JP2022099627A - Vehicular air conditioner - Google Patents

Vehicular air conditioner Download PDF

Info

Publication number
JP2022099627A
JP2022099627A JP2020213493A JP2020213493A JP2022099627A JP 2022099627 A JP2022099627 A JP 2022099627A JP 2020213493 A JP2020213493 A JP 2020213493A JP 2020213493 A JP2020213493 A JP 2020213493A JP 2022099627 A JP2022099627 A JP 2022099627A
Authority
JP
Japan
Prior art keywords
temperature
target
refrigerant
heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020213493A
Other languages
Japanese (ja)
Inventor
耕平 山下
Kohei Yamashita
竜 宮腰
Tatsu Miyakoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Automotive Climate Systems Corp
Original Assignee
Sanden Automotive Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Automotive Climate Systems Corp filed Critical Sanden Automotive Climate Systems Corp
Priority to JP2020213493A priority Critical patent/JP2022099627A/en
Priority to CN202180083284.3A priority patent/CN116601022A/en
Priority to DE112021005440.6T priority patent/DE112021005440T5/en
Priority to US18/265,577 priority patent/US20240025231A1/en
Priority to PCT/JP2021/042523 priority patent/WO2022137925A1/en
Publication of JP2022099627A publication Critical patent/JP2022099627A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature

Abstract

To suppress deterioration of a battery by sufficiently cooling the battery even during an operation in an air-conditioning priority mode of prioritizing air-conditioning in a cabin.SOLUTION: A vehicular air conditioner includes: a refrigerant circuit having a compressor compressing a refrigerant, a heat absorber absorbing heat from air to be supplied into a cabin and a temperature-controlled object heat exchanger; an apparatus temperature control circuit connected to the refrigerant circuit via the temperature-controlled object heat exchanger and controlling a temperature of a temperature-controlled object mounted to a vehicle by using the temperature-controlled object heat exchanger; and a control device controlling the refrigerant circuit and the apparatus temperature control circuit. During an operation for simultaneously performing air-conditioning in the cabin and cooling of the temperature-controlled object in an air-conditioning priority mode of prioritizing air-conditioning in the cabin, the control device corrects a target heat absorber temperature of the heat absorber to a target heat absorber temperature correction value on the basis of the temperature of the temperature-controlled object.SELECTED DRAWING: Figure 1

Description

本発明は、車両に適用される車両用空調装置であって、特に、車両に搭載されたバッテリ冷却と車室内の空調とを同時に行うことができる車両用空調装置に関する。 The present invention relates to a vehicle air conditioner applied to a vehicle, and more particularly to a vehicle air conditioner capable of simultaneously cooling a battery mounted on the vehicle and air-conditioning the interior of the vehicle.

従来、車両に適用される空気調和装置では、圧縮機、室内熱交換器(冷房時は蒸発器、暖房時は凝縮器)、室外熱交換器(冷房時は凝縮器、暖房時は蒸発器)、及び膨張弁が接続された冷媒回路を備え、室内熱交換器において冷媒と熱交換した空気を車室内に供給して車室内の空調を行っている。 Conventionally, air conditioners applied to vehicles include compressors, indoor heat exchangers (evaporators during cooling, condensers during heating), and outdoor heat exchangers (condenser during cooling, evaporators during heating). , And a refrigerant circuit to which an expansion valve is connected is provided, and air that has exchanged heat with the refrigerant in the indoor heat exchanger is supplied to the passenger compartment to air-condition the passenger compartment.

ところで、近年、車両に搭載された走行用バッテリから供給される電力によって走行用モータを駆動するハイブリッド自動車や電気自動車等の車両が普及している。走行用バッテリは、車両の走行継続及び急速充電等の充放電によって熱を放出して高温となる場合があり、高温下で使用が継続されるとバッテリ性能の低下や劣化を招く。
このため、車両用空調装置において、車室内の空調を行うと共に走行用バッテリを冷却するものが知られている。
By the way, in recent years, vehicles such as hybrid vehicles and electric vehicles, in which a traveling motor is driven by electric power supplied from a traveling battery mounted on the vehicle, have become widespread. The traveling battery may release heat to a high temperature due to continuous running of the vehicle and charge / discharge such as quick charging, and if the use is continued under a high temperature, the battery performance is deteriorated or deteriorated.
For this reason, there are known vehicle air conditioners that air-condition the interior of a vehicle and cool a traveling battery.

例えば、特許文献1の車両用空調装置では、冷媒回路に設けられる第1蒸発器とは別にバッテリ冷却用の第2蒸発器を設け、冷媒回路を循環する冷媒を第2蒸発器に循環させて熱媒体と熱交換させると共に、熱交換した熱媒体をバッテリに循環させることで、バッテリを冷却することができるようにしている。そして、空調とバッテリ冷却とを同時に行う場合には、第2蒸発器の冷媒上流側に設けられた第2膨張弁の開度を、第1蒸発器や冷媒の温度などに基づいて制御する第1蒸発器優先制御(車室内の空調温度を優先)と、第2蒸発器の冷媒状態に基づいて制御する第2蒸発器優先制御(バッテリ冷却を優先)とを適宜切り変えて制御している。 For example, in the vehicle air conditioner of Patent Document 1, a second evaporator for cooling the battery is provided separately from the first evaporator provided in the refrigerant circuit, and the refrigerant circulating in the refrigerant circuit is circulated to the second evaporator. The battery can be cooled by exchanging heat with the heat medium and circulating the heat exchanged heat medium through the battery. When air conditioning and battery cooling are performed at the same time, the opening degree of the second expansion valve provided on the upstream side of the refrigerant of the second evaporator is controlled based on the temperature of the first evaporator and the refrigerant. 1 Evaporator priority control (priority is given to the air conditioning temperature in the vehicle interior) and second evaporator priority control (priority is given to battery cooling) that is controlled based on the refrigerant state of the second evaporator is appropriately switched and controlled. ..

特開2019-209938号公報Japanese Unexamined Patent Publication No. 2019-209938

上述した特許文献1の車両用空調装置において、第1蒸発器優先制御による運転中にバッテリの温度が上昇した場合には、バッテリ冷却を優先させるべく第2蒸発器優先制御又はバッテリ冷却単独運転に切り替え、第2蒸発器優先制御による運転中に車室内が冷却不足となった場合には、車室内の温度を優先させるべく第1蒸発器優先制御に切り替えている。このような制御では、バッテリや車室内の温度変化に従って、第1蒸発器優先制御と第2蒸発器優先制御とを逐次切り替えるので制御が煩雑になる。また、第2蒸発器優先制御から第1蒸発器優先制御に切り替えた場合には、切り替え前の優先冷却対象であるバッテリの冷却目標が達成できず、バッテリが十分に冷却されない場合がある。 In the vehicle air conditioner of Patent Document 1 described above, when the temperature of the battery rises during the operation by the first evaporator priority control, the second evaporator priority control or the battery cooling independent operation is performed in order to give priority to the battery cooling. If the vehicle interior is insufficiently cooled during operation by switching and the second evaporator priority control, the first evaporator priority control is switched to give priority to the temperature inside the vehicle interior. In such control, the control is complicated because the first evaporator priority control and the second evaporator priority control are sequentially switched according to the temperature change in the battery or the vehicle interior. Further, when the second evaporator priority control is switched to the first evaporator priority control, the cooling target of the battery which is the priority cooling target before the switching may not be achieved, and the battery may not be sufficiently cooled.

本発明は、このような事情に鑑みてなされたものであり、車室内の空調とバッテリ冷却を両立させ、車室内の空調を優先させる空調優先モードによる運転中においてもバッテリを十分に冷却することによりバッテリの劣化を抑制すること、などを課題としている。 The present invention has been made in view of such circumstances, and the present invention is to achieve both air conditioning in the vehicle interior and battery cooling, and to sufficiently cool the battery even during operation in the air conditioning priority mode in which the air conditioning in the vehicle interior is prioritized. The problem is to suppress the deterioration of the battery.

本発明は、冷媒を圧縮する圧縮機、車室内に供給する空気から吸熱する吸熱器、被温調対象熱交換器、を含む冷媒回路と、前記冷媒回路と前記被温調対象熱交換器を介して接続され、車両に搭載される被温調対象の温度を前記被温調対象熱交換器により調整する機器温度調整回路と、前記冷媒回路及び前記機器温度調整回路を制御する制御装置を備え、
前記制御装置は、前記車室内の空調を優先させる空調優先モードによって前記車室内の空調と前記被温調対象の冷却を同時に行う運転時において、前記被温調対象の温度に基づいて、前記吸熱器の目標吸熱器温度を補正する、車両用空調装置を提供する。
The present invention includes a refrigerant circuit including a compressor for compressing a refrigerant, a heat absorber that absorbs heat from air supplied to the vehicle interior, and a heat exchanger subject to temperature control, and the refrigerant circuit and the heat exchanger subject to temperature control. It is provided with an equipment temperature adjustment circuit that is connected via the device and adjusts the temperature of the object to be temperature-controlled mounted on the vehicle by the heat exchanger to be temperature-controlled, and a control device that controls the refrigerant circuit and the equipment temperature adjustment circuit. ,
The control device absorbs heat based on the temperature of the temperature-controlled object during operation in which the air-conditioning of the vehicle interior and the cooling of the temperature-controlled object are simultaneously performed by the air-conditioning priority mode that prioritizes the air-conditioning of the vehicle interior. To provide a vehicle air conditioner that corrects the target heat absorber temperature of the vessel.

本発明によれば、車室内の空調を優先させる空調優先モードによる運転中においても、被温調対象の温度を適切に維持することができる。例えば、被温調対象としてのバッテリを十分に冷却することによりバッテリの劣化を抑制することができる。 According to the present invention, it is possible to appropriately maintain the temperature of the object to be temperature-controlled even during operation in the air-conditioning priority mode in which the air-conditioning in the vehicle interior is prioritized. For example, deterioration of the battery can be suppressed by sufficiently cooling the battery as the object to be temperature-controlled.

