JP2022099123A - 絶縁膜の形成方法及び処理装置 - Google Patents

絶縁膜の形成方法及び処理装置 Download PDF

Info

Publication number
JP2022099123A
JP2022099123A JP2020212899A JP2020212899A JP2022099123A JP 2022099123 A JP2022099123 A JP 2022099123A JP 2020212899 A JP2020212899 A JP 2020212899A JP 2020212899 A JP2020212899 A JP 2020212899A JP 2022099123 A JP2022099123 A JP 2022099123A
Authority
JP
Japan
Prior art keywords
forming
gas
insulating film
temperature
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020212899A
Other languages
English (en)
Inventor
信雄 松木
Nobuo Matsuki
大輔 大場
Daisuke Oba
佳紀 森貞
Yoshinori Morisada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2020212899A priority Critical patent/JP2022099123A/ja
Priority to PCT/JP2021/045060 priority patent/WO2022138155A1/ja
Publication of JP2022099123A publication Critical patent/JP2022099123A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】緻密な窒素及び/又は炭素を含有する絶縁膜を凹部に埋め込むことができる技術を提供する。【解決手段】本開示の一態様による窒素及び/又は炭素を含有する絶縁膜の形成方法は、基板の表面に形成された凹部に窒素及び/又は炭素を含有する絶縁膜を形成する方法であって、(a)第1の温度に調整された基板に前駆体ガス及び還元性ガスを含む処理ガスをプラズマで活性化して供給することにより前記凹部に流動性膜を形成する工程と、(b)前記基板を前記第1の温度より高い第2の温度で熱処理することにより前記流動性膜を硬化させる工程と、を有し、前記前駆体ガスは、XHx(NzCnHm)y(XはSi又は金属元素であり、n、m、x、yは1以上の自然数であり、zは0または1である。)構造の線形非対称有機分子である。【選択図】図1

