JP2022098355A - Flow rate measurement method and substrate processing device - Google Patents

Flow rate measurement method and substrate processing device Download PDF

Info

Publication number
JP2022098355A
JP2022098355A JP2020211855A JP2020211855A JP2022098355A JP 2022098355 A JP2022098355 A JP 2022098355A JP 2020211855 A JP2020211855 A JP 2020211855A JP 2020211855 A JP2020211855 A JP 2020211855A JP 2022098355 A JP2022098355 A JP 2022098355A
Authority
JP
Japan
Prior art keywords
gas
flow rate
metal window
supply port
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020211855A
Other languages
Japanese (ja)
Inventor
威 李
Takeshi Ri
純一 阿部
Junichi Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2020211855A priority Critical patent/JP2022098355A/en
Priority to TW110145678A priority patent/TW202231127A/en
Priority to KR1020210175989A priority patent/KR20220089637A/en
Priority to CN202111500125.7A priority patent/CN114719918A/en
Publication of JP2022098355A publication Critical patent/JP2022098355A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Semiconductors (AREA)
  • Measuring Volume Flow (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

To accurately measures the flow rate of gas after branching, which is shunted by a branch gas pipe and flows into a processing chamber.SOLUTION: A flow rate measuring method for measuring the flow rate of gas in a substrate processing device including a gas supply pipe that supplies gas, a plurality of branched gas pipes that are branched from the gas supply pipe, a metal window that communicates with the plurality of branched gas pipes, and a shower head located at the bottom of the metal window and having a gas discharge hole for passing the gas through the metal window includes a step of arranging a flow meter at a supply port of the metal window communicating with the plurality of the branched gas pipes and measuring the flow rate of gas flowing to the supply port of the metal window by the flow meter.SELECTED DRAWING: Figure 2

Description

本開示は、流量測定方法及び基板処理装置に関する。 The present disclosure relates to a flow rate measuring method and a substrate processing apparatus.

例えば、特許文献1は、ガス吐出孔群をそれぞれ有するガス拡散室に連通した分岐配管部に流量制御器を設け、分岐配管の内部の圧力を測定することでシャワーヘッドの検査を行うことを提案している。 For example, Patent Document 1 proposes to inspect a shower head by providing a flow rate controller in a branch pipe portion communicating with a gas diffusion chamber having a gas discharge hole group and measuring the pressure inside the branch pipe. is doing.

特開2018-29153号公報Japanese Unexamined Patent Publication No. 2018-29153

ところで、基板処理装置において、より高度な加工均一性を得るため、処理室内に供給する処理ガスの分布を制御することが重要になっている。よって、分岐ガス配管により分流され、処理室内に供給されるガスの流量を正しく測定することが製品不良を発生させないために望まれる。 By the way, in the substrate processing apparatus, it is important to control the distribution of the processing gas supplied to the processing chamber in order to obtain a higher degree of processing uniformity. Therefore, it is desirable to accurately measure the flow rate of the gas separated by the branch gas pipe and supplied to the processing chamber in order to prevent product defects.

本開示は、分岐ガス配管により分流され、処理室内に流れる分岐後のガスの流量を精度良く測定する流量測定方法及び基板処理装置を提供する。 The present disclosure provides a flow rate measuring method and a substrate processing apparatus for accurately measuring the flow rate of a gas after branching, which is divided by a branch gas pipe and flows into a processing chamber.

本開示の一の態様によれば、ガスを供給するガス供給配管と、前記ガス供給配管から分岐する複数の分岐ガス配管と、前記複数の分岐ガス配管に連通する金属窓と、前記金属窓の底部に配置され、前記金属窓から前記ガスを通すガス吐出孔を有するシャワーヘッドと、を有する基板処理装置においてガスの流量を測定する流量測定方法であって、複数の前記分岐ガス配管に連通する前記金属窓の供給口に流量計を配置し、前記流量計により前記金属窓の供給口に流れるガスの流量を測定する工程を有する、流量測定方法が提供される。 According to one aspect of the present disclosure, a gas supply pipe for supplying gas, a plurality of branched gas pipes branched from the gas supply pipe, a metal window communicating with the plurality of branched gas pipes, and the metal window. A flow rate measuring method for measuring a gas flow rate in a substrate processing apparatus having a shower head arranged at the bottom and having a gas discharge hole for passing the gas through the metal window, which communicates with a plurality of the branched gas pipes. Provided is a flow rate measuring method comprising a step of arranging a flow meter at a supply port of the metal window and measuring the flow rate of gas flowing through the supply port of the metal window by the flow meter.

一の側面によれば、分岐ガス配管により分流され、処理室内に流れる分岐後のガスの流量を精度良く測定することができる。 According to one aspect, it is possible to accurately measure the flow rate of the gas after branching, which is divided by the branch gas pipe and flows into the processing chamber.

実施形態に係る基板処理装置の一例を示す断面模式図である。It is sectional drawing which shows an example of the substrate processing apparatus which concerns on embodiment. 実施形態に係る金属窓の表面、拡散室及び流量計の一例を示す図である。It is a figure which shows an example of the surface of a metal window, a diffusion chamber and a flow meter which concerns on embodiment. 実施形態に係るガス系統の一例を模式的に示す図である。It is a figure which shows typically an example of the gas system which concerns on embodiment. 図2のA-A断面を示す図である。It is a figure which shows the AA cross section of FIG. 実施形態に係る流量計によるセンターエリアの測定値と計算値との一例を示す図である。It is a figure which shows an example of the measured value and the calculated value of the center area by the flow meter which concerns on embodiment. 実施形態に係る各同一エリアの各パーツの測定値の一例を示す図である。It is a figure which shows an example of the measured value of each part of each same area which concerns on embodiment.

以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, embodiments for carrying out the present disclosure will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate explanations may be omitted.

[基板処理装置]
はじめに、図1及び図2を参照して、実施形態に係る基板処理装置100について説明する。図1は、実施形態に係る基板処理装置100の一例を示す断面模式図である。基板処理装置100は、実施形態に係る流量測定方法を実行可能な装置の一例である。
[Board processing equipment]
First, the substrate processing apparatus 100 according to the embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic cross-sectional view showing an example of the substrate processing apparatus 100 according to the embodiment. The substrate processing device 100 is an example of a device capable of executing the flow rate measuring method according to the embodiment.

基板処理装置100は、例えばプラズマ処理装置であり、誘導結合プラズマ(ICP:Inductively Coupled Plasma)を生成する。基板処理装置100は、生成されたプラズマを用いて、矩形状の基板Gに対し、エッチングやアッシング、成膜等のプラズマ処理を施す。本実施形態において、基板Gは、例えばFPD(Flat Panel Display)用のガラス基板である。 The substrate processing apparatus 100 is, for example, a plasma processing apparatus and generates inductively coupled plasma (ICP). The substrate processing apparatus 100 uses the generated plasma to perform plasma processing such as etching, ashing, and film formation on the rectangular substrate G. In the present embodiment, the substrate G is, for example, a glass substrate for an FPD (Flat Panel Display).

基板処理装置100は、処理容器20および制御装置(制御部)90を有する。処理容器20は、例えば、内壁面が陽極酸化処理されたアルミニウム等の導電性材料によって形成された直方体状の箱型の容器であり、その内部は基板Gを処理する処理室Sとなっている。処理容器20は接地されている。処理容器20は、上部の蓋11と、下部の本体15とが、複数のシャワーヘッド34を備える隔壁14により区画されている。複数のシャワーヘッド34は、基板Gに対向し、上部に複数の金属窓32A~32F(総称して、「金属窓32」ともいう。)を有する。本体15には、基板Gを搬出入するための搬出入口18が開設されており、搬出入口18はゲートバルブ24により開閉自在に構成されている。 The substrate processing device 100 includes a processing container 20 and a control device (control unit) 90. The processing container 20 is, for example, a rectangular parallelepiped box-shaped container whose inner wall surface is formed of a conductive material such as aluminum which has been anodized, and the inside thereof is a processing chamber S for processing the substrate G. .. The processing container 20 is grounded. In the processing container 20, the upper lid 11 and the lower main body 15 are partitioned by a partition wall 14 provided with a plurality of shower heads 34. The plurality of shower heads 34 face the substrate G and have a plurality of metal windows 32A to 32F (collectively referred to as "metal windows 32") at the upper part thereof. The main body 15 is provided with an carry-in / out port 18 for carrying in / out the substrate G, and the carry-in / out port 18 is configured to be openable and closable by a gate valve 24.