本発明の実施形態に係る車両用空調装置の概略構成及び冷媒の流れを示す図である。It is a figure which shows the schematic structure of the air conditioner for a vehicle which concerns on embodiment of this invention, and the flow of a refrigerant. 本発明の実施形態に係る車両用空調装置の制御装置としての空調コントローラの概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the air-conditioning controller as the control device of the air-conditioning apparatus for vehicles which concerns on embodiment of this invention. 参考例に係る車両用空調装置の空調コントローラにおける圧縮機の目標回転数TGNCcを算出する制御ブロック図である。It is a control block diagram which calculates the target rotation speed TGNCc of the compressor in the air-conditioning controller of the air-conditioning apparatus for a vehicle which concerns on a reference example. 参考例に係る空調コントローラにおけるチラー膨張弁の開閉制御のブロック図である。It is a block diagram of opening / closing control of a chiller expansion valve in an air conditioning controller which concerns on a reference example. 、参考例に係る車両用空調装置において、圧縮機の回転数、吸熱器温度Te、チラー水温Tw、チラー膨張弁、室内膨張弁の動作を示すタイミングチャートである。It is a timing chart showing the operation of the compressor rotation speed, the heat absorber temperature Te, the chiller water temperature Tw, the chiller expansion valve, and the indoor expansion valve in the vehicle air conditioner according to the reference example. 本発明の実施形態に係る車両用空調装置の空調コントローラにおける目標吸熱器温度TEOの下げ量TEO_PCを算出する制御ブロック図である。It is a control block diagram which calculates the reduction amount TEO_PC of the target heat absorber temperature TEO in the air-conditioning controller of the vehicle air-conditioning apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る車両用空調装置の空調コントローラにおける目標吸熱器温度補正値TEO2を算出する制御ブロック図である。It is a control block diagram which calculates the target heat absorber temperature correction value TEO2 in the air-conditioning controller of the vehicle air-conditioning apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る車両用空調装置の空調コントローラにおける目標圧縮機回転数TGNCcを算出する制御ブロック図である。It is a control block diagram which calculates the target compressor rotation speed TGNCc in the air-conditioning controller of the air-conditioning apparatus for vehicles which concerns on embodiment of this invention. 本発明の実施形態に係る車両用空調装置において、圧縮機の回転数、吸熱器温度Te、チラー水温Tw、チラー膨張弁、室内膨張弁の動作を示すタイミングチャートである。It is a timing chart which shows the operation of the compressor rotation speed, the heat absorber temperature Te, the chiller water temperature Tw, the chiller expansion valve, and the indoor expansion valve in the vehicle air conditioner according to the embodiment of the present invention. 本発明の実施形態に係る車両用空調装置の空調コントローラによる目標吸熱器温度補正値TEO2及び目標圧縮機回転数TGNCcの算出処理に関するフローチャートである。It is a flowchart about the calculation process of the target heat absorber temperature correction value TEO2 and the target compressor rotation speed TGNCc by the air conditioning controller of the vehicle air conditioner according to the embodiment of the present invention.

以下、本発明を実施するための形態について、図面を参照しつつ詳細に説明する。以下の説明において、同一の符号は同一の機能の部位を示しており、各図における重複説明は適宜省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the following description, the same reference numerals indicate parts having the same function, and duplicate description in each figure will be omitted as appropriate.

図1は、本発明の実施形態に係る車両用空調装置1の概略構成を示す。車両用空調装置1は、例えば、エンジン(内燃機関)が搭載されていない電気自動車(EV)やエンジンと走行用の電動モータを供用する所謂ハイブリッド自動車などの車両に適用することができる。このような車両は、バッテリ55(例えば、リチウム電池)が搭載され、外部電源からバッテリ55に充電された電力を、走行用モータ(電動モータ)を含むモータユニット65に供給することで駆動し、走行する。車両用空調装置1も、バッテリ55から給電されて駆動される。 FIG. 1 shows a schematic configuration of a vehicle air conditioner 1 according to an embodiment of the present invention. The vehicle air conditioner 1 can be applied to a vehicle such as an electric vehicle (EV) in which an engine (internal engine) is not mounted or a so-called hybrid vehicle in which an engine and an electric motor for traveling are used. Such a vehicle is equipped with a battery 55 (for example, a lithium battery) and is driven by supplying electric power charged in the battery 55 from an external power source to a motor unit 65 including a traveling motor (electric motor). Run. The vehicle air conditioner 1 is also driven by being supplied with power from the battery 55.

車両用空調装置1は、ヒートポンプ運転を行うための冷媒回路Rと、バッテリ55やモータユニット65等の被温調対象の温度を調整する機器温度調整回路61とを備えている。機器温度調整回路61は、冷媒回路Rに対して後述する冷媒-熱媒体熱交換器64(被温調対象熱交換器)を介して熱交換可能に接続される。車両用空調装置1は、冷媒回路Rを用いたヒートポンプ運転により暖房運転や冷房運転等の空調運転を含む各種運転モードを選択的に実行することで、車室内の空調及びバッテリ55やモータユニット65等の被温調対象の温調を行う。 The vehicle air conditioner 1 includes a refrigerant circuit R for operating a heat pump and an equipment temperature adjusting circuit 61 for adjusting the temperature of a temperature-controlled object such as a battery 55 and a motor unit 65. The equipment temperature adjusting circuit 61 is connected to the refrigerant circuit R so as to be heat exchangeable via a refrigerant-heat medium heat exchanger 64 (heat exchanger subject to temperature control), which will be described later. The vehicle air conditioner 1 selectively executes various operation modes including air conditioning operation such as heating operation and cooling operation by heat pump operation using the refrigerant circuit R, thereby performing air conditioning in the vehicle interior and the battery 55 and the motor unit 65. Etc. To adjust the temperature of the object to be heated.

冷媒回路Rは、冷媒を圧縮する電動式の圧縮機(電動圧縮機)2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒を放熱させて車室内に供給する空気を加熱する室内熱交換器(加熱部)としての室内コンデンサ4と、暖房時に冷媒を減圧膨張させる室外膨張弁6と、冷房時には冷媒を放熱させる放熱器(凝縮器)として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせるための室外熱交換器7と、冷媒を減圧膨張させる室内膨張弁8と、空気流通路3内に設けられて冷房時(除湿時)に車室内外から冷媒に吸熱させて車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13A~13Gにより接続されて構成されている。 The refrigerant circuit R is provided in the electric compressor (electric compressor) 2 for compressing the refrigerant and in the air flow passage 3 of the HVAC unit 10 through which the air in the vehicle interior is circulated, and is discharged from the compressor 2. An indoor condenser 4 as an indoor heat exchanger (heating unit) that dissipates high-temperature and high-pressure refrigerant to heat the air supplied to the vehicle interior, an outdoor expansion valve 6 that decompresses and expands the refrigerant during heating, and dissipates the refrigerant during cooling. An outdoor heat exchanger 7 for exchanging heat between the refrigerant and the outside air in order to function as a radiator (condenser) to absorb heat of the refrigerant during heating, and a room for decompressing and expanding the refrigerant. An expansion valve 8, a heat exchanger 9 provided in the air flow passage 3 for cooling the air supplied to the vehicle interior by absorbing heat from the outside of the vehicle interior to the refrigerant during cooling (during dehumidification), an accumulator 12, and the like are provided. It is configured by being connected by refrigerant pipes 13A to 13G.

室外膨張弁6及び室内膨張弁8は、いずれも図示しないパルスモータにより駆動される電子膨張弁であり、パルスモータに加えられるパルス数によって全閉から全開までの間で開度が適宜制御される。室外膨張弁6は、室内コンデンサ4から流出し室外熱交換器7に流入する冷媒を減圧膨張させる。また、室外膨張弁6は、室外熱交換器7を用いた暖房運転時に、室内コンデンサ4の冷媒出口における過冷却の達成度合いの指標となるSC(サブクール)値が予め定めた目標値となるように、後述する空調コントローラ32により開度が制御される(SC制御)。室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の吸熱量、つまり通過空気の冷却能力を調整する。 Both the outdoor expansion valve 6 and the indoor expansion valve 8 are electronic expansion valves driven by a pulse motor (not shown), and the opening degree is appropriately controlled from fully closed to fully open by the number of pulses applied to the pulse motor. .. The outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the indoor condenser 4 and flowing into the outdoor heat exchanger 7. Further, in the outdoor expansion valve 6, the SC (subcool) value, which is an index of the degree of achievement of supercooling at the refrigerant outlet of the indoor capacitor 4, becomes a predetermined target value during the heating operation using the outdoor heat exchanger 7. In addition, the opening degree is controlled by the air conditioning controller 32 described later (SC control). The indoor expansion valve 8 decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the endothermic amount of the refrigerant in the heat absorber 9, that is, the cooling capacity of the passing air.

室外熱交換器7の冷媒出口と吸熱器9の冷媒入口とは冷媒配管13Aにより接続されている。冷媒配管13Aには、室外熱交換器7側から順に、逆止弁18と室内膨張弁8とが設けられている。逆止弁18は、吸熱器9に向かう方向が順方向となるように冷媒配管13Aに設けられる。冷媒配管13Aは、逆止弁18よりも室外熱交換器7側の位置で冷媒配管13Bに分岐している。 The refrigerant outlet of the outdoor heat exchanger 7 and the refrigerant inlet of the heat absorber 9 are connected by a refrigerant pipe 13A. The refrigerant pipe 13A is provided with a check valve 18 and an indoor expansion valve 8 in this order from the outdoor heat exchanger 7 side. The check valve 18 is provided in the refrigerant pipe 13A so that the direction toward the heat absorber 9 is the forward direction. The refrigerant pipe 13A branches to the refrigerant pipe 13B at a position closer to the outdoor heat exchanger 7 than the check valve 18.

冷媒配管13Aから分岐した冷媒配管13Bは、アキュムレータ12の冷媒入口に接続されている。冷媒配管13Bには、室外熱交換器7側から順に、暖房時に開放される電磁弁21及び逆止弁20が設けられている。逆止弁20は、アキュムレータ12に向かう方向が順方向となるように接続されている。冷媒配管13Bの電磁弁21と逆止弁20との間は冷媒配管13Cに分岐している。冷媒配管13Bから分岐した冷媒配管13Cは、吸熱器9の冷媒出口に接続されている。アキュムレータ12の冷媒出口と圧縮機2とは、冷媒配管13Dにより接続されている。 The refrigerant pipe 13B branched from the refrigerant pipe 13A is connected to the refrigerant inlet of the accumulator 12. The refrigerant pipe 13B is provided with a solenoid valve 21 and a check valve 20 that are opened during heating in order from the outdoor heat exchanger 7 side. The check valve 20 is connected so that the direction toward the accumulator 12 is the forward direction. The solenoid valve 21 and the check valve 20 of the refrigerant pipe 13B are branched into the refrigerant pipe 13C. The refrigerant pipe 13C branched from the refrigerant pipe 13B is connected to the refrigerant outlet of the heat absorber 9. The refrigerant outlet of the accumulator 12 and the compressor 2 are connected by a refrigerant pipe 13D.

圧縮機2の冷媒出口と室内コンデンサ4の冷媒入口とは、冷媒配管13Eにより接続されている。室内コンデンサ4の冷媒出口には冷媒配管13Fの一端が接続され、冷媒配管13Fの他端側は室外膨張弁6の手前(冷媒上流側)で冷媒配管13Gと冷媒配管13Hに分岐している。分岐した一方の冷媒配管13Hが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Gは、冷媒配管Aの逆止弁18と室内膨張弁8との間に接続されている。冷媒配管13Gの冷媒配管13Aとの接続点より冷媒上流側には、電磁弁22が設けられている。 The refrigerant outlet of the compressor 2 and the refrigerant inlet of the indoor condenser 4 are connected by a refrigerant pipe 13E. One end of the refrigerant pipe 13F is connected to the refrigerant outlet of the indoor condenser 4, and the other end side of the refrigerant pipe 13F is branched into the refrigerant pipe 13G and the refrigerant pipe 13H in front of the outdoor expansion valve 6 (upstream side of the refrigerant). One of the branched refrigerant pipes 13H is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6. Further, the other branched refrigerant pipe 13G is connected between the check valve 18 of the refrigerant pipe A and the indoor expansion valve 8. A solenoid valve 22 is provided on the upstream side of the refrigerant from the connection point of the refrigerant pipe 13G with the refrigerant pipe 13A.

