JP2022101088A - Multiblade fan and indoor unit - Google Patents

Multiblade fan and indoor unit Download PDF

Info

Publication number
JP2022101088A
JP2022101088A JP2020215475A JP2020215475A JP2022101088A JP 2022101088 A JP2022101088 A JP 2022101088A JP 2020215475 A JP2020215475 A JP 2020215475A JP 2020215475 A JP2020215475 A JP 2020215475A JP 2022101088 A JP2022101088 A JP 2022101088A
Authority
JP
Japan
Prior art keywords
blade
blades
recess
axial direction
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020215475A
Other languages
Japanese (ja)
Inventor
大貴 澤田
Hirotaka Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2020215475A priority Critical patent/JP2022101088A/en
Publication of JP2022101088A publication Critical patent/JP2022101088A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

To suppress noise caused by blade pitch sounds which are generated during rotation of blades.SOLUTION: A multiblade fan 6 comprises a plurality of blades 12 extending in an axial direction of a rotary shaft and arrayed at a predetermined pitch around the rotary shaft. The plurality of blades include at least two blades in each of which a recess 20 recessed in a thickness direction of the blade is formed in the axial direction of the rotary shaft in at least one of a positive pressure surface 17a and a negative pressure surface 17b which are blade surfaces of the blade and in at least one of an inner peripheral side part 18a and an outer peripheral side part 18b of the blade. Regarding the blades which are adjacent to each other in an array direction of the plurality of blades, cross-sectional shapes orthogonal to the rotary shaft are different at a position where the recess is formed in any blade on the rotary shaft. Regarding the at least two blades, lengths of the recesses with respect to the axial direction of the rotary shaft are different from each other.SELECTED DRAWING: Figure 7

Description

本発明は、多翼ファン及び室内機に関する。 The present invention relates to a multi-blade fan and an indoor unit.

回転軸の軸方向に沿って延ばされると共に回転軸まわりに配列された複数の翼を備える多翼ファンが知られている。この種の多翼ファンとしては、遠心ファンや、例えば空気調和機が備えるクロスフローファン(貫流ファン)がある(特許文献1)。 A multi-blade fan is known that is extended along the axial direction of the axis of rotation and has a plurality of blades arranged around the axis of rotation. Examples of this type of multi-blade fan include a centrifugal fan and, for example, a cross-flow fan (through-flow fan) provided in an air conditioner (Patent Document 1).

特許2014-190543号公報Japanese Patent No. 2014-190543

上述した多翼ファンでは、翼の回転時に翼間の気流の風切り音である翼ピッチ音(周期音)が発生し、回転時の騒音になる。この翼ピッチ音は、一般にNz音と呼ばれ、多翼ファンの回転数Nと翼の個数zの積(N×z)によって周波数が表される。翼ピッチ音は、翼の個数が多いほど周波数が高くなる。 In the above-mentioned multi-blade fan, a blade pitch sound (periodic sound), which is a wind noise of the airflow between the blades, is generated when the blades rotate, and becomes noise during rotation. This blade pitch sound is generally called an Nz sound, and its frequency is expressed by the product (N × z) of the rotation speed N of the multi-blade fan and the number z of the blades. The frequency of the blade pitch sound increases as the number of blades increases.

開示の技術は、上記に鑑みてなされたものであって、翼の回転時に生じる翼ピッチ音による騒音を抑えることができる多翼ファン及び室内機を提供することを目的とする。 The disclosed technique has been made in view of the above, and an object thereof is to provide a multi-blade fan and an indoor unit capable of suppressing noise due to a blade pitch sound generated during rotation of a blade.

本願の開示する多翼ファンの一態様は、回転軸の軸方向に沿って延ばされると共に回転軸まわりに所定のピッチで配列された複数の翼を備える貫流ファンであって、複数の翼は、翼の翼面である正圧面及び負圧面の少なくとも一方、かつ、翼の内周側部及び外周側部の少なくとも一方に、翼の厚み方向に対して窪む凹部が回転軸の軸方向に沿って形成された少なくとも2つの翼を含み、複数の翼の配列方向に隣り合う翼同士は、回転軸上でいずれかの翼に凹部が形成された位置において、回転軸と直交する断面形状が異なり、少なくとも2つの翼は、回転軸の軸方向に対する凹部の長さが互いに異なっている。 One aspect of the multi-blade fan disclosed in the present application is a once-through fan having a plurality of blades extending along the axial direction of the rotation axis and arranged at a predetermined pitch around the rotation axis. At least one of the positive pressure surface and the negative pressure surface, which are the blade surfaces of the blade, and at least one of the inner peripheral side portion and the outer peripheral side portion of the blade, recesses recessed in the thickness direction of the blade are along the axial direction of the rotation axis. The blades that are adjacent to each other in the arrangement direction of the plurality of blades, including at least two blades formed in the above direction, have different cross-sectional shapes perpendicular to the rotation axis at the position where a recess is formed in one of the blades on the rotation axis. , At least two blades have different lengths of recesses with respect to the axial direction of the axis of rotation.

本願の開示する多翼ファンの一態様によれば、翼の回転時に生じる翼ピッチ音による騒音を抑えることができる。 According to one aspect of the multi-blade fan disclosed in the present application, noise due to blade pitch noise generated during rotation of the blade can be suppressed.

図1は、実施例の室内機を示す断面図である。FIG. 1 is a cross-sectional view showing an indoor unit of an embodiment. 図2は、実施例の多翼ファンを示す斜視図である。FIG. 2 is a perspective view showing a multi-blade fan of the embodiment. 図3は、実施例の多翼ファンを示す断面図である。FIG. 3 is a cross-sectional view showing the multi-blade fan of the embodiment. 図4は、実施例の多翼ファンの翼の一例を説明するための模式図である。FIG. 4 is a schematic diagram for explaining an example of the blades of the multi-blade fan of the embodiment. 図5は、実施例の多翼ファンの翼の一例を説明するための模式図である。FIG. 5 is a schematic diagram for explaining an example of the blades of the multi-blade fan of the embodiment. 図6は、実施例の多翼ファンの翼の一例を説明するための模式図である。FIG. 6 is a schematic diagram for explaining an example of the blades of the multi-blade fan of the embodiment. 図7は、実施例の多翼ファンにおける複数の翼を示す断面図である。FIG. 7 is a cross-sectional view showing a plurality of blades in the multi-blade fan of the embodiment. 図8は、実施例の多翼ファンにおける複数の翼の変形例1を示す断面図である。FIG. 8 is a cross-sectional view showing a modification 1 of a plurality of blades in the multi-blade fan of the embodiment. 図9は、実施例の多翼ファンにおける複数の翼の変形例2を示す断面図である。FIG. 9 is a cross-sectional view showing a modification 2 of a plurality of blades in the multi-blade fan of the embodiment. 図10は、実施例の多翼ファンにおける複数の翼の変形例3を示す平面図である。FIG. 10 is a plan view showing a modification 3 of a plurality of blades in the multi-blade fan of the embodiment. 図11は、実施例の多翼ファンにおける複数の翼の変形例4を示す斜視図である。FIG. 11 is a perspective view showing a modification 4 of a plurality of blades in the multi-blade fan of the embodiment. 図12は、実施例の多翼ファンにおける複数の翼の変形例5を示す平面図である。FIG. 12 is a plan view showing a modification 5 of a plurality of blades in the multi-blade fan of the embodiment. 図13は、実施例の多翼ファンにおける複数の翼の変形例6を示す平面図である。FIG. 13 is a plan view showing a modification 6 of a plurality of blades in the multi-blade fan of the embodiment. 図14は、実施例の多翼ファンにおける翼の他の例を示す模式図である。FIG. 14 is a schematic diagram showing another example of a blade in the multi-blade fan of the embodiment. 図15は、実施例の多翼ファンにおける複数の翼の変形例7を示す断面図である。FIG. 15 is a cross-sectional view showing a modification 7 of a plurality of blades in the multi-blade fan of the embodiment. 図16は、実施例の多翼ファンにおける騒音レベルを説明するための図である。FIG. 16 is a diagram for explaining a noise level in the multi-blade fan of the embodiment.

以下に、本願の開示する多翼ファン及び室内機の実施例を図面に基づいて詳細に説明する。なお、以下の実施例によって、本願の開示する多翼ファン及び室内機が限定されるものではない。 Hereinafter, examples of the multi-blade fan and the indoor unit disclosed in the present application will be described in detail with reference to the drawings. The following examples do not limit the multi-blade fan and the indoor unit disclosed in the present application.

