JP2022101497A - Positive electrode containing an electrolytic solution and air battery using the same, injecting method of electrolytic solution into positive electrode, and manufacturing method of air battery using the same - Google Patents

Positive electrode containing an electrolytic solution and air battery using the same, injecting method of electrolytic solution into positive electrode, and manufacturing method of air battery using the same Download PDF

Info

Publication number
JP2022101497A
JP2022101497A JP2021203488A JP2021203488A JP2022101497A JP 2022101497 A JP2022101497 A JP 2022101497A JP 2021203488 A JP2021203488 A JP 2021203488A JP 2021203488 A JP2021203488 A JP 2021203488A JP 2022101497 A JP2022101497 A JP 2022101497A
Authority
JP
Japan
Prior art keywords
electrolytic solution
positive electrode
pores
less
air battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021203488A
Other languages
Japanese (ja)
Inventor
翔一 松田
Shoichi Matsuda
均 朝比奈
Hitoshi Asahina
隆 亀田
Takashi Kameda
祥司 山口
Shoji Yamaguchi
栄起 安川
Shigeki Yasukawa
伸 木村
Shin Kimura
貴也 齊藤
Takaya Saito
絢太郎 宮川
Shuntaro MIYAKAWA
宏郁 角田
Hirofumi KAKUTA
晴彦 大谷
Haruhiko Otani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
SoftBank Corp
Original Assignee
National Institute for Materials Science
SoftBank Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, SoftBank Corp filed Critical National Institute for Materials Science
Publication of JP2022101497A publication Critical patent/JP2022101497A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a positive electrode having a porous structure containing an electrolytic solution injected by a method different from a conventional method capable of uniformly injecting an electrolytic solution having a small amount of liquid (specifically, a liquid amount having a volume smaller than the total pore volume of the positive electrode and causing a liquid injection spot according to the conventional injection method), and a method capable of uniformly injecting such an electrolytic solution having a small amount into the positive electrode having the porous structure.SOLUTION: There is provided a positive electrode having a porous structure, which includes an electrolytic solution transferred by contact with a member containing the electrolytic solution. Further, there is provided a method of injecting the electrolytic solution into the positive electrode by bringing a member containing the electrolytic solution into contact with the positive electrode having the porous structure and transferring the electrolytic solution. Further, an air battery is provided in which the number of charge/discharge cycles (number of cycles) is 3 or more.SELECTED DRAWING: None

Description

本発明は、電解液を含む多孔質構造の正極及び当該正極を含む空気電池、並びに正極への電解液の注液方法及び当該注液方法によって製造された正極を用いる空気電池の製法に関する。当該空気電池としては、特に、正極活物質として酸素を用いるリチウム空気二次電池に関する。 The present invention relates to a positive electrode having a porous structure containing an electrolytic solution, an air battery containing the positive electrode, a method for injecting an electrolytic solution into the positive electrode, and a method for manufacturing an air battery using a positive electrode manufactured by the injecting method. The air battery particularly relates to a lithium air secondary battery that uses oxygen as a positive electrode active material.

空気電池(例えば、リチウム空気二次電池)は正極活物質として酸素を使用する電池であり、酸素を取り込むための酸素流路層、正極(本願では、空気極と称することもある)、セパレータ、負極から構成され、電解液が注液される。例えば、特許文献1には、酸素拡散層、正極、セパレータ、負極の4層積層物に対し、非水電解質をセパレータに注液している非水電解質電池が開示されている。 An air battery (for example, a lithium air secondary battery) is a battery that uses oxygen as a positive electrode active material, and is an oxygen flow path layer for taking in oxygen, a positive electrode (sometimes referred to as an air electrode in the present application), a separator, and the like. It is composed of a negative electrode and an electrolytic solution is injected. For example, Patent Document 1 discloses a non-aqueous electrolyte battery in which a non-aqueous electrolyte is injected into a separator with respect to a four-layer laminate of an oxygen diffusion layer, a positive electrode, a separator, and a negative electrode.

特開2002-15737号公報Japanese Unexamined Patent Publication No. 2002-15737

酸素流路層は、層内を酸素が拡散する必要があり、電解液に湿潤されていると酸素拡散の妨げとなるため、電解液を含まないことが望ましいとされる。すなわち、電解液は、正極、セパレータ、負極、及びその周囲にのみ均一に存在することが望ましい。 It is desirable that the oxygen flow path layer does not contain the electrolytic solution because oxygen needs to diffuse in the layer and if it is wet with the electrolytic solution, it hinders the diffusion of oxygen. That is, it is desirable that the electrolytic solution is uniformly present only in the positive electrode, the separator, the negative electrode, and the periphery thereof.

空気電池の電解液量は、当該電池のエネルギー密度に直結する。そのため、サイクル特性に影響を及ぼさない範囲で、可能な限り電解液量を少なくすると、その分の空気電池のエネルギー密度の向上が期待できる。 The amount of electrolyte in an air battery is directly linked to the energy density of the battery. Therefore, if the amount of the electrolytic solution is reduced as much as possible within a range that does not affect the cycle characteristics, it can be expected that the energy density of the air battery will be improved accordingly.

また、空気電池の電解液量は、正極活物質である酸素の電池内の拡散にも大きく影響する。例えば、リチウム空気電池の場合、放電過程において、非水電解液中のリチウムイオンと正極活物質である酸素が反応することにより、過酸化リチウムが正極の空気極を構成する空気極層内に形成され、充電過程において、過酸化リチウムが酸化分解される。しかし、電解液中への酸素の溶解量には限りがあるため、酸素流路層近傍の空気極内で過酸化リチウムの生成が生じ、充放電サイクルが進むと、当該酸素流路層近傍の空気極内で生成して残存する過酸化リチウムにより、酸素流路層から空気極層内部への酸素拡散が阻害されることになってしまう。そうすると、充放電サイクル特性に悪影響を及ぼすことになると理解される。これは、空気極層が厚くなるにつれて空気極層内の酸素が不足し易くなることを意味する。ここで、空気極層の全空孔の体積を100%とした場合(すなわち、空気極層の空孔率を100%とした場合)の電解液量の体積%を、当該空孔率(100%)よりも少なくすることにより、空気極層内に酸素の拡散経路(いわゆる、拡散パス)となる空隙を積極的に残存させると、酸素流路層から供給された酸素が、空気極層内を容易に拡散できるようになり、空気極層内にある電解液の隅々まで酸素が溶解することになると理解される。 In addition, the amount of electrolytic solution in the air battery greatly affects the diffusion of oxygen, which is the positive electrode active material, in the battery. For example, in the case of a lithium-air battery, lithium peroxide is formed in the air electrode layer constituting the air electrode of the positive electrode by the reaction between the lithium ion in the non-aqueous electrolyte solution and oxygen, which is the positive electrode active material, in the discharge process. In the charging process, lithium peroxide is oxidatively decomposed. However, since the amount of oxygen dissolved in the electrolytic solution is limited, lithium peroxide is generated in the air electrode near the oxygen flow path layer, and when the charge / discharge cycle proceeds, the vicinity of the oxygen flow path layer is reached. Lithium peroxide generated and remaining in the air electrode hinders oxygen diffusion from the oxygen flow path layer to the inside of the air electrode layer. It is understood that this will adversely affect the charge / discharge cycle characteristics. This means that as the air electrode layer becomes thicker, oxygen in the air electrode layer tends to be insufficient. Here, the volume% of the amount of the electrolytic solution when the volume of all the pores of the air electrode layer is 100% (that is, when the pore ratio of the air electrode layer is 100%) is the pore ratio (100). %) When the amount of oxygen supplied from the oxygen flow path layer is positively left in the air electrode layer as an oxygen diffusion path (so-called diffusion path), the oxygen supplied from the oxygen flow path layer becomes in the air electrode layer. It is understood that oxygen can be easily diffused to every corner of the electrolytic solution in the air electrode layer.

そこで、上記二つの理由(空気電池のエネルギー密度の向上及び正極活物質である酸素の空気電池内での容易な拡散)により、空気電池の特性に悪影響を及ぼさない範囲で電解液量を少なくすることが望ましい。 Therefore, for the above two reasons (improvement of the energy density of the air battery and easy diffusion of oxygen, which is the positive electrode active material, in the air battery), the amount of the electrolytic solution is reduced within a range that does not adversely affect the characteristics of the air battery. Is desirable.

ここで、空気電池としてリチウム空気電池を例に挙げると、正極として多孔質炭素の空気極を用い、その空孔率を100%とした場合にそれよりも少ない体積の電解液を当該空気極に対して注液する場合、当該空気極の炭素表面は確実に電解液で満たされ、また、当該空気極内(具体的には、当該空気極を構成する空気極層内)の空孔中央部には電界液で満たされていない領域(いわゆる、貫通孔)が残存している状態が望ましい。このような状態においては、炭素表面を通じて電解液が連続して繋がることにより、リチウムイオンが多孔質炭素の空気極(正極)全体に行きわたることができ、また、空孔中央部に電界液で満たされていない貫通孔が存在することにより、酸素流路層から供給された酸素が空気極層内を容易に拡散することができる。 Here, taking a lithium-air battery as an example of an air battery, when a porous carbon air electrode is used as a positive electrode and the pore ratio is 100%, an electrolytic solution having a smaller volume than that is applied to the air electrode. When the liquid is injected, the carbon surface of the air electrode is surely filled with the electrolytic solution, and the central portion of the hole in the air electrode (specifically, in the air electrode layer constituting the air electrode). It is desirable that a region not filled with the electric field liquid (so-called through hole) remains in the air. In such a state, by continuously connecting the electrolytic solution through the carbon surface, lithium ions can be spread over the entire air electrode (positive electrode) of the porous carbon, and the electric field solution is applied to the central portion of the pores. The presence of unfilled through holes allows oxygen supplied from the oxygen flow path layer to easily diffuse within the air electrode layer.

一方で、電解液の注液量を少なくする場合には、多孔質構造の空気極において電解液が局在化し易い(すなわち、注液斑が生じ易い)という問題がある。このような多孔質構造の空気極において注液した電解液が局在化している状態を、本願では注液斑と称する。ここで、空気電池としてリチウム空気電池を例に挙げると、放電反応により、正極活物質である酸素と電解液中のリチウムイオンが反応して多孔質炭素の空気極の炭素表面に過酸化リチウムが生成することになるが、注液斑が生じると、電界液に湿潤していない領域が発生してしまうため、その領域ではリチウムイオンが拡散できず、過酸化リチウムの析出反応場として機能できなくなる。すなわち、正極である空気極全体を有効活用できなくなる。さらに、電解液が集中している領域では放電反応により生成する過酸化リチウムが偏析し易くなり、空気極内の空孔が局所的に目詰まりし易くなる。特に、電解液量を少なくすることにより注液斑が生じ易くなるにつれ、この傾向は顕著となる。 On the other hand, when the injection amount of the electrolytic solution is reduced, there is a problem that the electrolytic solution is easily localized in the air electrode having a porous structure (that is, liquid injection spots are likely to occur). The state in which the injected electrolytic solution is localized in the air electrode having such a porous structure is referred to as a liquid injection spot in the present application. Here, taking a lithium-air battery as an example of an air battery, oxygen peroxide, which is a positive electrode active material, reacts with lithium ions in an electrolytic solution due to a discharge reaction, and lithium peroxide is generated on the carbon surface of the air electrode of porous carbon. However, when liquid injection spots occur, a region that is not wet with the electric field liquid is generated, so that lithium ions cannot diffuse in that region and cannot function as a precipitation reaction field for lithium peroxide. .. That is, the entire air electrode, which is the positive electrode, cannot be effectively used. Further, in the region where the electrolytic solution is concentrated, lithium peroxide generated by the discharge reaction is likely to segregate, and the pores in the air electrode are likely to be locally clogged. In particular, as the amount of the electrolytic solution is reduced, the injection spots are more likely to occur, and this tendency becomes remarkable.

また、電解液の注液量を少なくする場合には、注液斑が生じ易いだけではなく、多孔質構造の空気極内部の細孔にまで電解液が注液されにくいという問題もある。この場合、空気極内部に電界液により湿潤されていない領域が発生してしまうため、その領域ではリチウムイオンが拡散できず、過酸化リチウムの析出反応場として機能できなくなる。すなわち、正極である空気極全体を有効活用できなくなる。その結果、リチウム空気電池の充放電回数(サイクル数)が低下する又はリチウム空気電池として機能しない場合がある。 Further, when the injection amount of the electrolytic solution is reduced, not only the injection spots are likely to occur, but also there is a problem that the electrolytic solution is difficult to be injected into the pores inside the air electrode of the porous structure. In this case, since a region not wetted by the electric field liquid is generated inside the air electrode, lithium ions cannot diffuse in that region and cannot function as a precipitation reaction field of lithium peroxide. That is, the entire air electrode, which is the positive electrode, cannot be effectively used. As a result, the number of charge / discharge cycles (number of cycles) of the lithium-air battery may decrease or the lithium-air battery may not function.

例えば、特許文献1の非水電解質電池では、酸素拡散層、正極、セパレータ、負極を積層する4層積層物の構造となっており、ここでそのセパレータを狙って電解液(具体的には、非水電解液)を従来の滴下や噴霧等の注液手段により注液する場合、電解液量を少なくすると、注液口に近い部分には十分な電解液が供給されるものの、注液口と反対側のセパレータや空気極では電解液が不足する恐れがある。そのため、注液斑が生じ易いという問題がある。 For example, the non-aqueous electrolyte battery of Patent Document 1 has a structure of a four-layer laminate in which an oxygen diffusion layer, a positive electrode, a separator, and a negative electrode are laminated, and an electrolytic solution (specifically, specifically, an electrolytic solution) is aimed at the separator. When injecting a non-aqueous electrolyte solution) by a conventional injection method such as dropping or spraying, if the amount of the electrolytic solution is reduced, a sufficient electrolytic solution is supplied to the portion near the injection port, but the injection port is used. There is a risk of running out of electrolyte at the separator or air electrode on the opposite side. Therefore, there is a problem that liquid injection spots are likely to occur.

そこで、正極へ注入する電解液量は、注入後の正極に対する電解液の均一性を維持しつつ、空気電池の特性に悪影響を及ぼさない範囲でより少なくすることが望ましい。このような理由から、多孔質構造の正極に対し、空気極層の全空孔量よりも少ない液量(具体的には、全空孔の全体積よりも少ない体積の液量)、特に、従来の注液手段によれば注液斑が生じてしまうような少ない液量の電解液による注液でも均一に注液することが可能な方法、更にはこのような少ない液量の電解液で均一に注液されている多孔質構造の正極の開発が望まれている。 Therefore, it is desirable that the amount of the electrolytic solution to be injected into the positive electrode be smaller as long as the uniformity of the electrolytic solution with respect to the positive electrode after injection is maintained and the characteristics of the air battery are not adversely affected. For this reason, the amount of liquid that is smaller than the total pore volume of the air electrode layer (specifically, the volume of liquid volume that is smaller than the total volume of all pores) with respect to the positive electrode having a porous structure, in particular. According to the conventional liquid injection means, a method that can uniformly inject even a small amount of electrolytic solution that causes liquid injection spots, and further, with such a small amount of electrolytic solution. It is desired to develop a positive electrode having a porous structure in which liquid is uniformly injected.