これにより、冷媒配管13Gは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続され、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスする回路となる。 As a result, the refrigerant pipe 13G is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18 and bypasses the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18. It becomes a circuit to do.

吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されている(図1では吸込口25で代表して示す)。吸込口25には吸込切換ダンパ26が設けられている。吸込切換ダンパ26により、車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とを適宜切り換えて吸込口25から空気流通路3内に導入する。吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 The air flow passage 3 on the upstream side of the air of the heat absorber 9 is formed with each suction port of the outside air suction port and the inside air suction port (represented by the suction port 25 in FIG. 1). The suction port 25 is provided with a suction switching damper 26. The suction switching damper 26 appropriately switches between the inside air (inside air circulation), which is the air inside the vehicle interior, and the outside air (outside air introduction), which is the air outside the vehicle interior, and introduces the air into the air flow passage 3 from the suction port 25. An indoor blower fan 27 for supplying the introduced inside air and outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.

図1において補助ヒータ23は、補助加熱装置として機能する。補助ヒータ23は、例えば、PTCヒータ(電気ヒータ)から構成されており、空気流通路3の空気の流れに対して、室内コンデンサ4の空気下流側となる空気流通路3内に設けられている。補助ヒータ23が通電されて発熱することにより車室内の暖房を補完する。 In FIG. 1, the auxiliary heater 23 functions as an auxiliary heating device. The auxiliary heater 23 is composed of, for example, a PTC heater (electric heater), and is provided in the air flow passage 3 on the air downstream side of the indoor condenser 4 with respect to the air flow in the air flow passage 3. .. The auxiliary heater 23 is energized to generate heat to supplement the heating in the vehicle interior.

室内コンデンサ4の空気上流側における空気流通路3内には、空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を室内コンデンサ4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。 The air (inside air or outside air) in the air flow passage 3 that has flowed into the air flow passage 3 on the air upstream side of the indoor condenser 4 and has passed through the heat absorber 9 is taken into the indoor condenser 4 and the air flow passage 3. An air mix damper 28 for adjusting the ratio of ventilation to the auxiliary heater 23 is provided.

なお、補助暖房手段として、例えば、圧縮機廃熱によって加熱した温水を空気流通路3に配置したヒータコアに循環させることにより、送風空気を加熱する形態とすることもできる。 As the auxiliary heating means, for example, hot water heated by the waste heat of the compressor may be circulated to the heater core arranged in the air flow passage 3 to heat the blown air.

機器温度調整回路61は、バッテリ55やモータユニット65等の被温調対象に熱媒体を循環させてバッテリ55やモータユニット65の温度を調整する。なお、モータユニット65には、走行用の電動モータと電動モータを駆動するインバータ回路等の発熱機器も含まれる。被温調対象として、バッテリ55やモータユニット65の他に、車両に搭載されて発熱する機器を適用することができる。 The device temperature adjusting circuit 61 adjusts the temperature of the battery 55 or the motor unit 65 by circulating a heat medium through a temperature-controlled object such as the battery 55 or the motor unit 65. The motor unit 65 also includes a traveling electric motor and a heat generating device such as an inverter circuit for driving the electric motor. In addition to the battery 55 and the motor unit 65, a device mounted on a vehicle and generating heat can be applied as a temperature control target.

機器温度調整回路61は、バッテリ55やモータユニット65に熱媒体を循環させるための循環装置としての第1循環ポンプ62及び第2循環ポンプ63と、冷媒-熱媒体熱交換器64と、熱媒体加熱ヒータ66と、空気-熱媒体熱交換器67と、流路切換装置としての三方弁81とを備えている。 The equipment temperature control circuit 61 includes a first circulation pump 62 and a second circulation pump 63 as a circulation device for circulating a heat medium to a battery 55 and a motor unit 65, a refrigerant-heat medium heat exchanger 64, and a heat medium. It includes a heating heater 66, an air-heat medium heat exchanger 67, and a three-way valve 81 as a flow path switching device.

機器温度調整回路61は、冷媒-熱媒体熱交換器64を介して冷媒回路Rと接続されている。冷媒回路Rにおいて、冷媒配管13Aの、冷媒配管13Gとの接続点と室内膨張弁8との間には、分岐回路としての分岐配管72の一端が接続され、分岐配管72の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されている。分岐配管72にはチラー膨張弁73が設けられている。チラー膨張弁73は、図示しないパルスモータにより駆動される電子膨張弁であり、パルスモータに加えられるパルス数によって全閉から全開までの間で開度が適宜制御される。チラー膨張弁73は、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入する冷媒を減圧膨張させる。 The equipment temperature control circuit 61 is connected to the refrigerant circuit R via the refrigerant-heat medium heat exchanger 64. In the refrigerant circuit R, one end of the branch pipe 72 as a branch circuit is connected between the connection point of the refrigerant pipe 13A with the refrigerant pipe 13G and the indoor expansion valve 8, and the other end of the branch pipe 72 is the refrigerant-. It is connected to the refrigerant flow path 64B of the heat medium heat exchanger 64. The branch pipe 72 is provided with a chiller expansion valve 73. The chiller expansion valve 73 is an electronic expansion valve driven by a pulse motor (not shown), and the opening degree is appropriately controlled from fully closed to fully open by the number of pulses applied to the pulse motor. The chiller expansion valve 73 decompresses and expands the refrigerant flowing into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64.

冷媒-熱媒体熱交換器64の冷媒流路64Bの出口には冷媒配管74の一端が接続され、冷媒配管74の他端は、冷媒配管Bの逆止弁20とアキュムレータ12との間に接続されている。冷媒-熱媒体熱交換器64は、冷媒回路Rの一部を構成すると同時に、機器温度調整回路61の一部をも構成する。 One end of the refrigerant pipe 74 is connected to the outlet of the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and the other end of the refrigerant pipe 74 is connected between the check valve 20 of the refrigerant pipe B and the accumulator 12. Has been done. The refrigerant-heat medium heat exchanger 64 constitutes a part of the refrigerant circuit R and at the same time constitutes a part of the equipment temperature adjusting circuit 61.

冷媒-熱媒体熱交換器64の熱媒体吐出側に熱媒体配管68Aの一端が接続されている。熱媒体配管68Aには、冷媒-熱媒体熱交換器64側から順に、熱媒体加熱ヒータ66、バッテリ55、第1循環ポンプ62、逆止弁82が設けられている。熱媒体配管68Aの他端は、後述する熱媒体配管68Bに接続される。熱媒体配管68Aは、熱媒体加熱ヒータ66よりも冷媒-熱媒体熱交換器64側の位置で熱媒体配管68Bに分岐している。分岐した熱媒体配管68Bの他端には、空気-熱媒体熱交換器67が設けられている。熱媒体配管68Bは、空気-熱媒体熱交換器67のよりも熱媒体の上流側で熱媒体配管68Cに分岐し、熱媒体配管68Cの他端は三方弁81を介して冷媒-熱媒体熱交換器64の熱媒体入口に接続されている。空気-熱媒体熱交換器67は、室外送風機15によって通風される外気(空気)の流れ(風路)に対して、室外熱交換器7の風下側に配置される。 One end of the heat medium pipe 68A is connected to the heat medium discharge side of the refrigerant-heat medium heat exchanger 64. The heat medium pipe 68A is provided with a heat medium heater 66, a battery 55, a first circulation pump 62, and a check valve 82 in this order from the refrigerant-heat medium heat exchanger 64 side. The other end of the heat medium pipe 68A is connected to the heat medium pipe 68B described later. The heat medium pipe 68A is branched into the heat medium pipe 68B at a position closer to the refrigerant-heat medium heat exchanger 64 than the heat medium heater 66. An air-heat medium heat exchanger 67 is provided at the other end of the branched heat medium pipe 68B. The heat medium pipe 68B branches to the heat medium pipe 68C on the upstream side of the heat medium from the air-heat medium heat exchanger 67, and the other end of the heat medium pipe 68C is the refrigerant-heat medium heat via the three-way valve 81. It is connected to the heat medium inlet of the exchanger 64. The air-heat medium heat exchanger 67 is arranged on the leeward side of the outdoor heat exchanger 7 with respect to the flow (air passage) of the outside air (air) ventilated by the outdoor blower 15.

熱媒体配管68Bの空気-熱媒体熱交換器67より熱媒体下流側には三方弁81が設けられ、熱媒体配管68Bの三方弁81と冷媒-熱媒体熱交換器64の熱媒体入口との間には、熱媒体配管13Aの他端が接続されている。熱媒体配管68Bは、熱媒体配管68Bの空気-熱媒体熱交換器67より熱媒体上流側において熱媒体配管13Cに分岐し、分岐した熱媒体配管13Cの他端は三方弁81に接続されている。熱媒体配管13Cには、第2循環ポンプ63及びモータユニット65が設けられている。 A three-way valve 81 is provided on the downstream side of the heat medium from the air-heat medium heat exchanger 67 of the heat medium pipe 68B, and the three-way valve 81 of the heat medium pipe 68B and the heat medium inlet of the refrigerant-heat medium heat exchanger 64 are provided. The other end of the heat medium pipe 13A is connected between them. The heat medium pipe 68B is branched to the heat medium pipe 13C on the upstream side of the heat medium from the air-heat medium heat exchanger 67 of the heat medium pipe 68B, and the other end of the branched heat medium pipe 13C is connected to the three-way valve 81. There is. The heat medium pipe 13C is provided with a second circulation pump 63 and a motor unit 65.

機器温度調整回路61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、本実施形態では水を熱媒体として採用している。また、バッテリ55やモータユニット65の周囲には例えば、熱媒体が当該バッテリ55やモータユニット65と熱交換関係で流通可能なジャケット構造が施されているものとする。 As the heat medium used in the equipment temperature control circuit 61, for example, water, a refrigerant such as HFO-1234yf, a liquid such as a coolant, or a gas such as air can be adopted. In this embodiment, water is used as a heat medium. Further, it is assumed that a jacket structure is provided around the battery 55 and the motor unit 65 so that a heat medium can be distributed in a heat exchange relationship with the battery 55 and the motor unit 65, for example.