(室内機の構成)
図1は、実施例の室内機を示す断面図である。図2は、実施例の多翼ファンを示す斜視図である。図1に示すように、実施例の室内機1は、冷凍サイクル装置、例えば、空気調和装置(図示せず)を構成する室内機であり、熱交換器5と、熱交換器5を通過した空気が流入する多翼ファン6と、多翼ファン6から送られる気流の流路を形成するファンケーシング7と、熱交換器5、多翼ファン6、ファンケーシング7を内部に収容する本体ケーシング8と、を備える。本体ケーシング8は、空気の吸い込み口8a及び吹き出し口8bを有する。
(Composition of indoor unit)
FIG. 1 is a cross-sectional view showing an indoor unit of an embodiment. FIG. 2 is a perspective view showing a multi-blade fan of the embodiment. As shown in FIG. 1, the indoor unit 1 of the embodiment is an indoor unit constituting a refrigerating cycle device, for example, an air conditioner (not shown), and has passed through a heat exchanger 5 and a heat exchanger 5. A main body casing 8 that houses a multi-blade fan 6 into which air flows, a fan casing 7 that forms a flow path for airflow sent from the multi-blade fan 6, a heat exchanger 5, a multi-blade fan 6, and a fan casing 7 inside. And prepare. The main body casing 8 has an air suction port 8a and an air outlet 8b.

多翼ファン6は、図2に示すように、複数の翼12が回転軸13まわりに配列された羽根車11を備える。羽根車11は、回転軸13の軸方向Xに複数配列されており、各羽根車11の間に仕切板14を挟んで連結されている。回転軸13の軸方向Xにおける両端には、回転軸13によって支持される端板15が設けられており、回転軸13によって多翼ファン6の両端が支持されている。 As shown in FIG. 2, the multi-blade fan 6 includes an impeller 11 in which a plurality of blades 12 are arranged around a rotation axis 13. A plurality of impellers 11 are arranged in the axial direction X of the rotating shaft 13, and are connected by sandwiching a partition plate 14 between the impellers 11. End plates 15 supported by the rotating shaft 13 are provided at both ends of the rotating shaft 13 in the axial direction X, and both ends of the multi-blade fan 6 are supported by the rotating shaft 13.

また、各羽根車11は、回転軸13まわりの周方向、つまり複数の翼12の配列方向に対して互いにずらされて連結されている。これにより、各羽根車11は、回転軸13の軸方向Xに並ぶ羽根車11間で翼ピッチ音に位相差が生じるので、多翼ファン6の回転時の騒音を抑えられる。 Further, the impellers 11 are connected so as to be offset from each other in the circumferential direction around the rotation shaft 13, that is, in the arrangement direction of the plurality of blades 12. As a result, each impeller 11 has a phase difference in the blade pitch sound between the impellers 11 arranged in the axial direction X of the rotating shaft 13, so that the noise during rotation of the multi-blade fan 6 can be suppressed.

(多翼ファンの構成)
図3は、実施例の多翼ファン6を示す断面図である。実施例の多翼ファン6は、空気の流れが、回転軸13の軸方向Xと交差する方向に多翼ファン6を貫通する、いわゆる貫流ファンとして用いられている。
(Composition of multi-wing fan)
FIG. 3 is a cross-sectional view showing the multi-blade fan 6 of the embodiment. The multi-blade fan 6 of the embodiment is used as a so-called once-through fan in which the air flow penetrates the multi-blade fan 6 in a direction intersecting the axial direction X of the rotating shaft 13.

多翼ファン6は、図2に示すように、回転軸13の軸方向Xに沿って延ばされると共に、図3に示すように、回転軸13まわりに所定のピッチPで配列された複数の翼12を備える。翼12の翼面17は、多翼ファン6の回転方向Rとは逆方向に向かって凸となるように湾曲されており、正圧面17aと負圧面17bを有する。翼12は、多翼ファン6の回転中心O側に位置する内周側部18aと、回転中心O側とは反対側に位置する外周側部18bと、を有する。 As shown in FIG. 2, the multi-blade fan 6 is extended along the axial direction X of the rotating shaft 13, and as shown in FIG. 3, a plurality of blades arranged around the rotating shaft 13 at a predetermined pitch P. 12 is provided. The blade surface 17 of the blade 12 is curved so as to be convex in a direction opposite to the rotation direction R of the multi-blade fan 6, and has a positive pressure surface 17a and a negative pressure surface 17b. The blade 12 has an inner peripheral side portion 18a located on the rotation center O side of the multi-blade fan 6 and an outer peripheral side portion 18b located on the side opposite to the rotation center O side.

図4、図5及び図6は、実施例の多翼ファン6の翼12の一例を説明するための模式図である。図4に示すように、複数の翼12は、内周側部18aの正圧面17a、内周側部18aの負圧面17b、外周側部18bの正圧面17a、外周側部18bの負圧面17bの4箇所に、紙面奥側に見える翼の外径(図4における正圧面17a、負圧面17b)よりも翼12の厚み方向に対して窪む凹部20(20A~20D)が形成された翼12を含む。なお、当該4箇所のうち少なくとも1箇所に凹部20が形成された翼であっても良い。言い換えると、複数の翼12は、翼12の正圧面17a及び負圧面17bの少なくとも一方の翼面、かつ、翼12の内周側部18a及び外周側部18bの少なくとも一方の端部に、凹部20が形成された翼12を含み、凹部20が4箇所のうちの任意の箇所に形成される組み合わせにより、翼12の断面形状として15種類の形成パターンを有する。 4, 5 and 6 are schematic views for explaining an example of the blade 12 of the multi-blade fan 6 of the embodiment. As shown in FIG. 4, the plurality of blades 12 have a positive pressure surface 17a on the inner peripheral side portion 18a, a negative pressure surface 17b on the inner peripheral side portion 18a, a positive pressure surface 17a on the outer peripheral side portion 18b, and a negative pressure surface 17b on the outer peripheral side portion 18b. A wing having recesses 20 (20A to 20D) recessed in the thickness direction of the wing 12 from the outer diameters of the wing (positive pressure surface 17a and negative pressure surface 17b in FIG. 4) that can be seen on the inner side of the paper surface at four locations. Includes 12. It should be noted that the wing may have a recess 20 formed in at least one of the four locations. In other words, the plurality of blades 12 are recessed in at least one blade surface of the positive pressure surface 17a and the negative pressure surface 17b of the blade 12 and at least one end of the inner peripheral side portion 18a and the outer peripheral side portion 18b of the blade 12. There are 15 types of formation patterns as the cross-sectional shape of the wing 12 by the combination in which the wing 12 in which the wing 20 is formed is included and the recess 20 is formed in any of the four places.

また、翼12は、翼12の厚みが最大になる最大肉厚部が、翼弦における中央よりも、内周側部18a側に位置するように形成されている。凹部20は、例えば、最大肉厚部(図4中の破線)に対して、内周側部18a側と外周側部18b側のいずれかに形成されている。 Further, the wing 12 is formed so that the maximum wall thickness portion at which the thickness of the wing 12 is maximized is located on the inner peripheral side portion 18a side of the center of the chord. The recess 20 is formed on either the inner peripheral side portion 18a side or the outer peripheral side portion 18b side with respect to the maximum wall thickness portion (broken line in FIG. 4), for example.

図5に示すように、内周側部18aの負圧面17bに凹部20Aを形成すると共に、外周側部18bの負圧面17bに凹部20Cを形成する場合、凹部20A、20C同士が連続する1つの凹部20として形成されてもよい。このように内周側部18aの先端から外周側部18bの先端まで連続する凹部20(20A、20C)が形成される場合、凹部20(20A、20C)は回転軸18の軸方向Xにおける翼12の一部に形成されており、翼12の負圧面17bの外観から凹部20(20A、20C)の存在を視認できる。同様に、図6に示すように、内周側部18aの正圧面17aに凹部20Bを形成すると共に、外周側部18bの正圧面17aに凹部20Dを形成する場合、凹部20B、20D同士が連続する1つの凹部20として形成されてもよい。このように内周側部18aの先端から外周側部18bの先端まで連続する凹部20(20B、20D)が形成される場合、凹部20(20B、20D)は回転軸18の軸方向Xにおける翼12の一部に形成されており、翼12の正圧面17aの外観から凹部20(20B、20D)の存在を視認できる。 As shown in FIG. 5, when the recess 20A is formed on the negative pressure surface 17b of the inner peripheral side portion 18a and the recess 20C is formed on the negative pressure surface 17b of the outer peripheral side portion 18b, the recesses 20A and 20C are one continuous portion. It may be formed as a recess 20. When the recess 20 (20A, 20C) continuous from the tip of the inner peripheral side portion 18a to the tip of the outer peripheral side portion 18b is formed in this way, the recess 20 (20A, 20C) is a blade in the axial direction X of the rotating shaft 18. The presence of the recess 20 (20A, 20C) can be visually recognized from the appearance of the negative pressure surface 17b of the blade 12 which is formed in a part of the wing 12. Similarly, as shown in FIG. 6, when the concave portion 20B is formed on the positive pressure surface 17a of the inner peripheral side portion 18a and the concave portion 20D is formed on the positive pressure surface 17a of the outer peripheral side portion 18b, the concave portions 20B and 20D are continuous with each other. It may be formed as one recess 20 to be formed. When the recess 20 (20B, 20D) continuous from the tip of the inner peripheral side portion 18a to the tip of the outer peripheral side portion 18b is formed in this way, the recess 20 (20B, 20D) is a blade in the axial direction X of the rotating shaft 18. It is formed in a part of 12, and the presence of the recess 20 (20B, 20D) can be visually recognized from the appearance of the positive pressure surface 17a of the blade 12.