また、空気電池の充放電回数(サイクル数)改善の観点から、上記の少ない液量であっても、多孔質構造の正極内部の空孔(細孔)に対しても電解液を注液することが可能な方法、並びに前記空孔にも電解液が注液されている多孔質構造からなる正極、及びかかる正極を用いた空気電池の開発が望まれている。かかる空孔(細孔)として、空気電池の反応場として機能し得るが従来の注液方法では十分に湿潤させることが難しい、直径が10nm以上100nm以下である空孔(細孔)が例示される。 Further, from the viewpoint of improving the number of charge / discharge cycles (number of cycles) of the air battery, the electrolytic solution is injected into the pores (pores) inside the positive electrode of the porous structure even with the above-mentioned small amount of liquid. It is desired to develop a possible method, a positive electrode having a porous structure in which an electrolytic solution is also injected into the pores, and an air battery using such a positive electrode. Examples of such pores (pores) are pores (pores) having a diameter of 10 nm or more and 100 nm or less, which can function as a reaction field of an air battery but are difficult to sufficiently wet with a conventional liquid injection method. The air.

このような状況のもと、本発明の目的は、例えば、少ない液量(具体的には、正極の全空孔体積よりも少ない体積の液量で、従来の注液法によれば注液斑が生じてしまう液量)の電解液で均一に注液することが可能な従来とは異なる方法で注液された電解液を含む多孔質構造の正極、特に、このような少ない液量の電解液で均一に注液されている多孔質構造の正極を提供することである。
本発明の目的は、例えば、上記正極を含む空気電池を提供することである。
本発明の目的は、例えば、電解液を上記のような少ない液量でも、多孔質構造の正極に対して均一に注液することが可能な方法を提供することである。
本発明の目的は、例えば、電解液を上記のような少ない液量でも、多孔質構造の正極内部の空孔(細孔)に対して注液することが可能な方法を提供することである。
本発明の目的は、例えば、上記注液方法によって製造された正極を用いる空気電池の製法を提供することである。
Under such circumstances, an object of the present invention is, for example, a small amount of liquid (specifically, a liquid amount having a volume smaller than the total pore volume of the positive electrode, and a liquid injection method according to a conventional injection method. A positive electrode having a porous structure containing an electrolytic solution injected by a method different from the conventional method, which can be uniformly injected with an electrolytic solution (amount of liquid that causes spots), particularly with such a small amount of liquid. It is to provide a positive electrode having a porous structure which is uniformly injected with an electrolytic solution.
An object of the present invention is, for example, to provide an air battery including the positive electrode.
An object of the present invention is, for example, to provide a method capable of uniformly injecting an electrolytic solution into a positive electrode having a porous structure even with a small amount as described above.
An object of the present invention is, for example, to provide a method capable of injecting an electrolytic solution into pores (pores) inside a positive electrode having a porous structure even with a small amount as described above. ..
An object of the present invention is, for example, to provide a method for manufacturing an air battery using a positive electrode manufactured by the above-mentioned liquid injection method.

本発明者らは、上記課題を解決すべく鋭意検討した結果、予め用意した電解液を含む部材に多孔質構造の正極を接触させて、毛細管現象を利用して当該電解液を当該正極に転写させることにより、少ない液量(具体的には、正極の全空孔体積よりも少ない体積の液量で、従来の注液法によれば注液斑が生じてしまう液量)でも、多孔質構造の正極に対して均一に電解液を注液できることを見出し、本発明を完成するに至った。
本発明の諸態様は、具体的には以下の[1]から[26]のとおりである。
As a result of diligent studies to solve the above problems, the present inventors brought a positive electrode having a porous structure into contact with a member containing an electrolytic solution prepared in advance, and transferred the electrolytic solution to the positive electrode by utilizing the capillary phenomenon. By allowing the liquid to be porous, even a small amount of liquid (specifically, a liquid amount having a volume smaller than the total pore volume of the positive electrode and causing liquid injection spots according to the conventional liquid injection method) is porous. We have found that the electrolytic solution can be uniformly injected into the positive electrode of the structure, and have completed the present invention.
Specifically, various aspects of the present invention are as follows [1] to [26].

[1]
多孔質構造の正極であって、電解液を含む部材との接触により転写された前記電解液を含む、前記正極。
[2]
前記電解液がリチウム塩を含み、前記リチウム塩の少なくとも一つの構成元素の蛍光X線測定による変動係数が0.2よりも低い、[1]に記載の正極。
[3]
前記リチウム塩が臭化リチウムであり、前記臭化リチウムを構成する臭素のKα線測定による変動係数が0.2よりも低い、[2]に記載の正極。
[4]
前記電解液によって、空孔率に基づき前記正極の空孔の50%以上100%未満が充填されている、[1]から[3]のいずれかに記載の正極。
[5]
前記部材がポリテトラフルオロエチレン(PTFE)製のメンブランフィルターである、[1]から[4]のいずれかに記載の正極。
[6]
前記部材の電解液が滴下によって含有されている、[1]から[5]のいずれかに記載の正極。
[7]
前記多孔質構造の正極が、前記電解液を含む部材との接触前に、減圧加熱処理によって前記電解液の溶媒で湿潤された空孔を有する、[1]から[6]のいずれかに記載の正極。
[8]
直径が10nm以上100nm以下の空孔における、転写後の細孔比表面積が10m/g以下である、[1]から[7]のいずれかに記載の正極。
[9]
直径が10nm以上100nm以下の空孔における、転写後の細孔比表面積が6m/g以下である、[8]に記載の正極。
[10]
直径が10nm以上100nm以下の空孔における、転写後の容積が100μL/g以下である、[1]から[9]のいずれかに記載の正極。
[11]
直径が10nm以上100nm以下の空孔における、転写後の容積が60μL/g以下である、[10]に記載の正極。
[12]
[1]から[11]のいずれかに記載の正極を含む、空気電池。
[13]
放電容量又は充電容量が80%以下となる前までの充放電回数(サイクル数)が、3回以上である、[12]に記載の空気電池。
[14]
多孔質構造の正極に対して、電解液を含む部材を接触させ、前記電解液を転写させることにより、前記電解液を前記正極に注液する方法。
[15]
前記電解液がリチウム塩を含み、前記正極における、前記リチウム塩の少なくとも一つの構成元素の蛍光X線測定による変動係数が0.2よりも低くなるように前記電解液を注液する、[14]に記載の方法。
[16]
前記リチウム塩が臭化リチウムであり、前記正極における、前記臭化リチウムを構成する臭素のKα線測定による変動係数が0.2よりも低くなるように前記電解液を注液する、[15]に記載の方法。
[17]
前記電解液の注入により、空孔率に基づき前記正極の空孔の50%以上100%未満を前記電解液で充填する、[14]から[16]のいずれかに記載の方法。
[18]
前記部材としてポリテトラフルオロエチレン(PTFE)製のメンブランフィルターを使用する、[14]から[17]のいずれかに記載の方法。
[19]
前記部材の電解液を滴下によって含有させる、[14]から[18]のいずれかに記載の方法。
[20]
前記電解液を含む部材を接触させ、前記電解液を転写させる前に、前記電解液の溶媒により正極の空孔内を湿潤させる工程を含む、[14]から[19]のいずれかに記載の方法。
[21]
前記電解液の溶媒により正極の空孔内を湿潤させる工程が、減圧加熱処理によって前記電解液の溶媒を蒸散させ、前記溶媒蒸気雰囲気中に多孔質構造の正極を置いて前記正極を湿潤させることを含む、[20]に記載の方法。
[22]
前記減圧加熱処理を、0.1Pa以上10Pa以下の圧力下において行う、[21]に記載の方法。
[23]
前記減圧加熱処理の加熱を、40℃以上100℃以下の温度で行う、[21]又は[22]に記載の方法。
[24]
前記減圧加熱処理の加熱時間が、10分以上120分以下である、[23]に記載の方法。
[25]
負極と、
セパレータと、
[14]から[24]のいずれか一項に記載の方法によって電解液を注液される正極と、
前記正極の活物質として酸素を取り込むための酸素流路層とを順に積層することによる空気電池の製造方法。
[26]
負極と、
セパレータと、
[14]から[24]のいずれか一項に記載の方法によって電解液を注液される正極と、
前記正極の活物質として酸素を取り込むための酸素流路層とを順に積層することによる空気電池の製造方法であって、
未だ電解液を注液されていない正極の積層後に、電解液を含む部材を前記正極に接触させることによる前記電解液の転写により、前記電解液を前記正極に注液する工程、及び
前記部材を取り除く工程、
を含む、前記製造方法。
[1]
The positive electrode having a porous structure and containing the electrolytic solution transferred by contact with a member containing the electrolytic solution.
[2]
The positive electrode according to [1], wherein the electrolytic solution contains a lithium salt, and the coefficient of variation of at least one component of the lithium salt by fluorescent X-ray measurement is lower than 0.2.
[3]
The positive electrode according to [2], wherein the lithium salt is lithium bromide, and the coefficient of variation of bromine constituting the lithium bromide by Kα-ray measurement is lower than 0.2.
[4]
The positive electrode according to any one of [1] to [3], wherein 50% or more and less than 100% of the pores of the positive electrode are filled with the electrolytic solution based on the porosity.
[5]
The positive electrode according to any one of [1] to [4], wherein the member is a membrane filter made of polytetrafluoroethylene (PTFE).
[6]
The positive electrode according to any one of [1] to [5], wherein the electrolytic solution of the member is contained by dropping.
[7]
The positive electrode having a porous structure has pores moistened with a solvent of the electrolytic solution by a vacuum heat treatment before contact with a member containing the electrolytic solution, according to any one of [1] to [6]. Positive electrode.
[8]
The positive electrode according to any one of [1] to [7], wherein the pores having a diameter of 10 nm or more and 100 nm or less have a pore specific surface area after transfer of 10 m 2 / g or less.
[9]
The positive electrode according to [8], wherein the pore specific surface area after transfer is 6 m 2 / g or less in pores having a diameter of 10 nm or more and 100 nm or less.
[10]
The positive electrode according to any one of [1] to [9], wherein the volume after transfer is 100 μL / g or less in a pore having a diameter of 10 nm or more and 100 nm or less.
[11]
The positive electrode according to [10], wherein the volume after transfer is 60 μL / g or less in a pore having a diameter of 10 nm or more and 100 nm or less.
[12]
An air battery comprising the positive electrode according to any one of [1] to [11].
[13]
The air battery according to [12], wherein the number of charge / discharge cycles (number of cycles) before the discharge capacity or charge capacity becomes 80% or less is 3 times or more.
[14]
A method of injecting the electrolytic solution into the positive electrode by bringing a member containing the electrolytic solution into contact with a positive electrode having a porous structure and transferring the electrolytic solution.
[15]
The electrolytic solution contains a lithium salt, and the electrolytic solution is injected so that the coefficient of variation of at least one component of the lithium salt at the positive electrode by X-ray fluorescence measurement is lower than 0.2 [14. ] The method described in.
[16]
The lithium salt is lithium bromide, and the electrolytic solution is injected so that the coefficient of variation of bromine constituting the lithium bromide measured by Kα-ray at the positive electrode is lower than 0.2 [15]. The method described in.
[17]
The method according to any one of [14] to [16], wherein 50% or more and less than 100% of the pores of the positive electrode are filled with the electrolytic solution by injecting the electrolytic solution based on the porosity.
[18]
The method according to any one of [14] to [17], which uses a membrane filter made of polytetrafluoroethylene (PTFE) as the member.
[19]
The method according to any one of [14] to [18], wherein the electrolytic solution of the member is contained by dropping.
[20]
The method according to any one of [14] to [19], which comprises a step of bringing the member containing the electrolytic solution into contact and wetting the inside of the pores of the positive electrode with the solvent of the electrolytic solution before transferring the electrolytic solution. Method.
[21]
The step of wetting the inside of the pores of the positive electrode with the solvent of the electrolytic solution is to evaporate the solvent of the electrolytic solution by vacuum heat treatment and place the positive electrode having a porous structure in the solvent steam atmosphere to wet the positive electrode. 20. The method according to [20].
[22]
The method according to [21], wherein the reduced pressure heat treatment is performed under a pressure of 0.1 Pa or more and 10 Pa or less.
[23]
The method according to [21] or [22], wherein the heating of the reduced pressure heat treatment is performed at a temperature of 40 ° C. or higher and 100 ° C. or lower.
[24]
The method according to [23], wherein the heating time of the reduced pressure heat treatment is 10 minutes or more and 120 minutes or less.
[25]
With the negative electrode
Separator and
A positive electrode into which the electrolytic solution is injected by the method according to any one of [14] to [24], and a positive electrode.
A method for manufacturing an air battery by sequentially laminating an oxygen flow path layer for taking in oxygen as an active material of the positive electrode.
[26]
With the negative electrode
Separator and
A positive electrode into which the electrolytic solution is injected by the method according to any one of [14] to [24], and a positive electrode.
It is a method of manufacturing an air battery by sequentially laminating an oxygen flow path layer for taking in oxygen as an active material of the positive electrode.
A step of injecting the electrolytic solution into the positive electrode by transferring the electrolytic solution by bringing a member containing the electrolytic solution into contact with the positive electrode after stacking the positive electrodes to which the electrolytic solution has not been injected, and the member. The process of removing,
The manufacturing method.

本発明によれば、多孔質構造の正極に対して少ない液量(具体的には、正極の全空孔体積よりも少ない体積の液量で、従来の注液法によれば注液斑が生じてしまう液量)の電解液でも均一に注液できる。そのため、例えば、以下の効果が得られる。
本発明によれば、例えば、上記の少ない液量の電解液でも均一に注液されている多孔質構造の正極を提供することが可能である。
本発明によれば、例えば、上記正極を含む空気電極を提供することが可能である。
本発明によれば、例えば、電解液を上記の少ない液量でも、多孔質構造の正極に対して均一に注液することが可能な方法を提供することが可能である。
本発明によれば、例えば、電解液を上記の少ない液量でも、多孔質構造の正極内部の細孔に対してより深部にまで注液することが可能な方法を提供することが可能である。
本発明によれば、例えば、上記方法によって製造された正極を用いる空気電池を提供することが可能である。
According to the present invention, a small amount of liquid with respect to a positive electrode having a porous structure (specifically, a liquid volume having a volume smaller than the total pore volume of the positive electrode, and a liquid injection spot is formed according to the conventional liquid injection method. Even an electrolytic solution (the amount of liquid that is generated) can be injected uniformly. Therefore, for example, the following effects can be obtained.
According to the present invention, for example, it is possible to provide a positive electrode having a porous structure in which even the above-mentioned small amount of electrolytic solution is uniformly injected.
According to the present invention, for example, it is possible to provide an air electrode including the positive electrode.
According to the present invention, for example, it is possible to provide a method capable of uniformly injecting an electrolytic solution into a positive electrode having a porous structure even with the above-mentioned small amount of liquid.
According to the present invention, for example, it is possible to provide a method capable of injecting an electrolytic solution deeper into a pore inside a positive electrode having a porous structure even with the above-mentioned small amount of liquid. ..
According to the present invention, for example, it is possible to provide an air battery using a positive electrode manufactured by the above method.