三方弁81が入口と冷媒-熱媒体熱交換器64側の出口を連通する状態に切り換えられ、第1循環ポンプ62が運転されると、第1循環ポンプ62から吐出された熱媒体は、熱媒体配管68Aを、逆止弁82、冷媒-熱媒体熱交換器64の熱媒体流路64A、ヒータ66、バッテリ55の順に流れて第2循環ポンプ63に吸い込まれる。このような流路制御状態では、バッテリ55と冷媒-熱媒体熱交換器64の間で熱媒体が循環される。 When the three-way valve 81 is switched to a state in which the inlet and the outlet on the refrigerant-heat medium heat exchanger 64 side communicate with each other and the first circulation pump 62 is operated, the heat medium discharged from the first circulation pump 62 heats up. The medium pipe 68A flows in the order of the check valve 82, the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64, the heater 66, and the battery 55, and is sucked into the second circulation pump 63. In such a flow path control state, the heat medium is circulated between the battery 55 and the refrigerant-heat medium heat exchanger 64.

三方弁81が入口と冷媒-熱媒体熱交換器64側の出口を連通する状態に切り換えられ、第2循環ポンプ63が運転されると、第2循環ポンプ63から吐出された熱媒体は熱媒体配管68Cを、モータユニット65、三方弁81の順に流れ、三方弁81から熱媒体配管68Bに入り、冷媒-熱媒体熱交換器64の熱媒体流路64Aの順に流れた後、再び熱媒体配管68Cに流れて第2循環ポンプ63に吸い込まれる。このような流路制御状態では、モータユニット65と冷媒-熱媒体熱交換器64の間で熱媒体が循環される。 When the three-way valve 81 is switched to a state in which the inlet and the outlet on the refrigerant-heat medium heat exchanger 64 side communicate with each other and the second circulation pump 63 is operated, the heat medium discharged from the second circulation pump 63 becomes a heat medium. The pipe 68C flows in the order of the motor unit 65 and the three-way valve 81, enters the heat medium pipe 68B from the three-way valve 81, flows in the order of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64, and then the heat medium pipe again. It flows to 68C and is sucked into the second circulation pump 63. In such a flow path control state, the heat medium is circulated between the motor unit 65 and the refrigerant-heat medium heat exchanger 64.

チラー膨張弁73が開いている場合、冷媒配管13Gや室外熱交換器7から流出した冷媒の一部又は全部は、分岐配管72に流入しチラー膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。冷媒は、冷媒-熱媒体熱交換器64の冷媒流路64Bを流れる過程で熱媒体流路を流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれる。 When the chiller expansion valve 73 is open, a part or all of the refrigerant flowing out from the refrigerant pipe 13G and the outdoor heat exchanger 7 flows into the branch pipe 72 and is depressurized by the chiller expansion valve 73, and then the refrigerant-heat medium. It flows into the refrigerant flow path 64B of the heat exchanger 64 and evaporates. The refrigerant absorbs heat from the heat medium flowing through the heat medium flow path in the process of flowing through the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and then is sucked into the compressor 2 via the accumulator 12.

図2に、車両用空調装置1の制御を司る制御装置としての空調コントローラ32の概略構成を示す。空調コントローラ32は、モータユニット65の駆動制御やバッテリ55の充放電制御を含む車両全般の制御を司る車両コントローラ35(ECU)に車両通信バスを介して接続され、情報の送受信を行う。空調コントローラ32及び車両コントローラ35(ECU)には何れもプロセッサを備えたコンピュータの一例としてのマイクロコンピュータを適用することができる。 FIG. 2 shows a schematic configuration of an air conditioning controller 32 as a control device that controls the control of the vehicle air conditioning device 1. The air conditioning controller 32 is connected to the vehicle controller 35 (ECU), which controls the entire vehicle including the drive control of the motor unit 65 and the charge / discharge control of the battery 55, via the vehicle communication bus, and transmits / receives information. A microcomputer as an example of a computer provided with a processor can be applied to both the air conditioning controller 32 and the vehicle controller 35 (ECU).

空調コントローラ32(制御装置)には、以下の各センサや検出器が接続され、これらの各センサや検出器等の出力が入力される。
具体的には、空調コントローラ32(制御装置)には、車両の外気温度Tamを検出する外気温度センサ33と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気の温度、すなわち内気温度内気Tinを検出する内気温度センサ37と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度TSを検出する吸込温度センサ44と、室内コンデンサ4の温度(室内コンデンサ4を経た冷媒の温度、又は、室内コンデンサ4自体の温度:室内コンデンサ温度TCI)を検出する室内コンデンサ温度センサ46と、室内コンデンサ4の圧力(本実施形態では、室内コンデンサ4を出た直後の冷媒圧力:室内コンデンサ出口圧力Pci)を検出する室内コンデンサ圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や空調運転の切り換えを設定するための空調操作部53と、室外熱交換器7の温度(本実施形態においては室外熱交換器7から吐出直後の吐出冷媒温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(本実施形態においては室外熱交換器7から吐出直後の吐出冷媒圧力値PXO)を検出する室外熱交換器圧力センサ56と、が接続されている。
The following sensors and detectors are connected to the air conditioning controller 32 (control device), and the outputs of these sensors and detectors are input.
Specifically, the air conditioning controller 32 (control device) includes an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle, and an HVAC suction temperature sensor that detects the temperature of the air sucked into the air flow passage 3 from the suction port 25. 36, the inside air temperature sensor 37 that detects the temperature of the air in the vehicle interior, that is, the inside air temperature, the inside air Tin, the outlet temperature sensor 41 that detects the temperature of the air blown into the vehicle interior from the outlet 29, and the compressor 2. A discharge pressure sensor 42 that detects the discharge refrigerant pressure (discharge pressure Pd), a discharge temperature sensor 43 that detects the discharge refrigerant temperature of the compressor 2, a suction temperature sensor 44 that detects the suction refrigerant temperature TS of the compressor 2, and the suction temperature sensor 44. The indoor condenser temperature sensor 46 that detects the temperature of the indoor condenser 4 (the temperature of the refrigerant that has passed through the indoor condenser 4 or the temperature of the indoor condenser 4 itself: the indoor condenser temperature TCI) and the pressure of the indoor condenser 4 (in this embodiment, The temperature of the indoor condenser pressure sensor 47 and the heat absorber 9 (the temperature of the air that has passed through the heat absorber 9 or the temperature of the heat absorber 9 itself) that detects the refrigerant pressure immediately after exiting the indoor condenser 4: the indoor condenser outlet pressure Pci). : Heat absorber temperature sensor 48 that detects the heat absorber temperature Te) and the heat absorber pressure sensor 49 that detects the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or immediately after leaving the heat absorber 9). For example, a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and switching between set temperature and air conditioning operation are set. An air conditioning operation unit 53 for this purpose, an outdoor heat exchanger temperature sensor 54 for detecting the temperature of the outdoor heat exchanger 7 (in this embodiment, the discharge refrigerant temperature TXO immediately after discharge from the outdoor heat exchanger 7), and an outdoor heat exchange. An outdoor heat exchanger pressure sensor 56 that detects the refrigerant pressure of the vessel 7 (in the present embodiment, the discharge refrigerant pressure value PXO immediately after discharge from the outdoor heat exchanger 7) is connected.

上記のほか、空調コントローラ32には、バッテリ55の温度を検出するバッテリ温度センサ76や、冷媒-熱媒体熱交換器64の熱媒体流路を出てバッテリ55に入る熱媒体の温度Tw(以下、「チラー水温」という)を検出する熱媒体温度センサ79が接続されている。バッテリ55の温度を把握するには、バッテリ温度センサ76又は熱媒体温度センサ79の何れかを適宜用いることができる。 In addition to the above, the air conditioning controller 32 includes a battery temperature sensor 76 that detects the temperature of the battery 55, and a heat medium temperature Tw (hereinafter,) that exits the heat medium flow path of the refrigerant-heat medium heat exchanger 64 and enters the battery 55. , "Chiller water temperature") is connected to the heat medium temperature sensor 79. In order to grasp the temperature of the battery 55, either the battery temperature sensor 76 or the heat medium temperature sensor 79 can be appropriately used.

また、空調コントローラ32には、モータユニット65の温度(モータユニット65自体の温度、モータユニット65を出た熱媒体の温度、及びモータユニット65に入る熱媒体の温度のうちいずれかの温度:モータ温度Tm)を検出するモータ温度センサ78も接続されている。 Further, in the air conditioning controller 32, the temperature of the motor unit 65 (the temperature of the motor unit 65 itself, the temperature of the heat medium exiting the motor unit 65, or the temperature of the heat medium entering the motor unit 65: one of the temperatures: the motor. A motor temperature sensor 78 that detects the temperature Tm) is also connected.

一方、空調コントローラ32の出力には、圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、電磁弁21,22の各電磁弁と、補助ヒータ23、第1及び第2循環ポンプ62、63、チラー膨張弁73、三方弁81が接続されている。空調コントローラ32は各センサの出力と空調操作部53にて入力された設定、車両コントローラ35からの情報に基づいてこれらを制御する。 On the other hand, the output of the air conditioning controller 32 includes a compressor 2, an outdoor blower 15, an indoor blower (blower fan) 27, a suction switching damper 26, an air mix damper 28, an outlet switching damper 31, and outdoor expansion. A valve 6, an indoor expansion valve 8, each solenoid valve of the solenoid valves 21 and 22, an auxiliary heater 23, first and second circulation pumps 62 and 63, a chiller expansion valve 73, and a three-way valve 81 are connected. The air conditioning controller 32 controls these based on the output of each sensor, the settings input by the air conditioning operation unit 53, and the information from the vehicle controller 35.

このように構成された車両用空調装置1では、冷房運転時において、車室内の冷房とバッテリ55の冷却を同時に行う場合、バッテリ55の冷却を優先させるバッテリ優先モードと、車室内の空調を優先させる空調優先モードとを切り替えて実行することができる。 In the vehicle air conditioner 1 configured in this way, when the vehicle interior is cooled and the battery 55 is cooled at the same time during the cooling operation, the battery priority mode in which the cooling of the battery 55 is prioritized and the air conditioning in the vehicle interior are prioritized. It can be executed by switching between the air conditioning priority mode and the air conditioning priority mode.

バッテリ優先モードは、例えば、バッテリ55の急速充電時等の、バッテリ55の発熱量が高く、バッテリ55に対する冷却能力の要求が高い場合等に実行される運転モードである。一方、空調優先モードは、例えば、車両の通常走行時等の、バッテリの発熱量が高く、空調側もバッテリ側も共に冷却能力の要求が高い場合等に実行される運転モードである。 The battery priority mode is an operation mode executed when the amount of heat generated by the battery 55 is high and the demand for cooling capacity of the battery 55 is high, for example, when the battery 55 is rapidly charged. On the other hand, the air-conditioning priority mode is an operation mode executed when, for example, the amount of heat generated by the battery is high and both the air-conditioning side and the battery side have a high demand for cooling capacity, such as during normal driving of a vehicle.