隔壁14とシャワーヘッド34との間、及び隣接するシャワーヘッド34の間には、絶縁部材37が配置され、シャワーヘッド34は、絶縁部材37により相互に電気的に絶縁されている。シャワーヘッド34の替わりに誘電体窓が形成されてもよい。 An insulating member 37 is arranged between the partition wall 14 and the shower head 34 and between the adjacent shower heads 34, and the shower head 34 is electrically insulated from each other by the insulating member 37. A dielectric window may be formed in place of the shower head 34.

処理容器20は、隔壁14により上下に分かれた上方空間であるアンテナ室Aと処理室Sに区画されている。隔壁14と本体15とで囲まれる空間が処理室Sとなる。蓋11と本体15とは、通常時は密閉しているが隔壁14の下面で分割可能であり、基板処理装置100の組み立て時には、蓋11側が例えば上方向に移動して本体15から離脱することで、本体15内(処理室S)が大気開放される。 The processing container 20 is divided into an antenna chamber A and a processing chamber S, which are upper spaces divided vertically by a partition wall 14. The space surrounded by the partition wall 14 and the main body 15 is the processing chamber S. The lid 11 and the main body 15 are normally sealed, but can be separated by the lower surface of the partition wall 14, and when the substrate processing device 100 is assembled, the lid 11 side moves upward, for example, and separates from the main body 15. Then, the inside of the main body 15 (processing chamber S) is opened to the atmosphere.

複数の金属窓32A~32Fのそれぞれの内部には、分岐ガス配管52が形成されている。各分岐ガス配管52は、処理容器20の外部から供給されるガスを各金属窓32に供給するための配管である。分岐ガス配管52は、金属窓32内の拡散室33に連通している。金属窓32内の拡散室33の底部はシャワーヘッド34によって形成されている。シャワーヘッド34には、ガス吐出孔36が形成されている。分岐ガス配管52から金属窓32に供給されたガスは、金属窓32内の拡散室33で拡散される。ガスは、拡散室33からシャワーヘッド34に形成されたガス吐出孔36へ流れて処理室Sへ供給される。金属窓32A~32Fに連通している分岐ガス配管52は、分岐ガス配管L1~L6に接続されている。分岐ガス配管52が金属窓32内に形成されている拡散室33と連通している部分を、金属窓32の供給口35という。分岐ガス配管L1~L6を総称して分岐ガス配管Lともいう。 A branch gas pipe 52 is formed inside each of the plurality of metal windows 32A to 32F. Each branch gas pipe 52 is a pipe for supplying gas supplied from the outside of the processing container 20 to each metal window 32. The branch gas pipe 52 communicates with the diffusion chamber 33 in the metal window 32. The bottom of the diffusion chamber 33 in the metal window 32 is formed by a shower head 34. A gas discharge hole 36 is formed in the shower head 34. The gas supplied from the branch gas pipe 52 to the metal window 32 is diffused in the diffusion chamber 33 in the metal window 32. The gas flows from the diffusion chamber 33 to the gas discharge hole 36 formed in the shower head 34 and is supplied to the processing chamber S. The branch gas pipe 52 communicating with the metal windows 32A to 32F is connected to the branch gas pipes L1 to L6. The portion where the branch gas pipe 52 communicates with the diffusion chamber 33 formed in the metal window 32 is referred to as a supply port 35 of the metal window 32. The branch gas pipes L1 to L6 are collectively referred to as a branch gas pipe L.

分岐ガス配管L1~L6は、分岐器65を介して処理ガス配管68に接続され、処理ガス配管68は、ガス供給部60に接続されている。ガス供給部60から処理ガス配管68に導入された処理ガスは、分岐器65により分流される。分流された処理ガスは、分岐ガス配管L1~L6を流れ、金属窓32A~32F内の拡散室33に連通する多数のガス吐出孔36から処理室Sにシャワー状に導入される。 The branch gas pipes L1 to L6 are connected to the processing gas pipe 68 via the turnout 65, and the processing gas pipe 68 is connected to the gas supply unit 60. The processing gas introduced from the gas supply unit 60 into the processing gas pipe 68 is diverted by the turnout 65. The separated processing gas flows through the branch gas pipes L1 to L6 and is introduced into the processing chamber S in a shower manner from a large number of gas discharge holes 36 communicating with the diffusion chamber 33 in the metal windows 32A to 32F.

つまり、処理ガス配管68は、処理容器20の外部から処理容器20の内部の複数の金属窓32A~32Fまで連通している。ガス供給部60は、処理ガス供給源64およびバルブ62を有する。処理ガス配管68は、バルブ62を介して、処理ガス供給源64に接続されている。バルブ62は、開閉により処理ガスの供給及び供給停止を制御する。 That is, the processing gas pipe 68 communicates from the outside of the processing container 20 to the plurality of metal windows 32A to 32F inside the processing container 20. The gas supply unit 60 has a processing gas supply source 64 and a valve 62. The processing gas pipe 68 is connected to the processing gas supply source 64 via a valve 62. The valve 62 controls the supply and stop of the processing gas by opening and closing.

処理ガス配管68は、分岐器65に接続され、分岐器65で複数の分岐ガス配管L1~L6に分岐する。分岐した各分岐ガス配管L1~L6は、複数の金属窓32A~32Fに設けられた各分岐ガス配管52に接続され、各分岐ガス配管52は、隔壁14の異なる領域に位置する金属窓32A~32Fにそれぞれ接続されている。分岐した各ガス配管L1~L6は、フローレシオコントローラ(FRC:Flow Ratio Controller)63A~63Fを有する。フローレシオコントローラ63A~63Fは、処理ガス供給源64内のMFC(Mass Flow Controller)等の流量制御器で決定された流量を所定の比率に分配する。フローレシオコントローラ63A~63F及び分岐器65により処理ガスのガス流量及びガス配分を調節することによって処理室S内に供給する処理ガスの分布を制御することができる。 The processing gas pipe 68 is connected to the turnout 65, and is branched into a plurality of branch gas pipes L1 to L6 by the turnout 65. The branched branch gas pipes L1 to L6 are connected to the branch gas pipes 52 provided in the plurality of metal windows 32A to 32F, and the branch gas pipes 52 are the metal windows 32A to located in different regions of the partition wall 14. They are connected to 32F respectively. Each of the branched gas pipes L1 to L6 has a flow ratio controller (FRC: Flow Ratio Controller) 63A to 63F. The flow ratio controllers 63A to 63F distribute the flow rate determined by the flow controller such as an MFC (Mass Flow Controller) in the processing gas supply source 64 to a predetermined ratio. The distribution of the processing gas supplied into the processing chamber S can be controlled by adjusting the gas flow rate and the gas distribution of the processing gas by the flow ratio controllers 63A to 63F and the turnout 65.

加えて、ガス供給部60は、不活性ガス供給源67、外部ガス配管66、不活性ガス分岐配管61A~61Fおよびバルブ69A~69Fを有する。外部ガス配管66は、不活性ガス供給源67に接続されている。不活性ガス分岐配管61A~61Fは、外部ガス配管66から分岐している。分岐した各不活性ガス分岐配管61A~61Fは、各分岐ガス配管L1~L6に接続されている。フローレシオコントローラ63A~63Fと分岐ガス配管52の間に、不活性ガス分岐配管61A~61Fと分岐ガス配管L1~L6は接続されている。バルブ69A~69Fは、不活性ガス分岐配管61A~61Fに設けられている。バルブ69A~69Fは、開閉により不活性ガスの供給及び供給停止を制御する。 In addition, the gas supply unit 60 includes an inert gas supply source 67, an external gas pipe 66, an inert gas branch pipe 61A to 61F, and valves 69A to 69F. The external gas pipe 66 is connected to the inert gas supply source 67. The inert gas branch pipes 61A to 61F are branched from the external gas pipe 66. The branched inert gas branch pipes 61A to 61F are connected to the branch gas pipes L1 to L6. The inert gas branch pipes 61A to 61F and the branch gas pipes L1 to L6 are connected between the flow ratio controllers 63A to 63F and the branch gas pipe 52. The valves 69A to 69F are provided in the inert gas branch pipes 61A to 61F. The valves 69A to 69F control the supply and stop of the supply of the inert gas by opening and closing.