本発明の一実施態様である空気電池の構造を説明する概略図である(図中の符号100はリチウム空気電池、符号101は酸素流路層、符号102は空気極(多孔構造の正極)、符号103はセパレータ、符号104は負極を示す。)。It is a schematic diagram explaining the structure of the air battery which is one Embodiment of this invention (in the figure, reference numeral 100 is a lithium air battery, reference numeral 101 is an oxygen flow path layer, and reference numeral 102 is an air electrode (positive electrode of a porous structure). Reference numeral 103 indicates a separator, and reference numeral 104 indicates a negative electrode.) 本発明の一実施態様における、電解液を空気極に転写注液する構造を説明する概略図である(図中の符号102は空気極(多孔質構造の正極)、符号105は電解液を含む部材(電解液転写用部材)を示す。)。It is a schematic diagram explaining the structure of transferring and injecting an electrolytic solution into an air electrode in one embodiment of the present invention (reference numeral 102 in the figure is an air electrode (positive electrode having a porous structure), and reference numeral 105 is an electrolytic solution. A member (member for transferring an electrolytic solution) is shown.). 電解液を注液した後の正極の臭素Kα線のマッピングデータであり、(a)は実施例1、(b)は比較例1のマッピングデータである。It is the mapping data of the bromine Kα ray of the positive electrode after injecting the electrolytic solution, (a) is the mapping data of Example 1, and (b) is the mapping data of Comparative Example 1. 実施例2及び実施例1’の電解液注液後の空気極の直径が10nm以上100nm以下の空孔(細孔)における細孔比表面積を示すグラフである。It is a graph which shows the pore specific surface area in the pore (pore) which the diameter of the air electrode after the electrolytic solution injection of Example 2 and Example 1'is 10 nm or more and 100 nm or less.

本発明の態様の一つは、多孔質構造の正極であって、電解液を含む部材との接触により転写された前記電解液を含む、前記正極である。 One aspect of the present invention is a positive electrode having a porous structure, which contains the electrolytic solution transferred by contact with a member containing the electrolytic solution.

また、本発明の態様の一つは、多孔質構造の正極に対して、電解液を含む部材を接触させ、前記電解液を転写させることにより、前記電解液を前記正極に注液する方法である。 Further, one aspect of the present invention is a method of injecting the electrolytic solution into the positive electrode by contacting a member containing the electrolytic solution with a positive electrode having a porous structure and transferring the electrolytic solution. be.

また、本発明の更なる態様は、前記電解液を含む部材を接触させ、前記電解液を転写させる前に、前記電解液の溶媒により正極内部の空孔(細孔)を湿潤させることを含む、前記電解液を含む正極又は前記正極に注液する方法である。 Further, a further aspect of the present invention includes contacting a member containing the electrolytic solution and moistening the pores (pores) inside the positive electrode with the solvent of the electrolytic solution before transferring the electrolytic solution. , A method of injecting a positive electrode containing the electrolytic solution or the positive electrode.

多孔質構造の正極に用いる材料としては、正極に用いることができるものであれば特に制限されない。例えば、炭素、金属、炭化物、酸化物等が用いられ、中でも炭素が好ましい。
また、当該正極は、多孔化した構造(すなわち、多孔質構造)である。
空気電池用の正極(空気極)材料として使用する場合、一般的に、取扱いの容易さ、コスト、重量、グリーン環境、リサイクルの観点から炭素材料が好ましい。
空気電池の正極(空気極)は、そこに高い空気又は酸素透過性を付与するため、多孔質構造である。例えば、リチウム空気電池の正極(空気極)は、導電性を有するうえ、放電反応で生成する過酸化リチウムが析出する反応場になるため、多孔質構造である必要がある。
The material used for the positive electrode having a porous structure is not particularly limited as long as it can be used for the positive electrode. For example, carbon, metals, carbides, oxides and the like are used, and carbon is particularly preferable.
Further, the positive electrode has a porous structure (that is, a porous structure).
When used as a positive electrode (air electrode) material for an air battery, a carbon material is generally preferred from the viewpoint of ease of handling, cost, weight, green environment, and recycling.
The positive electrode (air electrode) of an air battery has a porous structure in order to impart high air or oxygen permeability to the positive electrode (air electrode). For example, the positive electrode (air electrode) of a lithium-air battery needs to have a porous structure because it has conductivity and becomes a reaction field where lithium peroxide generated by a discharge reaction is deposited.

多孔質構造の正極に用いる炭素原料としては、多孔質炭素粒子を使用するのが好ましい。多孔質炭素粒子としてはケッチェンブラック(登録商標)を含むカーボンブラック、その他テンプレート法にて形成された炭素粒子などを用いることができる。中でも、ケッチェンブラック(登録商標)は、総比表面積(BET法比表面積)が大きく、細孔径が2nm以上50nm以下のメソ孔と細孔径が50nm以上のマクロ孔の細孔容積や比表面積が大きい材料であるという点で、空気電池用の正極に用いる原料として好ましい。 As the carbon raw material used for the positive electrode having a porous structure, it is preferable to use porous carbon particles. As the porous carbon particles, carbon black containing Ketjen black (registered trademark), carbon particles formed by the template method, or the like can be used. Among them, Ketjen Black (registered trademark) has a large total specific surface area (BET method specific surface area), and has a large pore volume and specific surface area of mesopores having a pore diameter of 2 nm or more and 50 nm or less and macropores having a pore diameter of 50 nm or more. Since it is a large material, it is preferable as a raw material used for a positive electrode for an air battery.

電解液を含む部材とは、電解液を保持できる部材であって、さらに保持した電解液を正極との接触により、当該電解液を当該正極に転写することができる部材をいう。本願では、当該電解液を含む部材を電解液転写用部材と称することもある。
電解液を含む部材(電解液転写用部材)としては、正極との接触により、当該部材に含まれる電解液を転写することができる部材であれば特に制限されない。当該部材としては、PTFE(ポリテトラフルオロエチレン)製の部材(例えば、PTFEタイプメンブランフィルター)等が挙げられる。PTFEタイプメンブランフィルターを使用する場合、正極の大きさなどの用途に合わせ、打ち抜き等により適宜加工して使用してもよい。
電解液を含む部材(電解液転写用部材)の大きさは、正極の大きさ以上とし、正極よりも大きくするのが好ましい。
電解液を含む部材(電解液転写用部材)への電解液の滴下量は、予め電解液を含む部材(電解液転写用部材)の滴下量とその転写により正極へ注液された注液量の校正曲線を作成しておくことで、正極への注液量が所望する液量になるように設定すればよい。
The member containing the electrolytic solution is a member capable of holding the electrolytic solution, and is a member capable of transferring the held electrolytic solution to the positive electrode by contact with the positive electrode. In the present application, the member containing the electrolytic solution may be referred to as an electrolytic solution transfer member.
The member containing the electrolytic solution (member for transferring the electrolytic solution) is not particularly limited as long as it is a member capable of transferring the electrolytic solution contained in the member by contact with the positive electrode. Examples of the member include a member made of PTFE (polytetrafluoroethylene) (for example, a PTFE type membrane filter). When a PTFE type membrane filter is used, it may be appropriately processed by punching or the like according to the application such as the size of the positive electrode.
The size of the member containing the electrolytic solution (member for transferring the electrolytic solution) is preferably the size of the positive electrode or larger, and is preferably larger than the size of the positive electrode.
The amount of the electrolytic solution dropped onto the member containing the electrolytic solution (member for transferring the electrolytic solution) is the amount of dropping the member containing the electrolytic solution (member for transferring the electrolytic solution) in advance and the amount of the liquid injected to the positive electrode by the transfer thereof. By creating the calibration curve of, the amount of liquid injected into the positive electrode may be set to be the desired amount.

電解液の種類は、水系電解液でも非水系電解液(非水電解液)でもよく、適用する電池の種類に応じて使用すればよい。具体的には、水系電解液電池であれば水系電解液、非水系電解液電池であれば非水系電解液(非水電解液)を使用すればよい。 The type of the electrolytic solution may be either an aqueous electrolytic solution or a non-aqueous electrolytic solution (non-aqueous electrolytic solution), and may be used depending on the type of the battery to be applied. Specifically, an aqueous electrolytic solution may be used for an aqueous electrolytic solution battery, and a non-aqueous electrolytic solution (non-aqueous electrolytic solution) may be used for a non-aqueous electrolytic solution battery.

リチウム空気電池を例に挙げると、電解液としてはリチウム塩を含有する非水系の任意の電解液が好ましく、当該リチウム塩としてLiBrを含む電解液が特に好ましい。前記非水電解液において、リチウム塩を用いる場合は、例えば、LiBr、LiNO、LiPF、LiBF、LiSbF、LiSiF、LiAsF、LiN(SO、Li(FSON、LiCFSO(LiTfO)、Li(CFSON(LiTFSI)、LiCSO、LiClO、LiAlO、LiAlCl、LiB(Cなどのリチウム塩を挙げることができる。これらのリチウム塩は、それぞれ単独で使用してもよいが、2種以上を混合して使用してもよい。電解質は非水系の溶媒に溶解させて電解液として使用することができる。非水系の溶媒としては、グライム類(モノグライム、ジグライム、トリグライム、テトラグライム)、メチルブチルエーテル、ジエチルエーテル、エチルブチルエーテル、ジブチルエーテル、ポリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、シクロヘキサノン、ジオキサン、ジメトキシエタン、2-メチルテトラヒドロフラン、2,2-ジメチルテトラヒドロフラン、2,5-ジメチルテトラヒドロフラン、テトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸ジメチル、メチルプロピオネート、エチルプロピオネート、ギ酸メチル、ギ酸エチル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ポリエチレンカーボネート、γ-ブチロラクトン、デカノリド、バレロラクトン、メバロノラクトン、カプロラクトン、アセトニトリル、ベンゾニトリル、ニトロメタン、ニトロベンゼン、トリエチルアミン、トリフェニルアミン、テトラエチレングリコールジアミン、ジメチルホルムアミド(DMF)、ジエチルホルムアミド、N-メチルピロリドン、ジメチルスルホン、テトラメチレンスルホン、トリエチルホスフィンオキシド、1,3-ジオキソラン及びスルホランからなる群から選択されるが、これらに制限されない。また、これらの溶媒は、それぞれ単独で使用してもよいが、2種以上を混合して使用してもよい。 Taking a lithium-air battery as an example, any non-aqueous electrolytic solution containing a lithium salt is preferable as the electrolytic solution, and an electrolytic solution containing LiBr as the lithium salt is particularly preferable. When a lithium salt is used in the non-aqueous electrolyte solution, for example, LiBr, LiNO 3 , LiPF 6 , LiBF 4 , LiSbF 6 , LiSiF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (FSO). 2 ) 2 N, LiCF 3 SO 3 (LiTfO), Li (CF 3 SO 2 ) 2 N (LiTFSI), LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiB (C 2 O 4 ) 2 Lithium salts such as. Each of these lithium salts may be used alone, or two or more thereof may be mixed and used. The electrolyte can be used as an electrolytic solution by dissolving it in a non-aqueous solvent. Non-aqueous solvents include glymes (monoglyme, diglyme, triglime, tetraglyme), methyl butyl ether, diethyl ether, ethyl butyl ether, dibutyl ether, polyethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, cyclohexanone, dioxane, dimethoxyethane, 2- Methyl diethyl, 2,2-dimethyltetra, 2,5-dimethyltetra, tetrahydrofuran, methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methylpropionate, ethylpropionate, methyl formate, ethyl formate, dimethyl Carbonate, diethyl carbonate, ethylmethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, polyethylene carbonate, γ-butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, acetonitrile, benzonitrile , Nitromethane, nitrobenzene, triethylamine, triphenylamine, tetraethylene glycol diamine, dimethylformamide (DMF), diethylformamide, N-methylpyrrolidone, dimethylsulfone, tetramethylenesulfone, triethylphosphinoxide, 1,3-dioxolane and sulfolane. Selected from the group, but not limited to these. Further, these solvents may be used alone or in combination of two or more.

電解液を含む部材(電解液転写用部材)における電解液の含有方法としては、その目的を達成できるものであれば特に制限されない。例えば、当該部材への電解液の滴下や含浸などが挙げられる。 The method of containing the electrolytic solution in the member containing the electrolytic solution (member for transferring the electrolytic solution) is not particularly limited as long as the object can be achieved. For example, the electrolytic solution may be dropped or impregnated into the member.

多孔質構造の正極への電解液の注液(すなわち、充填)は、電解液を含む部材(電解液転写用部材)を接触させ、それにより当該電解液を当該正極へ転写することにより行う。従来の注液では、マイクロピペットやディスペンサーを用いることが一般的であるが、これら手法では電解液量が少ないと注液斑が生じ易い。しかし、本発明では、電解液を含む部材(電解液転写用部材)として、例えば、電解液の滴下により当該電解液を保持している部材を正極に接触させて当該電解液を転写するという新規な電解液注入方法を使用することにより、当該正極に所定量(具体的には、正極の全空孔体積よりも少ない体積の液量で、従来の注液法によれば注液斑が生じてしまう液量)の電解液が注液される。 The injection (that is, filling) of the electrolytic solution into the positive electrode having a porous structure is performed by contacting a member containing the electrolytic solution (member for transferring the electrolytic solution) and thereby transferring the electrolytic solution to the positive electrode. In conventional liquid injection, it is common to use a micropipette or a dispenser, but in these methods, liquid injection spots are likely to occur when the amount of electrolytic solution is small. However, in the present invention, as a member containing the electrolytic solution (member for transferring the electrolytic solution), for example, a member holding the electrolytic solution is brought into contact with the positive electrode by dropping the electrolytic solution to transfer the electrolytic solution. By using a different electrolytic solution injection method, a predetermined amount (specifically, a liquid volume smaller than the total pore volume of the positive electrode) causes liquid injection spots on the positive electrode according to the conventional liquid injection method. The electrolytic solution (the amount of liquid that will be lost) is injected.

多孔質構造の正極への電解液の注液は、当該正極に対して均一に行うことが好ましい。
具体的には、リチウム塩を含む電解液を注液し、当該リチウム塩の少なくとも一つの構成元素を検出プローブとして蛍光X線を測定したときのその変動係数が、0.2よりも低いことが好ましい。例えば、臭化リチウム(LiBr)を含む電解液を正極へ注液し、注液後の正極における任意の複数の箇所における当該臭化リチウムの臭素(Br)を検出プローブとしてKα線(本願では、臭素Kα線と称することもある)を測定したときの変動係数(=臭素Kα線の標準偏差/臭素Kα線の平均値)が、0.2よりも低いことが好ましい。この変動係数の値は、低くなるにつれて均一性が高くなる。変動係数の値は、0.2よりも低ければ多孔質構造の正極への電解液の注液が均一であるといえるが、均一性という観点からは、より低い方がより好ましい。
It is preferable that the electrolytic solution is uniformly injected into the positive electrode having a porous structure with respect to the positive electrode.
Specifically, when an electrolytic solution containing a lithium salt is injected and fluorescent X-rays are measured using at least one constituent element of the lithium salt as a detection probe, the coefficient of variation is lower than 0.2. preferable. For example, an electrolytic solution containing lithium bromide (LiBr) is injected into the positive electrode, and Kα-ray (in the present application, bromine (Br) of the lithium bromide is used as a detection probe at any plurality of points on the positive electrode after injection. It is preferable that the fluctuation coefficient (= standard deviation of bromine Kα ray / average value of bromine Kα ray) when measuring (sometimes referred to as bromine Kα ray) is lower than 0.2. The lower the value of this coefficient of variation, the higher the uniformity. If the value of the coefficient of variation is lower than 0.2, it can be said that the injection of the electrolytic solution into the positive electrode having a porous structure is uniform, but from the viewpoint of uniformity, a lower value is more preferable.