以下、本実施形態においては、車室内の空調を優先させる空調優先モードによる冷房運転時の動作について説明する。
図1は、空調優先モードによる運転時の冷媒回路Rの冷媒の流れ(実線矢印)を示している。なお、バッテリ優先モードと空調優先モードとは、圧縮機2の回転数や及び冷媒回路Rを循環する冷媒量が互いに異なる場合があるものの、冷媒回路Rにおける冷媒の流れは同様となる。
Hereinafter, in the present embodiment, the operation during the cooling operation in the air conditioning priority mode in which the air conditioning in the vehicle interior is prioritized will be described.
FIG. 1 shows the flow of the refrigerant (solid arrow) in the refrigerant circuit R during operation in the air conditioning priority mode. Although the rotation speed of the compressor 2 and the amount of the refrigerant circulating in the refrigerant circuit R may differ from each other in the battery priority mode and the air conditioning priority mode, the flow of the refrigerant in the refrigerant circuit R is the same.

空調コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により冷房運転が選択される。冷房運転、特に、空調優先モードでは、空調コントローラ32は室外膨張弁6、室内膨張弁8、及び、チラー膨張弁73を開き、電磁弁21及び電磁弁22を閉じる。この状態で、空調コントローラ32は、圧縮機2、室外送風機15及び室内送風機27を運転し、エアミックスダンパ28を室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整可能な状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。尚、補助ヒータ23には通電されない。 Cooling operation is selected by the air conditioning controller 32 (auto mode) or by manual operation to the air conditioning operation unit 53 (manual mode). In the cooling operation, particularly in the air conditioning priority mode, the air conditioning controller 32 opens the outdoor expansion valve 6, the indoor expansion valve 8, and the chiller expansion valve 73, and closes the solenoid valve 21 and the solenoid valve 22. In this state, the air conditioning controller 32 operates the compressor 2, the outdoor blower 15, and the indoor blower 27, and the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23 of the air mix damper 28. Is in an adjustable state. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. The auxiliary heater 23 is not energized.

放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Fを経て冷媒配管13Hに至り、室外熱交換器7に流入し、室外送風機15により通風される外気によって空冷され、凝縮液化する。 Although the air in the air flow passage 3 is ventilated through the radiator 4, the ratio is small (because it is only reheated during cooling), so it only passes through here, and the radiator 4 is used. The discharged refrigerant reaches the refrigerant pipe 13H via the refrigerant pipe 13F, flows into the outdoor heat exchanger 7, is air-cooled by the outside air ventilated by the outdoor blower 15, and is condensed and liquefied.

室外熱交換器7を出た冷媒の一部は冷媒配管13A、逆止弁18を経て室内膨張弁8に至り、室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気が冷却される。吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Dを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。 A part of the refrigerant leaving the outdoor heat exchanger 7 reaches the indoor expansion valve 8 via the refrigerant pipe 13A and the check valve 18, and the refrigerant is decompressed by the indoor expansion valve 8 and then flows into the heat absorber 9. Evaporate. The endothermic action at this time cools the air that is blown out from the indoor blower 27 and exchanges heat with the endothermic device 9. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 from there through the refrigerant pipe 13D. Since the air cooled by the heat absorber 9 is blown into the vehicle interior from the outlet 29, the vehicle interior is cooled by this.

一方、室外熱交換器7を出た冷媒の残りは、冷媒配管13A及び逆止弁18を経て分岐配管72に入り、チラー膨張弁73で減圧された後、分岐配管72を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。冷媒流路64Bで蒸発した冷媒は、冷媒配管74を経て冷媒配管13Bの逆止弁20下流側に入り、アキュムレータ12、冷媒配管13Dを経て圧縮機2に吸い込まれる循環を繰り返す。 On the other hand, the rest of the refrigerant leaving the outdoor heat exchanger 7 enters the branch pipe 72 via the refrigerant pipe 13A and the check valve 18, is depressurized by the chiller expansion valve 73, and then passes through the branch pipe 72 to the refrigerant-heat medium. It flows into the refrigerant flow path 64B of the heat exchanger 64 and evaporates. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B enters the check valve 20 downstream side of the refrigerant pipe 13B via the refrigerant pipe 74, and is repeatedly sucked into the compressor 2 via the accumulator 12 and the refrigerant pipe 13D.

(参考例における空調優先モードによる冷房運転時の制御)
まず、図3~図5に従って、参考例に係る車両用空調装置において、空調優先モードによる冷房運転を行う場合の制御について説明する。なお、参考例に係る車両用空調装置は、本実施形態に係る車両用空調装置と制御動作が異なるものの、同一の構成を有している。このため、以下の説明において、便宜上、本実施形態に係る車両用空調装置と同一の構成には同一の符号を付す。
(Control during cooling operation by air conditioning priority mode in the reference example)
First, in accordance with FIGS. 3 to 5, the control in the case of performing the cooling operation in the air conditioning priority mode in the vehicle air conditioner according to the reference example will be described. The vehicle air conditioner according to the reference example has the same configuration as the vehicle air conditioner according to the present embodiment, although the control operation is different. Therefore, in the following description, for convenience, the same components as those of the vehicle air conditioner according to the present embodiment are designated by the same reference numerals.

図3は、参考例に係る空調コントローラ32における圧縮機の目標回転数TGNCcを算出する制御ブロック図である。図3に示すように、空調コントローラ32は吸熱器温度Teが予め設定された目標吸熱器温度TEOとなるように、吸熱器温度Teに基づいて圧縮機2の回転数を制御する。 FIG. 3 is a control block diagram for calculating the target rotation speed TGNCc of the compressor in the air conditioning controller 32 according to the reference example. As shown in FIG. 3, the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the endothermic temperature Te so that the endothermic temperature Te becomes the preset target endothermic temperature TEO.

空調コントローラにおいて、F/F(フィードフォワード)操作量演算部123は吸熱器温度Teと、吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて目標圧縮機回転数のF/F操作量TGNCcF/Fを算出する。 In the air conditioning controller, the F / F (feed forward) operation amount calculation unit 123 operates the F / F of the target compressor rotation speed based on the endothermic temperature Te and the target endothermic temperature TEO which is the target value of the endothermic temperature Te. The quantity TGNCcF / F is calculated.

また、F/B(フィードバック)操作量演算部124は目標吸熱器温度TEOと吸熱器温度Teに基づくPID(比例積分微分)演算、又はPI(比例積分)演算により目標圧縮機回転数のF/B操作量TGNCcF/Bを算出する。そして、F/F操作量演算部123が算出したF/F操作量TGNCcF/F及びF/B操作量演算部124が算出したF/B操作量TGNCcF/Bは加算器126で加算され、TGNCc00としてリミット設定部127に入力される。 Further, the F / B (feedback) manipulated amount calculation unit 124 performs a PID (proportional integral differentiation) calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te, or a PI (proportional integral) calculation to obtain the F / of the target compressor rotation speed. B Operation amount TGNCcF / B is calculated. Then, the F / F operation amount TGNCcF / F calculated by the F / F operation amount calculation unit 123 and the F / B operation amount TGNCcF / B calculated by the F / B operation amount calculation unit 124 are added by the adder 126 and TGNCc00. Is input to the limit setting unit 127.

リミット設定部127では、TGNCc00に対して制御上の下限回転数TGNCcrLimLoと上限回転数TGNCcLimHiのリミットを付してTGNCc0として圧縮機OFF制御部128に入力し、圧縮機OFF制御部128において圧縮機2の目標回転数TGNCcを決定する。 In the limit setting unit 127, the lower limit rotation speed TGNCcrLimLo and the upper limit rotation speed TGNCcLimHi are set to TGNCc00 and input to the compressor OFF control unit 128 as TGNCc0, and the compressor 2 is input to the compressor OFF control unit 128. The target rotation speed TGNCc of is determined.

図4は、参考例に係る空調コントローラ32におけるチラー膨張弁73の開閉制御のブロック図を示している。空調コントローラ32は、目標チラー水温TWOに対して所定温度差を設けた上限温度TWOULと下限温度TWOLLとを予め設定している。空調コントローラ32は、バッテリ55の温度を把握するために、バッテリ温度センサ76により検出されたバッテリ温度又は熱媒体温度センサ79により検出されたチラー水温Twの入力を受け付ける。以下、バッテリ55の温度を把握するためにチラー水温Twを用いることとして説明する。 FIG. 4 shows a block diagram of opening / closing control of the chiller expansion valve 73 in the air conditioning controller 32 according to the reference example. The air conditioning controller 32 presets an upper limit temperature TWOUL and a lower limit temperature TWOLL having a predetermined temperature difference with respect to the target chiller water temperature TWO. The air conditioning controller 32 receives an input of the battery temperature detected by the battery temperature sensor 76 or the chiller water temperature Tw detected by the heat medium temperature sensor 79 in order to grasp the temperature of the battery 55. Hereinafter, the chiller water temperature Tw will be used to grasp the temperature of the battery 55.

空調コントローラ32は、チラー膨張弁73が閉状態であるときに、チラー水温Twが上昇して、上限温度TWOULとなった場合には、チラー膨張弁73を開状態とする。これにより、冷媒を冷媒-熱媒体熱交換器64に循環させてバッテリ55を冷却させる。
一方、空調コントローラ32は、チラー水温Twが下限温度TWOLLまで低下した場合には、チラー膨張弁73を閉状態として、冷媒-熱媒体熱交換器64への冷媒の流入を停止させる。
When the chiller water temperature Tw rises to the upper limit temperature TWOUL when the chiller expansion valve 73 is closed, the air conditioning controller 32 opens the chiller expansion valve 73. As a result, the refrigerant is circulated in the refrigerant-heat medium heat exchanger 64 to cool the battery 55.
On the other hand, when the chiller water temperature Tw drops to the lower limit temperature TWOLL, the air conditioning controller 32 closes the chiller expansion valve 73 and stops the inflow of the refrigerant into the refrigerant-heat medium heat exchanger 64.

このように、参考例において、空調コントローラ32は、吸熱器9の温度に基づいて圧縮機2の回転数を可変することで空調温度を制御しながら、チラー水温Twに基づいてチラー膨張弁73の開閉を繰り返して冷媒-熱媒体熱交換器64への冷媒の流入量を調整することで、バッテリ55の温度を制御している。 As described above, in the reference example, the air conditioning controller 32 controls the air conditioning temperature by changing the rotation speed of the compressor 2 based on the temperature of the heat absorber 9, and the chiller expansion valve 73 is based on the chiller water temperature Tw. The temperature of the battery 55 is controlled by repeatedly opening and closing to adjust the inflow amount of the refrigerant into the refrigerant-heat medium heat exchanger 64.

図5は、参考例に係る車両用空調装置において、圧縮機2の回転数、吸熱器温度Te、チラー水温Tw、チラー膨張弁73、及び室内膨張弁8の動作を示すタイミングチャートである。 FIG. 5 is a timing chart showing the operations of the compressor 2, the heat absorber temperature Te, the chiller water temperature Tw, the chiller expansion valve 73, and the indoor expansion valve 8 in the vehicle air conditioner according to the reference example.