外部ガス配管66は不活性ガス分岐配管61A~61Fと連結して、分岐ガス配管L1~L6に分岐する。不活性ガス供給源67内のMFC(Mass Flow Controller)等の流量制御器で所定のガス流量を分岐ガス配管L1~L6に供給する。 The external gas pipe 66 is connected to the inert gas branch pipes 61A to 61F and branches to the branch gas pipes L1 to L6. A predetermined gas flow rate is supplied to the branch gas pipes L1 to L6 by a flow controller such as an MFC (Mass Flow Controller) in the inert gas supply source 67.

例えば、本実施形態に係る流量測定方法は、基板処理装置100の組み立て時に、蓋11を開いて本体15内(処理室S)を大気開放した状態で、バルブ62を閉じ、処理ガスの供給を停止する。そして、バルブ69A~69Fを開いて不活性ガス供給源67からアルゴン(Ar)ガスやヘリウム(He)ガスなどの不活性ガスを金属窓32に供給する。なお、基板処理時には、蓋11を閉じて本体15内(処理室S)を所定の減圧状態に維持し、バルブ69A~69Fを閉じて不活性ガスの供給を停止し、バルブ62を開いて処理ガスを処理室Sに供給する。 For example, in the flow rate measuring method according to the present embodiment, when the substrate processing apparatus 100 is assembled, the valve 62 is closed and the processing gas is supplied while the lid 11 is opened and the inside of the main body 15 (processing chamber S) is open to the atmosphere. Stop. Then, the valves 69A to 69F are opened to supply an inert gas such as argon (Ar) gas or helium (He) gas to the metal window 32 from the inert gas supply source 67. At the time of substrate processing, the lid 11 is closed to maintain the inside of the main body 15 (processing chamber S) in a predetermined depressurized state, the valves 69A to 69F are closed to stop the supply of the inert gas, and the valve 62 is opened for processing. The gas is supplied to the processing chamber S.

本実施形態に係る流量測定方法は、基板処理装置100の組み立て時に、外部ガス配管66から不活性ガスを供給する替わりに、ドライエアーを供給してもよい。 In the flow rate measuring method according to the present embodiment, when the substrate processing apparatus 100 is assembled, dry air may be supplied instead of supplying the inert gas from the external gas pipe 66.

本体15には複数の排気口19が開設されており、排気口19にはガス排気管25が接続され、ガス排気管25は開閉弁26を介して排気装置27に接続されている。ガス排気管25、開閉弁26及び排気装置27により、ガス排気部28が形成される。排気装置27はターボ分子ポンプ等の真空ポンプを有し、プロセス中に本体15内を所定の真空度まで自在に真空引き出来るように構成されている。 A plurality of exhaust ports 19 are opened in the main body 15, a gas exhaust pipe 25 is connected to the exhaust port 19, and the gas exhaust pipe 25 is connected to the exhaust device 27 via an on-off valve 26. The gas exhaust section 28 is formed by the gas exhaust pipe 25, the on-off valve 26, and the exhaust device 27. The exhaust device 27 has a vacuum pump such as a turbo molecular pump, and is configured to be able to freely evacuate the inside of the main body 15 to a predetermined degree of vacuum during the process.

金属窓32の上方空間であるアンテナ室Aには、金属窓32に離間して高周波アンテナ51が配設されている。高周波アンテナ51はプラズマの生成に寄与し、銅等の導電性の金属から形成されるアンテナ線を、環状もしくは渦巻き状に巻装することにより形成される。例えば、環状のアンテナ線を多重に配設してもよい。高周波アンテナ51は、インピーダンス整合を行う整合器55を介して高周波電源56に接続されている。 In the antenna chamber A, which is the space above the metal window 32, a high frequency antenna 51 is arranged separated from the metal window 32. The high frequency antenna 51 contributes to the generation of plasma and is formed by winding an antenna wire formed of a conductive metal such as copper in an annular shape or a spiral shape. For example, a plurality of annular antenna wires may be arranged. The high frequency antenna 51 is connected to the high frequency power supply 56 via a matching device 55 that performs impedance matching.

高周波アンテナ51に対して高周波電源56から例えば13.56MHzの高周波電力が印加されることにより、金属窓32を介して処理室S内に誘導電界が形成される。この誘導電界により、シャワーヘッド34から処理室Sに供給された処理ガスがプラズマ化されて誘導結合プラズマが生成され、プラズマ中のイオンが基板Gに提供される。 By applying high-frequency power of, for example, 13.56 MHz from the high-frequency power source 56 to the high-frequency antenna 51, an induced electric field is formed in the processing chamber S through the metal window 32. By this induced electric field, the processing gas supplied from the shower head 34 to the processing chamber S is turned into plasma to generate inductively coupled plasma, and the ions in the plasma are provided to the substrate G.

隔壁14と本体15とで囲まれる処理室Sの内部には、基板支持部70が設けられている。基板支持部70は、基板Gを支持する。基板支持部70は、インピーダンス整合を行う整合器82を介してバイアス源である高周波電源83に接続されている。高周波電源83から基板支持部70に対して例えば3.2MHzの高周波電力が印加されることにより、RFバイアスを発生させ、高周波電源56にて生成されたイオンを基板Gに引き付けることができる。 A substrate support portion 70 is provided inside the processing chamber S surrounded by the partition wall 14 and the main body 15. The board support portion 70 supports the board G. The board support portion 70 is connected to a high frequency power supply 83 which is a bias source via a matching box 82 that performs impedance matching. By applying high-frequency power of, for example, 3.2 MHz from the high-frequency power supply 83 to the substrate support portion 70, RF bias can be generated and the ions generated by the high-frequency power supply 56 can be attracted to the substrate G.

高周波電源56はプラズマ発生用のソース源であり、基板支持部70に接続されている高周波電源83は、発生したイオンを引き付けて運動エネルギを付与するバイアス源となる。このように、ソース源には誘導結合を利用してプラズマを生成し、別電源であるバイアス源を基板支持部70に接続してイオンエネルギの制御を行う。これにより、プラズマの生成とイオンエネルギの制御が独立して行われ、プロセスの自由度を高めることができる。高周波電源56から出力される高周波電力の周波数は、0.1MHz乃至500MHzの範囲内で設定されるのが好ましい。 The high frequency power supply 56 is a source source for plasma generation, and the high frequency power supply 83 connected to the substrate support portion 70 is a bias source that attracts the generated ions and imparts kinetic energy. In this way, plasma is generated from the source source using inductive coupling, and a bias source, which is a separate power source, is connected to the substrate support portion 70 to control ion energy. As a result, plasma generation and ion energy control are performed independently, and the degree of freedom of the process can be increased. The frequency of the high frequency power output from the high frequency power supply 56 is preferably set in the range of 0.1 MHz to 500 MHz.

基板処理装置100は、制御装置90を更に備え得る。制御装置90は、プロセッサ、メモリなどの記憶部、入力装置、表示装置、信号の入出力インターフェイス等を備えるコンピュータであり得る。制御装置90は、基板処理装置100の各部を制御する。制御装置90では、入力装置を用いて、オペレータが基板処理装置100を管理するためにコマンドの入力操作等を行うことができる。また、制御装置90では、表示装置により、基板処理装置100の稼働状況を可視化して表示することができる。さらに、記憶部には、制御プログラム及びレシピデータが格納されている。制御プログラムは、基板処理装置100で各種処理を実行するために、プロセッサによって実行される。プロセッサが、制御プログラムを実行し、レシピデータに従って基板処理装置100の各部を制御する。 The substrate processing device 100 may further include a control device 90. The control device 90 may be a computer including a processor, a storage unit such as a memory, an input device, a display device, a signal input / output interface, and the like. The control device 90 controls each part of the substrate processing device 100. In the control device 90, the operator can perform a command input operation or the like in order to manage the board processing device 100 by using the input device. Further, in the control device 90, the operation status of the board processing device 100 can be visualized and displayed by the display device. Further, a control program and recipe data are stored in the storage unit. The control program is executed by the processor in order to execute various processes in the board processing device 100. The processor executes a control program and controls each part of the board processing apparatus 100 according to the recipe data.