多孔質構造の正極へ注液する電解液量の上限値は、正極の全空孔体積よりも少ない体積の液量(空気電池を例に挙げると、空気極を構成する空気極層の全空孔体積よりも少ない体積の液量)である。上述のとおり、注液する当該電解液量は、正極への均一性を維持しつつ、空気電池の特性に悪影響を及ぼさない範囲でより少なくすることが望ましい。
具体的には、多孔質構造の正極へ注液する(すなわち、充填する)電解液量の上限値を、正極の全空孔の体積を100%とした場合に100%未満とすることが好ましく、より好ましくは80%未満、より一層好ましくは、70%未満である。
多孔質構造の正極へ注液する電解液量の下限値は、従来の注液法によれば注液斑が生じてしまう液量ではあるが、本発明による電解液を含む部材(電解液転写用部材)との接触により少なくとも正極表面全体を電解液で均一に満たすのに必要な最低限の液量である。
具体的には、多孔質構造の正極へ注液する電解液量の下限値を、正極の全空孔の体積を100%とした場合に50%以上とすることが好ましく、より好ましくは60%以上、より一層好ましくは、65%である。
空孔率は、例えば、多孔質構造の正極(本願では、多孔質構造体とも称する)の重量測定により嵩密度を算出し、当該多孔質構造体の真密度と比較することにより求められる。一例を挙げると、正極が炭素材料からなる多孔質構造体(本願では、多孔炭素構造体とも称する)である場合の空孔率は、当該多孔炭素構造体の重量測定により嵩密度を算出し、炭素の真密度(2.1g/cm)と比較することにより求められる。
一方、正極への電解液の充填可能な最大量(本願では、充填最大量とも称する)は、電解液の濡れ性や細孔サイズによる浸透可否が影響するため、多孔炭素構造体の空孔(細孔)容積(空孔率100%)より小さくなることがある。そこで本願では、減圧含浸による注液量(μL/cm)を100%としたものを充填最大量と定義する。より具体的には正極に用いる多孔炭素構造体自体を、電解液を入れたシャーレに浸漬し、10~15分間真空含浸後、表面に残る電解液をふきとった後の正極の重量増加量と電解液の比重から計算で求めることができる。
The upper limit of the amount of electrolytic solution to be injected into the positive electrode of the porous structure is the volume of liquid smaller than the total pore volume of the positive electrode (for example, in the case of an air battery, the total air of the air electrode layer constituting the air electrode). The volume of liquid is smaller than the volume of the pores). As described above, it is desirable that the amount of the electrolytic solution to be injected is smaller as long as the uniformity to the positive electrode is maintained and the characteristics of the air battery are not adversely affected.
Specifically, the upper limit of the amount of electrolytic solution injected (that is, filled) into the positive electrode having a porous structure is preferably less than 100% when the volume of all pores of the positive electrode is 100%. , More preferably less than 80%, even more preferably less than 70%.
The lower limit of the amount of electrolytic solution to be injected into the positive electrode of the porous structure is the amount of liquid that causes liquid injection spots according to the conventional liquid injection method, but the member (electrolyte solution transfer) containing the electrolytic solution according to the present invention. This is the minimum amount of liquid required to uniformly fill at least the entire surface of the positive electrode with the electrolytic solution by contact with the member).
Specifically, the lower limit of the amount of electrolytic solution injected into the positive electrode having a porous structure is preferably 50% or more, more preferably 60% when the volume of all pores of the positive electrode is 100%. As mentioned above, it is even more preferably 65%.
The porosity is determined, for example, by calculating the bulk density by measuring the weight of a positive electrode having a porous structure (also referred to as a porous structure in the present application) and comparing it with the true density of the porous structure. As an example, the porosity when the positive electrode is a porous structure made of a carbon material (also referred to as a porous carbon structure in the present application) is obtained by calculating the bulk density by measuring the weight of the porous carbon structure. It is determined by comparing with the true density of carbon (2.1 g / cm 3 ).
On the other hand, the maximum amount of the electrolytic solution that can be filled into the positive electrode (also referred to as the maximum amount of the electrolytic solution in the present application) is affected by the wettability of the electrolytic solution and the permeability depending on the pore size. Porosity) It may be smaller than the volume (porosity 100%). Therefore, in the present application, the maximum filling amount is defined as the amount of liquid injected (μL / cm 2 ) by impregnation under reduced pressure as 100%. More specifically, the porous carbon structure itself used for the positive electrode is immersed in a chalet containing an electrolytic solution, vacuum-impregnated for 10 to 15 minutes, and then the electrolytic solution remaining on the surface is wiped off. It can be calculated from the specific gravity of the liquid.

こうして得られた前記電解液を含む(すなわち、転写後の)正極では、直径が10nm以上100nm以下の空孔(細孔)における細孔比表面積が、10m/g以下である。好ましくは1m/g以上10m/g以下であり、より好ましくは3m/g以上6m/g以下である。また、前記電解液を含む(すなわち、転写後の)正極では、直径が10nm以上100nm以下の空孔(細孔)における細孔容積が、100μL/g以下である。好ましくは10μL/g以上100μL/g以下、より好ましくは30μL/g以上60μL/g以下である。本発明の正極又は注液方法によって正極に含まれる電解液の量は少ないため、従来の方法では、直径が10nm以上100nm以下の空孔(細孔)を電解液により湿潤させることは難しい。しかし、この領域は空気電池の反応場として機能し得るため、この領域における空孔が電解液により湿潤されていることで、正極全体をより有効に活用できる。本発明によれば、上述のとおり、多孔質構造の正極内部の空孔(細孔)深部にまで前記電解液を含む正極を得ることが可能なため、正極全体をより有効に活用できる。その結果、当該正極を用いた空気電池の充放電回数(サイクル数)を増加させることが可能である。 In the positive electrode containing the electrolytic solution thus obtained (that is, after transfer), the pore specific surface area in the pores (pores) having a diameter of 10 nm or more and 100 nm or less is 10 m 2 / g or less. It is preferably 1 m 2 / g or more and 10 m 2 / g or less, and more preferably 3 m 2 / g or more and 6 m 2 / g or less. Further, in the positive electrode containing the electrolytic solution (that is, after transfer), the pore volume in the pores (pores) having a diameter of 10 nm or more and 100 nm or less is 100 μL / g or less. It is preferably 10 μL / g or more and 100 μL / g or less, and more preferably 30 μL / g or more and 60 μL / g or less. Since the amount of the electrolytic solution contained in the positive electrode is small by the positive electrode or the liquid injection method of the present invention, it is difficult to moisten the pores (pores) having a diameter of 10 nm or more and 100 nm or less with the electrolytic solution by the conventional method. However, since this region can function as a reaction field of the air battery, the pores in this region are moistened with the electrolytic solution, so that the entire positive electrode can be utilized more effectively. According to the present invention, as described above, since the positive electrode containing the electrolytic solution can be obtained deep into the pores (pores) inside the positive electrode having a porous structure, the entire positive electrode can be utilized more effectively. As a result, it is possible to increase the number of charge / discharge cycles (number of cycles) of the air battery using the positive electrode.

多孔質構造の正極への電解液の注液(すなわち、充填)では、前記電解液を含む部材(電解液転写用部材)を接触させ、前記電解液を転写させる前に、前記電解液の溶媒により正極内部の空孔(細孔)を湿潤させる工程を含むことが好ましい。該工程を含むことにより、当該溶媒により正極内部の空孔(細孔)を湿潤させた後に、電解液を含む部材(電解液転写用部材)を接触させ、前記電解液を転写させることで、多孔質構造の正極の表面を均一に注液することができ、かつ、多孔質構造の正極内部の空孔(細孔)に対し、より深部にまで前記電解液を注液することができる。 In the injection (that is, filling) of the electrolytic solution into the positive electrode having a porous structure, the member containing the electrolytic solution (member for transferring the electrolytic solution) is brought into contact with the electrode, and the solvent of the electrolytic solution is before the transfer of the electrolytic solution. It is preferable to include a step of wetting the pores (pores) inside the positive electrode. By including this step, after wetting the pores (pores) inside the positive electrode with the solvent, a member containing the electrolytic solution (member for transferring the electrolytic solution) is brought into contact with the member to transfer the electrolytic solution. The surface of the positive electrode having a porous structure can be uniformly injected, and the electrolytic solution can be injected deeper into the pores (pores) inside the positive electrode having a porous structure.

前記溶媒により正極内部の空孔(細孔)を湿潤させる工程としては、具体例として、減圧加熱処理によって前記溶媒を蒸散させ、溶媒蒸気雰囲気中に多孔質構造の正極を置くことが挙げられる。上記工程により、前記溶媒蒸気が前記正極内部の細孔深部まで行き渡り、空孔(細孔)内が前記溶媒で湿潤された多孔質構造の正極を得ることができる。前記正極に対して、電解液を含む部材(電解液転写用部材)を接触させることで、多孔質構造の正極内部の空孔(細孔)深部にまで前記電解液を含む正極を得ることができる。また、前記転写を、前記溶媒による正極内部の空孔(細孔)を湿潤させる工程後に行うことにより、正極表面全体を従来の注液法によれば注液斑が生じてしまう液量の電解液で正極表面全体を均一に満たすこともできる。 As a specific example of the step of moistening the pores (pores) inside the positive electrode with the solvent, the solvent is evaporated by vacuum heat treatment, and the positive electrode having a porous structure is placed in the solvent vapor atmosphere. By the above step, the solvent vapor spreads to the deep part of the pores inside the positive electrode, and the inside of the pores (pores) can be wetted with the solvent to obtain a positive electrode having a porous structure. By contacting the positive electrode with a member containing the electrolytic solution (member for transferring the electrolytic solution), the positive electrode containing the electrolytic solution can be obtained deep into the pores inside the positive electrode having a porous structure. can. Further, by performing the transfer after the step of wetting the pores (pores) inside the positive electrode with the solvent, the entire surface of the positive electrode is electrolyzed with a liquid amount that causes liquid injection spots according to the conventional liquid injection method. The entire surface of the positive electrode can be uniformly filled with the liquid.

なお、直径10nm以上100nm以下の空孔(細孔)における、細孔比表面積及び細孔容積は、例えば3Flex(Micromeritics Instrument Corp.製)を用いて窒素吸着法により得られた吸着等温線からBJH(Barrett-Joyner-Hallenda)法を用いて求めることができる。 The specific surface area and volume of the pores in the pores (pores) having a diameter of 10 nm or more and 100 nm or less are BJH from the adsorption isotherm obtained by the nitrogen adsorption method using, for example, 3Flex (manufactured by Micromeritics Instrument Corp.). It can be obtained by using the (Barrett-Joiner-Hallenda) method.

本発明の一実施態様である空気電池の構造を、図1を参酌して説明する。本発明は特に空気電池に適用可能であり、空気電池としては例えば、リチウム空気電池、マグネシウム空気電池、ナトリウム空気電池、アルミニウム空気電池が挙げられる。但し、本発明は以下の実施態様に制限されない。また、本願において別段の定めがないものについては、本発明の目的が達成できる限り、特に制限されない。 The structure of the air battery, which is one embodiment of the present invention, will be described with reference to FIG. The present invention is particularly applicable to an air battery, and examples of the air battery include a lithium air battery, a magnesium air battery, a sodium air battery, and an aluminum air battery. However, the present invention is not limited to the following embodiments. Further, unless otherwise specified in the present application, there are no particular restrictions as long as the object of the present invention can be achieved.

空気電池100は、酸素流路層101、並びに正極102及び負極104がセパレータ103を介して積層された積層構造体からなる。空気電池の正極(空気極)102に電解液が注入される。この注入に関しては、図2も参酌して説明する。なお、空気電池100の説明にあたり、電解液として非水電解液を注液する注液方法を用いて説明しているが、当該注液方法は、非水電解液に限らず、水系電解液に適用してもよい。 The air battery 100 includes an oxygen flow path layer 101, and a laminated structure in which a positive electrode 102 and a negative electrode 104 are laminated via a separator 103. The electrolytic solution is injected into the positive electrode (air electrode) 102 of the air battery. This injection will be described with reference to FIG. In the description of the air battery 100, a non-aqueous electrolytic solution is injected as an electrolytic solution, but the injection method is not limited to the non-aqueous electrolytic solution, but can be applied to an aqueous electrolytic solution. May be applied.

酸素流路層101
酸素流路層101は、例えば、銅(Cu)、タングステン(W)、アルミニウム(Al)、ニッケル(Ni)、チタン(Ti)、金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)の群から選ばれる金属を有するメッシュを挙げることができる。
すなわち、この群から選ばれる金属単体、この群から選ばれる金属を含む合金、この群から選ばれる金属と炭素(C)や窒素(N)などとの化合物からなるメッシュを挙げることができる。
また、金属メッシュはすべて金属から構成されてもよいが、セルの軽量化を考慮するとポリマーメッシュを金属コーティングしてもよい。この方法では酸素流路層101の軽量化が実現でき、ひいてはセルの高エネルギー密度化に寄与できる。メッシュは、例えば、厚さ0.2mm、目開き1mmとすることができる。
Oxygen flow path layer 101
The oxygen flow path layer 101 includes, for example, copper (Cu), tungsten (W), aluminum (Al), nickel (Ni), titanium (Ti), gold (Au), silver (Ag), platinum (Pt), and palladium. A mesh having a metal selected from the group (Pd) can be mentioned.
That is, examples thereof include a simple substance of a metal selected from this group, an alloy containing a metal selected from this group, and a mesh composed of a metal selected from this group and a compound of carbon (C), nitrogen (N), or the like.
Further, although the metal mesh may be entirely made of metal, the polymer mesh may be metal-coated in consideration of weight reduction of the cell. In this method, the weight of the oxygen flow path layer 101 can be reduced, which in turn can contribute to increasing the energy density of the cell. The mesh can have, for example, a thickness of 0.2 mm and an opening of 1 mm.

正極(空気極)102
上述のとおり、正極(空気極)102は導電性があり、多孔質構造であることが必要である。正極の材質としては、炭素、金属、炭化物、酸化物などが挙げられるが、炭素が好ましい。例えば、リチウム空気電池の場合、多孔質構造の空気極は放電反応で生成する過酸化リチウムが析出する反応場となる。
Positive electrode (air electrode) 102
As described above, the positive electrode (air electrode) 102 needs to be conductive and have a porous structure. Examples of the material of the positive electrode include carbon, metal, carbides, oxides and the like, but carbon is preferable. For example, in the case of a lithium-air battery, the air electrode having a porous structure serves as a reaction field where lithium peroxide generated by the discharge reaction is deposited.

正極(空気極)102、すなわち多孔質構造の空気極は、材料混合工程、シート成型工程、溶媒浸漬工程、乾燥工程、そして焼成工程を含む製造方法により得ることができる。 The positive electrode (air electrode) 102, that is, the air electrode having a porous structure can be obtained by a manufacturing method including a material mixing step, a sheet molding step, a solvent dipping step, a drying step, and a baking step.