図5に示すように、通常の冷房運転(バッテリ冷却なし)を行っている状態において、バッテリ55の発熱により徐々にチラー水温Twが上昇し、時刻T1で、目標チラー水温TWOに対して設定された上限値(チラー膨張弁を開くべき温度)に到達する。このとき、空調コントローラ32は、空調とバッテリ冷却を同時に行うために通常の冷房運転モードから、空調優先モードに切り替えて、チラー膨張弁73を開状態とする。 As shown in FIG. 5, in a state where normal cooling operation (without battery cooling) is performed, the chiller water temperature Tw gradually rises due to the heat generated by the battery 55, and is set with respect to the target chiller water temperature TWO at time T1. The upper limit (the temperature at which the chiller expansion valve should be opened) is reached. At this time, the air conditioning controller 32 switches from the normal cooling operation mode to the air conditioning priority mode in order to simultaneously perform air conditioning and battery cooling, and opens the chiller expansion valve 73.

これにより、冷媒-熱媒体熱交換器64に冷媒が流入することでチラー水温Twが低下するが、一方で、吸熱器9に流入する冷媒量が減少するため吸熱器温度Teが上昇しはじめる。そこで、空調コントローラ32は、吸熱器温度Teが目標吸熱器温度TEOとなるような圧縮機2の回転数TGNCcを図3の制御ブロックに従って算出し、算出された回転数TGNCcで圧縮機2を駆動する。 As a result, the chiller water temperature Tw decreases as the refrigerant flows into the refrigerant-heat medium heat exchanger 64, but on the other hand, the amount of the refrigerant flowing into the heat absorber 9 decreases, so that the endothermic temperature Te begins to rise. Therefore, the air conditioning controller 32 calculates the rotation speed TGNCc of the compressor 2 such that the endothermic temperature Te becomes the target endothermic temperature TEO according to the control block of FIG. 3, and drives the compressor 2 with the calculated rotation speed TGNCc. do.

時刻T2~T3において、吸熱器温度Teが目標吸熱器温度TEOに近づいていくと、吸熱器9の負荷の低下に伴って、吸熱器9で必要とされる冷却能力が低下していくので圧縮機2の回転数も徐々に低下していく。これにより、冷媒-熱媒体熱交換器64に流入する冷媒の流入量が減少するため、チラー水温Twが再び上昇してしまう。このままチラー水温Twが上昇し続け、時刻T4に至るとチラー水温Twは運転者等に報知すべき温度(例えば、45℃)を超えてしまう。 When the endothermic temperature Te approaches the target endothermic temperature TEO at times T2 to T3, the cooling capacity required for the endothermic device 9 decreases as the load of the endothermic device 9 decreases, so that the compressor is compressed. The rotation speed of the machine 2 also gradually decreases. As a result, the inflow amount of the refrigerant flowing into the refrigerant-heat medium heat exchanger 64 decreases, so that the chiller water temperature Tw rises again. The chiller water temperature Tw continues to rise as it is, and when the time T4 is reached, the chiller water temperature Tw exceeds the temperature to be notified to the driver or the like (for example, 45 ° C.).

このように、参考例では、吸熱器9側の負荷が低い、すなわち、要求冷却能力が低い時には、圧縮機2の回転数が低下するため、冷媒-熱媒体熱交換器64側へ流入する冷媒の量も減少し、冷媒-熱媒体熱交換器64側の温度が上昇する。このため、チラー水温Twがバッテリ55のアラーム温度(Ex.TW>45℃)まで上昇してしまう状況が生じる虞があり、バッテリ55の過剰な発熱によりバッテリ55が劣化する要因となり得る。 As described above, in the reference example, when the load on the heat absorber 9 side is low, that is, when the required cooling capacity is low, the rotation speed of the compressor 2 decreases, so that the refrigerant flows into the refrigerant-heat medium heat exchanger 64 side. The amount of heat is also reduced, and the temperature on the refrigerant-heat medium heat exchanger 64 side rises. Therefore, there is a possibility that the chiller water temperature Tw rises to the alarm temperature (Ex.TW> 45 ° C.) of the battery 55, which may cause deterioration of the battery 55 due to excessive heat generation of the battery 55.

(本実施形態空調優先モードによる冷房運転時の制御)
そこで、本実施形態においては、空調優先モードによる冷房運転時であっても、バッテリ55を十分に冷却するために、空調コントローラ32が、被温調対象であるバッテリ55の温度に応じて、目標吸熱器温度TEOを目標吸熱器温度補正値TEO2に補正する。そして、この目標吸熱器温度補正値TEO2を目標として圧縮機2の回転数を算出し、制御する。
(Control during cooling operation by the air conditioning priority mode of the present embodiment)
Therefore, in the present embodiment, in order to sufficiently cool the battery 55 even during the cooling operation in the air conditioning priority mode, the air conditioning controller 32 targets according to the temperature of the battery 55 to be temperature-controlled. The heat absorber temperature TEO is corrected to the target heat absorber temperature correction value TEO2. Then, the rotation speed of the compressor 2 is calculated and controlled with the target endothermic temperature correction value TEO2 as a target.

以下、空調コントローラ32による、目標吸熱器温度補正値TEO2の算出、目標吸熱器温度補正値TEO2に従った目標圧縮機回転数TGNCcの算出について説明する。なお、本実施形態においては、バッテリ55の温度として、被温調対象の温度としてのチラー水温Twを検出する例について説明する。 Hereinafter, the calculation of the target endothermic temperature correction value TEO2 and the calculation of the target compressor rotation speed TGNCc according to the target endothermic temperature correction value TEO2 by the air conditioning controller 32 will be described. In this embodiment, an example of detecting the chiller water temperature Tw as the temperature to be controlled as the temperature of the battery 55 will be described.

空調コントローラ32は、まず、目標吸熱器温度補正値TEO2の算出に際し、目標吸熱器温度TEOからの下げ量TEO_PCを算出する。
図6は、本実施形態に係る空調コントローラ32における目標吸熱器温度TEOの下げ量TEO_PCを算出する制御ブロック図である。図6に示すように、空調コントローラ32は、チラー水温Twが予め設定された目標チラー水温(目標被温調対象温度)TWOとなるように、チラー水温Twと目標チラー水温TWOとの差分に基づいて吸熱器温度TEOの下げ量TEO_PCを算出する。
First, the air conditioning controller 32 calculates the amount of reduction TEO_PC from the target endothermic temperature TEO when calculating the target endothermic temperature correction value TEO2.
FIG. 6 is a control block diagram for calculating the amount of decrease in the target endothermic temperature TEO TEO_PC in the air conditioning controller 32 according to the present embodiment. As shown in FIG. 6, the air conditioning controller 32 is based on the difference between the chiller water temperature Tw and the target chiller water temperature TWO so that the chiller water temperature Tw becomes the preset target chiller water temperature (target temperature to be adjusted) TWO. Then, the amount of decrease in the heat absorber temperature TEO, TEO_PC, is calculated.

空調コントローラ32におけるTEO操作量演算部223では、チラー水温Tw、目標チラー水温TWO、及び予め定めた制御ゲインである定数K1,K2,K3が入力され、これらに基づいてPID(比例積分微分)演算、又はPI(比例積分)演算により吸熱器温度の下げ量に関する操作量が算出される。そして、操作量に対して、前回の下げ量TEO_PCがF/B(フィードバック)操作量として加算され、リミット設定部224に入力される。 In the TEO operation amount calculation unit 223 of the air conditioning controller 32, the chiller water temperature Tw, the target chiller water temperature TWO, and the constants K1, K2, and K3 which are predetermined control gains are input, and the PID (proportional integral differentiation) calculation is performed based on these. , Or the operation amount related to the amount of decrease in the heat absorber temperature is calculated by PI (proportional integration) calculation. Then, the previous reduction amount TEO_PC is added as the F / B (feedback) operation amount to the operation amount, and is input to the limit setting unit 224.

リミット設定部224では、制御上の下限下げ量と上限下げ量のリミットを付して下げ量TEO_PCを決定する。例えば、目標吸熱器温度TEOを10℃とし、目標吸熱器温度TEOの下限値を2.5℃とした場合、下げ量TEO_PCの範囲は0℃~7.5℃となる。 In the limit setting unit 224, the lower limit lowering amount and the upper limit lowering amount limit are added to determine the lowering amount TEO_PC. For example, when the target endothermic temperature TEO is 10 ° C. and the lower limit of the target endothermic temperature TEO is 2.5 ° C., the range of the reduction amount TEO_PC is 0 ° C. to 7.5 ° C.

図7は、空調コントローラ32において目標吸熱器温度補正値TEO2を算出する制御ブロック図であり、図7に示すように、空調コントローラ32は、このようにして算出された下げ量TEO_PCを、目標吸熱器温度TEOから減算することにより目標吸熱器温度補正値TEO2を算出する。
図6及び図7に示すように、下げ量TEO_PCは、直前の下げ量TEO_PCを考慮して定まる値であり、目標吸熱器温度補正値TEO2は、目標吸熱器温度TEOと下げ量TEO_PCとの差分によって求められる。
FIG. 7 is a control block diagram for calculating the target endothermic temperature correction value TEO2 in the air conditioning controller 32, and as shown in FIG. 7, the air conditioning controller 32 uses the subtraction amount TEO_PC thus calculated to obtain the target endothermic heat. The target endothermic temperature correction value TEO2 is calculated by subtracting from the device temperature TEO.
As shown in FIGS. 6 and 7, the reduction amount TEO_PC is a value determined in consideration of the immediately preceding reduction amount TEO_PC, and the target endothermic temperature correction value TEO2 is the difference between the target endothermic temperature TEO and the reduction amount TEO_PC. Demanded by.

図8は、本実施形態に係る空調コントローラ32における目標圧縮機回転数TGNCcを算出する制御ブロック図である。図8に示すように、空調コントローラ32は、吸熱器温度Teが目標吸熱器温度補正値TEO2となるように、吸熱器温度Teと目標吸熱器温度補正値TEO2との差分に基づいて目標圧縮機回転数TGNCcを算出する。 FIG. 8 is a control block diagram for calculating the target compressor rotation speed TGNCc in the air conditioning controller 32 according to the present embodiment. As shown in FIG. 8, the air conditioning controller 32 is a target compressor based on the difference between the endothermic temperature Te and the target endothermic temperature correction value TEO2 so that the endothermic temperature Te becomes the target endothermic temperature correction value TEO2. Calculate the number of revolutions TGNCc.