[流量制御]
基板処理装置100において、より高度な加工均一性を得るため、処理室S内のプラズマ密度および処理ガスの分布を制御することが重要となっている。しかしながら、従来、金属窓32A~32Fのそれぞれにおいて分流されたガス流量を実測することができなかった。一方、金属窓32A~32Fから処理室S内に想定と異なる流量のガスが流れると基板に製品不良を発生させる可能性がある。また、金属窓32A~32Fから処理室S内に供給されるガスの流量を正しく測定できないと、基板処理装置100の製造工程においてガスの配管回りの組み立てに誤りがあった場合にそのミスを検知できない。
[Flow control]
In the substrate processing apparatus 100, it is important to control the plasma density and the distribution of the processing gas in the processing chamber S in order to obtain a higher degree of processing uniformity. However, conventionally, it has not been possible to actually measure the flow rate of the gas separated in each of the metal windows 32A to 32F. On the other hand, if a gas having a flow rate different from the expected flow rate flows from the metal windows 32A to 32F into the processing chamber S, a product defect may occur on the substrate. Further, if the flow rate of the gas supplied from the metal windows 32A to 32F into the processing chamber S cannot be measured correctly, the mistake is detected when there is an error in the assembly around the gas pipe in the manufacturing process of the substrate processing apparatus 100. Can not.

そこで、本実施形態では、蓋11を開けて、本体15を大気開放し、シャワーヘッド34を取り外して、金属窓32A~32Fの天地を逆転させて配置し、金属窓32A~32Fのそれぞれの供給口35に流量計を取り付ける。そして、金属窓32A~32Fの供給口35にて、分流後のガスの流量をそれぞれ測定する。なお、金属窓32A~32Fの供給口35とは、分岐ガス配管52と、金属窓32A~32F内にそれぞれ形成されている拡散室33と、が連通している部分である。 Therefore, in the present embodiment, the lid 11 is opened, the main body 15 is opened to the atmosphere, the shower head 34 is removed, the top and bottom of the metal windows 32A to 32F are reversed, and the metal windows 32A to 32F are supplied. A flow meter is attached to the port 35. Then, the flow rate of the gas after the diversion is measured at the supply ports 35 of the metal windows 32A to 32F, respectively. The supply port 35 of the metal windows 32A to 32F is a portion where the branch gas pipe 52 and the diffusion chamber 33 formed in the metal windows 32A to 32F communicate with each other.

本実施形態に係る流量測定方法は、複数の金属窓32のうち、予め定められた同一エリア内に配置されている金属窓32の供給口35を流れるガスの流量を同時に測定することを可能とする。また、本実施形態に係る流量測定方法では、常設された流量計等のセンサー及び真空環境を必要としない。基板処理装置100の組み立て時に複数の金属窓32A~32Fのエリア毎の供給口35に流量計を配置する。そして、流量計により各エリアのガスの流量を測定する。これにより、各金属窓32A~32Fの各エリアから処理室Sに供給されるガスの流量を正確に測定することができ、かつ、ガスの配管回りの組み立てミスを検知することができる。 The flow rate measuring method according to the present embodiment makes it possible to simultaneously measure the flow rate of gas flowing through the supply port 35 of the metal window 32 arranged in the same predetermined area among the plurality of metal windows 32. do. Further, the flow rate measuring method according to the present embodiment does not require a sensor such as a permanent flow meter and a vacuum environment. When assembling the substrate processing apparatus 100, a flow meter is arranged at the supply port 35 for each area of the plurality of metal windows 32A to 32F. Then, the flow rate of gas in each area is measured by a flow meter. As a result, the flow rate of the gas supplied from each area of each of the metal windows 32A to 32F to the processing chamber S can be accurately measured, and an assembly error around the gas pipe can be detected.

流量計200は、図2に示すように、基板処理装置100の組み立て時に金属窓32の供給口に取り付ける。図2は、絶縁部材37によって電気的に絶縁された金属窓32の表面を示す。つまり、図2は、図1の金属窓32の底部のシャワーヘッド34を外した状態で天地を逆転させて金属窓32の表面、拡散室33の内部及び流量計200の一例を示した図である。 As shown in FIG. 2, the flow meter 200 is attached to the supply port of the metal window 32 when the substrate processing device 100 is assembled. FIG. 2 shows the surface of the metal window 32 electrically insulated by the insulating member 37. That is, FIG. 2 is a diagram showing an example of the surface of the metal window 32, the inside of the diffusion chamber 33, and the flow meter 200 by reversing the top and bottom with the shower head 34 at the bottom of the metal window 32 of FIG. 1 removed. be.

金属窓32は、エリア毎に複数のパーツに分かれており、複数のパーツのそれぞれのガスの供給口35に流量計200が取り付けられている。 The metal window 32 is divided into a plurality of parts for each area, and a flow meter 200 is attached to a gas supply port 35 of each of the plurality of parts.

金属窓32の複数のエリアについて説明する。図2の例では、金属窓32は、中央のセンターエリアC、外周のエッジエリアO、センターエリアCとエッジエリアOの間のミドルエリアMに分かれ、更に、外周のエッジエリアO及びミドルエリアMは複数のエリアに分かれている。 A plurality of areas of the metal window 32 will be described. In the example of FIG. 2, the metal window 32 is divided into a central center area C, an outer peripheral edge area O, and a middle area M between the center area C and the edge area O, and further, an outer peripheral edge area O and a middle area M. Is divided into multiple areas.

[ガス系統]
図2及び図3を参照しながら実施形態に係るガス系統とエリアの一例を説明すると、センターエリアCでは、金属窓32Aが4つのパーツC1~C4に分かれ、パーツC1~C4の金属窓32Aの供給口35のそれぞれに流量計200が一つずつ取り付けられる。図2に示すように、パーツC1、C3は三角形、パーツC2、C4は台形の形状をしている。
[Gas system]
Explaining an example of the gas system and the area according to the embodiment with reference to FIGS. 2 and 3, in the center area C, the metal window 32A is divided into four parts C1 to C4, and the metal windows 32A of the parts C1 to C4. One flow meter 200 is attached to each of the supply ports 35. As shown in FIG. 2, parts C1 and C3 have a triangular shape, and parts C2 and C4 have a trapezoidal shape.

例えば、金属窓32AのパーツC4を拡大した図2の下図を参照すると、流量測定治具201により流量計200が金属窓32Aに固定され、パーツC4の金属窓32Aの供給口35に流量計200が取り付けられている。流量計200の取り付け部分の構造については、図2のA-A断面を示す図4を参照して、後述される。 For example, referring to the lower figure of FIG. 2 in which the part C4 of the metal window 32A is enlarged, the flow meter 200 is fixed to the metal window 32A by the flow rate measuring jig 201, and the flow meter 200 is connected to the supply port 35 of the metal window 32A of the part C4. Is attached. The structure of the mounting portion of the flow meter 200 will be described later with reference to FIG. 4, which shows the AA cross section of FIG.

図3には、エリア毎のガス系統が示され、例えば、金属窓32AのパーツC1~C4が同一エリアのセンターエリアCに予め設定されている。分岐ガス配管L1は4分岐し、4分岐後の分岐ガス配管52は金属窓32AのパーツC1~C4に接続され、同一エリア内の4つのパーツC1~C4のそれぞれに設けられた金属窓32Aの供給口35に同時にガスを流す。これにより、流量計200は、CエリアのパーツC1~C4のそれぞれに設けられた金属窓32Aの供給口35を流れるガスの流量を同時に測定できる。 FIG. 3 shows a gas system for each area. For example, parts C1 to C4 of the metal window 32A are preset in the center area C of the same area. The branch gas pipe L1 is branched into four, and the branch gas pipe 52 after the four branches is connected to the parts C1 to C4 of the metal window 32A, and the metal windows 32A provided in each of the four parts C1 to C4 in the same area. Gas is simultaneously flowed to the supply port 35. Thereby, the flow meter 200 can simultaneously measure the flow rate of the gas flowing through the supply port 35 of the metal window 32A provided in each of the parts C1 to C4 in the C area.

センターエリアMでは、金属窓32BのパーツML1~ML4が同一エリアに予め設定され、金属窓32CのパーツMS1~MS4が同一エリアに予め設定されている。分岐ガス配管L2は4分岐し、4分岐後の分岐ガス配管52は金属窓32BのパーツML1~ML4に接続され、同一エリア内の4つのパーツML1~ML4のそれぞれに設けられた金属窓32Bの供給口35に同時にガスを流す。これにより、流量計200は、MLエリアのパーツML1~ML4のそれぞれに設けられた金属窓32Bの供給口35を流れるガスの流量を同時に測定できる。 In the center area M, the parts ML1 to ML4 of the metal window 32B are preset in the same area, and the parts MS1 to MS4 of the metal window 32C are preset in the same area. The branch gas pipe L2 is branched into four, and the branch gas pipe 52 after the four branches is connected to the parts ML1 to ML4 of the metal window 32B, and the metal windows 32B provided in each of the four parts ML1 to ML4 in the same area. Gas is simultaneously flowed to the supply port 35. Thereby, the flow meter 200 can simultaneously measure the flow rate of the gas flowing through the supply port 35 of the metal window 32B provided in each of the parts ML1 to ML4 in the ML area.