正極(空気極)102の製造方法
材料混合工程は、例えば、多孔質炭素粒子を50重量%以上80重量%以下、炭素繊維を1重量%以上15重量%以下、結着用高分子材料を5重量%以上49重量%以下となるように秤量し、それらを均一に分散するため、N-メチルピロリドンからなる溶媒を用いて合剤スラリーを調製する工程である。
ここで、多孔質炭素粒子としては、上述のとおり、ケッチェンブラック(登録商標)を含むカーボンブラック、その他テンプレート法にて形成された炭素粒子などを用いることができる。
炭素繊維としては、例えば、繊維径が0.1μm以上20μm以下、長さが1mm以上20mm以下の炭素繊維を用いることができる。
結着用高分子材料としては、例えば、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデンを用いることができる。
溶媒としては、例えば、N-メチルピロリドン、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)等を用いることができる。
Manufacturing method of positive electrode (air electrode) 102 In the material mixing step, for example, the porous carbon particles are 50% by weight or more and 80% by weight or less, the carbon fibers are 1% by weight or more and 15% by weight or less, and the bonding polymer material is 5% by weight. This is a step of preparing a mixture slurry using a solvent consisting of N-methylpyrrolidone in order to weigh the mixture so as to be% or more and 49% by weight or less and uniformly disperse them.
Here, as the porous carbon particles, as described above, carbon black containing Ketjen black (registered trademark), carbon particles formed by the template method, or the like can be used.
As the carbon fiber, for example, a carbon fiber having a fiber diameter of 0.1 μm or more and 20 μm or less and a length of 1 mm or more and 20 mm or less can be used.
As the polymer material to be attached, for example, polyacrylonitrile (PAN) and polyvinylidene fluoride can be used.
As the solvent, for example, N-methylpyrrolidone, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMA) and the like can be used.

シート成型工程は、前記合剤スラリーを成型する工程である。シート成型方法は特に制限されないが、例えば、公知のドクターブレードなどを用いた湿式製膜法を挙げることができる。その他にも、ロールコーター法、ダイコーター法、スピンコート法、スプレーコーティング法などを挙げることもできる。成型後の形は、目的に応じて様々な形とすることができる。例えば、均一な厚みのシート状とすることができる。 The sheet molding step is a step of molding the mixture slurry. The sheet molding method is not particularly limited, and examples thereof include a wet film forming method using a known doctor blade or the like. In addition, a roll coater method, a die coater method, a spin coating method, a spray coating method and the like can also be mentioned. The shape after molding can be various shapes depending on the purpose. For example, it can be in the form of a sheet having a uniform thickness.

溶媒浸漬工程は、非溶媒誘起相分離法にて、結着用高分子材料に対する溶解度が低い溶媒中に前記シート成型工程で成型した試料(シート)を浸漬し、多孔膜化する工程である。溶媒浸漬工程で用いられる溶媒としては、例えば、水、及びエチルアルコール、メチルアルコール、イソプロピルアルコールなどのアルコール、並びに、これらの混合溶媒などを挙げることができる。 The solvent dipping step is a step of immersing the sample (sheet) molded in the sheet molding step in a solvent having low solubility in a binder polymer material by a non-solvent-induced phase separation method to form a porous film. Examples of the solvent used in the solvent dipping step include water, alcohols such as ethyl alcohol, methyl alcohol, and isopropyl alcohol, and a mixed solvent thereof.

乾燥工程は、試料から各種溶媒を揮発させる工程である。乾燥方法としては、乾燥空気環境下に置く方法、減圧乾燥法、真空乾燥法などを挙げることができる。この乾燥工程では、乾燥速度を速めるために、溶媒の沸点を超える程度の温度で加温してもよい。 The drying step is a step of volatilizing various solvents from the sample. Examples of the drying method include a method of placing in a dry air environment, a vacuum drying method, and a vacuum drying method. In this drying step, in order to increase the drying rate, heating may be performed at a temperature exceeding the boiling point of the solvent.

焼成工程は、前記乾燥工程後の試料(シート)を焼成処理する工程である。焼成処理は、例えば、オーブン炉、赤外線照射、赤外線照射炉、マッフル炉、リードハンマー炉等を用いて行うことができる。
ここで、焼成工程は、一度の熱処理とすることもできるが、不融化と焼成の2段階熱処理とすることもできる。焼成の熱処理温度は800℃以上1400℃以下が好ましく、そのときの雰囲気はアルゴン(Ar)ガス、窒素(N)ガスなどによる不活性雰囲気が好ましい。
例えば、結着用高分子としてPANを用いた場合は、約200℃以上約350℃以下で空気中にて不融化させる熱処理を行い、その後、Arガス、Nガスなどによる不活性雰囲気中にて800℃以上1400℃以下の熱処理を行うことが好ましい。
The firing step is a step of firing the sample (sheet) after the drying step. The firing process can be performed using, for example, an oven furnace, an infrared irradiation, an infrared irradiation furnace, a muffle furnace, a reed hammer furnace, or the like.
Here, the firing step may be a one-time heat treatment, but may also be a two-step heat treatment of infusibilization and firing. The heat treatment temperature for firing is preferably 800 ° C. or higher and 1400 ° C. or lower, and the atmosphere at that time is preferably an inert atmosphere with argon (Ar) gas, nitrogen (N 2 ) gas or the like.
For example, when PAN is used as the binder polymer, it is heat-treated to be infusible in air at about 200 ° C. or higher and about 350 ° C. or lower, and then in an inert atmosphere with Ar gas, N2 gas, or the like. It is preferable to perform heat treatment at 800 ° C. or higher and 1400 ° C. or lower.

以上の工程により、自立性を有するのに十分で実用的な機械的強度を有する正極102(空気極)が製造される。この正極102(空気極)は、自立性を有するとともに、高い空気透過性、高いイオン輸送効率及び広い反応場を兼ね備える。ここで、自立性を有するとは、支持体を用いなくとも自立した膜としての形状を保つことができることをいう。 By the above steps, a positive electrode 102 (air electrode) having sufficient and practical mechanical strength to have independence is manufactured. The positive electrode 102 (air electrode) has self-sustaining property, high air permeability, high ion transport efficiency, and a wide reaction field. Here, having self-sustaining means that the shape of a self-supporting film can be maintained without using a support.

こうして得られた正極102(空気極)は、窒素吸着法による直径1nm以上1μm以下の細孔の占める細孔容積が2.3cm/g(2300μL/g)から4cm/g(4000μL/g)の範囲にあり、水銀圧入法による直径0.2μm以上10μm以下の細孔の占める細孔容積が0.8cm/g(800μL/g)から2.7cm/g(2700μL/g)の範囲にあるようにすることができる。なお、細孔容積は次記の方法で測定することができる。
1)直径1nm以上、1μm以下の細孔の占める細孔容積
3Flex(Micromeritics Instrument Corp.製)を用いて窒素吸着法により得られた吸着等温線からBJH法を用いて求めることができる。
2)直径0.2μm以上、10μm以下の細孔の占める細孔容積
AutoPoreIV(Micromeritics Instrument Corp.製)を用いた水銀圧入法により求めることができる。例えば、細孔径10nm(0.01μm)~200μmの範囲の細孔容積を測定し、そのうちの細孔直径0.2μmから10μmの細孔容積の値を用いればよい。
The positive electrode 102 (air electrode) thus obtained has a pore volume of 2.3 cm 3 / g (2300 μL / g) to 4 cm 3 / g (4000 μL / g) occupied by pores having a diameter of 1 nm or more and 1 μm or less by the nitrogen adsorption method. ), And the pore volume occupied by pores with a diameter of 0.2 μm or more and 10 μm or less by the mercury intrusion method ranges from 0.8 cm 3 / g (800 μL / g) to 2.7 cm 3 / g (2700 μL / g). Can be in range. The pore volume can be measured by the following method.
1) Pore volume occupied by pores with a diameter of 1 nm or more and 1 μm or less
It can be obtained by the BJH method from the adsorption isotherm obtained by the nitrogen adsorption method using 3Flex (manufactured by Micromeritics Instrument Corp.).
2) Pore volume occupied by pores with a diameter of 0.2 μm or more and 10 μm or less
It can be obtained by a mercury intrusion method using AutoPore IV (manufactured by Micromeritics Instrument Corp.). For example, the pore volume in the range of the pore diameter of 10 nm (0.01 μm) to 200 μm may be measured, and the value of the pore volume of the pore diameter of 0.2 μm to 10 μm may be used.

負極104
負極104は、電池の負極として通常用いられるものであればよい。例えば、リチウム空気電池の場合、負極としては、リチウムイオンを吸放出する金属もしくは合金を含有することができ、代表的にはリチウム金属を挙げることができる。
Negative electrode 104
The negative electrode 104 may be any as long as it is usually used as the negative electrode of the battery. For example, in the case of a lithium-air battery, the negative electrode may contain a metal or alloy that absorbs and releases lithium ions, and a typical example is lithium metal.

セパレータ103
正極(空気極)102と負極104の間にはセパレータ103が配置される。セパレータ103としては、金属イオンが通過可能であり、多孔質構造の絶縁性材料で、かつ、正極(空気極)102、負極104、及び電解液との反応性を有さない任意の無機材料又は有機材料が適用される。また、セパレータ103は電解液を保液する役割も果たす。この条件を満たせば、特に制限はなく、既存の金属電池に使用されるセパレータを使用することができる。例えば、セパレータ103は、ポリエチレン、ポリプロピレン、ポリオレフィンなどの合成樹脂からなる多孔質膜、ガラス繊維及び不織布からなる群から選択される。
Separator 103
A separator 103 is arranged between the positive electrode (air electrode) 102 and the negative electrode 104. The separator 103 is an insulating material having a porous structure through which metal ions can pass, and any inorganic material having no reactivity with the positive electrode (air electrode) 102, the negative electrode 104, and the electrolytic solution. Organic materials are applied. The separator 103 also serves to retain the electrolytic solution. If this condition is satisfied, there is no particular limitation, and a separator used in an existing metal battery can be used. For example, the separator 103 is selected from the group consisting of porous membranes made of synthetic resins such as polyethylene, polypropylene and polyolefin, glass fibers and non-woven fabrics.

セパレータ103は、正極活物質と負極活物質との間の短絡を防ぐため、各活物質層よりも大きなサイズにすることが好ましい。 The separator 103 is preferably made larger than each active material layer in order to prevent a short circuit between the positive electrode active material and the negative electrode active material.

電解液
電解液に関しては、上述のとおりである。
Electrolyte The electrolytic solution is as described above.

注液方法
正極への電解液の注液は、上述のとおり、電解液を含む部材(電解液転写用部材)を接触させ、それにより当該電解液を当該正極へ転写することにより行う。図2に基づいて、本発明の一実施態様における、電解液を空気極に転写により注液する構造を以下に説明する。但し、当該構造は以下に制限されない。
電解液を含む部材(電解液転写用部材)105は、あらかじめ所定量の非水系電解液を公知のマイクロピペットやディスペンサー等の手段によりPTFE(ポリテトラフルオロエチレン)製の部材に滴下することによって作製する。作製した、所定量の非水電解液を保持する電解液転写用部材105は、図2に記載されているように、正極(空気極)102を両面から挟み込んで電解液転写用部材105に保持されている非水電解液を正極(空気極)102に転写する。この転写により、電解液転写用部材105に保持されている非水電解液を正極(空気極)102に注液する。電解液転写用部材105への非水電解液の滴下量は、所望の注液量に相当する液量とすればよく、この液量は、予め電解液転写用部材105の滴下量とその転写により正極(空気極)102へ注液された注液量の校正曲線を作成しておくことにより決定することができる。
図2では、電解液転写用部材105を上下面から挟み込む構造になっているが、均一に所定量の非水電解液が正極(空気極)102に転写されればよく、例えば、電解液転写用部材105を1枚だけ使用し、片面から非水電解液を正極(空気極)102に転写してもよい。
電解液転写用部材105の大きさは、正極(空気極)102の大きさ以上とする。
電解液転写用部材105から正極(空気極)102への非水電解液の転写は、本実施態様では室温、大気圧下で行った。しかし、所望の注液量を均一に注液できれば、室温、大気圧下以外の条件でもよい。例えば、転写時の環境温度を高めてもよい。特に粘度の高い電解液の場合は環境温度を高めることで、電解液の粘度が低減するため、より均一な注液が期待できる。また、図2の電解液転写用部材105から正極(空気極)102への非水電解液の転写は大気圧下でもよいが、転写時の環境圧力を減圧下にしてもよい。但し、校正曲線を作成するときの転写注液条件と実際に転写注液するときの転写注液条件は揃えておく必要がある。
Injection method The injection of the electrolytic solution into the positive electrode is performed by bringing the member containing the electrolytic solution (member for transferring the electrolytic solution) into contact with the member (member for transferring the electrolytic solution) and thereby transferring the electrolytic solution to the positive electrode. Based on FIG. 2, a structure for injecting an electrolytic solution into an air electrode by transfer in one embodiment of the present invention will be described below. However, the structure is not limited to the following.
The member containing the electrolytic solution (member for transferring the electrolytic solution) 105 is manufactured by dropping a predetermined amount of a non-aqueous electrolytic solution onto a member made of PTFE (polytetrafluoroethylene) by means such as a known micropipette or a dispenser. do. As shown in FIG. 2, the prepared electrolytic solution transfer member 105 for holding a predetermined amount of non-aqueous electrolytic solution is held in the electrolytic solution transfer member 105 by sandwiching the positive electrode (air electrode) 102 from both sides. The non-aqueous electrolytic solution is transferred to the positive electrode (air electrode) 102. By this transfer, the non-aqueous electrolytic solution held in the electrolytic solution transfer member 105 is injected into the positive electrode (air electrode) 102. The amount of the non-aqueous electrolytic solution dropped onto the electrolytic solution transfer member 105 may be a liquid amount corresponding to a desired injection amount, and this liquid amount is the amount of the electrolytic solution transfer member 105 dropped and its transfer in advance. It can be determined by creating a calibration curve of the amount of liquid injected into the positive electrode (air electrode) 102.
In FIG. 2, the structure is such that the electrolytic solution transfer member 105 is sandwiched from the upper and lower surfaces, but a predetermined amount of non-aqueous electrolytic solution may be uniformly transferred to the positive electrode (air electrode) 102, for example, electrolytic solution transfer. Only one member 105 may be used, and the non-aqueous electrolytic solution may be transferred from one side to the positive electrode (air electrode) 102.
The size of the electrolytic solution transfer member 105 is equal to or larger than the size of the positive electrode (air electrode) 102.
In this embodiment, the transfer of the non-aqueous electrolytic solution from the electrolytic solution transfer member 105 to the positive electrode (air electrode) 102 was performed at room temperature and atmospheric pressure. However, conditions other than room temperature and atmospheric pressure may be used as long as the desired amount of liquid can be injected uniformly. For example, the environmental temperature at the time of transfer may be increased. Especially in the case of a highly viscous electrolytic solution, raising the environmental temperature reduces the viscosity of the electrolytic solution, so that more uniform injection can be expected. Further, the transfer of the non-aqueous electrolytic solution from the electrolytic solution transfer member 105 in FIG. 2 to the positive electrode (air electrode) 102 may be performed under atmospheric pressure, but the environmental pressure during transfer may be reduced. However, it is necessary to match the transfer injection conditions when creating the calibration curve and the transfer injection conditions when actually injecting the transfer.

