the oxide sputtering target became as large as 0.270. As a result, the film resistance changed significantly between the oxide film formed at the initial stage of sputter film formation and the oxide film formed 2 hours after the start of sputter film formation.

比較例4,5においては、仮焼成工程を実施しておらず、酸化物スパッタリングターゲットの比抵抗値の変動係数がそれぞれ0.240,0.310と大きくなった。これにより、スパッタ成膜初期に成膜された酸化物膜とスパッタ成膜開始から2時間経過時に成膜された酸化物膜とで、膜抵抗が大きく変化した。また、比較例4,5においては、比較例3に比べてGaおよびTiの含有量が少なく、複合酸化物が十分に生成しなかった。このため、スパッタ成膜後に長さ2mm以上の割れが確認された。 In Comparative Examples 4 and 5, the temporary firing step was not carried out, and the coefficient of variation of the specific resistance value of the oxide sputtering target became as large as 0.240 and 0.310, respectively. As a result, the film resistance changed significantly between the oxide film formed at the initial stage of sputter film formation and the oxide film formed 2 hours after the start of sputter film formation. Further, in Comparative Examples 4 and 5, the contents of Ga and Ti were smaller than those in Comparative Example 3, and the composite oxide was not sufficiently produced. Therefore, cracks having a length of 2 mm or more were confirmed after the sputtering film formation.

これに対して、本発明例1~14においては、仮焼成工程における焼成温度が600℃以上1000℃以下の範囲内、焼成温度での保持時間が2時間以上6時間以下の範囲内とされており、酸化物スパッタリングターゲットの比抵抗値の変動係数が0.20以下となった。これにより、スパッタ成膜初期に成膜された酸化物膜とスパッタ成膜開始から2時間経過時に成膜された酸化物膜とで膜抵抗の変化量が抑えられていた。 On the other hand, in Examples 1 to 14 of the present invention, the firing temperature in the temporary firing step is within the range of 600 ° C. or higher and 1000 ° C. or lower, and the holding time at the firing temperature is within the range of 2 hours or more and 6 hours or less. The fluctuation coefficient of the specific resistance value of the oxide sputtering target was 0.20 or less. As a result, the amount of change in film resistance was suppressed between the oxide film formed at the initial stage of sputter film formation and the oxide film formed 2 hours after the start of sputter film formation.

なお、焼結工程において焼結温度での保持時間が1時間とされた本発明例7、焼結工程において焼結温度が750℃とされた本発明例8、仮焼成工程において焼成温度が600℃とされた本発明例11、仮焼成工程において焼成温度での保持時間が2時間とされた本発明例13においては、複合酸化物が十分に生成せず、スパッタ成膜後に長さ2mm以上の割れが確認された。 In addition, Example 7 of the present invention in which the holding time at the sintering step was 1 hour in the sintering step, Example 8 of the present invention in which the sintering temperature was 750 ° C. in the sintering step, and the firing temperature of 600 in the temporary firing step. In Example 11 of the present invention set at ° C. and Example 13 of the present invention in which the holding time at the firing temperature was 2 hours in the calcination step, the composite oxide was not sufficiently formed and the length was 2 mm or more after the sputter film formation. Crack was confirmed.

以上の結果から、本発明例によれば、スパッタ成膜の初期/中期/終期で特性のばらつきが少なく均一な酸化物膜を安定して成膜可能な酸化物スパッタリングターゲット、および、この酸化物スパッタリングターゲットの製造方法を提供可能であることが確認された。 From the above results, according to the example of the present invention, an oxide sputtering target capable of stably forming a uniform oxide film with little variation in characteristics at the initial / middle / final stage of sputtering deposition, and an oxide thereof. It was confirmed that it is possible to provide a method for manufacturing a sputtering target.

Claims (6)