分岐ガス配管L3は4分岐し、4分岐後の分岐ガス配管52は金属窓32CのパーツMS1~MS4に接続され、同一エリア内の4つのパーツMS1~MS4のそれぞれに設けられた金属窓32Cの供給口35に同時にガスを流す。これにより、流量計200は、MSエリアのパーツMS1~MS4のそれぞれに設けられた金属窓32Cの供給口35を流れるガスの流量を同時に測定できる。 The branch gas pipe L3 is branched into four, and the branch gas pipe 52 after the four branches is connected to the parts MS1 to MS4 of the metal window 32C, and the metal windows 32C provided in each of the four parts MS1 to MS4 in the same area. Gas is simultaneously flowed to the supply port 35. Thereby, the flow meter 200 can simultaneously measure the flow rate of the gas flowing through the supply port 35 of the metal window 32C provided in each of the parts MS1 to MS4 in the MS area.

エッジエリアOでは、金属窓32DのパーツOC1~OC8が同一エリアに予め設定され、金属窓32EのパーツOLS1、OLS2が同一エリアに予め設定されている。更に、金属窓32FのパーツOSS1、OSS2が同一エリアに予め設定されている。分岐ガス配管L4は8分岐し、8分岐後の分岐ガス配管52は金属窓32DのパーツOC1~OC8に接続され、同一エリア内の8つのパーツOC1~OC8のそれぞれに設けられた金属窓32Dの供給口35に同時にガスを流す。これにより、流量計200は、OCエリアのパーツOC1~OC8のそれぞれに設けられた金属窓32Dの供給口35を流れるガスの流量を同時に測定できる。 In the edge area O, the parts OC1 to OC8 of the metal window 32D are preset in the same area, and the parts OLS1 and OLS2 of the metal window 32E are preset in the same area. Further, the parts OSS1 and OSS2 of the metal window 32F are preset in the same area. The branch gas pipe L4 has eight branches, and the branch gas pipe 52 after the eight branches is connected to the parts OC1 to OC8 of the metal window 32D, and the metal window 32D provided in each of the eight parts OC1 to OC8 in the same area. Gas is simultaneously flowed through the supply port 35. As a result, the flow meter 200 can simultaneously measure the flow rate of the gas flowing through the supply port 35 of the metal window 32D provided in each of the parts OC1 to OC8 in the OC area.

分岐ガス配管L5は2分岐し、2分岐後の分岐ガス配管52は金属窓32EのパーツOLS1、OLS2に接続され、同一エリア内の2つのパーツOLS1、OLS2のそれぞれに設けられた金属窓32Eの供給口35に同時にガスを流す。これにより、流量計200は、OLSエリアのパーツOLS1、OLS2のそれぞれに設けられた金属窓32Eの供給口35を流れるガスの流量を同時に測定できる。 The branch gas pipe L5 is branched into two, and the branch gas pipe 52 after the two branches is connected to the parts OLS1 and OLS2 of the metal window 32E, and the metal window 32E provided in each of the two parts OLS1 and OLS2 in the same area. Gas is simultaneously flowed to the supply port 35. As a result, the flow meter 200 can simultaneously measure the flow rate of the gas flowing through the supply port 35 of the metal window 32E provided in each of the parts OLS1 and OLS2 in the OLS area.

分岐ガス配管L6は2分岐し、2分岐後の分岐ガス配管52は金属窓32FのパーツOSS1、OSS2に接続され、同一エリア内の2つのパーツOSS1、OSS2のそれぞれに設けられた金属窓32Fの供給口35に同時にガスを流す。これにより、流量計200は、OSSエリアのパーツOSS1、OSS2のそれぞれに設けられた金属窓32Fの供給口35を流れるガスの流量を同時に測定できる。 The branch gas pipe L6 is branched into two, and the branch gas pipe 52 after the two branches is connected to the parts OSS1 and OSS2 of the metal window 32F, and the metal window 32F provided in each of the two parts OSS1 and OSS2 in the same area. Gas is simultaneously flowed to the supply port 35. As a result, the flow meter 200 can simultaneously measure the flow rate of the gas flowing through the supply port 35 of the metal window 32F provided in each of the parts OSS1 and OSS2 in the OSS area.

[流量計]
次に、流量計200の配置の一例について、図4を参照しながら説明する。図4は、図2のA-A断面を示す図である。図4(a)及び(b)に示すように、流量測定治具201を金属窓32上(金属窓の表面)に固定し、流量計200を流量測定治具201により金属窓32に固定させる。流量計200内の計測管200aと、金属窓32の供給口35の末端部35aとが連通し、流量計200は、金属窓32の供給口35の末端部35aを通るガスの流量を測定する。
[Flowmeter]
Next, an example of the arrangement of the flow meter 200 will be described with reference to FIG. FIG. 4 is a diagram showing a cross section taken along the line AA of FIG. As shown in FIGS. 4A and 4B, the flow rate measuring jig 201 is fixed on the metal window 32 (the surface of the metal window), and the flow meter 200 is fixed to the metal window 32 by the flow rate measuring jig 201. .. The measuring tube 200a in the flow meter 200 and the end portion 35a of the supply port 35 of the metal window 32 communicate with each other, and the flow meter 200 measures the flow rate of gas passing through the end portion 35a of the supply port 35 of the metal window 32. ..

図4(a)は、分岐ガス配管52にオリフィス105が設けられていない場合の金属窓32の供給口35付近の流量計200の配置を示す。図4(b)は、分岐ガス配管52にオリフィス105が設けられている場合の金属窓32の供給口35付近の流量計200の配置を示す。 FIG. 4A shows the arrangement of the flow meter 200 near the supply port 35 of the metal window 32 when the orifice 105 is not provided in the branch gas pipe 52. FIG. 4B shows the arrangement of the flow meter 200 near the supply port 35 of the metal window 32 when the orifice 105 is provided in the branch gas pipe 52.

図4(a)及び(b)では、金属窓32に形成された分岐ガス配管52により、金属窓32の供給口35が形成されている。分岐ガス配管52は、例えばセラミックスから構成されている。 In FIGS. 4A and 4B, the supply port 35 of the metal window 32 is formed by the branch gas pipe 52 formed in the metal window 32. The branch gas pipe 52 is made of, for example, ceramics.

流量測定治具201は、金属窓32上であって、金属窓32の供給口35の末端部35aを形成する分岐ガス配管52のガス孔の端部(先端)に、シール部材101を介して配置される。分岐ガス配管52のガス孔および流量計200内の計測管200aは、シール部材101と流量測定治具201とを貫通する。シール部材101と分岐ガス配管52との間には、シール部材104が設けられ、シール部材101と流量測定治具201との間には、シール部材103が設けられている。シール部材101、103、104は供給口35を流れるガスをシールする。シール部材101は、例えばSUSから構成されてもよい。シール部材103、104は例えばOリングから形成されてもよい。 The flow rate measuring jig 201 is on the metal window 32 and is connected to the end (tip) of the gas hole of the branch gas pipe 52 forming the end 35a of the supply port 35 of the metal window 32 via the seal member 101. Be placed. The gas hole of the branch gas pipe 52 and the measuring pipe 200a in the flow meter 200 penetrate the seal member 101 and the flow rate measuring jig 201. A seal member 104 is provided between the seal member 101 and the branch gas pipe 52, and a seal member 103 is provided between the seal member 101 and the flow rate measuring jig 201. The sealing members 101, 103, 104 seal the gas flowing through the supply port 35. The seal member 101 may be made of, for example, SUS. The seal members 103 and 104 may be formed from, for example, an O-ring.

流量計200は、金属窓32の供給口35の末端部35aにおいて流量測定治具201に取り付けられている。 The flow meter 200 is attached to the flow rate measuring jig 201 at the end portion 35a of the supply port 35 of the metal window 32.

図4(b)の例では、供給口35の基端部35bに隣接してオリフィス105を配置し、オリフィス105によって金属窓32の供給口35から拡散室33に流入するガスの流れを絞るように構成されている。また、図4(b)の例では、供給口35の内壁にスパイラル形状の溝52aを設け、オリフィス105で絞られたガスをスムーズに供給口35の末端部35aまで送り出す構造を有する。なお、図4(a)の例では、供給口35の内壁にスパイラル形状の溝52aを設けていないが、溝52aを設けてもよい。 In the example of FIG. 4B, the orifice 105 is arranged adjacent to the base end portion 35b of the supply port 35, and the flow of gas flowing into the diffusion chamber 33 from the supply port 35 of the metal window 32 is throttled by the orifice 105. It is configured in. Further, in the example of FIG. 4B, a spiral groove 52a is provided on the inner wall of the supply port 35, and the gas squeezed by the orifice 105 is smoothly sent out to the end portion 35a of the supply port 35. In the example of FIG. 4A, the spiral groove 52a is not provided on the inner wall of the supply port 35, but the groove 52a may be provided.