空調コントローラ32におけるTGNCc操作量演算部233では、吸熱器温度Te、目標吸熱器温度補正値TEO2、及び予め定めた制御ゲインである定数K4,K5,K6が入力され、これらに基づいてPID(比例積分微分)演算、又はPI(比例積分)演算により圧縮機2の回転数に関する操作量が算出される。操作量に対して、目標圧縮機回転数TGNCcのI分項(積分要素)の前回値がF/B(フィードバック)操作量として加算され、リミット設定部234に入力される。また、TGNCc操作量演算部233では、吸熱器温度Teと目標吸熱器温度補正値TEO2との差分に定数K4を乗じた目標圧縮機回転数TGNCcのP分項(比例要素)が出力される。 In the TGNCc operation amount calculation unit 233 of the air conditioning controller 32, the heat absorber temperature Te, the target heat absorber temperature correction value TEO2, and the constants K4, K5, and K6 which are predetermined control gains are input, and PID (proportional) is input based on these. The amount of operation related to the rotation speed of the compressor 2 is calculated by an integral differential) operation or a PI (proportional integral) operation. The previous value of the I segment (integral element) of the target compressor rotation speed TGNCc is added as the F / B (feedback) manipulated variable with respect to the manipulated variable, and is input to the limit setting unit 234. Further, the TGNCc operation amount calculation unit 233 outputs a P segment (proportional element) of the target compressor rotation speed TGNCc obtained by multiplying the difference between the heat absorber temperature Te and the target heat absorber temperature correction value TEO2 by the constant K4.

リミット設定部234では、制御上の下限下げ量と上限下げ量のリミットを付して目標圧縮機回転数TGNCcのI分項を出力する。圧縮機回転数TGNCcのI分項に、目標圧縮機回転数TGNCcのP分項(比例要素)を加算することにより、目標圧縮機回転数TGNCが算出される。 The limit setting unit 234 outputs the I segment of the target compressor rotation speed TGNCc with a limit of the lower limit lowering amount and the upper limit lowering amount in control. The target compressor rotation speed TGNC is calculated by adding the P division (proportional element) of the target compressor rotation speed TGNCc to the I division of the compressor rotation speed TGNCc.

このように、空調コントローラ32は、チラー水温Twに基づいて目標吸熱器温度TEOを目標吸熱器温度補正値TEO2に補正し、目標吸熱器温度補正値TEO2に基づく圧縮機回転数TGNCcを算出して制御している。 In this way, the air conditioning controller 32 corrects the target endothermic temperature TEO to the target endothermic temperature correction value TEO2 based on the chiller water temperature Tw, and calculates the compressor rotation speed TGNCc based on the target endothermic temperature correction value TEO2. I'm in control.

図9は、本実施形態に係る車両用空調装置において、圧縮機2の回転数、吸熱器温度Te、チラー水温Tw、チラー膨張弁73、及び室内膨張弁8の動作を示すタイミングチャートである。
図9に示すように、車両用空調装置1が、通常の冷房運転(バッテリ冷却なし)を行っている状態において、バッテリ55の発熱により徐々にチラー水温Twが上昇し、目標チラー水温TWOに対して設定された上限値(チラー膨張弁を開くべき温度)に到達する(時刻T1)。このとき、空調コントローラ32は、空調とバッテリ冷却を同時に行うために、通常の冷房運転から空調優先モードに切り替えて、チラー膨張弁73を開状態とする。
FIG. 9 is a timing chart showing the operations of the compressor 2, the heat absorber temperature Te, the chiller water temperature Tw, the chiller expansion valve 73, and the indoor expansion valve 8 in the vehicle air conditioner according to the present embodiment.
As shown in FIG. 9, in a state where the vehicle air conditioner 1 is performing normal cooling operation (without battery cooling), the chiller water temperature Tw gradually rises due to the heat generated by the battery 55, and the chiller water temperature TWO is relative to the target chiller water temperature TWO. The upper limit set (the temperature at which the chiller expansion valve should be opened) is reached (time T1). At this time, the air conditioning controller 32 switches from the normal cooling operation to the air conditioning priority mode in order to perform air conditioning and battery cooling at the same time, and opens the chiller expansion valve 73.

これにより、吸熱器9を循環していた冷媒の一部が冷媒-熱媒体熱交換器64に流入してチラー水温Twが低下する。一方で、吸熱器9に流入する冷媒量が減少するため吸熱器温度Teが上昇しはじめる。そこで、空調コントローラ32は、吸熱器温度Teと目標吸熱器温度TEOとの差分に基づいて目標圧縮機回転数TGNCcを算出し、圧縮機2を目標圧縮機回転数TGNCcで駆動する。ここで、吸熱器温度Teが上昇しているので、目標吸熱器温度TEOと吸熱器温度Teとの差が大きいことから、目標圧縮機回転数TGNCcは高くなる。 As a result, a part of the refrigerant circulating in the heat absorber 9 flows into the refrigerant-heat medium heat exchanger 64, and the chiller water temperature Tw decreases. On the other hand, since the amount of the refrigerant flowing into the endothermic device 9 decreases, the endothermic temperature Te begins to rise. Therefore, the air conditioning controller 32 calculates the target compressor rotation speed TGNCc based on the difference between the heat absorber temperature Te and the target heat absorber temperature TEO, and drives the compressor 2 with the target compressor rotation speed TGNCc. Here, since the endothermic temperature Te is rising, the difference between the target endothermic temperature TEO and the endothermic temperature Te is large, so that the target compressor rotation speed TGNCc becomes high.

時刻T2~T3において、吸熱器温度Teが目標吸熱器温度TEOに近づいていくと、吸熱器9の負荷の低下に伴って、吸熱器9で必要とされる冷却能力が低下していくので圧縮機2の回転数も徐々に低下していく。これにより、冷媒-熱媒体熱交換器64に流入する冷媒の流入量が減少するため、チラー水温Twが再び上昇し、チラー目標水温TWOを超えてしまう(時刻T3)。 When the endothermic temperature Te approaches the target endothermic temperature TEO at times T2 to T3, the cooling capacity required for the endothermic device 9 decreases as the load of the endothermic device 9 decreases, so that the compressor is compressed. The rotation speed of the machine 2 also gradually decreases. As a result, the inflow amount of the refrigerant flowing into the refrigerant-heat medium heat exchanger 64 decreases, so that the chiller water temperature Tw rises again and exceeds the chiller target water temperature TWO (time T3).

このとき、空調コントローラ32は、図6及び図7に示した制御ブロック図に従って、目標吸熱器温度補正値TEO2を算出する。時刻T3から時刻T4の間では、チラー水温Twが目標チラー水温TWOを超えているので、目標吸熱器温度補正値TEO2が徐々に低下していく。 At this time, the air conditioning controller 32 calculates the target endothermic temperature correction value TEO2 according to the control block diagrams shown in FIGS. 6 and 7. Since the chiller water temperature Tw exceeds the target chiller water temperature TWO between the time T3 and the time T4, the target endothermic temperature correction value TEO2 gradually decreases.

目標吸熱器温度補正値TEO2の低下に伴って、吸熱器温度Teと目標吸熱器温度補正値TEO2との差分は、吸熱器温度Teと目標吸熱器温度TEOとの差分よりも大きくなり、圧縮機2の目標圧縮機回転数TGNCcが上昇する。目標圧縮機回転数TGNCcが上昇するので、冷媒-熱媒体熱交換器64に十分な冷媒が流入し、チラー水温Twが低下していく。チラー水温Twと目標チラー水温TWOとの差分が小さくなると、下げ量TEO_PCが小さくなっていく。なお、目標吸熱器温度補正値TEO2の下限値はTEO下限値(Ex.2.5℃)と等しい値とする。 As the target endothermic temperature correction value TEO2 decreases, the difference between the endothermic temperature Te and the target endothermic temperature correction value TEO2 becomes larger than the difference between the endothermic temperature Te and the target endothermic temperature TEO, and the compressor The target compressor rotation speed TGNCc of 2 increases. Since the target compressor rotation speed TGNCc increases, a sufficient amount of refrigerant flows into the refrigerant-heat medium heat exchanger 64, and the chiller water temperature Tw decreases. As the difference between the chiller water temperature Tw and the target chiller water temperature TWO becomes smaller, the amount of reduction TEO_PC becomes smaller. The lower limit of the target endothermic temperature correction value TEO2 is set to be equal to the lower limit of TEO (Ex.2.5 ° C.).

時刻T4において、チラー水温Twと目標チラー水温TWOとが等しくなると、目標吸熱器温度補正値TEO2が保持され、その結果、目標圧縮機回転数TGNCcも保持される。時刻T5において、チラー水温Twは目標チラー水温TWOを下回ると、目標吸熱器温度補正値TEO2を上昇させていく。なお、目標吸熱器温度補正値TEO2の上限値は目標吸熱器温度TEOとする。 At time T4, when the chiller water temperature Tw and the target chiller water temperature TWO become equal, the target heat absorber temperature correction value TEO2 is held, and as a result, the target compressor rotation speed TGNCc is also held. At time T5, when the chiller water temperature Tw falls below the target chiller water temperature TWO, the target endothermic temperature correction value TEO2 is increased. The upper limit of the target endothermic temperature correction value TEO2 is the target endothermic temperature TEO.

目標吸熱器温度補正値TEO2の上昇に伴って、吸熱器温度Teと目標吸熱器温度補正値TEO2との差分が徐々に小さくなり、圧縮機2の目標圧縮機回転数TGNCcが低下する。目標圧縮機回転数TGNCcが低下するので、冷媒-熱媒体熱交換器64に流入する冷媒量が減少し、チラー水温Twが徐々に上昇していく。チラー水温Twと目標チラー水温TWOとの差分が小さくなると、下げ量TEO_PCが小さくなっていく。 As the target endothermic temperature correction value TEO2 increases, the difference between the endothermic temperature Te and the target endothermic temperature correction value TEO2 gradually decreases, and the target compressor rotation speed TGNCc of the compressor 2 decreases. Since the target compressor rotation speed TGNCc decreases, the amount of the refrigerant flowing into the refrigerant-heat medium heat exchanger 64 decreases, and the chiller water temperature Tw gradually increases. As the difference between the chiller water temperature Tw and the target chiller water temperature TWO becomes smaller, the amount of reduction TEO_PC becomes smaller.

図10は、空調コントローラ32による目標吸熱器温度補正値TEO2及び目標圧縮機回転数TGNCcの算出処理に関するフローチャートである。
図10に示すように、空調コントローラ32は、チラー水温Twを一定の時間間隔で取得する(ステップS11)。取得したチラー水温Twは予め保持されている目標チラー水温TWOと比較される(ステップS12)。
FIG. 10 is a flowchart relating to the calculation processing of the target endothermic temperature correction value TEO2 and the target compressor rotation speed TGNCc by the air conditioning controller 32.
As shown in FIG. 10, the air conditioning controller 32 acquires the chiller water temperature Tw at regular time intervals (step S11). The acquired chiller water temperature Tw is compared with the pre-held target chiller water temperature TWO (step S12).

チラー水温Twが目標チラー水温TWOよりも高い場合には、目標集熱器温度補正値TEO2を低下させ、目標圧縮機回転数TGNCcを上昇させる(ステップS12~ステップS14)。
チラー水温Twが目標チラー水温TWOと等しい場合には、目標集熱器温度補正値TEO2を保持する(ステップS12、ステップS15~ステップS17)。
チラー水温Twが目標チラー水温TWOよりも低い場合には、目標集熱器温度補正値TEO2を上昇させ、目標圧縮機回転数TGNCcを低下させる(ステップS12、ステップS18~ステップS19)。
When the chiller water temperature Tw is higher than the target chiller water temperature TWO, the target collector temperature correction value TEO2 is decreased and the target compressor rotation speed TGNCc is increased (steps S12 to S14).
When the chiller water temperature Tw is equal to the target chiller water temperature TWO, the target collector temperature correction value TEO2 is held (step S12, steps S15 to S17).
When the chiller water temperature Tw is lower than the target chiller water temperature TWO, the target collector temperature correction value TEO2 is increased and the target compressor rotation speed TGNCc is decreased (step S12, steps S18 to S19).