Description

本開示は、絶縁膜の形成方法及び処理装置に関する。
半導体製造プロセスにおいて、構造の微細化に伴いアスペクト比が高い凹部にボイドやシームなく膜を埋め込むことが求められている。
埋め込みプロセスの一例としては、堆積とエッチングとを交互に繰り返すことで凹部の底部からボトムアップで膜を埋め込む技術が知られている(例えば、特許文献1参照)。埋込プロセスの別の一例としては、PECVDによって流動性膜を形成し、該流動性膜を処理してSi-X膜を形成し(X=C、O、又はNである)、流動性膜又はSi-X膜を硬化して膜を固化させる技術が知られている(例えば、特許文献2参照)。
特開2014-112668号公報 特表2020-516079号公報
本開示は、緻密な窒素及び/又は炭素を含有する絶縁膜を凹部に埋め込むことができる技術を提供する。
本開示の一態様による窒素及び/又は炭素を含有する絶縁膜の形成方法は、基板の表面に形成された凹部に窒素及び/又は炭素を含有する絶縁膜を形成する方法であって、(a)第1の温度に調整された基板に前駆体ガス及び還元性ガスを含む処理ガスをプラズマで活性化して供給することにより前記凹部に流動性膜を形成する工程と、(b)前記基板を前記第1の温度より高い第2の温度で熱処理することにより前記流動性膜を硬化させる工程と、を有し、前記前駆体ガスは、XH(N(XはSi又は金属元素であり、n、m、x、yは1以上の自然数であり、zは0または1である。)構造の線形非対称有機分子である。
本開示によれば、緻密な窒素及び/又は炭素を含有する絶縁膜を凹部に埋め込むことができる。
実施形態のシリコン窒化膜の形成方法の一例を示すフローチャート 実施形態のシリコン窒化膜の形成方法の反応メカニズムを説明するための図 実施形態のシリコン窒化膜の形成方法の反応メカニズムを説明するための図 実施形態のシリコン窒化膜の形成方法の反応メカニズムを説明するための図 実施形態のシリコン窒化膜の形成方法を実施する処理装置の一例を示す図 凹部に埋め込まれたシリコン窒化膜の埋め込み性を観察した結果を示す図
以下、添付の図面を参照しながら、本開示の限定的でない例示の実施形態について説明する。添付の全図面中、同一又は対応する部材又は部品については、同一又は対応する参照符号を付し、重複する説明を省略する。
〔シリコン窒化膜の形成方法〕
図1~図4を参照し、窒素及び/又は炭素を含有する絶縁膜を形成する方法の一例として、シリコン窒化膜の形成方法について説明する。以下では、基板の表面に形成された凹部にシリコン窒化膜を埋め込む方法を例に挙げて説明する。
図1に示されるように、実施形態のシリコン窒化膜の形成方法は、基板を準備する工程S1と、流動性膜を形成する工程S2と、流動性膜を硬化させる工程S3とを有する。
基板を準備する工程S1では、表面に凹部が形成された基板を準備する。基板は、例えば半導体ウエハであってよい。凹部は、例えばトレンチ、ホールであってよい。
流動性膜を形成する工程S2では、第1の温度に調整された基板に前駆体ガス及び還元性ガスを含む処理ガスをプラズマで活性化して供給することにより、凹部に流動性膜を形成する。
本実施形態において、前駆体ガスは、SiH(NC(n、m、x、yは1以上の自然数である。)構造の線形非対称アミノシラン分子である。線形非対称アミノシラン分子としては、例えば以下の構造式で示されるビスターシャリブチルアミノシラン(BTBAS)、ビスジエチルアミノシラン(BDEAS)、トリスジメチルアミノシラン(3DMAS)、ビスエチルメチルアミノシラン(BEMAS)が挙げられる。
Figure 2022099123000002
SiH(NC構造の線形非対称アミノシラン分子は、直鎖構造であり、かつ、Siを取り巻く結合が非対称であり双極子モーメントが大きくなる構造である。係る線形非対称アミノシラン分子をプラズマで電気的に活性化させ、第1の温度に調整された基板に堆積させる。このとき、線形非対称アミノシラン分子の末端に存在するC有機基は、隣接する分子との結合を阻害して流動性を維持するように機能する。そのため、凹部に流れ込むようにして流動性膜が形成されるので、微細構造への埋め込みが可能となる。また、C有機基は安定性が高いため、凹部に埋め込まれた後も流動性が維持される。
例えば、前駆体ガスとしてBTBASを用いた場合、図2に示されるように、隣接するBTBAS分子間においてプラズマ重合が生じ、次いで図3に示されるように、プラズマ重合で生じた分子間において更にプラズマ重合が生じ、オリゴマーが生成される。
還元性ガスは、水素及び/又は窒素を含むガスであってよく、例えば水素(H)ガス、窒素(N)ガス、アンモニア(NH)ガス、ヒドラジン(N)ガス及びその組合せ等が挙げられる。なお、還元ガスはこれらに限るものではない。また、処理ガスは、添加ガスを含んでもよい、添加ガスは、例えば窒素(N)ガス、ヘリウム(He)、アルゴン(Ar)等の不活性ガスを挙げることができる。