本実施例の多翼ファン6では、例えば、複数の翼12の全てに凹部20がそれぞれ形成されるが、この構造に限定されず、複数の翼12のうちの少なくとも1つの翼12が凹部20を有する構造であればよい。そして、本実施例の多翼ファン6では、複数の翼12の配列方向に隣り合う翼同士は、回転軸13上でいずれかの翼に凹部20が形成された位置において、回転軸13と直交する断面形状が異なる。これにより、断面形状が異なる隣り合う翼12間で、翼ピッチ音の周波数を異ならせることができる。 In the multi-blade fan 6 of the present embodiment, for example, recesses 20 are formed in all of the plurality of blades 12, but the structure is not limited to this, and at least one of the plurality of blades 12 has a recess 20. Any structure may be used. Then, in the multi-blade fan 6 of the present embodiment, the blades adjacent to each other in the arrangement direction of the plurality of blades 12 are orthogonal to the rotation shaft 13 at the position where the recess 20 is formed in any of the blades on the rotation shaft 13. The cross-sectional shape is different. As a result, the frequency of the blade pitch sound can be made different between the adjacent blades 12 having different cross-sectional shapes.

また、多翼ファン6によれば、隣り合う翼12同士において、凹部20の形成パターンを変えることで各翼12の断面形状を容易に異ならせることが可能である。したがって、隣り合う翼12間で翼ピッチ音の周波数を容易に変化させることができる。 Further, according to the multi-blade fan 6, it is possible to easily change the cross-sectional shape of each of the adjacent blades 12 by changing the formation pattern of the recess 20. Therefore, the frequency of the blade pitch sound can be easily changed between the adjacent blades 12.

図示しないが、多翼ファン6は、例えば、凹部20を有する翼12と、凹部20が無い翼12が隣り合って配置される構造であってもよい。この構造では、凹部20を有する翼12と、凹部20が無い翼12との間で、翼ピッチ音の周波数を分散させることによって多翼ファン6の騒音を抑える効果が得られる。 Although not shown, the multi-blade fan 6 may have a structure in which, for example, a wing 12 having a recess 20 and a wing 12 having no recess 20 are arranged next to each other. In this structure, the noise of the multi-blade fan 6 can be suppressed by dispersing the frequency of the blade pitch sound between the blade 12 having the recess 20 and the blade 12 having no recess 20.

上述のように、隣り合う翼12同士において翼12の断面形状が異なるとは、隣り合う各翼12の回転軸13の軸方向Xに直交する断面形状同士を、回転軸13の軸方向Xにおいていずれかの翼12の凹部20を通る位置で比較したときに、翼12の断面形状が互いに異なることを指す。このように異なる翼12の断面形状には、凹部20の形成パターンが異なる構造と、凹部20の断面形状が異なる構造と、翼弦に沿う方向における凹部20の位置が異なる構造が含まれる。 As described above, the fact that the cross-sectional shapes of the blades 12 are different between the adjacent blades 12 means that the cross-sectional shapes orthogonal to the axial direction X of the rotating shaft 13 of the adjacent blades 12 are different in the axial direction X of the rotating shaft 13. It means that the cross-sectional shapes of the blades 12 are different from each other when compared at the positions where the blades 12 pass through the recess 20. Such different cross-sectional shapes of the wing 12 include a structure in which the formation pattern of the recess 20 is different, a structure in which the cross-sectional shape of the recess 20 is different, and a structure in which the position of the recess 20 is different in the direction along the chord.

図7は、実施例の多翼ファン6における複数の翼12を示す断面図である。図3及び図7に示すように、例えば、多翼ファン6の複数の翼12の全ては、回転軸13の軸方向Xに直交する翼12の断面において、複数の翼12の配列方向に隣り合う翼12同士の凹部20(20A~20D)が設けられる位置が互いに異なっている。なお、多翼ファン6は、複数の翼12の配列方向において、少なくとも2つの翼12の凹部20が設けられる位置が互いに異なり、この2つの翼12が隣り合って配置されていればよく、凹部20が設けられる位置が異なる隣り合う翼12間で、翼ピッチ音の周波数を分散させることができる。 FIG. 7 is a cross-sectional view showing a plurality of blades 12 in the multi-blade fan 6 of the embodiment. As shown in FIGS. 3 and 7, for example, all of the plurality of blades 12 of the multi-blade fan 6 are adjacent to each other in the arrangement direction of the plurality of blades 12 in the cross section of the blade 12 orthogonal to the axial direction X of the rotation axis 13. The positions where the recesses 20 (20A to 20D) of the matching blades 12 are provided are different from each other. In the multi-blade fan 6, the positions where the recesses 20 of at least two blades 12 are provided are different from each other in the arrangement direction of the plurality of blades 12, and the two blades 12 may be arranged next to each other. The frequency of the blade pitch sound can be dispersed among adjacent blades 12 having different positions of 20.

各凹部20(20A~20D)は、断面が円弧形状の底面21aを有する。凹部20は、翼12における回転軸13の軸方向Xにわたって形成されるが、軸方向Xにおける翼12の一部に形成されてもよい。また、1つの翼12において、凹部20の断面形状が、回転軸13の軸方向Xにおいて同一形状に形成されているが、1つの翼12における凹部20の断面形状が回転軸13の軸方向Xに沿って変化するように形成されてもよい。 Each recess 20 (20A to 20D) has a bottom surface 21a having an arcuate cross section. The recess 20 is formed over the axial direction X of the rotary shaft 13 in the blade 12, but may be formed in a part of the blade 12 in the axial direction X. Further, in one wing 12, the cross-sectional shape of the recess 20 is formed to have the same shape in the axial direction X of the rotating shaft 13, but the cross-sectional shape of the recess 20 in one wing 12 is the axial direction X of the rotating shaft 13. It may be formed to change along with.

(変形例1)
図8は、実施例の多翼ファン6における複数の翼12の変形例1を示す断面図である。図8に示すように、変形例1の複数の翼12の全ては、回転軸13の軸方向Xに直交する翼12の断面において、複数の翼12のうち配列方向に隣り合う翼12同士の凹部20(20A~20D)の個数が互いに異なっている。これにより、隣り合う翼12間で、翼ピッチ音を分散させることができる。各翼12の凹部20の個数は、多翼ファン6の回転方向Rに沿って規則的に増減するが、この構造に限定にされず、不規則に変化していてもよい。
(Modification 1)
FIG. 8 is a cross-sectional view showing a modification 1 of a plurality of blades 12 in the multi-blade fan 6 of the embodiment. As shown in FIG. 8, all of the plurality of blades 12 of the modification 1 have the blades 12 adjacent to each other in the arrangement direction among the plurality of blades 12 in the cross section of the blades 12 orthogonal to the axial direction X of the rotation axis 13. The number of recesses 20 (20A to 20D) is different from each other. As a result, the blade pitch sound can be dispersed among the adjacent blades 12. The number of recesses 20 of each blade 12 increases and decreases regularly along the rotation direction R of the multi-blade fan 6, but the structure is not limited to this, and may change irregularly.