正極の前処理(気相吸着)
前記注液方法の前に、正極の前処理を行ってもよい。正極の前処理方法を以下に具体的に説明する。但し、当該方法は以下に制限されない。
真空チャンバー内に、正極、電解液溶媒をセットし、真空ポンプにてチャンバー内を減圧する。次いでチャンバー内を加熱して一定時間保持した大気圧に戻して正極を取り出す。この時気相吸着前後の正極重量を測定し、正極への電解液溶媒の吸着量を算出する。
Pretreatment of positive electrode (gas phase adsorption)
The positive electrode may be pretreated before the liquid injection method. The method of pretreating the positive electrode will be specifically described below. However, the method is not limited to the following.
A positive electrode and an electrolytic solution solvent are set in the vacuum chamber, and the inside of the chamber is depressurized by a vacuum pump. Next, the inside of the chamber is heated and returned to the atmospheric pressure held for a certain period of time, and the positive electrode is taken out. At this time, the weight of the positive electrode before and after the vapor phase adsorption is measured, and the amount of the electrolyte solvent adsorbed on the positive electrode is calculated.

この方法での上記減圧時のチャンバー内真空度の上限は10Pa以下であり、好ましくは5Pa以下、さらに好ましくは2Pa以下である。真空度が10Pa以下であることで正極細孔内の空気の残存が減少し、正極の細孔内に溶媒が拡散され易くなる。真空度の下限は、特に定めないが、好ましくは0.1Pa以上、さらに好ましくは1Pa以上である。真空度が0.1Pa以上であることで、溶媒の揮散が多くまた直ぐに排気されてしまうことを防ぐことができる。 The upper limit of the degree of vacuum in the chamber at the time of depressurization by this method is 10 Pa or less, preferably 5 Pa or less, and more preferably 2 Pa or less. When the degree of vacuum is 10 Pa or less, the residual air in the positive electrode pores is reduced, and the solvent is easily diffused in the positive electrode pores. The lower limit of the degree of vacuum is not particularly determined, but is preferably 0.1 Pa or more, and more preferably 1 Pa or more. When the degree of vacuum is 0.1 Pa or more, it is possible to prevent a large amount of solvent volatilization and immediate exhaust.

この方法での加熱温度の上限は100℃以下、好ましくは80℃以下、さらに好ましくは75℃以下である。加熱温度の上限を100℃以下とすることで、メソ孔において前記溶媒の毛管凝縮が生じることを防ぐことができる。加熱温度の下限は40℃以上、好ましくは50℃以上、さらに好ましくは60℃以上である。加熱温度の下限を40℃以上とすることで、前記溶媒の蒸気圧が高く、正極の細孔内を十分に湿潤することができる。その結果、次のステップである電解液の転写注液による均一な注液も効果的に行うことができる。 The upper limit of the heating temperature in this method is 100 ° C. or lower, preferably 80 ° C. or lower, and more preferably 75 ° C. or lower. By setting the upper limit of the heating temperature to 100 ° C. or lower, it is possible to prevent capillary condensation of the solvent in the mesopores. The lower limit of the heating temperature is 40 ° C. or higher, preferably 50 ° C. or higher, and more preferably 60 ° C. or higher. By setting the lower limit of the heating temperature to 40 ° C. or higher, the vapor pressure of the solvent is high, and the inside of the pores of the positive electrode can be sufficiently moistened. As a result, uniform injection by transfer injection of the electrolytic solution, which is the next step, can be effectively performed.

加熱保持する時間の下限は10分以上、好ましくは20分以上、更に好ましくは25分以上である。加熱保持する時間が10分以上であることで、気化した溶媒の正極空孔内への拡散浸透、特に深部細孔への拡散浸透を十分に行うことができる。加熱保持する時間の上限は120分以下、好ましくは60分以下、更に好ましくは40分以下である。加熱保持する時間が120分以下であることで、正極のメソ孔において前記溶媒の毛管凝縮が生じて、細孔内壁を湿潤する以上の溶媒量となり細孔を閉塞させてしまうことを防ぐことができる。 The lower limit of the heating and holding time is 10 minutes or more, preferably 20 minutes or more, and more preferably 25 minutes or more. When the heating and holding time is 10 minutes or more, the vaporized solvent can be sufficiently diffused and permeated into the positive electrode pores, particularly deep pores. The upper limit of the heating and holding time is 120 minutes or less, preferably 60 minutes or less, and more preferably 40 minutes or less. When the heating and holding time is 120 minutes or less, it is possible to prevent the solvent from condensing the capillaries in the mesopores of the positive electrode, resulting in an amount of solvent larger than that for wetting the inner wall of the pores and closing the pores. can.

溶媒吸着量の上限は3μL/cm以下、好ましくは2μL/cm以下、さらに好ましくは1.5μL/cm以下である。溶媒吸着量が3μL/cm以下であることで、細孔を閉塞させることを防ぐことができる。溶媒吸着量の下限は0.5μL/cm以上、好ましくは0.9μL/cm以上、さらに好ましくは1.1μL/cm以上である。溶媒吸着量が0.5μL/cm以上であることで、正極の細孔内を十分に湿潤させることができる。その結果、次のステップである電解液の転写注液による均一な注液も効果的に行うことができる。 The upper limit of the solvent adsorption amount is 3 μL / cm 2 or less, preferably 2 μL / cm 2 or less, and more preferably 1.5 μL / cm 2 or less. When the amount of solvent adsorbed is 3 μL / cm 2 or less, it is possible to prevent the pores from being clogged. The lower limit of the solvent adsorption amount is 0.5 μL / cm 2 or more, preferably 0.9 μL / cm 2 or more, and more preferably 1.1 μL / cm 2 or more. When the amount of solvent adsorbed is 0.5 μL / cm 2 or more, the inside of the pores of the positive electrode can be sufficiently moistened. As a result, uniform injection by transfer injection of the electrolytic solution, which is the next step, can be effectively performed.

空気電池の製造
空気電池100は、例えば、負極104の上にセパレータ103を積層し、その上に本発明の注液方法で注液された正極(空気極)102を積層し、さらに酸素流路層101を積層することにより製造される。
Manufacture of an air battery In an air battery 100, for example, a separator 103 is laminated on a negative electrode 104, a positive electrode (air electrode) 102 injected by the liquid injection method of the present invention is laminated on the separator 103, and an oxygen flow path is further formed. Manufactured by laminating layers 101.

別の方法として、前記負極104の上にセパレータ103を積層し、セパレータ上に所定量の電解液を任意の方法で滴下した後、注液されていない正極(空気極)102をセパレータ103上へ積層する。負極104、セパレータ103、正極(空気極)102と積層してから当該正極上に前記注液方法を適用してもよい。その後、注液済みの正極(空気極)102の上に酸素流路層101を積層することにより、空気電池100を製造してもよい。 As another method, the separator 103 is laminated on the negative electrode 104, a predetermined amount of electrolytic solution is dropped onto the separator by an arbitrary method, and then the uninjected positive electrode (air electrode) 102 is placed on the separator 103. Stack. The liquid injection method may be applied onto the positive electrode after laminating the negative electrode 104, the separator 103, and the positive electrode (air electrode) 102. After that, the air battery 100 may be manufactured by laminating the oxygen flow path layer 101 on the positive electrode (air electrode) 102 that has been injected with liquid.

上記空気電池の製造方法について、リチウム空気電池を例に挙げて、以下により具体的に述べるが、その製造方法は以下に制限されない。
負極104として、例えば、20mm×20mmの矩形にリチウム金属を切り出して準備する。前記負極104の上に24mm×24mmのセパレータ103を積層する。セパレータ上に所定量の電解液を注液する。セパレータへの注液は任意の注液方法を用いることができる。
負極104、セパレータ103の順に積層してから、当該セパレータ103の上に、上述の転写による注液方法にしたがって予め非水電解液を注液した正極(空気極)102を積層し、さらに酸素流路層101を積層することでリチウム空気電池の積層体を得る。
別の方法として、前記負極104の上にセパレータ103を積層し、セパレータ103上に所定量の電解液を任意の方法で滴下した後、未だ注液されていない正極(空気極)102をセパレータ103上へ積層する。電解液転写用部材105に所定量の電解液を含有させ、負極104、セパレータ103、正極(空気極)102と順に積層されている積層体の正極(空気極)102の上に、電解液を含む電解液転写用部材105を接触させることにより、当該電解液を正極(空気極)102へ転写してもよい。その後、注液済みの正極(空気極)102の上に酸素流路層101を積層することにより、リチウム空気電池100を製造してもよい。
The method for manufacturing the above-mentioned air battery will be described in more detail below by taking a lithium-air battery as an example, but the manufacturing method is not limited to the following.
As the negative electrode 104, for example, a lithium metal is cut out into a rectangle of 20 mm × 20 mm and prepared. A 24 mm × 24 mm separator 103 is laminated on the negative electrode 104. A predetermined amount of electrolytic solution is poured onto the separator. Any method of injecting liquid into the separator can be used.
After laminating the negative electrode 104 and the separator 103 in this order, the positive electrode (air electrode) 102 to which the non-aqueous electrolytic solution has been injected in advance according to the above-mentioned transfer injection method is laminated on the separator 103, and further oxygen flow. By stacking the road layers 101, a laminated body of a lithium-air battery is obtained.
As another method, the separator 103 is laminated on the negative electrode 104, a predetermined amount of the electrolytic solution is dropped onto the separator 103 by an arbitrary method, and then the positive electrode (air electrode) 102 which has not been injected yet is used as the separator 103. Stack on top. A predetermined amount of electrolytic solution is contained in the electrolytic solution transfer member 105, and the electrolytic solution is placed on the positive electrode (air electrode) 102 of the laminate in which the negative electrode 104, the separator 103, and the positive electrode (air electrode) 102 are laminated in this order. The electrolytic solution may be transferred to the positive electrode (air electrode) 102 by contacting the containing electrolytic solution transfer member 105. After that, the lithium-air battery 100 may be manufactured by laminating the oxygen flow path layer 101 on the positive electrode (air electrode) 102 that has been injected with liquid.

以下、本発明を具体的に説明する。なお、本発明はいかなる意味においても、以下の実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described. The present invention is not limited to the following examples in any sense.

評価実験1
正極への電解液注液による、注液の均一性を評価するため、以下の実験を行った。
Evaluation experiment 1
The following experiments were conducted to evaluate the uniformity of the injection of the electrolytic solution to the positive electrode.

正極の作製
最初に、多孔質炭素粒子68重量%、炭素繊維9重量%、結着用高分子材料23重量%及びそれらを均一に分散するN-メチルピロリドンからなる溶媒を用いて合剤スラリーを調製した。
ここで、多孔質炭素粒子としてはケッチェンブラック(登録商標)を68重量%含むカーボンブラックを用いた。炭素繊維としては繊維平均径5μm、平均長さ3mmの炭素繊維を用いた。結着用高分子材料としてはポリアクリロニトリル(PAN)を用いた。
合剤はドクターブレードを用いた湿式製膜法にて均一な厚みに成型してシート化した。成形後、メタノール(貧溶媒)中に浸漬して、非溶媒誘起相分離法にて、多孔質炭素粒子及び炭素繊維間にポリアクリロニトリル(PAN)を析出させることで、成型試料を多孔質膜化した。
次に、シート状試料から揮発性の溶媒を取り除く50~80℃で10時間以上の乾燥工程を行い、引き続き大気中にて280℃で3時間の不融化熱処理を行った。その後、真空置換後の窒素ガス雰囲気下の焼成炉中にて1050℃で3時間の焼成を行い、長さ140mm、幅100mm、高さ200μmの多孔質構造の炭素試料を作製した。
この多孔質構造の炭素試料から20mm×20mmの形状に切り出すことで、正極を得た。
得られた正極の空孔率は90%であった。この正極の空孔率は、多孔炭素構造体試料の重量測定(メトラー・トレド社製分析天秤 XS205)により嵩密度を算出し、炭素の真密度(2.1g/cm)と比較することで空孔率を算出した。
また、得られた正極のうち1つを、電解液1mlを入れた直径40mmのシャーレに浸漬し、15分間真空含浸後、表面に残る電解液をキムタオルでふきとった後の正極重量の増加量は16.1mg/cmであった。使用した電解液の比重(1.12)から充填最大量(電解液充填量が100%となる容積)を算出した。算出された充填最大量は18.0μL/cmであった。
Preparation of positive electrode First, a mixture slurry was prepared using a solvent consisting of 68% by weight of porous carbon particles, 9% by weight of carbon fibers, 23% by weight of a polymer material to be attached, and N-methylpyrrolidone that uniformly disperses them. did.
Here, as the porous carbon particles, carbon black containing 68% by weight of Ketjen Black (registered trademark) was used. As the carbon fiber, a carbon fiber having an average fiber diameter of 5 μm and an average length of 3 mm was used. Polyacrylonitrile (PAN) was used as the polymer material to be attached.
The mixture was formed into a sheet by molding it into a uniform thickness by a wet film forming method using a doctor blade. After molding, the molded sample is formed into a porous film by immersing it in methanol (poor solvent) and precipitating polyacrylonitrile (PAN) between the porous carbon particles and carbon fibers by a non-solvent-induced phase separation method. did.
Next, a drying step of removing the volatile solvent from the sheet-shaped sample at 50 to 80 ° C. for 10 hours or more was performed, followed by an infusible heat treatment at 280 ° C. for 3 hours in the air. Then, the carbon sample having a porous structure having a length of 140 mm, a width of 100 mm, and a height of 200 μm was prepared by firing at 1050 ° C. for 3 hours in a firing furnace under a nitrogen gas atmosphere after vacuum replacement.
A positive electrode was obtained by cutting out a carbon sample having a porous structure into a shape of 20 mm × 20 mm.
The porosity of the obtained positive electrode was 90%. The porosity of this positive electrode is calculated by calculating the bulk density by weight measurement of a porous carbon structure sample (analytical balance XS205 manufactured by METTLER TOLEDO) and comparing it with the true density of carbon (2.1 g / cm 3 ). The porosity was calculated.
Further, the amount of increase in the weight of the positive electrode after immersing one of the obtained positive electrodes in a petri dish having a diameter of 40 mm containing 1 ml of an electrolytic solution, impregnating with a vacuum for 15 minutes, and wiping the electrolytic solution remaining on the surface with a Kim towel is the amount. It was 16.1 mg / cm 2 . The maximum filling amount (volume at which the filling amount of the electrolytic solution is 100%) was calculated from the specific gravity (1.12) of the electrolytic solution used. The calculated maximum filling amount was 18.0 μL / cm 2 .

非水電解液の溶媒
非水電解液の溶媒として、テトラグライム(TEGDME)(比重1.01、沸点275℃)を用いた。
Solvent of non -aqueous electrolyte solution As the solvent of the non-aqueous electrolyte solution, tetraglyme (TEGDME) (specific gravity 1.01, boiling point 275 ° C.) was used.

非水電解液の調製
非水電解液は、0.5mol/LのLi(CFSON(LiTFSI)、0.5mol/LのLiNO及び0.2mol/LのLiBrの3種類の電解質を、テトラグライム(TEGDME)溶媒に溶解することで得た。この非水電解液の比重は、1.12であった。
Preparation of non- aqueous electrolyte solution There are three types of non-aqueous electrolyte solution: 0.5 mol / L Li (CF 3 SO 2 ) 2 N (LiTFSI), 0.5 mol / L LiNO 3 and 0.2 mol / L LiBr. The electrolyte was obtained by dissolving it in a tetraglime (TEGDME) solvent. The specific gravity of this non-aqueous electrolyte solution was 1.12.