第1の温度は、基板に前駆体ガス及び還元性ガスを含む処理ガスを供給したときに凹部に流動性膜が形成される温度であり、例えば80℃以下であってよい。プラズマは、例えば容量結合プラズマ、誘導結合プラズマ、マイクロ波プラズマであってよい。
また、流動性膜を形成する工程S2では、処理ガスとして、モノシラン(SiH)ガス、ジシラン(Si)ガスを添加してもよい。これにより、凹部に埋め込まれるシリコン窒化膜に含まれるSiの比率を変えることができる。
流動性膜を硬化させる工程S3では、凹部に流動性膜が形成された基板を、第1の温度より高い第2の温度で熱処理することにより流動性膜を硬化させ、シリコン窒化膜を形成する。このとき、流動性膜を構成する分子間において、Siと結合したH基とアミノ基との間で縮合反応による固化が起こり、無孔質で緻密なシリコン窒化膜が形成される。
例えば、前駆体ガスとしてBTBASを用いた場合、図4に示されるように、隣接するオリゴマー間において縮合反応が生じ、流動性膜が硬化してシリコン窒化膜が形成される。
第2の温度は、流動性膜を硬化させることができる温度であり、例えば150℃以上750℃以下であってよい。
本実施形態において、流動性膜を硬化させる工程S3は、流動性膜を形成する工程S2の後に、基板を大気に晒すことなく実施される。すなわち、流動性膜を形成する工程S2及び流動性膜を硬化させる工程S3は、真空雰囲気下で連続して実施される。
また、流動性膜を硬化させる工程S3は、流動性膜を形成する工程S2の後、短時間(例えば、60秒以内)で実施することが好ましい。これにより、流動性膜を形成する工程S2において凹部に埋め込まれた流動性膜が流動性を維持した状態で、流動性膜を縮合反応で固化させることができる。その結果、無孔質で緻密な膜が形成される。
また、流動性膜を硬化させる工程S3では、基板を水素プラズマに晒すことが好ましい。基板を水素プラズマに晒すことで、流動性膜に含まれる不純物を除去しながら流動性膜を硬化させることができる。そのため、凹部に埋め込まれるシリコン窒化膜の膜中不純物濃度を低減できる。水素プラズマは、例えば100MHz~1GHzのVHF波を用いるプラズマであってよい。
〔処理装置〕
図5を参照し、前述した流動性膜を形成する工程S2を実施する処理装置(膜形成部)の一例について説明する。なお、流動性膜を硬化させる工程S3を実施する処理装置(熱処理部)についても流動性膜を形成する工程S2を実施する処理装置と同様の構成であってよい。
図5に示されるように、処理装置1は、プラズマを用いた化学気相堆積(CVD:Chemical Vapor Deposition)法により、基板の一例である半導体ウエハ(以下「ウエハW」という。)にシリコン窒化膜を形成する装置である。処理装置1は、略円筒状の気密な処理容器2を備える。処理容器2の底壁の中央部分には、排気室21が設けられている。
排気室21は、下方に向けて突出する例えば略円筒状の形状を備える。排気室21には、例えば排気室21の側面において、排気流路22が接続されている。
排気流路22には、圧力調整部23を介して排気部24が接続されている。圧力調整部23は、例えばバタフライバルブ等の圧力調整バルブを備える。排気流路22は、排気部24によって処理容器2内を減圧できるように構成されている。処理容器2の側面には、搬送口25が設けられている。搬送口25は、ゲートバルブ26によって開閉自在に構成されている。処理容器2内と搬送室(図示せず)との間におけるウエハWの搬入出は、搬送口25を介して行われる。
処理容器2内には、ウエハWを略水平に保持するための載置台3が設けられている。載置台3は、平面視で略円形状に形成されており、支持部材31によって支持されている。載置台3の表面には、例えば直径が300mmのウエハWを載置するための略円形状の凹部32が形成されている。凹部32は、ウエハWの直径よりも僅かに(例えば1mm~4mm程度)大きい内径を有する。凹部32の深さは、例えばウエハWの厚さと略同一に構成される。載置台3は、例えば窒化アルミニウム(AlN)等のセラミックス材料により形成されている。また、載置台3は、ニッケル(Ni)等の金属材料により形成されていてもよい。なお、凹部32の代わりに載置台3の表面の周縁部にウエハWをガイドするガイドリングを設けてもよい。
載置台3には、例えば接地された下部電極33が埋設される。下部電極33の下方には、温調機構34が埋設される。温調機構34は、制御部9からの制御信号に基づいて、載置台3に載置されたウエハWを設定温度(例えば-50℃~80℃の温度、熱処理用の載置台では例えば150℃~750℃の温度)に調整する。載置台3の全体が金属によって構成されている場合には、載置台3の全体が下部電極として機能するので、下部電極33を載置台3に埋設しなくてよい。載置台3には、載置台3に載置されたウエハWを保持して昇降するための複数本(例えば3本)の昇降ピン41が設けられている。昇降ピン41の材料は、例えばアルミナ(Al)等のセラミックスや石英等であってよい。昇降ピン41の下端は、支持板42に取り付けられている。支持板42は、昇降軸43を介して処理容器2の外部に設けられた昇降機構44に接続されている。