(変形例2)
図9は、実施例の多翼ファン6における複数の翼12の変形例2を示す断面図である。図9に示すように、変形例2の複数の翼12の全ては、回転軸13の軸方向Xに直交する翼12の断面において、複数の翼12のうち配列方向に隣り合う翼12同士の凹部20の断面形状が互いに異なっている。例えば、凹部20は、内周側部18aの先端面から外周側部18bに向かって延びており、負圧面17bに交差する凹部20の端面21bを有する。これにより、隣り合う翼12間で、翼ピッチ音の周波数を分散させることができる。凹部20の断面形状としては、翼12の厚み方向に対する凹部20の深さ、翼弦に沿う方向に対する凹部20の長さ、回転軸13の軸方向Xに直交する断面における翼面17と端面21bがなす角等が異なっていればよい。また、多翼ファン6は、例えば、変形例1と変形例2が組み合わされてもよく、隣り合う翼12間で翼ピッチ音の周波数を更に分散させることができる。
(Modification 2)
FIG. 9 is a cross-sectional view showing a modification 2 of a plurality of blades 12 in the multi-blade fan 6 of the embodiment. As shown in FIG. 9, all of the plurality of blades 12 of the modification 2 have the blades 12 adjacent to each other in the arrangement direction among the plurality of blades 12 in the cross section of the blades 12 orthogonal to the axial direction X of the rotation axis 13. The cross-sectional shapes of the recesses 20 are different from each other. For example, the recess 20 extends from the distal end surface of the inner peripheral side portion 18a toward the outer peripheral side portion 18b, and has an end surface 21b of the recess 20 that intersects the negative pressure surface 17b. As a result, the frequency of the blade pitch sound can be dispersed among the adjacent blades 12. The cross-sectional shape of the recess 20 includes the depth of the recess 20 in the thickness direction of the blade 12, the length of the recess 20 in the direction along the chord, and the blade surface 17 and the end surface 21b in the cross section orthogonal to the axial direction X of the rotation axis 13. It suffices if the angles formed by the wheels are different. Further, in the multi-blade fan 6, for example, the modification 1 and the modification 2 may be combined, and the frequency of the blade pitch sound can be further dispersed among the adjacent blades 12.

(変形例3)
図10は、実施例の多翼ファン6における複数の翼12の変形例3を示す平面図である。図10に示すように、変形例3では、複数の翼12の配列方向に隣り合う翼12同士において、翼弦に沿う方向における凹部20の断面形状が同一であり、回転軸13の軸方向Xに対する凹部20の長さHが異なる。変形例3では、隣り合う翼12同士において凹部20の長さHが異なるので、例えば、図10中のD-D断面において、隣り合う翼12同士の翼12の断面形状が異なることにより、隣り合う翼12間で翼ピッチ音の周波数を分散させることができる。
(Modification 3)
FIG. 10 is a plan view showing a modification 3 of a plurality of blades 12 in the multi-blade fan 6 of the embodiment. As shown in FIG. 10, in the modified example 3, the cross-sectional shapes of the recesses 20 in the direction along the chord are the same among the blades 12 adjacent to each other in the arrangement direction of the plurality of blades 12, and the axial direction X of the rotation axis 13 is X. The length H of the recess 20 is different from that of the recess 20. In the third modification, the length H of the recess 20 is different between the adjacent blades 12, so that, for example, in the DD cross section in FIG. 10, the cross-sectional shapes of the blades 12 between the adjacent blades 12 are different, so that the adjacent blades 12 are adjacent to each other. The frequency of the blade pitch sound can be distributed among the matching blades 12.

なお、図示しないが、変形例3においても、隣り合う翼12同士において、上述した実施例、変形例1、2の凹部20の構造と組み合わされて、凹部20の長さHが異なるように形成されてもよく、実施例の効果が更に高められる。 Although not shown, also in the modified example 3, the adjacent blades 12 are formed so that the length H of the recesses 20 is different in combination with the structures of the recesses 20 of the above-mentioned Examples, Modified Examples 1 and 2. May be done, and the effect of the embodiment is further enhanced.

(変形例4)
図11は、実施例の多翼ファン6における複数の翼12の変形例4を示す斜視図である。変形例4は、上述した実施例と変形例3が組み合わされた一例であり、図11に示すように、複数の翼12の各々において、内周側部18aの正圧面17a、内周側部18aの負圧面17b、外周側部18bの正圧面17a、外周側部18bの負圧面17bの4箇所のうちのいずれか1箇所に凹部20が形成されており、隣り合う翼12間で凹部20の位置が互いに異なる。
(Modification example 4)
FIG. 11 is a perspective view showing a modification 4 of a plurality of blades 12 in the multi-blade fan 6 of the embodiment. The modified example 4 is an example in which the above-described embodiment and the modified example 3 are combined, and as shown in FIG. 11, in each of the plurality of blades 12, the positive pressure surface 17a and the inner peripheral side portion of the inner peripheral side portion 18a. A recess 20 is formed in any one of four locations: the negative pressure surface 17b of the 18a, the positive pressure surface 17a of the outer peripheral side portion 18b, and the negative pressure surface 17b of the outer peripheral side portion 18b, and the recess 20 is formed between the adjacent blades 12. Positions are different from each other.

加えて、変形例4は、複数の翼12の各々において、回転軸13の軸方向Xに対する凹部20の長さHと、回転軸13の軸方向Xに直行する断面において翼面17に沿って延びる凹部20の幅が、隣り合う翼12間で凹部20の位置が互いに異なる。このように全ての翼12において、凹部20の位置、長さH、幅がそれぞれことなることにより、隣り合う翼12間での翼ピッチ音の周波数の変化を大きくし、翼ピッチ音の周波数を効果的に分散させることで、翼ピッチ音による騒音が更に抑えられる。 In addition, in the modified example 4, in each of the plurality of blades 12, the length H of the recess 20 with respect to the axial direction X of the rotary shaft 13 and the cross section perpendicular to the axial direction X of the rotary shaft 13 along the blade surface 17. The widths of the extending recesses 20 differ from each other in the positions of the recesses 20 between the adjacent blades 12. In this way, the position, length H, and width of the recess 20 are different in all the blades 12, so that the change in the frequency of the blade pitch sound between the adjacent blades 12 is increased, and the frequency of the blade pitch sound is increased. By effectively dispersing, the noise caused by the wing pitch sound is further suppressed.

(変形例5)
図12は、実施例の多翼ファン6における複数の翼12の変形例5を示す平面図である。図12に示すように、複数の翼12の配列方向に隣り合う各翼12には、回転軸13の軸方向Xに直交する断面形状が同一の複数の凹部20が、回転軸13の軸方向Xに並んで形成されている。そして、複数の翼12の配列方向に隣り合う翼12同士において、回転軸13の軸方向Xに間隔をあけて並ぶ凹部20の個数が異なる。各翼12の凹部20の個数は、多翼ファン6の回転方向Rに沿って所定の周期で増減を繰り返すように変化するが、この構造に限定されず、不規則に変化していてもよい。変形例5では、隣り合う翼12同士において凹部20の個数が異なるので、例えば、図12中のE-E断面において、隣り合う翼12同士の翼12の断面形状が異なることにより、隣り合う翼12間で翼ピッチ音を分散させることができる。
(Modification 5)
FIG. 12 is a plan view showing a modification 5 of a plurality of blades 12 in the multi-blade fan 6 of the embodiment. As shown in FIG. 12, in each of the blades 12 adjacent to each other in the arrangement direction of the plurality of blades 12, a plurality of recesses 20 having the same cross-sectional shape orthogonal to the axial direction X of the rotating shaft 13 are provided in the axial direction of the rotating shaft 13. It is formed side by side with X. The number of recesses 20 arranged at intervals in the axial direction X of the rotating shaft 13 differs between the blades 12 adjacent to each other in the arrangement direction of the plurality of blades 12. The number of recesses 20 of each blade 12 changes so as to repeatedly increase and decrease in a predetermined cycle along the rotation direction R of the multi-blade fan 6, but the structure is not limited to this and may change irregularly. .. In the modified example 5, the number of recesses 20 is different between the adjacent blades 12, so that, for example, in the EE cross section in FIG. 12, the cross-sectional shapes of the blades 12 between the adjacent blades 12 are different, so that the adjacent blades are adjacent to each other. The wing pitch sound can be dispersed among the twelve.

(変形例6)
図13は、実施例の多翼ファン6における複数の翼12の変形例6を示す平面図である。図13に示すように、複数の翼12の配列方向に隣り合う翼12同士において、回転軸13の軸方向Xに直交する凹部20の断面形状、回転軸13の軸方向Xに並ぶ凹部20の個数がそれぞれ同一であり、回転軸13の軸方向Xにおける凹部20の位置が異なる。各翼12の凹部20の位置は、多翼ファン6の回転方向Rに沿って、回転軸13の軸方向Xにおける一方側へ向かって徐々にずれるが、この構造に限定されず、凹部20の位置が不規則に変化してもよい。変形例6では、隣り合う翼12同士において、回転軸13の軸方向Xに対する凹部20の位置が異なるので、例えば、図13中のG-G断面において、隣り合う翼12同士の翼12の断面形状が異なることにより、隣り合う翼12間で翼ピッチ音を分散させることができる。
(Modification 6)
FIG. 13 is a plan view showing a modification 6 of a plurality of blades 12 in the multi-blade fan 6 of the embodiment. As shown in FIG. 13, in the blades 12 adjacent to each other in the arrangement direction of the plurality of blades 12, the cross-sectional shape of the recesses 20 orthogonal to the axial direction X of the rotating shaft 13 and the recesses 20 arranged in the axial direction X of the rotating shaft 13 The number is the same, and the positions of the recesses 20 in the axial direction X of the rotating shaft 13 are different. The position of the recess 20 of each blade 12 gradually shifts toward one side in the axial direction X of the rotary shaft 13 along the rotation direction R of the multi-blade fan 6, but the position of the recess 20 is not limited to this structure. The position may change irregularly. In the modified example 6, the positions of the recesses 20 with respect to the axial direction X of the rotating shaft 13 are different between the adjacent blades 12, so that, for example, in the GG cross section in FIG. 13, the cross section of the blades 12 between the adjacent blades 12 is different. Due to the different shapes, the blade pitch sound can be dispersed among the adjacent blades 12.