金属成分としてZnを主成分とする酸化物焼結体からなり、
厚さ方向における比抵抗値の変動係数が0.20以下であることを特徴とする酸化物スパッタリングターゲット。
It consists of an oxide sintered body whose main component is Zn as a metal component.
An oxide sputtering target characterized in that the coefficient of variation of the specific resistance value in the thickness direction is 0.20 or less.
金属成分の合計を100原子%として、Gaが10.0原子%以上20.0原子%以下、Tiが0.5原子%以上5.0原子%以下、残部がZnおよび不可避不純物金属元素とされた割合で含有する酸化物からなることを特徴とする請求項1に記載の酸化物スパッタリングターゲット。 Assuming that the total of the metal components is 100 atomic%, Ga is 10.0 atomic% or more and 20.0 atomic% or less, Ti is 0.5 atomic% or more and 5.0 atomic% or less, and the balance is Zn and unavoidable impurity metal elements. The oxide sputtering target according to claim 1, which comprises an oxide contained in a proportion thereof. さらに、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、B、Al、In、Si、Ge、Sn、Pb、Sb、Bi及びランタノイド系列の元素からなる元素群より選ばれる少なくとも1種または2種以上の添加元素を合計で、金属成分の合計を100原子%として0.01原子%以上10.0原子%以下の範囲内で含有することを特徴とする請求項2に記載の酸化物スパッタリングターゲット。 Further, it is composed of elements of the Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, B, Al, In, Si, Ge, Sn, Pb, Sb, Bi and lanthanoid series. It is characterized by containing at least one or two or more additive elements selected from the element group in the range of 0.01 atomic% or more and 10.0 atomic% or less, with the total metal component as 100 atomic%. The oxide sputtering target according to claim 2. 複合酸化物を有し、複合酸化物の存在比率が15%以上であることを特徴とする請求項2又は請求項3のいずれか一項に記載の酸化物スパッタリングターゲット。 The oxide sputtering target according to any one of claims 2 or 3, wherein the oxide sputtering target has a composite oxide and the abundance ratio of the composite oxide is 15% or more. 請求項1から請求項4のいずれか一項に記載の酸化物スパッタリングターゲットを製造する酸化物スパッタリングターゲットの製造方法であって、
焼結原料粉を仮焼成する仮焼成工程と、焼成した焼結原料粉を解砕する解砕工程と、解砕した焼結原料粉を焼結して焼結体を得る焼結工程と、を備えており、
前記仮焼成工程における真空度が15Pa以下の範囲内、焼成温度が600℃以上1000℃以下の範囲内、焼成温度での保持時間が2時間以上6時間以下の範囲内とされていることを特徴とする酸化物スパッタリングターゲットの製造方法。
The method for manufacturing an oxide sputtering target for manufacturing the oxide sputtering target according to any one of claims 1 to 4.
A temporary firing step of temporarily firing the sintered raw material powder, a crushing step of crushing the fired sintered raw material powder, and a sintering step of sintering the crushed sintered raw material powder to obtain a sintered body. Equipped with
It is characterized in that the degree of vacuum in the temporary firing step is within the range of 15 Pa or less, the firing temperature is within the range of 600 ° C. or higher and 1000 ° C. or lower, and the holding time at the firing temperature is within the range of 2 hours or more and 6 hours or less. A method for manufacturing an oxide sputtering target.
前記焼結工程における真空度が15Pa以下の範囲内、焼結温度が900℃以上1100℃以下の範囲内、焼結温度での保持時間が2時間以上6時間以下の範囲内とされていることを特徴とする請求項5に記載の酸化物スパッタリングターゲットの製造方法。 The degree of vacuum in the sintering step is within the range of 15 Pa or less, the sintering temperature is within the range of 900 ° C. or higher and 1100 ° C. or lower, and the holding time at the sintering temperature is within the range of 2 hours or more and 6 hours or less. The method for producing an oxide sputtering target according to claim 5.
JP2021000440A 2021-01-05 2021-01-05 Oxide sputtering target, and method of producing oxide sputtering target Pending JP2022105853A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021000440A JP2022105853A (en) 2021-01-05 2021-01-05 Oxide sputtering target, and method of producing oxide sputtering target
PCT/JP2021/048909 WO2022149557A1 (en) 2021-01-05 2021-12-28 Oxide sputtering target and method for producing oxide sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021000440A JP2022105853A (en) 2021-01-05 2021-01-05 Oxide sputtering target, and method of producing oxide sputtering target

Publications (1)

Publication Number Publication Date
JP2022105853A true JP2022105853A (en) 2022-07-15

Family

ID=82357765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021000440A Pending JP2022105853A (en) 2021-01-05 2021-01-05 Oxide sputtering target, and method of producing oxide sputtering target

Country Status (2)

Country Link
JP (1) JP2022105853A (en)
WO (1) WO2022149557A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4343717B2 (en) * 2003-01-22 2009-10-14 キヤノン株式会社 Method for manufacturing support structure of airtight container and method for manufacturing image display device
JP6233233B2 (en) * 2013-08-06 2017-11-22 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
JP6398645B2 (en) * 2014-11-20 2018-10-03 Tdk株式会社 Sputtering target, transparent conductive oxide thin film, and conductive film

Also Published As

Publication number Publication date
WO2022149557A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
JP4552950B2 (en) Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
JP6015801B2 (en) Oxide sintered body, manufacturing method thereof, target, and transparent conductive film
JP5716768B2 (en) Oxide sintered body, target, transparent conductive film obtained using the same, and transparent conductive substrate
TWI519502B (en) Zn-sn-o type oxide sintered compact and method for manufacturing same
US10144674B2 (en) Process for preparing ceramics, ceramics thus obtained and uses thereof, especially as a sputtering target
JP5003600B2 (en) Oxide sintered body, target, transparent conductive film obtained using the same, and conductive laminate
CN108349816B (en) Sn-Zn-O oxide sintered body and method for producing same
WO2012017659A1 (en) Method for producing sputtering target, and sputtering target
JP5764828B2 (en) Oxide sintered body and tablet processed the same
JP5392633B2 (en) Target for ZnO-based transparent conductive film and method for producing the same
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
WO2022149557A1 (en) Oxide sputtering target and method for producing oxide sputtering target
CN110741106A (en) Oxide sintered body and sputtering target
JP2020066558A (en) Method of producing cesium tungsten oxide sintered body and cesium tungsten oxide target
JP5878045B2 (en) Zinc oxide-based sintered body and method for producing the same
WO2013042747A1 (en) Oxide sintered body, method for producing same, and oxide transparent conductive film