昇降機構44は、例えば排気室21の下部に設置されている。ベローズ45は、排気室21の下面に形成された昇降軸43用の開口部211と昇降機構44との間に設けられている。支持板42の形状は、載置台3の支持部材31と干渉せずに昇降できる形状であってもよい。昇降ピン41は、昇降機構44によって、載置台3の表面の上方の側と、載置台3の表面の下方の側との間で、昇降自在に構成される。言い換えると、昇降ピン41は、載置台3の上面から突出可能に構成される。
処理容器2の天壁27には、絶縁部材28を介してガス供給部5が設けられている。ガス供給部5は、上部電極を成しており、下部電極33に対向している。ガス供給部5には、整合器511を介してRF電源51が接続されている。RF電源51の周波数は、例えば、450kHz~2.45GHzである。RF電源51から上部電極(ガス供給部5)にRF電力を供給することによって、上部電極(ガス供給部5)と下部電極33との間にRF電界が生じるように構成されている。ガス供給部5は、中空状のガス拡散室52を備える。ガス拡散室52の下面には、処理容器2内へ処理ガスを分散供給するための多数の孔53が例えば均等に配置されている。ガス供給部5における例えばガス拡散室52の上方には、加熱機構54が埋設されている。加熱機構54は、制御部9からの制御信号に基づいて図示しない電源部から給電されることによって、設定温度に加熱される。
ガス拡散室52には、ガス供給路6が設けられている。ガス供給路6は、ガス拡散室52に連通している。ガス供給路6の上流側には、ガスライン62を介してガス源61が接続されている。ガス源61は、例えば各種の処理ガスの供給源、マスフローコントローラ、バルブ(いずれも図示せず)を含む。各種の処理ガスは、前述のシリコン窒化膜の形成方法において用いられる前駆体ガス及び還元性ガスを含む。また、各種の処理ガスは、モノシランガス、ジシランガス等の添加ガスを含んでいてもよい。各種の処理ガスは、ガス源61からガスライン62を介してガス拡散室52に導入される。
処理装置1は、制御部9を備える。制御部9は、例えばコンピュータであり、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置等を備える。CPUは、ROM又は補助記憶装置に格納されたプログラムに基づいて動作し、処理装置1の動作を制御する。制御部9は、処理装置1の内部に設けられていてもよく、外部に設けられていてもよい。制御部9が処理装置1の外部に設けられている場合、制御部9は、有線又は無線等の通信手段によって、処理装置1を制御できる。
〔実施例〕
実施例1では、まず、アスペクト比が1より小さい凹部が表面に形成されたウエハWを準備した。続いて、処理装置1において、載置台3にウエハWを載置した状態で、ガス供給部5から処理容器2内に前駆体ガス及び還元性ガスを含む処理ガスを供給すると共に、RF電源51から上部電極にRF電力を供給し、ウエハWに流動性膜を形成した。続いて、流動性膜が形成されたウエハWを、真空雰囲気下で別の処理装置1に搬送した。続いて、該処理装置1において、Nガス雰囲気の処理容器2内の載置台3にウエハWを載置した状態で、ウエハWに対して450℃で熱処理を施し、流動性膜を硬化させてシリコン窒化膜を形成した。ウエハWに対する熱処理は、ウエハWへの流動性膜の形成が終了してから1分(60秒)後に開始した。続いて、凹部に埋め込まれたシリコン窒化膜の埋め込み性を、走査型電子顕微鏡(SEM:Scanning Electron Microscope)により観察した。
実施例1における流動性膜の成膜条件は以下である。
・前駆体ガス:BTBAS(50sccm)
・還元性ガス:NH(50sccm)
・添加ガス:H(50sccm)、He(50sccm)
・圧力:4Torr(533Pa)
・RF電力:13.56MHz、100W
・ウエハ温度:0℃
実施例2では、アスペクト比が5より大きい凹部が表面に形成されたウエハWを準備し、実施例1と同じ条件で、ウエハWに流動性膜を形成し、次いで流動性膜を硬化させてシリコン窒化膜を形成した。続いて、凹部に埋め込まれたシリコン窒化膜の埋め込み性を、SEMにより観察した。
比較例1では、ウエハWへの流動性膜の形成が終了してから該流動性膜に対して熱処理を開始するまでの時間を1時間に設定し、それ以外の条件が実施例1と同じ条件で、ウエハWに流動性膜を形成し、次いで流動性膜を硬化させてシリコン窒化膜を形成した。続いて、凹部に埋め込まれたシリコン窒化膜の埋め込み性を、SEMにより観察した。なお、比較例1では、アスペクト比が5より大きい凹部が表面に形成されたウエハWを用いた。