(変形例7)
図14は、実施例の多翼ファン6における翼12の他の例を示す模式図である。図15は、実施例の多翼ファン6における複数の翼12の変形例7を示す断面図である。図14に示すように、翼12は、内周側部18aと外周側部18bに、凹部20(20F、20G)がそれぞれ形成されている。凹部20(20F、20G)は、回転軸13の軸方向Xにおける翼12の一部に形成されている。
(Modification 7)
FIG. 14 is a schematic diagram showing another example of the blade 12 in the multi-blade fan 6 of the embodiment. FIG. 15 is a cross-sectional view showing a modified example 7 of a plurality of blades 12 in the multi-blade fan 6 of the embodiment. As shown in FIG. 14, the wing 12 has recesses 20 (20F, 20G) formed in the inner peripheral side portion 18a and the outer peripheral side portion 18b, respectively. The recess 20 (20F, 20G) is formed in a part of the blade 12 in the axial direction X of the rotating shaft 13.

内周側部18aの凹部20Fの底面21aは、凹部20Fが形成された翼面17としての負圧面17bが湾曲する方向と同一方向に湾曲している。この凹部20Fの底面21aは、回転軸13の軸方向Xに直交する翼12の断面において、翼弦長Lの一端としての内周側部18aの先端から、凹部20Fが形成された負圧面17bまで滑らかに連続する1つの湾曲面として形成されている。また、凹部20Fは、正圧面17aと負圧面17bとに連続して、内周側部18aの先端を切り欠いて形成されており、凹部20Fが形成されることによって翼弦長Lが短くされている。 The bottom surface 21a of the recess 20F of the inner peripheral side portion 18a is curved in the same direction as the negative pressure surface 17b as the blade surface 17 on which the recess 20F is formed is curved. The bottom surface 21a of the recess 20F is a negative pressure surface 17b on which the recess 20F is formed from the tip of the inner peripheral side portion 18a as one end of the chord length L in the cross section of the blade 12 orthogonal to the axial direction X of the rotation shaft 13. It is formed as one curved surface that is smoothly continuous up to. Further, the recess 20F is formed by cutting out the tip of the inner peripheral side portion 18a in succession to the positive pressure surface 17a and the negative pressure surface 17b, and the chord length L is shortened by forming the recess 20F. ing.

同様に、外周側部18bの凹部20Gの底面21aは、凹部20Gが形成された正圧面17aが湾曲する方向と同一方向に湾曲している。この凹部20Gの底面21aは、回転軸13の軸方向Xに直交する翼12の断面において、翼弦長Lの一端としての外周側部18bの先端から、凹部20Gが形成された正圧面17aまで滑らかに連続する1つの湾曲面として形成されている。また、凹部20Gは、正圧面17aと負圧面17bとに連続して、外周側部18bの先端を切り欠いて形成されており、凹部20Gが形成されることによって翼弦長Lが短くされている。 Similarly, the bottom surface 21a of the recess 20G of the outer peripheral side portion 18b is curved in the same direction as the positive pressure surface 17a on which the recess 20G is formed is curved. The bottom surface 21a of the recess 20G is from the tip of the outer peripheral side portion 18b as one end of the chord length L to the positive pressure surface 17a on which the recess 20G is formed in the cross section of the blade 12 orthogonal to the axial direction X of the rotation shaft 13. It is formed as one smoothly continuous curved surface. Further, the recess 20G is formed by cutting out the tip of the outer peripheral side portion 18b in succession to the positive pressure surface 17a and the negative pressure surface 17b, and the chord length L is shortened by forming the recess 20G. There is.

上述のように1つの湾曲面として形成された底面21aは、凹部20(20F、20G)が回転軸18の軸方向Xにおける翼12の一部に形成されているので、翼12の負圧面17bの外観から凹部20(20F、20G)の存在を視認できる。 In the bottom surface 21a formed as one curved surface as described above, since the recess 20 (20F, 20G) is formed in a part of the blade 12 in the axial direction X of the rotating shaft 18, the negative pressure surface 17b of the blade 12 The presence of the recess 20 (20F, 20G) can be visually recognized from the appearance of.

また、凹部20Fの底面21aは、翼弦の中央よりも内周側部18a側の位置で負圧面17bに滑らかにつながっている。凹部20Gの底面21aは、翼弦の中央よりも外周側部18a側の位置で正圧面17aに滑らかにつながっている。なお、凹部20(20F、20G)の底面21aと翼面17がつながる位置は変形例7に限定されない。また、例えば、翼12の内周側部18aの先端面が円弧状の曲面を含むように形成される場合、凹部20Fの底面21aは、円弧状の曲面と交差するように形成されており、底面21aが翼面17と滑らかにつなげられている。 Further, the bottom surface 21a of the recess 20F is smoothly connected to the negative pressure surface 17b at a position on the inner peripheral side portion 18a side of the center of the chord. The bottom surface 21a of the recess 20G is smoothly connected to the positive pressure surface 17a at a position on the outer peripheral side portion 18a side of the center of the chord. The position where the bottom surface 21a of the recess 20 (20F, 20G) and the blade surface 17 are connected is not limited to the modification 7. Further, for example, when the tip surface of the inner peripheral side portion 18a of the blade 12 is formed so as to include an arcuate curved surface, the bottom surface 21a of the recess 20F is formed so as to intersect the arcuate curved surface. The bottom surface 21a is smoothly connected to the blade surface 17.

このように凹部20Fの底面21aが負圧面17bに滑らかに連続するように形成され、凹部20Gの底面21aが正圧面17aに滑らかに連続するように形成されることにより、凹部20F、20Gの底面21aに沿って翼面17を流れる気流に生じる渦を小さくし、翼12の下流側に生じる乱流が抑えられるので、翼面17に沿う気流に生じる圧力損失が抑えられ、多翼ファン6を駆動するモータ(図示せず)の消費電力の低減を図れる。言い換えると、翼12の翼面17に沿う気流の圧力損失を減少させることにより、多翼ファン6の風量を増やすことができる。 In this way, the bottom surface 21a of the recess 20F is formed so as to be smoothly continuous with the negative pressure surface 17b, and the bottom surface 21a of the recess 20G is formed so as to be smoothly continuous with the positive pressure surface 17a. Since the vortex generated in the airflow flowing along the blade surface 17 along the blade surface 17 is reduced and the turbulent flow generated on the downstream side of the blade 12 is suppressed, the pressure loss generated in the airflow along the blade surface 17 is suppressed, and the multi-blade fan 6 is operated. The power consumption of the driving motor (not shown) can be reduced. In other words, the air volume of the multi-blade fan 6 can be increased by reducing the pressure loss of the air flow along the blade surface 17 of the blade 12.

そして、図15に示すように、複数の翼12の配列方向に隣り合う2つの翼12同士は、上述のように形成される凹部20(20F、20G)の大きさである断面形状が異なることにより、翼弦長Lが互いに異なる。これにより、隣り合う翼12間で翼ピッチ音の周波数を変化させて、隣り合う翼12間で翼ピッチ音の周波数を分散させることができる。 As shown in FIG. 15, the two blades 12 adjacent to each other in the arrangement direction of the plurality of blades 12 have different cross-sectional shapes, which are the sizes of the recesses 20 (20F, 20G) formed as described above. Therefore, the chord lengths L are different from each other. As a result, the frequency of the blade pitch sound can be changed between the adjacent blades 12, and the frequency of the blade pitch sound can be dispersed among the adjacent blades 12.

翼12は、図14に破線で示す内周側部18a及び外周側部18bのように、凹部20G、20Fが形成される前の翼12の翼弦長Lの20%程度まで小さくされてもよい。翼12は、翼弦長Lの20%よりも小さい場合、隣り合う翼12間に適正な流路を確保できなくなり、隣り合う翼12間で乱流が生じて、翼12間の気流に圧力損失が発生するので好ましくない。 Even if the wing 12 is reduced to about 20% of the chord length L of the wing 12 before the recesses 20G and 20F are formed, as in the inner peripheral side portion 18a and the outer peripheral side portion 18b shown by the broken line in FIG. good. If the blade 12 is smaller than 20% of the chord length L, an appropriate flow path cannot be secured between the adjacent blades 12, turbulence occurs between the adjacent blades 12, and pressure is applied to the airflow between the blades 12. It is not preferable because it causes a loss.