以上説明してきたように、本実施形態に係る車両用空調装置1によれば、空調コントローラ32が、被温調対象であるバッテリ55の温度に応じて、目標吸熱器温度TEOを目標吸熱器温度補正値TEO2に補正する。そして、この目標吸熱器温度補正値TEO2を目標として圧縮機2の回転数を制御する。特に、吸熱器9が目標吸熱器温度に到達して車室内が十分に冷房されている(吸熱器9側の要求冷却能力が低い)が、バッテリ55の温度が目標温度よりも高い(バッテリ55の要求冷却能力が高い)場合において、バッテリ55を十分に冷却するために目標吸熱器温度補正値TEO2を下げることで、圧縮機2の回転数を上昇させる。このようにすることで制御モードの切り替え等の煩雑な処理を行うことなく、車室内の空調(冷房)を維持しながら、冷媒-熱媒体熱交換器64に十分な冷媒を流入させてバッテリ55を冷却することができる。 As described above, according to the vehicle air-conditioning device 1 according to the present embodiment, the air-conditioning controller 32 sets the target heat absorber temperature TEO to the target heat absorber temperature according to the temperature of the battery 55 to be temperature-controlled. The correction value is corrected to TEO2. Then, the rotation speed of the compressor 2 is controlled with the target endothermic temperature correction value TEO2 as a target. In particular, the temperature of the battery 55 is higher than the target temperature (battery 55), although the heat absorber 9 reaches the target heat absorber temperature and the vehicle interior is sufficiently cooled (the required cooling capacity on the heat absorber 9 side is low). In the case where the required cooling capacity is high), the rotation speed of the compressor 2 is increased by lowering the target endothermic temperature correction value TEO2 in order to sufficiently cool the battery 55. By doing so, sufficient refrigerant is allowed to flow into the refrigerant-heat medium heat exchanger 64 while maintaining the air conditioning (cooling) in the vehicle interior without performing complicated processing such as switching of the control mode, and the battery 55. Can be cooled.

なお、上述した実施形態において、被温調対象の一例としてバッテリについて説明したが、被温調対象として、例えば、モータ、インバータ等の発熱機器についても本発明を適用することができる。 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 In the above-described embodiment, the battery has been described as an example of the temperature control target, but the present invention can also be applied to a heat generating device such as a motor or an inverter as the temperature control target. Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the design changes, etc. within the range not deviating from the gist of the present invention, etc. Even if there is, it is included in the present invention.

1:車両用空調装置,2:圧縮機,4:室内コンデンサ、6:室外膨張弁,7:室外熱交換器,8:室内膨張弁,9:吸熱器,32:空調コントローラ(制御装置),44:吸込温度センサ,54:室外熱交換器温度センサ,56:室外熱交換器圧力センサ,61:機器温度調整回路,63:第2循環ポンプ,64:冷媒-熱媒体熱交換器,65:モータユニット,73:チラー膨張弁,76:バッテリ温度センサ,79:熱媒体温度センサ 1: Vehicle air conditioner, 2: Compressor, 4: Indoor condenser, 6: Outdoor expansion valve, 7: Outdoor heat exchanger, 8: Indoor expansion valve, 9: Heat absorber, 32: Air conditioning controller (control device), 44: Suction temperature sensor, 54: Outdoor heat exchanger temperature sensor, 56: Outdoor heat exchanger pressure sensor, 61: Equipment temperature control circuit, 63: Second circulation pump, 64: Refrigerator-heat medium heat exchanger, 65: Motor unit, 73: Chiller expansion valve, 76: Battery temperature sensor, 79: Heat medium temperature sensor

Claims (6)

冷媒を圧縮する圧縮機、車室内に供給する空気から吸熱する吸熱器、被温調対象熱交換器、を含む冷媒回路と、
前記冷媒回路と前記被温調対象熱交換器を介して接続され、車両に搭載される被温調対象の温度を前記被温調対象熱交換器により調整する機器温度調整回路と、
前記冷媒回路及び前記機器温度調整回路を制御する制御装置を備え、
前記制御装置は、
前記車室内の空調を優先させる空調優先モードによって前記車室内の空調と前記被温調対象の冷却を同時に行う運転時において、
前記被温調対象の温度に基づいて、前記吸熱器の目標吸熱器温度を目標吸熱器温度補正値に補正する、車両用空調装置。
A refrigerant circuit including a compressor that compresses the refrigerant, an endothermic that absorbs heat from the air supplied to the passenger compartment, and a heat exchanger that is subject to temperature control.
An equipment temperature control circuit that is connected to the refrigerant circuit via the heat exchanger to be temperature-controlled and that adjusts the temperature of the heat-controlled object mounted on the vehicle by the heat exchanger to be temperature-controlled.
A control device for controlling the refrigerant circuit and the equipment temperature adjustment circuit is provided.
The control device is
In the operation in which the air conditioning in the vehicle interior and the cooling of the temperature-controlled object are simultaneously performed by the air conditioning priority mode in which the air conditioning in the vehicle interior is prioritized.
A vehicle air conditioner that corrects the target heat absorber temperature of the heat absorber to a target heat absorber temperature correction value based on the temperature of the object to be temperature-controlled.
前記制御装置は、前記被温調対象の温度が予め設定された目標被温調対象温度よりも高くなった場合に、前記目標吸熱器温度を低下させるように前記目標吸熱器温度補正値を算出する請求項1記載の車両用空調装置。 The control device calculates the target heat absorber temperature correction value so as to lower the target heat absorber temperature when the temperature of the temperature-controlled target becomes higher than a preset target temperature-controlled target temperature. The vehicle air conditioner according to claim 1. 前記制御装置は、前記被温調対象の温度が予め設定された目標被温調対象温度よりも低くなった場合に、前記目標吸熱器温度を上昇させるように前記目標吸熱器温度補正値を算出する請求項1又は請求項2記載の車両用空調装置。 The control device calculates the target heat absorber temperature correction value so as to raise the target heat absorber temperature when the temperature of the temperature-controlled target becomes lower than the preset target temperature-controlled target temperature. The vehicle air conditioner according to claim 1 or 2. 前記制御装置は、前記被温調対象の温度が予め設定された目標被温調対象温度と同じ温度に到達した場合に、前記目標吸熱器温度を保持する請求項1~請求項3の何れか1項記載の車両用空調装置。 Any one of claims 1 to 3 in which the control device maintains the target heat absorber temperature when the temperature of the temperature-controlled object reaches the same temperature as the preset target temperature-controlled target temperature. The vehicle air conditioner according to item 1. 前記被温調対象の温度は、前記被温調対象に設けられた被温調対象温度センサにより検出された前記被温調対象の温度、又は、前記機器温度調整回路に設けられた熱媒体温度センサにより検出された前記機器温度調整回路を循環する熱媒体の温度である、請求項1~請求項4の何れか1項記載の車両用空調装置。 The temperature of the temperature control target is the temperature of the temperature control target detected by the temperature control target temperature sensor provided in the temperature control target, or the heat medium temperature provided in the equipment temperature control circuit. The vehicle air conditioner according to any one of claims 1 to 4, which is the temperature of the heat medium circulating in the device temperature control circuit detected by the sensor. 前記制御装置は、
前記目標吸熱器温度補正値と前記吸熱器の温度との差分に基づいて前記圧縮機の回転数を制御する請求項1~請求項5の何れか1項記載の車両用空調装置。
The control device is
The vehicle air conditioner according to any one of claims 1 to 5, wherein the rotation speed of the compressor is controlled based on the difference between the target heat absorber temperature correction value and the temperature of the heat absorber.
JP2020213493A 2020-12-23 2020-12-23 Vehicular air conditioner Pending JP2022099627A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020213493A JP2022099627A (en) 2020-12-23 2020-12-23 Vehicular air conditioner
CN202180083284.3A CN116601022A (en) 2020-12-23 2021-11-19 Air conditioner for vehicle
DE112021005440.6T DE112021005440T5 (en) 2020-12-23 2021-11-19 vehicle air conditioning device
US18/265,577 US20240025231A1 (en) 2020-12-23 2021-11-19 Vehicle air conditioning apparatus
PCT/JP2021/042523 WO2022137925A1 (en) 2020-12-23 2021-11-19 Vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020213493A JP2022099627A (en) 2020-12-23 2020-12-23 Vehicular air conditioner

Publications (1)

Publication Number Publication Date
JP2022099627A true JP2022099627A (en) 2022-07-05

Family

ID=82159387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020213493A Pending JP2022099627A (en) 2020-12-23 2020-12-23 Vehicular air conditioner

Country Status (5)

Country Link
US (1) US20240025231A1 (en)
JP (1) JP2022099627A (en)
CN (1) CN116601022A (en)
DE (1) DE112021005440T5 (en)
WO (1) WO2022137925A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6948146B2 (en) * 2017-04-18 2021-10-13 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP7221639B2 (en) * 2018-10-09 2023-02-14 サンデン株式会社 Vehicle air conditioner

Also Published As

Publication number Publication date
CN116601022A (en) 2023-08-15
US20240025231A1 (en) 2024-01-25
DE112021005440T5 (en) 2023-08-10
WO2022137925A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
US11104205B2 (en) Vehicle air-conditioning device
US11485191B2 (en) Vehicular air conditioning device
WO2020031569A1 (en) Vehicle air conditioning device
US20200346520A1 (en) Vehicle air-conditioning device
JP6992659B2 (en) Vehicle heat management device
US20220258570A1 (en) Temperature adjustment device for vehicle-mounted heat-generating equipment and vehicle air conditioner provided with same
JP2017109531A (en) Vehicular air conditioner
JP2020097362A (en) Vehicle air conditioning device
WO2020026690A1 (en) Vehicle air conditioning device
US10933719B2 (en) Vehicle air-conditioning apparatus
WO2022137925A1 (en) Vehicle air conditioner
WO2020166274A1 (en) Vehicle air conditioner
JP7221650B2 (en) Vehicle air conditioner
WO2022064946A1 (en) Air conditioning device for vehicle
WO2022064945A1 (en) Air conditioning device for vehicle
JP7387520B2 (en) Vehicle air conditioner
WO2023140210A1 (en) Vehicle air-conditioning device
WO2023140205A1 (en) Vehicle air-conditioning device
WO2023140206A1 (en) Vehicular air conditioning device
WO2023002993A1 (en) Vehicular air conditioner
WO2022202836A1 (en) Vehicle air conditioner
WO2020179492A1 (en) Vehicle air conditioner
JP2020082810A (en) Vehicle air conditioner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231115