比較例2では、前駆体ガスとしてテトラキスジメチルアミノシラン(TeDMAS)を使用し、それ以外の条件が実施例1と同じ条件で、ウエハWに流動性膜を形成し、次いで流動性膜を硬化させてシリコン窒化膜を形成した。続いて、凹部に埋め込まれたシリコン窒化膜の埋め込み性を、SEMにより観察した。なお、比較例2では、アスペクト比が1より小さい凹部が表面に形成されたウエハWを用いた。また、TeDMASは、以下の構造式で示されるように、Si-H結合を有していない対称構造のアミノシラン分子である。
Figure 2022099123000003
図6は、凹部に埋め込まれたシリコン窒化膜の埋め込み性を観察した結果を示す図であり、凹部に埋め込まれたシリコン窒化膜の断面形状を示す。なお、図6では、左から順に実施例1、実施例2、比較例1及び比較例2の結果を示す。
図6に示されるように、実施例1、2では、いずれも凹部の底部付近にボイド(隙間)やシーム(継ぎ目)のない無孔質で緻密なシリコン窒化膜101が埋め込まれていることが分かる。これは、実施例1、2では、凹部に形成された流動性膜が流動性を維持した状態で熱処理され、該熱処理の際に流動性膜が縮合反応で固化してシリコン窒化膜が形成されたためと考えられる。
一方、比較例1では、凹部の底部付近に多数の空孔102aを含む多孔質なシリコン窒化膜102が埋め込まれていることが分かる。これは、比較例1では、凹部に形成された流動性膜が流動性を失った状態で熱処理され、該熱処理の際に膜堆積が低下して多孔質構造となったためと考えられる。
また、比較例2では、凹部にシリコン窒化膜が埋め込まれていないことが分かる。これは、比較例2では、前駆体ガスとしてSi-H結合を有していない対称構造のアミノシラン分子を用いたことにより、熱処理を施した後においても凹部に形成された流動性膜の縮合反応による固化が進行せず、流動性膜が消失したためと考えられる。
以上の実施例の結果から、実施形態のシリコン窒化膜の形成方法によれば、凹部のアスペクト比に関わらず、緻密なシリコン窒化膜を凹部に埋め込むことができることが示された。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
上記の実施形態では、前駆体ガスとしてSiH(NC(n、m、x、yは1以上の自然数である。)構造の線形非対称アミノシラン分子を用いてシリコン窒化膜を形成する場合を説明したが、本開示はこれに限定されない。例えば、前駆体ガスとしてSiの代わりに金属元素を含む、MH(NC(Mは金属元素であり、n、m、x、yは1以上の自然数である。)構造の線形非対称有機金属分子を用いて金属窒化物膜を形成する場合にも適用できる。すなわち、前駆体ガスとしてXH(NC(XはSi又は金属元素であり、n、m、x、yは1以上の自然数である。)構造の線形非対称有機分子を用いて窒素含有膜を形成する場合に適用できる。なお、金属元素としては、例えばチタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、アルミニウム(Al)が挙げられる。
上記の実施形態では、処理ガスが前駆体ガス及び還元性ガスを含み、前駆体ガスが線形非対称アミノシラン分子の場合を説明したが、本開示はこれに限定されない。Siを取り巻く結合が非対称であり双極子モーメントが大きくなる構造をもつ線形非対称有機Si分子を使用してよい。例えばSiH(C(n、m、x、yは1以上の自然数である。)構造の非対称有機Si分子を用いる流動性炭素含有絶縁膜としてSiC膜の形成が挙げられる。また、例えば前駆体ガスとして、MH(C(Mは金属元素であり、n、m、x、yは1以上の自然数である。)構造の非対称有機金属分子を用いて金属炭化物膜を形成する場合にも適用できる。すなわち、前駆体ガスとしてXH(N(XはSi又は金属元素であり、n、m、x、yは1以上の自然数であり、zは0または1である。)構造の線形非対称有機分子を用いて窒素及び/又は炭素を含有する絶縁膜を形成する場合に適用できる。
上記の実施形態では、流動性膜を形成する工程と流動性膜を硬化させる工程とを真空搬送装置に接続された異なる処理装置において実施する場合を説明したが、本開示はこれに限定されない。例えば、流動性膜を形成する工程と流動性膜を硬化させる工程とを同じ処理装置において実施してもよい。また例えば、基板を第1の温度に加熱して処理する第1の領域と、基板を第2の温度に加熱して処理する第2の領域とを内部に有する処理装置を用いてもよい。この場合、流動性膜を形成する工程と流動性膜を硬化させる工程とを1つの処理装置内の異なる領域で実施できるので、流動性膜を形成する工程が終了してから流動性膜を硬化させる工程を開始させるまでの移行時間を短縮できる。また、流動性膜が形成された基板を処理装置の外部に搬出することなく流動性膜を硬化させる工程に移行できるので、不純物の混入を特に抑制できる。
1 処理装置
W ウエハ