(凹部の作用)
以上のように多翼ファン6の隣り合う翼12同士は、実施例、変形例1~7における凹部20のいずれかを有することにより、各翼12の断面形状が異なるので、各翼12の翼ピッチ音の周波数が変化する。これにより、隣り合う翼12同士において、翼ピッチ音の周波数を分散させることが可能になり、翼12の回転時に生じる翼ピッチ音による騒音が抑えられる。
(Action of recess)
As described above, the adjacent blades 12 of the multi-blade fan 6 have different cross-sectional shapes of each blade 12 due to having any of the recesses 20 in the embodiments 1 to 7, and therefore the blades of each blade 12 have different cross-sectional shapes. The frequency of the pitch sound changes. This makes it possible to disperse the frequency of the blade pitch sound among the adjacent blades 12, and suppress the noise caused by the blade pitch sound generated when the blades 12 rotate.

図16は、実施例の多翼ファン6における騒音レベルを説明するための図である。図16において、縦軸が、騒音レベル[dB]を示し、横軸が騒音の周波数[Hz]を示す。図16において、実施例の多翼ファン6を破線で示し、比較例の多翼ファンを実線で示す。 FIG. 16 is a diagram for explaining a noise level in the multi-blade fan 6 of the embodiment. In FIG. 16, the vertical axis indicates the noise level [dB], and the horizontal axis indicates the noise frequency [Hz]. In FIG. 16, the multi-blade fan 6 of the embodiment is shown by a broken line, and the multi-blade fan of the comparative example is shown by a solid line.

比較例の多翼ファンは、翼12が凹部20を有さず、複数の翼12の配列方向において翼12の断面形状が同一であり、翼12が等ピッチで配列される。図16に示すように、実施例の多翼ファン6は、凹部20を有する翼12の断面形状が、翼12の配列方向に隣り合う翼12同士で異なることで、隣り合う翼12間で翼ピッチ音の周波数を変化させて、隣り合う翼12間で翼ピッチ音の周波数を分散させることで、矢印F1で示す1次の周波数付近と、矢印F2で示す2次の周波数付近において、騒音レベルを低減できる。 In the multi-blade fan of the comparative example, the blade 12 does not have the recess 20, the cross-sectional shape of the blade 12 is the same in the arrangement direction of the plurality of blades 12, and the blades 12 are arranged at equal pitches. As shown in FIG. 16, in the multi-blade fan 6 of the embodiment, the cross-sectional shape of the blade 12 having the recess 20 is different between the blades 12 adjacent to each other in the arrangement direction of the blade 12, so that the blades 12 are adjacent to each other. By changing the frequency of the pitch sound and distributing the frequency of the blade pitch sound among the adjacent blades 12, the noise level is near the primary frequency indicated by the arrow F1 and near the secondary frequency indicated by the arrow F2. Can be reduced.

(翼の内外径比)
上述した多翼ファン6の複数の翼12は、図3に示すように、回転軸13の回転中心Oに対する翼12の内接円C1の直径(内径)をA、翼12の外接円C2の直径(外径)をBとしたとき、翼12の内外径比(A/B)が0.720以上、0.800以下である。このような翼12の内外径比(A/B)の場合に、実施例における凹部20によって、翼ピッチ音の周波数を制御することにより、凹部20が無い多翼ファンに比べて騒音を低減できる。
(Ratio of inner and outer diameters of wings)
As shown in FIG. 3, the plurality of blades 12 of the multi-blade fan 6 described above have a diameter (inner diameter) of the inscribed circle C1 of the blade 12 with respect to the rotation center O of the rotating shaft 13 as A, and the circumscribed circle C2 of the blade 12. When the diameter (outer diameter) is B, the inner / outer diameter ratio (A / B) of the blade 12 is 0.720 or more and 0.800 or less. In the case of such an inner / outer diameter ratio (A / B) of the blade 12, noise can be reduced as compared with a multi-blade fan having no recess 20 by controlling the frequency of the blade pitch sound by the recess 20 in the embodiment. ..

また、多翼ファン6の風量を増やすために翼12の内外径比(A/B)を拡大し、翼12の内外径比(A/B)が0.800を超える場合には、多翼ファン6を貫通するように翼12間を通過する風速が増加するので、騒音の悪化を引き起こすおそれがある。このような場合であっても、凹部20によって翼ピッチ音の周波数を制御することにより、騒音の悪化を回避しつつ風量を増やすことができる。 Further, the inner / outer diameter ratio (A / B) of the blade 12 is expanded in order to increase the air volume of the multi-blade fan 6, and when the inner / outer diameter ratio (A / B) of the blade 12 exceeds 0.800, the multi-blade Since the wind speed passing between the blades 12 increases so as to penetrate the fan 6, there is a risk of causing deterioration of noise. Even in such a case, by controlling the frequency of the blade pitch sound by the recess 20, the air volume can be increased while avoiding the deterioration of the noise.

(効果)
上述したように多翼ファン6の複数の翼12は、翼12の正圧面17a及び負圧面17bの少なくとも一方、かつ、翼12の内周側部18a及び外周側部18bの少なくとも一方に、翼12の厚み方向に対して窪む凹部20が回転軸13の軸方向Xに沿って形成された少なくとも2つの翼12を含む。複数の翼12の配列方向に隣り合う翼12同士は、回転軸13上でいずれかの翼12に凹部20が形成された位置において、回転軸13の軸方向Xと直交する断面形状が異なる。上述の少なくとも2つの翼12は、回転軸13の軸方向Xに対する凹部20の長さが互いに異なっている。これにより、複数の翼12において、隣り合う翼12の翼ピッチ音の周波数を変化させることで、隣り合う翼12間の翼ピッチ音の周波数を分散させることが可能になり、翼12の回転時に生じる翼ピッチ音による騒音を抑えることができる。また、翼12の翼面17において凹部20を形成する位置を変えることにより、翼12の断面形状を容易に異ならせることができるので、隣り合う翼12間で翼ピッチ音の周波数を容易に変化させることができる。
(effect)
As described above, the plurality of blades 12 of the multi-blade fan 6 are provided on at least one of the positive pressure surface 17a and the negative pressure surface 17b of the blade 12 and on at least one of the inner peripheral side portion 18a and the outer peripheral side portion 18b of the blade 12. The recess 20 recessed with respect to the thickness direction of 12 includes at least two blades 12 formed along the axial direction X of the rotating shaft 13. The blades 12 adjacent to each other in the arrangement direction of the plurality of blades 12 have different cross-sectional shapes orthogonal to the axial direction X of the rotating shaft 13 at the position where the recess 20 is formed in any of the blades 12 on the rotating shaft 13. The above-mentioned at least two blades 12 have different lengths of the recesses 20 with respect to the axial direction X of the rotating shaft 13. This makes it possible to disperse the frequency of the blade pitch sound between the adjacent blades 12 by changing the frequency of the blade pitch sound of the adjacent blades 12 in the plurality of blades 12, and when the blades 12 rotate. It is possible to suppress the noise caused by the generated wing pitch sound. Further, since the cross-sectional shape of the blade 12 can be easily changed by changing the position where the recess 20 is formed on the blade surface 17 of the blade 12, the frequency of the blade pitch sound can be easily changed between the adjacent blades 12. Can be made to.

また、隣り合う翼12同士において、凹部20の長さHを異ならせることにより、隣り合う翼12間で翼ピッチ音の周波数が変化するので、隣り合う翼12間の翼ピッチ音の周波数を分散させて翼ピッチ音による騒音を抑えることができる。 Further, since the frequency of the blade pitch sound changes between the adjacent blades 12 by making the length H of the recess 20 different between the adjacent blades 12, the frequency of the blade pitch sound between the adjacent blades 12 is dispersed. It is possible to suppress the noise caused by the wing pitch sound.

また、多翼ファン6において、複数の翼12の配列方向に隣り合う2つの翼12の各凹部20は、正圧面17a、負圧面17b、内周側部18a及び外周側部18bのいずれかの位置(凹部20の形成パターン)が互いに異なる。このように、隣り合う翼12同士において、凹部20の形成パターンを変えることで各翼12の断面形状を容易に異ならせることが可能である。したがって、隣り合う翼12間で翼ピッチ音の周波数を容易に変えて、隣り合う翼12間の翼ピッチ音の周波数を分散させることができる。 Further, in the multi-blade fan 6, each recess 20 of the two blades 12 adjacent to each other in the arrangement direction of the plurality of blades 12 is any one of a positive pressure surface 17a, a negative pressure surface 17b, an inner peripheral side portion 18a, and an outer peripheral side portion 18b. The positions (formation patterns of the recesses 20) are different from each other. In this way, it is possible to easily change the cross-sectional shape of each blade 12 by changing the formation pattern of the recess 20 between the adjacent blades 12. Therefore, the frequency of the blade pitch sound between the adjacent blades 12 can be easily changed, and the frequency of the blade pitch sound between the adjacent blades 12 can be dispersed.