電解液を含む部材(電解液転写用部材)の作製
本実施例では、電解液を含む部材(電解液転写用部材)としてPTFEタイプメンブレンフィルター(Advantec東洋株式会社製、直径90mm、穴径1μm)を22mm角に打ち抜いて使用した。
Preparation of a member containing an electrolytic solution (member for transferring an electrolytic solution) In this embodiment, a PTFE type membrane filter (manufactured by Advancedc Toyo Co., Ltd., diameter 90 mm, hole diameter 1 μm) is used as a member containing an electrolytic solution (member for transferring an electrolytic solution). Was punched into a 22 mm square and used.

実施例1
本実施例では正極の空孔量に対し、60%の注液量とした。この注液量は正極1cm当たり10.8μLに相当し、上記20mm角の正極を用いたので正極全体での注液量は43.2μLとなる。
1つの正極に対し、電解液を含む部材(電解液転写用部材)を2つ準備し、各電解液転写用部材に対し、前記電解液を5.4μL/cm(電解液転写用部材1つあたり26.2μL)となるようそれぞれマイクロピペットで測り取り、電解液転写用部材にそれぞれ滴下した。
電解液の転写条件は校正曲線を作成した時と同様の条件(室温、大気圧下で3分間の転写)とし、図2のようにして静置した。その後、電解液転写用部材を取り外し、注液された正極の重量を測定することで、目的とする値の電解液量が3%以内の誤差内で注液されていることを確認した。
Example 1
In this example, the amount of liquid injected was 60% of the amount of pores in the positive electrode. This liquid injection amount corresponds to 10.8 μL per 1 cm 2 of the positive electrode, and since the 20 mm square positive electrode is used, the liquid injection amount of the entire positive electrode is 43.2 μL.
Two members (electrolyte solution transfer members) containing an electrolytic solution are prepared for one positive electrode, and the electrolytic solution is 5.4 μL / cm 2 (electrolyte solution transfer member 1) for each electrolytic solution transfer member. Each was measured with a micropipette so as to be 26.2 μL per unit, and dropped onto the electrolyte transfer member.
The transfer conditions of the electrolytic solution were the same as when the calibration curve was prepared (transfer at room temperature and atmospheric pressure for 3 minutes), and the mixture was allowed to stand as shown in FIG. After that, the electrolytic solution transfer member was removed, and the weight of the injected positive electrode was measured to confirm that the amount of the electrolytic solution at the target value was injected within an error of 3% or less.

比較例1
本比較例では実施例1と同様の正極と電解液を使用し、エッペンドルフ社製マイクロピペット(品番; 4920000.059)を用いて10.8μL/cmの電解液量(すなわち20mm角の正極に対して43.2μLの電解液量)を正極上へ滴下し、室温・大気圧下で3分間静置した。
Comparative Example 1
In this comparative example, the same positive electrode and electrolytic solution as in Example 1 are used, and an Eppendorf micropipette (product number; 4920000.059) is used to obtain an electrolytic solution amount of 10.8 μL / cm 2 (that is, a 20 mm square positive electrode). A 43.2 μL electrolyte solution) was added dropwise onto the positive electrode, and the mixture was allowed to stand at room temperature and atmospheric pressure for 3 minutes.

均一性の評価
上記の各方法で注液された電解液の正極における均一性評価は、μXRF(ブルカーAXS社製μXRF M4 TORNADO plus)を用いて行った。電解液中に電解質として加えられたLiBrの臭素Kα線を、次の条件で正極のマッピングを行った。管球にはRhを使用し、管電圧:50kV、管電流:200uA、1ピクセル当たりの測定速度を12msec/pixel、サンプルステージの速度を6.3mm/secとした。20mm×20mmの正極のうち、3mm間隔で6本のライン分析を行い、Br(Kα)の蛍光X線の測定を行った。測定した1440箇所の臭素Kα線のデータの平均値と標準偏差を算出し、当該標準偏差を当該平均値で割ることによって変動係数を算出した。
Evaluation of Homogeneity Evaluation of uniformity in the positive electrode of the electrolytic solution injected by each of the above methods was performed using μXRF (μXRF M4 TORNADO plus manufactured by Bruker AXS). The bromine Kα ray of LiBr added as an electrolyte in the electrolytic solution was mapped to the positive electrode under the following conditions. Rh was used for the tube, the tube voltage was 50 kV, the tube current was 200 uA, the measurement speed per pixel was 12 msec / pixel, and the speed of the sample stage was 6.3 mm / sec. Of the 20 mm × 20 mm positive electrodes, 6 line analyzes were performed at 3 mm intervals, and Br (Kα) fluorescent X-rays were measured. The mean value and standard deviation of the measured 1440 bromine Kα ray data were calculated, and the coefficient of variation was calculated by dividing the standard deviation by the mean value.

図3に、実施例1と比較例1の注液後の臭素Kα線のマッピングデータを示す。
実施例1と比較例1を比較すると、マイクロピペットで電解液を滴下した比較例1では、臭素の濃度斑がはっきりと見られ、注液斑が存在することが確認されるのに対し、本発明の電解液の転写による実施例1では、臭素の濃度斑は見られず、注液斑が存在することなく均一に注液されていることが確認された。
FIG. 3 shows mapping data of bromine Kα rays after injection of Example 1 and Comparative Example 1.
Comparing Example 1 and Comparative Example 1, in Comparative Example 1 in which the electrolytic solution was dropped with a micropipette, bromine concentration spots were clearly seen, and it was confirmed that liquid injection spots were present. In Example 1 by transfer of the electrolytic solution of the present invention, no bromine concentration spots were observed, and it was confirmed that the liquid was uniformly injected without the presence of liquid injection spots.

表1には、実施例1と比較例1のそれぞれについて、1440箇所の臭素Kα線の測定値の平均値と標準偏差、並びにそれらより算出された変動係数を示した。比較例1と実施例1を比較すると、実施例1の変動係数は、比較例1の変動係数よりも減少しており、注液斑が確認される比較例1の変動係数は0.2よりも大きく、注液斑の無い均一な注液が確認される実施例1の変動係数は0.2よりも小さいことが分かった。
よって、本注液方法を適用することにより、多孔質構造の正極における電解液の均一性が改善でき、多孔質構造の正極に対して電解液を、従来の注液法によれば注液斑が生じてしまう液量でも均一に注液できることが確認された。
Table 1 shows the mean value and standard deviation of the measured values of the bromine Kα rays at 1440 points for each of Example 1 and Comparative Example 1, and the coefficient of variation calculated from them. Comparing Comparative Example 1 and Example 1, the coefficient of variation of Example 1 is smaller than that of Comparative Example 1, and the coefficient of variation of Comparative Example 1 in which injection spots are confirmed is 0.2. It was also found that the coefficient of variation of Example 1 in which uniform injection without liquid injection spots was confirmed was smaller than 0.2.
Therefore, by applying this injection method, the uniformity of the electrolytic solution in the positive electrode of the porous structure can be improved, and the electrolytic solution is applied to the positive electrode of the porous structure, and the injection spots according to the conventional injection method. It was confirmed that the liquid can be injected uniformly even with the amount of liquid that causes the above.

Figure 2022101497000001
Figure 2022101497000001

評価実験2
正極の内部細孔への電解液による注液及び空気電池のサイクル性能を評価するため、以下の実験を行った。注液前の正極の作製方法、非水電解液の溶媒及び非水電解液の調製方法、並びに電解液を含む部材(電解液転写用部材)の作製方法は、評価実験1と同様に行った。
Evaluation experiment 2
The following experiments were conducted to evaluate the cycle performance of the air battery and the injection of the electrolytic solution into the internal pores of the positive electrode. The method for preparing the positive electrode before injecting the solution, the method for preparing the solvent for the non-aqueous electrolytic solution and the non-aqueous electrolytic solution, and the method for producing the member containing the electrolytic solution (member for transferring the electrolytic solution) were carried out in the same manner as in Evaluation Experiment 1. ..

実施例2
本実施例では充填最大量(電解液充填量が100%となる容積)に対し、60%の注液量とした。この注液量は正極1cm当たり10.8μLに相当し、上記20mm角の正極を用いたので正極全体での注液量は43.2μLとなる。
工程1:真空チャンバー内に、前記方法で作製した正極1枚及び、前記テトラグライム(TEGDME)溶媒0.2mLを入れたシャーレ(φ30mm深さ10mm)を置き、直結型油回転真空ポンプにてチャンバー内を1.3Paまで減圧した。次に、チャンバー内を70℃まで加熱し、30分間保持した後チャンバー内を大気に戻して正極を取り出した。気相吸着前後の正極重量を測定した結果、この時の正極への電解液溶媒の吸着量は1.3mg/cmであり、電解液溶媒の比重から計算した吸着容量は1.3μL/cmであった。
工程2:1つの前記正極に対し、電解液を含む部材(電解液転写用部材)を2つ準備し、各電解液転写用部材に対し、前記電解液を5.4μL/cm(電解液転写用部材1つあたり26.2μL)となるようそれぞれマイクロピペットで測り取り、電解液転写用部材にそれぞれ滴下した。
電解液の転写条件は校正曲線を作成した時と同様の条件(室温、大気圧下で3分間の転写)とし、図2のようにして静置した。その後、電解液転写用部材を取り外し、注液された正極の重量を測定することで、目的とする値の電解液量が3%以内の誤差内で注液されていることを確認した。
Example 2
In this example, the injection amount was set to 60% with respect to the maximum filling amount (volume at which the electrolytic solution filling amount is 100%). This liquid injection amount corresponds to 10.8 μL per 1 cm 2 of the positive electrode, and since the 20 mm square positive electrode is used, the liquid injection amount of the entire positive electrode is 43.2 μL.
Step 1: In the vacuum chamber, place one positive electrode prepared by the above method and a chalet (φ30 mm, depth 10 mm) containing 0.2 mL of the tetraglyme (TEGDME) solvent, and use a direct-coupled oil rotary vacuum pump to perform the chamber. The inside was reduced to 1.3 Pa. Next, the inside of the chamber was heated to 70 ° C., held for 30 minutes, and then the inside of the chamber was returned to the atmosphere to take out the positive electrode. As a result of measuring the positive electrode weight before and after gas phase adsorption, the amount of the electrolytic solution solvent adsorbed on the positive electrode at this time was 1.3 mg / cm 2 , and the adsorption capacity calculated from the specific gravity of the electrolytic solution solvent was 1.3 μL / cm. It was 2 .
Step 2: Two members (electrolyte solution transfer members) containing an electrolytic solution are prepared for one positive electrode, and the electrolytic solution is 5.4 μL / cm 2 (electrolyte solution) for each electrolytic solution transfer member. Each transfer member was measured with a micropipette so as to have a volume of 26.2 μL), and the mixture was dropped onto the electrolyte transfer member.
The transfer conditions of the electrolytic solution were the same as when the calibration curve was prepared (transfer at room temperature and atmospheric pressure for 3 minutes), and the mixture was allowed to stand as shown in FIG. After that, the electrolytic solution transfer member was removed, and the weight of the injected positive electrode was measured to confirm that the amount of the electrolytic solution at the target value was injected within an error of 3% or less.

実施例1’
本比較例では、工程1を行わず、それ以外は実施例2と同様にして、正極を得た。
Example 1'
In this comparative example, a positive electrode was obtained in the same manner as in Example 2 except that step 1 was not performed.

細孔注液評価
実施例2及び実施例1’で得られた正極に対して、以下の方法により細孔への注液評価を行った。
(1)注液後空気極の直径10nm以上100nm以下の細孔における細孔比表面積測定
3Flex(Micromeritics Instrument Corp.製)を用いて窒素吸着法により得られた吸着等温線からBJH(Barrett-Joyner-Hallenda)法を用いて求めた。
(2)注液後空気極の直径10nm以上100nm以下の細孔における細孔容積測定
3Flex(Micromeritics Instrument Corp.製)を用いて窒素吸着法により得られた吸着等温線からBJH(Barrett-Joyner-Hallenda)法を用いて求めた。
表2及び図4に細孔注液評価の結果を示した。
Pore injection evaluation The positive electrodes obtained in Example 2 and Example 1'were evaluated for injection into the pores by the following method.
(1) Measurement of specific surface area of pores in pores with a diameter of 10 nm or more and 100 nm or less after injection BJH (Barrett-Joiner) from the adsorption isotherm obtained by the nitrogen adsorption method using 3Flex (manufactured by Micrometrics Instrument Corp.). -It was determined using the Hallenda) method.
(2) Pore volume measurement in pores with a diameter of 10 nm or more and 100 nm or less after injection BJH (Barrett-Joiner-) from the adsorption isotherm obtained by the nitrogen adsorption method using 3Flex (manufactured by Micrometrics Instrument Corp.). It was determined using the Hallenda) method.
Table 2 and FIG. 4 show the results of pore injection evaluation.

表2及び図4から、実施例2も実施例1’も正極内部が電解液によって湿潤されているものの、電解液の転写による注液前に、電解液溶媒蒸気により気相吸着を行った実施例2では、正極内部の直径10nm以上100nm以下の細孔において、比表面積及び容積の値が小さくなる、すなわち、正極の内部細孔がより効果的に電解液により湿潤されていることが確認された。言うまでもなく、比較例1に示す従来の注液法では、本比較例で使用した少量の注液量において、このような正極内部の湿潤には及ばなかった。 From Table 2 and FIG. 4, although the inside of the positive electrode was moistened with the electrolytic solution in both Example 2 and Example 1', the vapor phase was adsorbed by the electrolytic solution solvent vapor before the injection by the transfer of the electrolytic solution. In Example 2, it was confirmed that the values of the specific surface area and the volume became smaller in the pores having a diameter of 10 nm or more and 100 nm or less inside the positive electrode, that is, the internal pores of the positive electrode were more effectively wetted with the electrolytic solution. rice field. Needless to say, in the conventional liquid injection method shown in Comparative Example 1, the small amount of liquid used in this Comparative Example did not reach the wetness inside the positive electrode.

電池評価
実施例2、実施例1’、及び比較例1の20mm角の正極、20mm角厚み100μmのLi金属箔、セパレータとして東レ社TR-7を22mm角に切り出したもの、酸素流路として東レ社GDLを用いて、図1に示す様に積層し各実施例又は比較例ごとに空気電池を作成した。この電池を用いて、まずコンディショニングとして電流密度0.2mA/cmで2時間放電、2時間充電を3回繰り返した。その後、サイクル特性を評価として、電流密度0.4mA/cmで10時間放電(放電容量4mAh/cm)、10時間充電(充電容量4mAh/cm)を繰り返した。この時の放電制限電位は2.0V、充電制限電位は4.8Vとした。サイクル終了は、放電容量又は充電容量が3.2mAh/cm(80%)以下となった時点とし、この前までの充放電回数をサイクル数とした。サイクル数による電池評価の結果を表2に示しているが、実施例2で14回、実施例1’で3回のサイクル数に対し、比較例1を用いた空気電池では、本比較例1で使用した少量の注液量では、初回から放電反応が進行しない結果(サイクル数0回)であった。
Battery evaluation Example 2, Example 1', and Comparative Example 1 20 mm square positive electrode, 20 mm square Li metal leaf with a thickness of 100 μm, Toray TR-7 cut into 22 mm square as a separator, Toray as an oxygen flow path An air battery was prepared for each Example or Comparative Example by laminating as shown in FIG. 1 using the company GDL. Using this battery, first, as conditioning, discharging for 2 hours at a current density of 0.2 mA / cm 2 and charging for 2 hours were repeated 3 times. Then, as an evaluation of the cycle characteristics, 10-hour discharge (discharge capacity 4 mAh / cm 2 ) and 10-hour charging (charge capacity 4 mAh / cm 2 ) were repeated at a current density of 0.4 mA / cm 2 . At this time, the discharge limit potential was 2.0 V, and the charge limit potential was 4.8 V. The end of the cycle was defined as the time when the discharge capacity or the charge capacity became 3.2 mAh / cm 2 (80%) or less, and the number of charges and discharges up to this point was defined as the number of cycles. The results of battery evaluation based on the number of cycles are shown in Table 2. Compared to the number of cycles of 14 times in Example 2 and 3 times in Example 1', the air battery using Comparative Example 1 has this Comparative Example 1. The result was that the discharge reaction did not proceed from the first time (the number of cycles was 0) with the small amount of liquid injected in.