Claims (13)

  1. 基板の表面に形成された凹部に窒素及び/又は炭素を含有する絶縁膜を形成する方法であって、
    (a)第1の温度に調整された基板に前駆体ガス及び還元性ガスを含む処理ガスをプラズマで活性化して供給することにより前記凹部に流動性膜を形成する工程と、
    (b)前記基板を前記第1の温度より高い第2の温度で熱処理することにより前記流動性膜を硬化させる工程と、
    を有し、
    前記前駆体ガスは、XH(N(XはSi又は金属元素であり、n、m、x、yは1以上の自然数であり、zは0または1である。)構造の線形非対称有機分子である、
    窒素及び/又は炭素を含有する絶縁膜の形成方法。
  2. 前記工程(a)及び前記工程(b)は、真空雰囲気下で連続して実施される、
    請求項1に記載の窒素及び/又は炭素を含有する絶縁膜の形成方法。
  3. 前記前駆体ガスは、SiH(N(n、m、x、yは1以上の自然数であり、zは0または1である。)構造の線形非対称アミノシラン分子である、
    請求項1又は2に記載の窒素及び/又は炭素を含有する絶縁膜の形成方法。
  4. 前記前駆体ガスは、BTBAS、BDEAS、3DMAS又はBEMASである、
    請求項1乃至3のいずれか一項に記載の窒素及び/又は炭素を含有する絶縁膜の形成方法。
  5. 前記前駆体ガスは、MH(N(MはTi、Ta、Zr又はAlであり、n、m、x、yは1以上の自然数であり、zは0または1である。)構造の線形非対称有機金属分子である、
    請求項1又は2に記載の窒素及び/又は炭素を含有する絶縁膜の形成方法。
  6. 前記還元性ガスは、水素及び/又は窒素を含むガスである、
    請求項1乃至5のいずれか一項に記載の窒素及び/又は炭素を含有する絶縁膜の形成方法。
  7. 前記第1の温度は、80℃以下であり、
    前記第2の温度は、150℃以上750℃以下である、
    請求項1乃至6のいずれか一項に記載の窒素及び/又は炭素を含有する絶縁膜の形成方法。
  8. 前記処理ガスは、SiHガス及びSiガスの少なくともいずれかを含む、
    請求項1乃至7のいずれか一項に記載の窒素及び/又は炭素を含有する絶縁膜の形成方法。
  9. 前記工程(b)において、前記基板を水素プラズマに晒す、
    請求項1乃至8のいずれか一項に記載の窒素及び/又は炭素を含有する絶縁膜の形成方法。
  10. 前記工程(b)は、前記工程(a)の後、60秒以内に行われる、
    請求項1乃至9のいずれか一項に記載の窒素及び/又は炭素を含有する絶縁膜の形成方法。
  11. 前記工程(a)と前記工程(b)とを繰返すことを含む、
    請求項1乃至10のいずれか一項に記載の窒素及び/又は炭素を含有する絶縁膜の形成方法。
  12. 基板の表面に形成された凹部に窒素及び/又は炭素を含有する絶縁膜を形成する方法であって、
    (a)第1の温度に調整された基板に前駆体ガス及び還元性ガスを含む処理ガスをプラズマで活性化して供給することにより前記凹部に流動性膜を形成する工程と、
    (b)前記基板を前記第1の温度より高い第2の温度で熱処理することにより前記流動性膜を硬化させる工程と、
    を有し、
    前記前駆体ガスは、複数のXH(N(XはSi又は金属元素であり、n、m、x、yは1以上の自然数であり、zは0または1である。)構造の線形非対称有機分子の組み合わせである、
    窒素及び/又は炭素を含有する絶縁膜の形成方法。
  13. 凹部が表面に形成された基板を第1の温度に調整し、該基板に前駆体ガス及び還元性ガスを含む処理ガスをプラズマで活性化して供給することにより前記凹部に流動性膜を形成する膜形成部と、
    前記基板を前記第1の温度より高い第2の温度で熱処理することにより前記流動性膜を硬化させる熱処理部と、
    を備え、
    前記前駆体ガスは、XH(N(XはSi又は金属元素であり、n、m、x、yは1以上の自然数であり、zは0または1である。)構造の線形非対称有機分子である、
    処理装置。
JP2020212899A 2020-12-22 2020-12-22 絶縁膜の形成方法及び処理装置 Pending JP2022099123A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020212899A JP2022099123A (ja) 2020-12-22 2020-12-22 絶縁膜の形成方法及び処理装置
PCT/JP2021/045060 WO2022138155A1 (ja) 2020-12-22 2021-12-08 絶縁膜の形成方法及び処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020212899A JP2022099123A (ja) 2020-12-22 2020-12-22 絶縁膜の形成方法及び処理装置