また、多翼ファン6において、複数の翼12の配列方向に隣り合う2つの翼12は、回転軸13の軸方向Xに直交する翼12の断面において、凹部20の個数が互いに異なる。このように、隣り合う翼12同士において、凹部20の個数を変えることで各翼12の断面形状を容易に異ならせることが可能である。したがって、隣り合う翼12間で翼ピッチ音の周波数を容易に変えて、隣り合う翼12間の翼ピッチ音の周波数を分散させることができる。 Further, in the multi-blade fan 6, the two blades 12 adjacent to each other in the arrangement direction of the plurality of blades 12 have different numbers of recesses 20 in the cross section of the blade 12 orthogonal to the axial direction X of the rotation axis 13. In this way, it is possible to easily change the cross-sectional shape of each of the adjacent blades 12 by changing the number of the recesses 20. Therefore, the frequency of the blade pitch sound between the adjacent blades 12 can be easily changed, and the frequency of the blade pitch sound between the adjacent blades 12 can be dispersed.

また、多翼ファン6において、複数の翼12の配列方向に隣り合う2つの翼12は、回転軸13の軸方向Xに直交する翼12の断面における凹部20の断面形状が互いに異なる。このように、隣り合う翼12同士において、凹部20の断面形状を変えることで各翼12の断面形状を容易に異ならせることが可能である。したがって、隣り合う翼12間で翼ピッチ音の周波数を容易に変えて、隣り合う翼12間の翼ピッチ音の周波数を分散させることができる。 Further, in the multi-blade fan 6, the two blades 12 adjacent to each other in the arrangement direction of the plurality of blades 12 have different cross-sectional shapes of the recesses 20 in the cross-section of the blades 12 orthogonal to the axial direction X of the rotation axis 13. In this way, it is possible to easily change the cross-sectional shape of each of the adjacent blades 12 by changing the cross-sectional shape of the recess 20. Therefore, the frequency of the blade pitch sound between the adjacent blades 12 can be easily changed, and the frequency of the blade pitch sound between the adjacent blades 12 can be dispersed.

また、多翼ファン6において、複数の翼12の配列方向に隣り合う2つの翼12は、回転軸13の軸方向Xに並ぶ凹部20の個数が互いに異なる。このように、隣り合う翼12同士において、回転軸13の軸方向Xに並ぶ凹部20の個数を変えることで各翼12の断面形状を容易に異ならせることが可能である。したがって、隣り合う翼12間で翼ピッチ音の周波数を容易に変えて、隣り合う翼12間の翼ピッチ音の周波数を分散させることができる。 Further, in the multi-blade fan 6, the two blades 12 adjacent to each other in the arrangement direction of the plurality of blades 12 have different numbers of recesses 20 arranged in the axial direction X of the rotating shaft 13. In this way, it is possible to easily change the cross-sectional shape of each of the adjacent blades 12 by changing the number of the recesses 20 arranged in the axial direction X of the rotating shaft 13. Therefore, the frequency of the blade pitch sound between the adjacent blades 12 can be easily changed, and the frequency of the blade pitch sound between the adjacent blades 12 can be dispersed.

また、多翼ファン6において、翼12の凹部20は、回転軸13の軸方向Xにおける翼12の一部に形成されている。凹部20(20F、20G)の底面21aは、凹部20(20F、20G)が形成された翼面17が湾曲する方向と同一方向に湾曲し、この底面21aが、回転軸13の軸方向Xに直交する翼12の断面において、翼弦長Lの一端から、凹部20(20F、20G)が形成された翼面17まで連続する1つの湾曲面として形成されている。これにより、凹部20F、20Gの底面21aに沿って翼面17を流れる気流に生じる渦を小さくし、翼12の下流側に生じる乱流が抑えられるので、翼面17に沿う気流に生じる圧力損失が抑えられ、多翼ファン6を駆動するモータ(図示せず)の消費電力の低減を図れる。このため、翼12の翼面17に沿う気流の圧力損失を減少させることにより、多翼ファン6の風量を増やすことができる。 Further, in the multi-blade fan 6, the recess 20 of the blade 12 is formed in a part of the blade 12 in the axial direction X of the rotating shaft 13. The bottom surface 21a of the recess 20 (20F, 20G) is curved in the same direction as the blade surface 17 on which the recess 20 (20F, 20G) is formed is curved, and the bottom surface 21a is in the axial direction X of the rotation shaft 13. In the cross section of the orthogonal blade 12, it is formed as one continuous curved surface from one end of the chord length L to the blade surface 17 on which the recess 20 (20F, 20G) is formed. As a result, the vortex generated in the airflow flowing along the bottom surface 21a of the recesses 20F and 20G is reduced, and the turbulence generated on the downstream side of the blade 12 is suppressed, so that the pressure loss generated in the airflow along the blade surface 17 is suppressed. Is suppressed, and the power consumption of the motor (not shown) for driving the multi-blade fan 6 can be reduced. Therefore, the air volume of the multi-blade fan 6 can be increased by reducing the pressure loss of the air flow along the blade surface 17 of the blade 12.

また、多翼ファン6において、翼12の凹部20は、正圧面17aと負圧面17bとに連続して、内周側部18aと外周側部18bのいずれかの先端を切り欠いて形成される。これにより、隣り合う翼12同士において、翼弦長Lを変えることで各翼12の断面形状を容易に異ならせることが可能である。したがって、隣り合う翼12間で翼ピッチ音の周波数を容易に変えることができる。 Further, in the multi-blade fan 6, the concave portion 20 of the blade 12 is formed by cutting out the tip of either the inner peripheral side portion 18a or the outer peripheral side portion 18b in succession to the positive pressure surface 17a and the negative pressure surface 17b. .. As a result, it is possible to easily change the cross-sectional shape of each of the adjacent blades 12 by changing the chord length L. Therefore, the frequency of the blade pitch sound can be easily changed between the adjacent blades 12.

また、多翼ファン6において、複数の翼12は、回転軸13の回転中心Oに対する翼12の内接円C1の直径をA、翼12の外接円C2の直径をBとしたとき、翼12の内外径比(A/B)が0.720以上、0.800以下である。これにより、このような翼12の内外径比(A/B)の場合に、凹部20によって翼ピッチ音の周波数を制御することにより、凹部20が無い多翼ファンに比べて騒音を低減できる。 Further, in the multi-blade fan 6, the plurality of blades 12 have the blade 12 when the diameter of the inscribed circle C1 of the blade 12 with respect to the rotation center O of the rotation shaft 13 is A and the diameter of the circumscribed circle C2 of the blade 12 is B. The inner-outer diameter ratio (A / B) is 0.720 or more and 0.800 or less. As a result, in the case of such an inner / outer diameter ratio (A / B) of the blade 12, noise can be reduced as compared with a multi-blade fan having no recess 20 by controlling the frequency of the blade pitch sound by the recess 20.

また、多翼ファン6において、複数の翼12は、回転軸13の回転中心Oに対する翼12の内接円C1の直径をA、外接円C2の直径をBとしたとき、翼12の内外径比(A/B)が0.800を超える。翼12の内外径比(A/B)が0.800を超える場合には、多翼ファン6を貫通するように翼12間を通過する風速が増加して騒音の悪化を引き起こすおそれがあるが、凹部20によって翼ピッチ音の周波数を制御することで、騒音の悪化を回避しつつ風量を増やすことができる。 Further, in the multi-blade fan 6, the plurality of blades 12 have an inner / outer diameter of the blade 12 when the diameter of the inscribed circle C1 of the blade 12 with respect to the rotation center O of the rotation shaft 13 is A and the diameter of the circumscribed circle C2 is B. The ratio (A / B) exceeds 0.800. When the inner / outer diameter ratio (A / B) of the blade 12 exceeds 0.800, the wind speed passing between the blades 12 so as to penetrate the multi-blade fan 6 may increase, which may cause deterioration of noise. By controlling the frequency of the blade pitch sound by the recess 20, the air volume can be increased while avoiding the deterioration of noise.

なお、本願の開示する多翼ファンは、実施例において貫流ファンとして用いられたが、貫流ファンに限定されない。多翼ファンは、例えば、シロッコファン等の遠心ファンに適用されてもよく、本実施例と同様の効果が得られる。 The multi-blade fan disclosed in the present application is used as a once-through fan in the examples, but is not limited to the once-through fan. The multi-blade fan may be applied to a centrifugal fan such as a sirocco fan, for example, and the same effect as that of the present embodiment can be obtained.