かかる構成では、流量計200は、基板処理装置100を製造後に、工場内にて基板処理装置100を組み立てる際に取り付ける。つまり、流量計200は常設せず、基板処理装置100を製造後に、工場内にて組み立てた基板処理装置100の金属窓32の供給口35を流れるガス流量の測定を行うときに取り付け、測定が終わったら金属窓32から取り外す。よって、基板処理装置100により基板Gに所望の処理を行う基板処理時には、流量計200は取り外された状態である。 In such a configuration, the flow meter 200 is attached when the substrate processing apparatus 100 is assembled in the factory after the substrate processing apparatus 100 is manufactured. That is, the flow meter 200 is not permanently installed, but is attached and measured when measuring the gas flow rate flowing through the supply port 35 of the metal window 32 of the substrate processing device 100 assembled in the factory after the substrate processing device 100 is manufactured. When finished, remove it from the metal window 32. Therefore, the flow meter 200 is in a removed state at the time of substrate processing in which the substrate processing apparatus 100 performs the desired processing on the substrate G.

制御装置90は、流量計200により金属窓32A~32Fの供給口35に流れるガスの流量を測定する工程を制御する。大気環境下において流量計200を金属窓32の供給口35に配置し、供給口35の末端部35aに流れるガスの流量を流量計200により測定する。測定後、流量計200は、金属窓32の供給口35から取り外しが可能である。 The control device 90 controls the process of measuring the flow rate of the gas flowing through the supply ports 35 of the metal windows 32A to 32F by the flow meter 200. In an atmospheric environment, the flow meter 200 is arranged at the supply port 35 of the metal window 32, and the flow rate of the gas flowing through the terminal portion 35a of the supply port 35 is measured by the flow meter 200. After the measurement, the flow meter 200 can be removed from the supply port 35 of the metal window 32.

また、ガスの流量の測定では、金属窓32を複数のエリアに分け、同一エリア内の金属窓32の供給口35に流れるガスの流量を同時に測定することが可能である。 Further, in the measurement of the gas flow rate, the metal window 32 can be divided into a plurality of areas, and the flow rate of the gas flowing to the supply port 35 of the metal window 32 in the same area can be measured at the same time.

ガスの流量を測定する場合、図1に示すバルブ62を閉じ、処理ガスの供給を停止し、バルブ69A~69Fを開き、不活性ガス供給源67から出力した不活性ガスを金属窓32A~32Fのそれぞれの供給口35に流す。不活性ガスの替わりにドライエアーを金属窓32A~32Fのそれぞれの供給口35に流してもよい。 When measuring the gas flow rate, the valve 62 shown in FIG. 1 is closed, the supply of the processing gas is stopped, the valves 69A to 69F are opened, and the inert gas output from the inert gas supply source 67 is used for the metal windows 32A to 32F. It flows to each supply port 35 of. Instead of the inert gas, dry air may flow to the respective supply ports 35 of the metal windows 32A to 32F.

ガスの流量を測定する工程では、金属窓32を複数のエリアに分け、同一エリア内の金属窓32の供給口35に流れるガスの流量を同時に測定可能である。 In the step of measuring the gas flow rate, the metal window 32 is divided into a plurality of areas, and the flow rate of the gas flowing to the supply port 35 of the metal window 32 in the same area can be measured at the same time.

[測定結果]
金属窓32を、図3に示す6エリア(Cエリア、MLエリア、MSエリア、OCエリア、OLSエリア、OSSエリア)に分け、同一エリア内の金属窓32の供給口35に流れるガス流量を同時に測定した結果について、図5を参照して説明する。図5は、実施形態に係る流量計200によるガス流量の測定結果と計算結果との一例を示す図である。
[Measurement result]
The metal window 32 is divided into 6 areas (C area, ML area, MS area, OC area, OLS area, OSS area) shown in FIG. 3, and the gas flow rate flowing to the supply port 35 of the metal window 32 in the same area is simultaneously applied. The measurement results will be described with reference to FIG. FIG. 5 is a diagram showing an example of a measurement result and a calculation result of a gas flow rate by the flow meter 200 according to the embodiment.

図5(a)は、Cエリア内の金属窓32の供給口35に流れるガス流量を同時に測定した結果である流量計200の実測値を示す。図5(b)は、図5(a)の測定結果を得るために実際に不活性ガス供給源67から供給した不活性ガスの総流量値と同じ流量のガスをCエリア内の金属窓32に供給することを条件にシミュレーションを行ったときのシミュレーション結果の計算値を示す。いずれも、Cエリアの同一エリア1内の金属窓32のパーツC1~C4の供給口35の末端部35aに同時に流れるガスの流量を求める。 FIG. 5A shows an actually measured value of the flow meter 200, which is the result of simultaneously measuring the gas flow rate flowing through the supply port 35 of the metal window 32 in the C area. FIG. 5 (b) shows a metal window 32 in the C area in which the gas having the same flow rate as the total flow value of the inert gas actually supplied from the inert gas supply source 67 in order to obtain the measurement result of FIG. 5 (a) is used. The calculated value of the simulation result when the simulation is performed on the condition that the gas is supplied to is shown. In each case, the flow rate of the gas simultaneously flowing to the terminal portion 35a of the supply port 35 of the parts C1 to C4 of the metal window 32 in the same area 1 of the C area is obtained.

この結果、図5(a)及び(b)の縦軸に示す供給口35の末端部35aを流れる流量は、図5(a)の実測値と図5(b)の計算値とでほぼ一致した。これにより、実施形態に係る流量測定方法の有効性が確認できた。また、Cエリア内の金属窓32のパーツC1~C4の供給口35に均等にガスが供給されていることが分かった。以上から、本実施形態に係る流量測定方法によれば、分岐ガス配管52により分流され、処理室S内に流れるガスの流量を精度良く測定することができる。 As a result, the flow rate flowing through the terminal portion 35a of the supply port 35 shown on the vertical axis of FIGS. 5 (a) and 5 (b) is almost the same as the measured value of FIG. 5 (a) and the calculated value of FIG. 5 (b). did. As a result, the effectiveness of the flow rate measurement method according to the embodiment was confirmed. Further, it was found that the gas was evenly supplied to the supply ports 35 of the parts C1 to C4 of the metal window 32 in the C area. From the above, according to the flow rate measuring method according to the present embodiment, it is possible to accurately measure the flow rate of the gas that is divided by the branch gas pipe 52 and flows into the processing chamber S.

なお、図2に示すように、パーツC1、C3は、パーツC2、C4よりも面積が小さい。その他のエリアでは、金属窓32の各パーツの面積は概ね同じである。そこで、パーツC1、C3には、図4(b)に示すオリフィス105を設けた機構を使用し、パーツC2、C4には、図4(a)に示すオリフィス105を設けない機構を使用する。これにより、パーツC2、C4よりも面積の小さいパーツC1、C3の供給口35の基端部35bの穴をオリフィス105で制御し、パーツC1、C3に供給するガスの流量を絞った。 As shown in FIG. 2, the parts C1 and C3 have a smaller area than the parts C2 and C4. In other areas, the area of each part of the metal window 32 is substantially the same. Therefore, the parts C1 and C3 use the mechanism provided with the orifice 105 shown in FIG. 4B, and the parts C2 and C4 use the mechanism not provided with the orifice 105 shown in FIG. 4A. As a result, the hole of the base end portion 35b of the supply port 35 of the parts C1 and C3 having a smaller area than the parts C2 and C4 was controlled by the orifice 105, and the flow rate of the gas supplied to the parts C1 and C3 was reduced.

この結果、図5(a)及び(b)において、パーツC2、C4の供給口35の末端部35aに流れるガスの流量(L/min)は、パーツC1、C3の供給口35の末端部35aに流れるガスの流量(L/min)よりも多くなった。 As a result, in FIGS. 5A and 5B, the flow rate (L / min) of the gas flowing to the terminal portion 35a of the supply port 35 of the parts C2 and C4 is the terminal portion 35a of the supply port 35 of the parts C1 and C3. It became larger than the flow rate (L / min) of the gas flowing to.