Publications (1)

Publication Number Publication Date
JP2022099123A true JP2022099123A (ja) 2022-07-04

Family

ID=82157712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020212899A Pending JP2022099123A (ja) 2020-12-22 2020-12-22 絶縁膜の形成方法及び処理装置

Country Status (2)

Country Link
JP (1) JP2022099123A (ja)
WO (1) WO2022138155A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943531B2 (en) * 2007-10-22 2011-05-17 Applied Materials, Inc. Methods for forming a silicon oxide layer over a substrate
US10421766B2 (en) * 2015-02-13 2019-09-24 Versum Materials Us, Llc Bisaminoalkoxysilane compounds and methods for using same to deposit silicon-containing films
US11735413B2 (en) * 2016-11-01 2023-08-22 Versum Materials Us, Llc Precursors and flowable CVD methods for making low-k films to fill surface features
KR102269470B1 (ko) * 2017-04-04 2021-06-24 어플라이드 머티어리얼스, 인코포레이티드 실리콘 갭충전을 위한 2-단계 프로세스

Also Published As

Publication number Publication date
WO2022138155A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
JP2018085380A (ja) 成膜処理方法及び成膜処理装置
US20150221503A1 (en) Method of manufacturing semiconductor device
TWI577823B (zh) 矽膜之成膜方法及成膜裝置
JP6793031B2 (ja) 基板処理装置および基板処理方法、ならびに基板処理システム
TW202015130A (zh) 半導體裝置之製造方法、基板處理裝置及記錄媒體
JP2015124397A (ja) コンタクト層の形成方法
JP2008159943A (ja) 成膜装置および成膜方法
KR102364839B1 (ko) 하드 마스크, 기판 처리 방법 및 기판 처리 장치
JP2020150206A (ja) 成膜方法及び成膜装置
TW201742134A (zh) 基板處理方法
WO2022070909A1 (ja) 成膜方法及び成膜装置
WO2022138155A1 (ja) 絶縁膜の形成方法及び処理装置
JP2017139297A (ja) 成膜方法及び成膜装置
WO2022059538A1 (ja) 成膜方法及び成膜装置
US20230257871A1 (en) Film forming method and film forming apparatus
KR102652734B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치, 프로그램, 및 기판 처리 방법
WO2022085498A1 (ja) 成膜方法及び成膜装置
CN112391607A (zh) 成膜方法和成膜装置
TW202214046A (zh) 基板處理裝置、半導體裝置的製造方法及電漿生成裝置
US20240087883A1 (en) Method for forming silicon-containing film and film forming apparatus
US20230357922A1 (en) Sin film embedding method and film formation apparatus
WO2022070917A1 (ja) 成膜方法及び成膜装置
JP2015206105A (ja) 基板処理装置及び半導体製造方法
US20240087885A1 (en) Method of forming silicon nitride film and film forming apparatus
US11658008B2 (en) Film forming apparatus and film forming method