1 室内機
5 熱交換器
6 多翼ファン
12 翼
13 回転軸
17 翼面
17a 正圧面
17b 負圧面
18a 内周側部
18b 外周側部
20(20A~20G) 凹部
21a 底面
21b 端面
A、B 直径
(A/B) 内外径比
C1 内接円
C2 外接円
H 長さ
L 翼弦長
X 軸方向
1 Indoor unit 5 Heat exchanger 6 Multi-blade fan 12 Wings 13 Rotating shaft 17 Wing surface 17a Positive pressure surface 17b Negative pressure surface 18a Inner peripheral side 18b Outer peripheral side 20 (20A to 20G) Recess 21a Bottom surface 21b End surface A, B diameter ( A / B) Inner / outer diameter ratio C1 Inscribed circle C2 Circumscribed circle H Length L Chord length X Axial direction

Claims (10)

回転軸の軸方向に沿って延ばされると共に、前記回転軸まわりに所定のピッチで配列された複数の翼を備える貫流ファンであって、
前記複数の翼は、前記翼の翼面である正圧面及び負圧面の少なくとも一方、かつ、前記翼の内周側部及び外周側部の少なくとも一方に、前記翼の厚み方向に対して窪む凹部が回転軸の軸方向に沿って形成された少なくとも2つの翼を含み、
前記複数の翼の配列方向に隣り合う翼同士は、前記回転軸上でいずれかの翼に前記凹部が形成された位置において、前記回転軸と直交する断面形状が異なり、
前記少なくとも2つの翼は、前記回転軸の軸方向に対する前記凹部の長さが互いに異なっている、多翼ファン。
A once-through fan that is extended along the axial direction of the axis of rotation and has a plurality of blades arranged at a predetermined pitch around the axis of rotation.
The plurality of blades are recessed in at least one of a positive pressure surface and a negative pressure surface, which are the blade surfaces of the blade, and at least one of the inner peripheral side portion and the outer peripheral side portion of the blade in the thickness direction of the blade. The recess contains at least two wings formed along the axial direction of the axis of rotation, including at least two wings.
The blades adjacent to each other in the arrangement direction of the plurality of blades have different cross-sectional shapes orthogonal to the rotation axis at the position where the recess is formed in any of the blades on the rotation axis.
The at least two blades are multi-blade fans in which the lengths of the recesses with respect to the axial direction of the rotation axis are different from each other.
前記2つの翼は、前記凹部を有し、
前記2つの翼の各凹部は、前記正圧面、前記負圧面、前記内周側部及び前記外周側部のいずれかの位置が互いに異なる、
請求項1に記載の多翼ファン。
The two wings have the recess and
The concave portions of the two blades have different positions of the positive pressure surface, the negative pressure surface, the inner peripheral side portion, and the outer peripheral side portion.
The multi-wing fan according to claim 1.
前記2つの翼は、前記回転軸の軸方向に直交する翼の断面において、前記凹部の個数が互いに異なる、
請求項1または2に記載の多翼ファン。
The two blades have different numbers of recesses in the cross section of the blade orthogonal to the axial direction of the rotation axis.
The multi-wing fan according to claim 1 or 2.
前記2つの翼は、前記回転軸の軸方向に直交する翼の端面における前記凹部の断面形状が互いに異なる、
請求項1~3のいずれか1項に記載の多翼ファン。
The two blades have different cross-sectional shapes of the recesses on the end faces of the blades orthogonal to the axial direction of the rotation axis.
The multi-wing fan according to any one of claims 1 to 3.
前記2つの翼は、前記回転軸の軸方向に並ぶ前記凹部の個数が互いに異なる、
請求項1~4のいずれか1項に記載の多翼ファン。
The two blades have different numbers of recesses arranged in the axial direction of the rotation axis.
The multi-wing fan according to any one of claims 1 to 4.
前記凹部は、前記回転軸の軸方向における翼の一部に形成され、
前記凹部の底面は、前記凹部が形成された翼面が湾曲する方向と同一方向に湾曲し、当該底面が、前記回転軸の軸方向に直交する翼の断面において、翼弦長の一端から、前記凹部が形成された前記翼面まで連続する1つの湾曲面として形成されている、
請求項1~5のいずれか1項に記載の多翼ファン。
The recess is formed in a part of the wing in the axial direction of the rotation axis.
The bottom surface of the recess is curved in the same direction as the blade surface on which the recess is formed is curved, and the bottom surface is formed from one end of the chord length in the cross section of the blade orthogonal to the axial direction of the rotation axis. It is formed as one curved surface continuous to the blade surface on which the recess is formed.
The multi-wing fan according to any one of claims 1 to 5.
前記凹部は、前記正圧面と前記負圧面とに連続して、前記内周側部と前記外周側部のいずれかの先端を切り欠いて形成される、
請求項1~6のいずれか1項に記載の多翼ファン。
The recess is formed by cutting out the tip of either the inner peripheral side portion or the outer peripheral side portion so as to be continuous with the positive pressure surface and the negative pressure surface.
The multi-wing fan according to any one of claims 1 to 6.
前記複数の翼は、前記回転軸の中心に対する翼の内接円の直径をA、翼の外接円の直径をBとしたとき、翼の内外径比(A/B)が0.720以上、0.800以下である、
請求項1~7のいずれか1項に記載の多翼ファン。
When the diameter of the inscribed circle of the blade with respect to the center of the rotation axis is A and the diameter of the circumscribed circle of the blade is B, the plurality of blades have an inner / outer diameter ratio (A / B) of 0.720 or more. It is 0.800 or less,
The multi-wing fan according to any one of claims 1 to 7.
前記複数の翼は、前記回転軸の中心に対する翼の内接円の直径をA、外接円の直径をBとしたとき、翼の内外径比(A/B)が0.800を超える、
請求項1~7のいずれか1項に記載の多翼ファン。
When the diameter of the inscribed circle of the blade with respect to the center of the rotation axis is A and the diameter of the circumscribed circle is B, the inner / outer diameter ratio (A / B) of the plurality of blades exceeds 0.800.
The multi-wing fan according to any one of claims 1 to 7.
熱交換器と、
前記熱交換器を通過した空気が流入する、請求項1~9のいずれか1項に記載の多翼ファンと、
を備える、室内機。
With a heat exchanger,
The multi-blade fan according to any one of claims 1 to 9, wherein air that has passed through the heat exchanger flows into the fan.
Equipped with an indoor unit.
JP2020215475A 2020-12-24 2020-12-24 Multiblade fan and indoor unit Pending JP2022101088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020215475A JP2022101088A (en) 2020-12-24 2020-12-24 Multiblade fan and indoor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020215475A JP2022101088A (en) 2020-12-24 2020-12-24 Multiblade fan and indoor unit

Publications (1)

Publication Number Publication Date
JP2022101088A true JP2022101088A (en) 2022-07-06

Family

ID=82270971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020215475A Pending JP2022101088A (en) 2020-12-24 2020-12-24 Multiblade fan and indoor unit

Country Status (1)

Country Link
JP (1) JP2022101088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048769A1 (en) * 2022-09-02 2024-03-07 三菱重工サーマルシステムズ株式会社 Impeller, blower, and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048769A1 (en) * 2022-09-02 2024-03-07 三菱重工サーマルシステムズ株式会社 Impeller, blower, and air conditioner

Similar Documents

Publication Publication Date Title
JP4432865B2 (en) Blower impeller and air conditioner using the same
US5064346A (en) Impeller of multiblade blower
JP4973249B2 (en) Multi-wing fan
JP4998530B2 (en) Cross-flow fan, blower and air conditioner
WO2009139422A1 (en) Centrifugal fan
JP2009185803A (en) Propeller fan
EP2549114B1 (en) Cross-flow fan and air conditioner
CN107850083A (en) Pressure fan and the air-conditioning device for being equipped with the pressure fan
JP2011069320A5 (en)
JP2009203897A (en) Multi-blade blower
JP4687675B2 (en) Cross-flow blower and air conditioner
JP4697132B2 (en) Air conditioner
WO2023015931A1 (en) Axial flow wind wheel, air conditioner outdoor unit, and air conditioner
JP2022101088A (en) Multiblade fan and indoor unit
JP4109936B2 (en) Air conditioner
JP3918207B2 (en) Air conditioner
JP2008223760A (en) Impeller for blower
JP2005016315A (en) Centrifugal fan and its application
CN214742327U (en) Impeller comprising partially stepped blades
JP2011099408A (en) Cross-flow fan, blower, and air conditioner
WO2019035153A1 (en) Impeller, fan, and air conditioning device
JP2006077631A (en) Impeller for centrifugal blower
WO2022191034A1 (en) Propeller fan and refrigeration device
JPH0742692A (en) Cross flow fan and air conditioner using this fan
JP7524776B2 (en) Multi-blade fan and indoor unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240819