表2から実施例2及び実施例1’によれば、比較例1に示す従来の注液法では充放電が進まないような電解液量でも、空気電池として利用可能であり、特に電解液の転写による注液前に、電解液溶媒蒸気により気相吸着を行った実施例2によれば、極めて高いサイクル数を有する空気電池が作製できることが確認された。 According to Examples 2 and 1'from Table 2, even if the amount of the electrolytic solution is such that charging and discharging do not proceed by the conventional liquid injection method shown in Comparative Example 1, it can be used as an air battery, and in particular, the electrolytic solution. According to Example 2 in which the gas phase was adsorbed by the solvent vapor of the electrolytic solution before the injection by transfer, it was confirmed that an air battery having an extremely high number of cycles could be produced.

Figure 2022101497000002
Figure 2022101497000002

本発明によれば、従来の注入法では実現できなかった少ない液量(具体的には、正極の全空孔体積よりも少ない体積の液量で、従来の注液法によれば注液斑が生じてしまう液量)の電解液でも正極を均一に注液することが可能になるため、正極全体の一層の有効活用を促進させることができ、空気電池のエネルギー密度の向上や正極活物質である酸素の空気電池内での容易な拡散を図ることが可能になる。そのため、本発明は、小型・軽量で大容量化に適した空気電池への利用可能性があり、今後需要が大幅に拡大すると見込まれる空気電池に好んで用いられることが期待される。 According to the present invention, a small amount of liquid (specifically, a volume smaller than the total pore volume of the positive electrode, which cannot be realized by the conventional injection method, and a liquid injection spot according to the conventional injection method). Since it is possible to inject the positive electrode uniformly even with an electrolytic solution of a liquid amount that causes It becomes possible to easily diffuse the oxygen in the air battery. Therefore, the present invention has the potential to be used for an air battery that is compact, lightweight, and suitable for increasing the capacity, and is expected to be preferably used for an air battery whose demand is expected to increase significantly in the future.

100:空気電池
101:酸素流路層
102:正極
103:セパレータ
104:負極
105:電解液を含む部材(電解液転写用部材)
100: Air battery 101: Oxygen flow path layer 102: Positive electrode 103: Separator 104: Negative electrode 105: Member containing electrolytic solution (member for transferring electrolytic solution)

Claims (26)

多孔質構造の正極であって、電解液を含む部材との接触により転写された前記電解液を含む、前記正極。 The positive electrode having a porous structure and containing the electrolytic solution transferred by contact with a member containing the electrolytic solution. 前記電解液がリチウム塩を含み、前記リチウム塩の少なくとも一つの構成元素の蛍光X線測定による変動係数が0.2よりも低い、請求項1に記載の正極。 The positive electrode according to claim 1, wherein the electrolytic solution contains a lithium salt, and the coefficient of variation of at least one component of the lithium salt by fluorescent X-ray measurement is lower than 0.2. 前記リチウム塩が臭化リチウムであり、前記臭化リチウムを構成する臭素のKα線測定による変動係数が0.2よりも低い、請求項2に記載の正極。 The positive electrode according to claim 2, wherein the lithium salt is lithium bromide, and the coefficient of variation of bromine constituting the lithium bromide by Kα-ray measurement is lower than 0.2. 前記電解液によって、空孔率に基づき前記正極の空孔の50%以上100%未満が充填されている、請求項1から3のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 3, wherein 50% or more and less than 100% of the pores of the positive electrode are filled with the electrolytic solution based on the porosity. 前記部材がポリテトラフルオロエチレン(PTFE)製のメンブランフィルターである、請求項1から4のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 4, wherein the member is a membrane filter made of polytetrafluoroethylene (PTFE). 前記部材の電解液が滴下によって含有されている、請求項1から5のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 5, wherein the electrolytic solution of the member is contained by dropping. 前記多孔質構造の正極が、前記電解液を含む部材との接触前に、減圧加熱処理によって前記電解液の溶媒で湿潤された空孔を有する、請求項1から6のいずれか一項に記載の正極。 The invention according to any one of claims 1 to 6, wherein the positive electrode having a porous structure has pores moistened with a solvent of the electrolytic solution by a vacuum heat treatment before contact with the member containing the electrolytic solution. Positive electrode. 直径が10nm以上100nm以下の空孔における、転写後の細孔比表面積が10m/g以下である、請求項1から7のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 7, wherein the pore specific surface area after transfer is 10 m 2 / g or less in pores having a diameter of 10 nm or more and 100 nm or less. 直径が10nm以上100nm以下の空孔における、転写後の細孔比表面積が6m/g以下である、請求項8に記載の正極。 The positive electrode according to claim 8, wherein the pores having a diameter of 10 nm or more and 100 nm or less have a pore specific surface area after transfer of 6 m 2 / g or less. 直径が10nm以上100nm以下の空孔における、転写後の容積が100μL/g以下である、請求項1から9のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 9, wherein the volume after transfer is 100 μL / g or less in the pores having a diameter of 10 nm or more and 100 nm or less. 直径が10nm以上100nm以下の空孔における、転写後の容積が60μL/g以下である、請求項10に記載の正極。 The positive electrode according to claim 10, wherein the volume after transfer is 60 μL / g or less in the pores having a diameter of 10 nm or more and 100 nm or less. 請求項1から11のいずれか一項に記載の正極を含む、空気電池。 An air battery comprising the positive electrode according to any one of claims 1 to 11. 放電容量又は充電容量が80%以下となる前までの充放電回数(サイクル数)が、3回以上である、請求項12に記載の空気電池。 The air battery according to claim 12, wherein the number of charge / discharge cycles (number of cycles) before the discharge capacity or charge capacity becomes 80% or less is 3 times or more. 多孔質構造の正極に対して、電解液を含む部材を接触させ、前記電解液を転写させることにより、前記電解液を前記正極に注液する方法。 A method of injecting the electrolytic solution into the positive electrode by bringing a member containing the electrolytic solution into contact with a positive electrode having a porous structure and transferring the electrolytic solution. 前記電解液がリチウム塩を含み、前記正極における、前記リチウム塩の少なくとも一つの構成元素の蛍光X線測定による変動係数が0.2よりも低くなるように前記電解液を注液する、請求項14に記載の方法。 The claim that the electrolytic solution contains a lithium salt, and the electrolytic solution is injected so that the fluctuation coefficient of at least one constituent element of the lithium salt at the positive electrode is lower than 0.2 by fluorescent X-ray measurement. 14. The method according to 14. 前記リチウム塩が臭化リチウムであり、前記正極における、前記臭化リチウムを構成する臭素のKα線測定による変動係数が0.2よりも低くなるように前記電解液を注液する、請求項15に記載の方法。 15. The electrolytic solution is injected so that the lithium salt is lithium bromide and the coefficient of variation of bromine constituting the lithium bromide measured by Kα-ray at the positive electrode is lower than 0.2. The method described in. 前記電解液の注入により、空孔率に基づき前記正極の空孔の50%以上100%未満を前記電解液で充填する、請求項14から16のいずれか一項に記載の方法。 The method according to any one of claims 14 to 16, wherein by injecting the electrolytic solution, 50% or more and less than 100% of the pores of the positive electrode are filled with the electrolytic solution based on the porosity. 前記部材としてポリテトラフルオロエチレン(PTFE)製のメンブランフィルターを使用する、請求項14から17のいずれか一項に記載の方法。 The method according to any one of claims 14 to 17, wherein a membrane filter made of polytetrafluoroethylene (PTFE) is used as the member. 前記部材の電解液を滴下によって含有させる、請求項14から18のいずれか一項に記載の方法。 The method according to any one of claims 14 to 18, wherein the electrolytic solution of the member is contained by dropping. 前記電解液を含む部材を接触させ、前記電解液を転写させる前に、前記電解液の溶媒により正極の空孔内を湿潤させる工程を含む、請求項14から19のいずれか一項に記載の方法。 13. Method. 前記電解液の溶媒により正極の空孔内を湿潤させる工程が、減圧加熱処理によって前記電解液の溶媒を蒸散させ、前記溶媒蒸気雰囲気中に多孔質構造の正極を置いて前記正極を湿潤させることを含む、請求項20に記載の方法。 The step of wetting the inside of the pores of the positive electrode with the solvent of the electrolytic solution is to evaporate the solvent of the electrolytic solution by vacuum heat treatment and place the positive electrode having a porous structure in the solvent steam atmosphere to wet the positive electrode. 20. The method of claim 20. 前記減圧加熱処理を、0.1Pa以上10Pa以下の圧力下において行う、請求項21に記載の方法。 The method according to claim 21, wherein the reduced pressure heat treatment is performed under a pressure of 0.1 Pa or more and 10 Pa or less. 前記減圧加熱処理の加熱を、40℃以上100℃以下の温度で行う、請求項21又は22に記載の方法。 The method according to claim 21 or 22, wherein the decompression heat treatment is heated at a temperature of 40 ° C. or higher and 100 ° C. or lower. 前記減圧加熱処理の加熱時間が、10分以上120分以下である、請求項23に記載の方法。 The method according to claim 23, wherein the heating time of the reduced pressure heat treatment is 10 minutes or more and 120 minutes or less. 負極と、
セパレータと、
請求項14から24のいずれか一項に記載の方法によって電解液を注液される正極と、
前記正極の活物質として酸素を取り込むための酸素流路層とを順に積層することによる空気電池の製造方法。
With the negative electrode
Separator and
A positive electrode into which the electrolytic solution is injected by the method according to any one of claims 14 to 24,
A method for manufacturing an air battery by sequentially laminating an oxygen flow path layer for taking in oxygen as an active material of the positive electrode.
負極と、
セパレータと、
請求項14から24のいずれか一項に記載の方法によって電解液を注液される正極と、
前記正極の活物質として酸素を取り込むための酸素流路層とを順に積層することによる空気電池の製造方法であって、
未だ電解液を注液されていない正極の積層後に、電解液を含む部材を前記正極に接触させることによる前記電解液の転写により、前記電解液を前記正極に注液する工程、及び
前記部材を取り除く工程、
を含む、前記製造方法。
With the negative electrode
Separator and
A positive electrode into which the electrolytic solution is injected by the method according to any one of claims 14 to 24,
It is a method of manufacturing an air battery by sequentially laminating an oxygen flow path layer for taking in oxygen as an active material of the positive electrode.
A step of injecting the electrolytic solution into the positive electrode by transferring the electrolytic solution by bringing a member containing the electrolytic solution into contact with the positive electrode after stacking the positive electrodes to which the electrolytic solution has not been injected, and the member. The process of removing,
The manufacturing method.
JP2021203488A 2020-12-24 2021-12-15 Positive electrode containing an electrolytic solution and air battery using the same, injecting method of electrolytic solution into positive electrode, and manufacturing method of air battery using the same Pending JP2022101497A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020215856 2020-12-24
JP2020215856 2020-12-24

Publications (1)

Publication Number Publication Date
JP2022101497A true JP2022101497A (en) 2022-07-06

Family

ID=82270955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021203488A Pending JP2022101497A (en) 2020-12-24 2021-12-15 Positive electrode containing an electrolytic solution and air battery using the same, injecting method of electrolytic solution into positive electrode, and manufacturing method of air battery using the same

Country Status (1)

Country Link
JP (1) JP2022101497A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115939694A (en) * 2022-08-17 2023-04-07 宁德时代新能源科技股份有限公司 Method for determining liquid injection amount of single battery
CN116666921A (en) * 2023-07-31 2023-08-29 宁德时代新能源科技股份有限公司 Liquid injection amount control method, device, equipment, medium, product and liquid injection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115939694A (en) * 2022-08-17 2023-04-07 宁德时代新能源科技股份有限公司 Method for determining liquid injection amount of single battery
CN116666921A (en) * 2023-07-31 2023-08-29 宁德时代新能源科技股份有限公司 Liquid injection amount control method, device, equipment, medium, product and liquid injection system
CN116666921B (en) * 2023-07-31 2024-01-26 宁德时代新能源科技股份有限公司 A method for controlling the injection amount a device(s) Equipment, medium and liquid injection system

Similar Documents

Publication Publication Date Title
CN102640242B (en) Electrochemical capacitor and electrode used therein
EP2240973B1 (en) Porous electrodes and associated methods
KR101818813B1 (en) Silicon-carbonnanotube complex, method of preparing the same, anode active material for lithium secondary battery including the same and lithium secondary battery including the same
JP2022101497A (en) Positive electrode containing an electrolytic solution and air battery using the same, injecting method of electrolytic solution into positive electrode, and manufacturing method of air battery using the same
CN107004813B (en) lithium-air battery
JP6198841B2 (en) Lithium-ion capacitor and manufacturing method
US20150056520A1 (en) Impregnated sintered solid state composite electrode, solid state battery, and methods of preparation
JPH06168737A (en) Secondary battery
JP2009064576A (en) Positive electrode active material and lithium secondary battery
CN106549159A (en) A kind of lithium-sulfur cell porous carbon materials and its preparation and application
KR101720429B1 (en) Silicon-carbonnanotube complex, method of preparing the same, anode active material for lithium secondary battery including the same and lithium secondary battery including the same
EP1239527B1 (en) Secondary power source
US20140255770A1 (en) Carbon-Sulfur Composite Cathode Passivation and Method for Making Same
KR20160033639A (en) Silicon-carbonnanotube complex, method of preparing the same, anode active material for lithium secondary battery including the same and lithium secondary battery including the same
JP2022101335A (en) Injecting method of electrolytic solution into positive electrode and manufacturing method of air battery using the same
WO2020066058A1 (en) Nonaqueous electrolytic solution, nonvolatile electrolyte, and secondary battery
JP7177547B2 (en) Porous carbon structure, manufacturing method thereof, positive electrode material using same, and battery using same
WO2022176367A1 (en) Oxygen channel and collector for air cells, and air cell
JP7486129B2 (en) Method for producing porous carbon membrane for positive electrode of air battery, and method for producing air battery using the porous carbon membrane obtained by the method as the positive electrode
JP2022101332A (en) Lithium-air battery and manufacturing method for the same
JP2023107591A (en) Lithium air battery and oxygen flow path to be used therein
JP2022127988A (en) Charging method of lithium air battery
JP2023079084A (en) Method for manufacturing porous carbon film for positive electrode of air battery, and method for manufacturing air battery using porous carbon film obtained by the method as positive electrode
JP2023079085A (en) Composition for producing porous carbon film, sheet for producing porous carbon film, method for producing porous carbon film for positive electrode of air battery, and method for producing air battery using porous carbon film obtained by the method for positive electrode
JP2022115123A (en) Manufacturing method of carbon porous body for air battery positive electrode

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240501