例えば、基板処理装置100の組み立て時、本来は、パーツC2、C4に図4(a)に示すオリフィス105を設けない機構を取り付け、パーツC1、C3に図4(b)に示すオリフィス105を設けた機構を取り付ける。ところが、パーツC1、C3に図4(a)に示すオリフィス105を設けない機構を取り付け、パーツC2、C4に図4(b)に示すオリフィス105を設けた機構を取り付けるミスをすることがある。この場合、本実施形態に係る流量測定方法により求めた、パーツC2、C4の供給口35に流れるガスの流量の測定値は、パーツC1、C3の供給口35に流れるガスの流量の測定値よりも小さい値を持つ。 For example, at the time of assembling the substrate processing apparatus 100, a mechanism that does not originally provide the orifice 105 shown in FIG. 4A is attached to the parts C2 and C4, and the orifice 105 shown in FIG. 4B is provided in the parts C1 and C3. Install the mechanism. However, there may be a mistake in attaching the mechanism without the orifice 105 shown in FIG. 4A to the parts C1 and C3, and attaching the mechanism provided with the orifice 105 shown in FIG. 4B to the parts C2 and C4. In this case, the measured value of the flow rate of the gas flowing through the supply port 35 of the parts C2 and C4 obtained by the flow rate measuring method according to the present embodiment is the measured value of the flow rate of the gas flowing through the supply port 35 of the parts C1 and C3. Also has a small value.

つまり、図5(a)のパーツC1、C3とパーツC2、C4の棒グラフの大小関係が、現在の図5(a)の棒グラフと逆転する。これにより、作業者は、パーツC1、C3とパーツC2、C4において分岐ガス配管52の取り付け位置に誤りがあることを発見できる。 That is, the magnitude relationship between the parts C1 and C3 of FIG. 5A and the bar graphs of parts C2 and C4 is reversed from the current bar graph of FIG. 5A. As a result, the operator can discover that there is an error in the mounting position of the branch gas pipe 52 in the parts C1 and C3 and the parts C2 and C4.

以上から、本実施形態に係る流量測定方法によれば、基板処理装置100の製造工程においてガス配管等の組み立てミスを検知することができる。また、例えば、組み立てミスを検知するための閾値を予め設定し、制御装置90が、本実施形態に係る流量測定方法により測定したガス流量の測定値(実測値)と閾値とを自動で照合してもよい。制御装置90は、測定値が閾値と所定以上ずれている場合に、組み立てにミスが発生していると自動で判定してもよい。 From the above, according to the flow rate measuring method according to the present embodiment, it is possible to detect an assembly error of the gas pipe or the like in the manufacturing process of the substrate processing apparatus 100. Further, for example, a threshold value for detecting an assembly error is set in advance, and the control device 90 automatically collates the measured value (measured value) of the gas flow rate measured by the flow rate measuring method according to the present embodiment with the threshold value. You may. The control device 90 may automatically determine that an assembly error has occurred when the measured value deviates from the threshold value by a predetermined value or more.

図6は、実施形態に係る各エリア(Cエリア、MLエリア、MSエリア、OCエリア、OLSエリア、OSSエリア)について、本実施形態に係る流量測定方法により測定した各同一エリアの各パーツのガス流量の測定値(実測値)の一例を示す図である。この実験では、不活性ガスの替わりにドライエアーを供給した。 FIG. 6 shows the gas of each part in the same area measured by the flow rate measuring method according to the present embodiment for each area (C area, ML area, MS area, OC area, OLS area, OSS area) according to the embodiment. It is a figure which shows an example of the measured value (measured value) of a flow rate. In this experiment, dry air was supplied instead of the inert gas.

図6(a)はCエリアの各パーツC1~C4の金属窓32Aの供給口におけるガス流量の測定結果である。図6(b)はMLエリアの各パーツML1~ML4の金属窓32Bの供給口におけるガス流量の測定結果である。図6(c)はMSエリアの各パーツMS1~MS4の金属窓32Cの供給口におけるガス流量の測定結果である。図6(d)はOCエリアの各パーツOC1~OC8の金属窓32Dの供給口におけるガス流量の測定結果である。図6(e)はOLSエリアの各パーツOLS1、OLS2の金属窓32Eの供給口におけるガス流量の測定結果である。図6(f)はOSSエリアの各パーツOSS1、OSS2の金属窓32Fの供給口におけるガス流量の測定結果である。 FIG. 6A is a measurement result of the gas flow rate at the supply port of the metal window 32A of each part C1 to C4 in the C area. FIG. 6B is a measurement result of the gas flow rate at the supply port of the metal window 32B of each part ML1 to ML4 in the ML area. FIG. 6C is a measurement result of the gas flow rate at the supply port of the metal window 32C of each part MS1 to MS4 in the MS area. FIG. 6D is a measurement result of the gas flow rate at the supply port of the metal window 32D of each part OC1 to OC8 in the OC area. FIG. 6E is a measurement result of the gas flow rate at the supply port of the metal window 32E of each part OLS1 and OLS2 in the OLS area. FIG. 6F is a measurement result of the gas flow rate at the supply port of the metal window 32F of each part OSS1 and OSS2 in the OSS area.

この結果、図6(b)~図6(f)に示すいずれのエリアも同一エリア内の各パーツの測定値はほぼ一致した。図6(a)については、パーツC1、C3の流量の測定値はほぼ一致し、パーツC2、C4の流量の測定値はほぼ一致した。パーツC1、C3の流量の測定値とパーツC2、C4の流量の測定値とで差が生じているのは、前述したとおり、パーツC1、C3ではオリフィス105を使用してガスの流量を絞り、パーツC2、C4ではオリフィス105を使用しなかったために生じた差である。 As a result, the measured values of the parts in the same area were almost the same in all the areas shown in FIGS. 6 (b) to 6 (f). Regarding FIG. 6A, the measured values of the flow rates of the parts C1 and C3 were almost the same, and the measured values of the flow rates of the parts C2 and C4 were almost the same. The difference between the measured flow rate of parts C1 and C3 and the measured flow rate of parts C2 and C4 is caused by using the orifice 105 in parts C1 and C3 to throttle the gas flow rate. This is the difference caused by not using the orifice 105 in the parts C2 and C4.

以上に説明したように、本実施形態に係る流量測定方法及び基板処理装置によれば、分岐ガス配管により分流され、処理室内に流れる分岐後のガスの流量を精度良く測定することができる。また、基板処理装置100の製造工程においてガス配管の組み立てミスを検知することができる。これにより、組み立て後の基板処理装置において、処理室内に設定された流量と異なる流量のガスを供給することを未然に防止できる。 As described above, according to the flow rate measuring method and the substrate processing apparatus according to the present embodiment, it is possible to accurately measure the flow rate of the gas after branching, which is divided by the branch gas pipe and flows into the processing chamber. Further, it is possible to detect an assembly error of the gas pipe in the manufacturing process of the substrate processing apparatus 100. As a result, it is possible to prevent the substrate processing apparatus after assembly from supplying gas with a flow rate different from the flow rate set in the processing chamber.

今回開示された実施形態に係る流量測定方法及び基板処理装置は、すべての点において例示であって制限的なものではないと考えられるべきである。実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で変形及び改良が可能である。上記複数の実施形態に記載された事項は、矛盾しない範囲で他の構成も取り得ることができ、また、矛盾しない範囲で組み合わせることができる。 The flow rate measuring method and the substrate processing apparatus according to the embodiment disclosed this time should be considered to be exemplary and not restrictive in all respects. The embodiments can be modified and improved in various forms without departing from the scope of the appended claims and their gist. The matters described in the plurality of embodiments may have other configurations within a consistent range, and may be combined within a consistent range.

本開示の基板処理装置は、Atomic Layer Deposition(ALD)装置、Capacitively Coupled Plasma(CCP)、Inductively Coupled Plasma(ICP)、Radial Line Slot Antenna(RLSA)、Electron Cyclotron Resonance Plasma(ECR)、Helicon Wave Plasma(HWP)のいずれのタイプの装置でも適用可能である。 The substrate processing apparatus of the present disclosure includes Atomic Layer Deposition (ALD) apparatus, Capacitively Coupled Plasma (CCP), Inductively Coupled Plasma (ICP), Radial Line Slot Antenna (RLSA), Electron Cyclotron Resonance Plasma (ECR), Helicon Wave Plasma ( It is applicable to any type of device (HWP).

また、基板処理装置の一例としてプラズマ処理装置を挙げて説明したが、基板処理装置は、基板に所定の処理(例えば、成膜処理、エッチング処理等)を施す装置であればよく、プラズマ処理装置に限定されるものではない。 Further, although the plasma processing device has been described as an example of the substrate processing device, the substrate processing device may be any device as long as it is a device that performs a predetermined treatment (for example, film forming treatment, etching treatment, etc.) on the substrate. It is not limited to.

11 蓋
14 隔壁
15 本体
20 処理容器
32、32A~32F 金属窓
33 拡散室
34 シャワーヘッド
35 金属窓の供給口
52 分岐ガス配管
60 ガス供給部
61A~61F 不活性ガス分岐配管
63A~63F フローレシオコントローラ
65 分岐器
66 外部ガス配管
67 不活性ガス供給源
68 処理ガス配管
70 基板支持部
90 制御装置(制御部)
100 基板処理装置
101 シール部材
200 流量計
200a 計測管
201 流量測定治具
L、L1~L6 分岐ガス配管
S 処理室
11 Closure 14 Partition 15 Main body 20 Processing container 32, 32A to 32F Metal window 33 Diffusion chamber 34 Shower head 35 Metal window supply port 52 Branch gas pipe 60 Gas supply section
61A to 61F Inert gas branch piping 63A to 63F Flow ratio controller 65 Turnout 66 External gas piping 67 Inert gas supply source 68 Processing gas piping 70 Board support 90 Control device (control unit)
100 Board processing device 101 Sealing member 200 Flow meter 200a Measuring tube 201 Flow measuring jig L, L1 to L6 Branch gas piping S Processing room

Claims (6)

ガスを供給するガス供給配管と、
前記ガス供給配管から分岐する複数の分岐ガス配管と、
前記複数の分岐ガス配管に連通する金属窓と、
前記金属窓の底部に配置され、前記金属窓から前記ガスを通すガス吐出孔を有するシャワーヘッドと、
を有する基板処理装置においてガスの流量を測定する流量測定方法であって、
複数の前記分岐ガス配管に連通する前記金属窓の供給口に流量計を配置し、前記流量計により前記金属窓の供給口に流れるガスの流量を測定する工程を有する、流量測定方法。
Gas supply piping that supplies gas and
A plurality of branched gas pipes that branch from the gas supply pipe, and
A metal window that communicates with the plurality of branched gas pipes,
A shower head located at the bottom of the metal window and having a gas discharge hole for passing the gas through the metal window.
It is a flow rate measuring method for measuring the flow rate of gas in a substrate processing apparatus having the above.
A flow rate measuring method comprising a step of arranging a flow meter at a supply port of the metal window communicating with a plurality of the branched gas pipes and measuring the flow rate of gas flowing through the supply port of the metal window by the flow meter.
前記ガスの流量を測定する工程は、
前記流量計を前記金属窓の供給口の末端部に配置する、
請求項1に記載の流量測定方法。
The step of measuring the flow rate of the gas is
The flow meter is placed at the end of the supply port of the metal window.
The flow rate measuring method according to claim 1.
前記ガスの流量を測定する工程は、
予め分けられた前記金属窓の複数のエリアについて、同一エリア内の前記金属窓の供給口に同時に流れるガスの流量の測定が可能である、
請求項1又は2に記載の流量測定方法。
The step of measuring the flow rate of the gas is
It is possible to measure the flow rate of gas simultaneously flowing to the supply port of the metal window in the same area for a plurality of areas of the metal window divided in advance.
The flow rate measuring method according to claim 1 or 2.
前記流量計は、前記金属窓の供給口から取り外しが可能である、
請求項1~3のいずれか一項に記載の流量測定方法。
The flow meter can be removed from the supply port of the metal window.
The flow rate measuring method according to any one of claims 1 to 3.
前記ガスの流量を測定する工程は、
大気環境下で前記金属窓の供給口に流れるガスの流量を測定する、
請求項1~4のいずれか一項に記載の流量測定方法。
The step of measuring the flow rate of the gas is
Measuring the flow rate of gas flowing through the supply port of the metal window in an atmospheric environment,
The flow rate measuring method according to any one of claims 1 to 4.
ガスを供給するガス供給配管と、
前記ガス供給配管から分岐する複数の分岐ガス配管と、
前記複数の分岐ガス配管に連通する金属窓と、
前記金属窓の底部に配置され、前記金属窓から前記ガスを通すガス吐出孔を有するシャワーヘッドと、制御部と、を有し、
前記制御部は、
複数の前記分岐ガス配管に連通する前記金属窓の供給口に流量計を配置し、前記流量計により前記金属窓の供給口に流れるガスの流量を測定する工程を制御する、基板処理装置。
Gas supply piping that supplies gas and
A plurality of branched gas pipes that branch from the gas supply pipe, and
A metal window that communicates with the plurality of branched gas pipes,
It has a shower head, which is arranged at the bottom of the metal window and has a gas discharge hole for passing the gas from the metal window, and a control unit.
The control unit
A substrate processing apparatus for arranging a flow meter at a supply port of the metal window communicating with a plurality of branch gas pipes and controlling a process of measuring the flow rate of gas flowing through the supply port of the metal window by the flow meter.
JP2020211855A 2020-12-21 2020-12-21 Flow rate measurement method and substrate processing device Pending JP2022098355A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020211855A JP2022098355A (en) 2020-12-21 2020-12-21 Flow rate measurement method and substrate processing device
TW110145678A TW202231127A (en) 2020-12-21 2021-12-07 Flow measuring method and substrate processing device characterized by high precisely measuring the branched gas flow that is circulated inside the processing chamber and is divided by a branched gas service pipe
KR1020210175989A KR20220089637A (en) 2020-12-21 2021-12-09 Method for measuring flow rate and substrate processing apparatus
CN202111500125.7A CN114719918A (en) 2020-12-21 2021-12-09 Flow measuring method and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020211855A JP2022098355A (en) 2020-12-21 2020-12-21 Flow rate measurement method and substrate processing device

Publications (1)

Publication Number Publication Date
JP2022098355A true JP2022098355A (en) 2022-07-01

Family

ID=82165603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020211855A Pending JP2022098355A (en) 2020-12-21 2020-12-21 Flow rate measurement method and substrate processing device

Country Status (4)

Country Link
JP (1) JP2022098355A (en)
KR (1) KR20220089637A (en)
CN (1) CN114719918A (en)
TW (1) TW202231127A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6626800B2 (en) 2016-08-19 2019-12-25 東京エレクトロン株式会社 Method for inspecting shower plate of plasma processing apparatus

Also Published As

Publication number Publication date
TW202231127A (en) 2022-08-01
KR20220089637A (en) 2022-06-28
CN114719918A (en) 2022-07-08

Similar Documents

Publication Publication Date Title
US11698648B2 (en) Gas supply system and gas supply method
US8038834B2 (en) Method and system for controlling radical distribution
KR101255900B1 (en) Plasma processing apparatus
TW201812083A (en) Method and apparatus for controlling gas flow to a process chamber
KR102346038B1 (en) Plasma processing apparatus and gas supply member
CN109563617B (en) Low-pressure lifter cavity hardware
US10607819B2 (en) Cleaning method and processing apparatus
TWI619166B (en) Vacuum device and valve control method
TWI751224B (en) Plasma processing device and nozzle
JP5004614B2 (en) Vacuum processing equipment
KR102264005B1 (en) Plasma processing apparatus
TWI670747B (en) High-frequency plasma processing device and high-frequency plasma processing method
JP2010021446A (en) Plasma processing method, plasma processing apparatus and storage medium
JP2022098355A (en) Flow rate measurement method and substrate processing device
TW202332326A (en) Plasma chamber with multiphase rotating independent gas cross-flow with reduced volume and dual vhf
WO2023157682A1 (en) Method for determining amount of wear of edge ring, plasma processing device, and substrate processing system
US20240006203A1 (en) Chamber liner for semiconductor processing
WO2024005047A1 (en) Substrate processing device control method and substrate processing system
WO2023157681A1 (en) Plasma processing device, and plasma processing method
JP2009212286A (en) Plasma treatment device
KR20170125651A (en) Dielectric window supporting structure for inductively coupled plasma processing apparatus
KR20220015942A (en) Substrate processing apparatus
KR20210055597A (en) Gas supply method and substrate processing apparatus
KR101477289B1 (en) Substrate Processing Apparatus
JP2024008667A (en) Substrate processing device, substrate processing method, and gas supply assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507