JP2022098325A - Treatment agent for elastomer fiber high-speed spinning process with winding speed of 1,000 m/min or more, and method for producing elastomer fiber - Google Patents
Treatment agent for elastomer fiber high-speed spinning process with winding speed of 1,000 m/min or more, and method for producing elastomer fiber Download PDFInfo
- Publication number
- JP2022098325A JP2022098325A JP2020211807A JP2020211807A JP2022098325A JP 2022098325 A JP2022098325 A JP 2022098325A JP 2020211807 A JP2020211807 A JP 2020211807A JP 2020211807 A JP2020211807 A JP 2020211807A JP 2022098325 A JP2022098325 A JP 2022098325A
- Authority
- JP
- Japan
- Prior art keywords
- group
- elastomer fiber
- treatment agent
- iminoethyl
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 276
- 229920001971 elastomer Polymers 0.000 title claims abstract description 258
- 239000000806 elastomer Substances 0.000 title claims abstract description 258
- 239000003795 chemical substances by application Substances 0.000 title claims abstract description 196
- 238000009987 spinning Methods 0.000 title claims abstract description 99
- 238000004804 winding Methods 0.000 title claims description 95
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 164
- 229920002050 silicone resin Polymers 0.000 claims abstract description 114
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 84
- 239000002480 mineral oil Substances 0.000 claims abstract description 82
- 235000010446 mineral oil Nutrition 0.000 claims abstract description 82
- 229920002635 polyurethane Polymers 0.000 claims description 40
- 239000004814 polyurethane Substances 0.000 claims description 40
- 125000003277 amino group Chemical group 0.000 claims description 26
- -1 siloxane unit Chemical group 0.000 description 243
- 238000000034 method Methods 0.000 description 79
- 239000003921 oil Substances 0.000 description 52
- 125000004432 carbon atom Chemical group C* 0.000 description 51
- 239000000126 substance Substances 0.000 description 48
- 150000002430 hydrocarbons Chemical group 0.000 description 36
- 238000012360 testing method Methods 0.000 description 30
- 238000011156 evaluation Methods 0.000 description 21
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 18
- 239000002994 raw material Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 15
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 210000004177 elastic tissue Anatomy 0.000 description 12
- 238000005461 lubrication Methods 0.000 description 12
- 230000014759 maintenance of location Effects 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 12
- 239000012488 sample solution Substances 0.000 description 12
- 239000008096 xylene Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 9
- 125000004103 aminoalkyl group Chemical group 0.000 description 9
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 9
- 238000005227 gel permeation chromatography Methods 0.000 description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 9
- 238000002074 melt spinning Methods 0.000 description 9
- 229920003225 polyurethane elastomer Polymers 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 125000002947 alkylene group Chemical group 0.000 description 6
- 239000002216 antistatic agent Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 239000012209 synthetic fiber Substances 0.000 description 6
- 229920002994 synthetic fiber Polymers 0.000 description 6
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 6
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- 125000004042 4-aminobutyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])N([H])[H] 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 125000003118 aryl group Chemical class 0.000 description 3
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000001160 cross-polarisation magic angle spinning nuclear magnetic resonance spectrum Methods 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 3
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 3
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 238000000578 dry spinning Methods 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 3
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 125000002463 lignoceryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229940057995 liquid paraffin Drugs 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229940098779 methanesulfonic acid Drugs 0.000 description 3
- POPACFLNWGUDSR-UHFFFAOYSA-N methoxy(trimethyl)silane Chemical compound CO[Si](C)(C)C POPACFLNWGUDSR-UHFFFAOYSA-N 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 125000001725 pyrenyl group Chemical group 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 229930195734 saturated hydrocarbon Natural products 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 3
- 238000002166 wet spinning Methods 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/02—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with hydrocarbons
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/643—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/38—Polyurethanes
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
本発明は、エラストマー繊維高速紡糸工程用処理剤、及びエラストマー繊維の製造方法に関する。 The present invention relates to a treatment agent for an elastomer fiber high-speed spinning process and a method for producing an elastomer fiber.
例えば合成繊維の一種であるエラストマー繊維は、他の合成繊維に比べて繊維間の粘着性が強い。例えばエラストマー繊維を紡糸してパッケージに巻き取った後、該パッケージから引き出して加工工程に供する際に、パッケージから安定して解舒することが難しい場合がある。そのため、パッケージから安定して解舒させるために、エラストマー繊維の紡糸工程において、エラストマー繊維に油剤を付与することがある。 For example, elastomer fibers, which are a type of synthetic fibers, have stronger adhesiveness between fibers than other synthetic fibers. For example, when an elastomer fiber is spun and wound into a package and then pulled out from the package and used for a processing process, it may be difficult to stably unwind the elastomer fiber from the package. Therefore, in order to stably unwind the elastomer fiber from the package, an oil agent may be applied to the elastomer fiber in the spinning process of the elastomer fiber.
特許文献1には、エラストマー繊維としての弾性繊維の製造方法について、熱可塑性ポリウレタンエラストマーを含む原料組成物を、2000~10000m/minの紡糸速度で溶融紡糸することが開示されている。 Patent Document 1 discloses, as a method for producing an elastic fiber as an elastomer fiber, a raw material composition containing a thermoplastic polyurethane elastomer is melt-spun at a spinning rate of 2000 to 10000 m / min.
特許文献2には、(a)ポリオルガノシロキサン又は鉱物油、(b)シリコンレジン、及び(c)エーテル変性ポリオルガノシロキサンからなり、30℃における粘度が50センチストーク以下の油剤が付与されたエラストマー繊維としてのポリウレタン弾性繊維が開示されている。 Patent Document 2 describes an elastomer composed of (a) polyorganosiloxane or mineral oil, (b) silicon resin, and (c) ether-modified polyorganosiloxane, to which an oil having a viscosity of 50 centistoke or less at 30 ° C. is applied. Polyurethane elastic fibers as fibers are disclosed.
特許文献3には、ベース成分、アミノ変性シリコーン、及びシリコーンレジンを含有する油剤としての弾性繊維用処理剤が開示されている。 Patent Document 3 discloses a treatment agent for elastic fibers as an oil agent containing a base component, an amino-modified silicone, and a silicone resin.
近年、エラストマー繊維の紡糸工程において、高速化とともに高倍率延伸が行われるようになってきている。高速での紡糸工程で付与された油剤は、エラストマー繊維に付着せずに飛散しやすい傾向がある。そのため、高速での紡糸工程に用いられる油剤としてのエラストマー繊維高速紡糸工程用処理剤には、エラストマー繊維をパッケージから安定して解舒する解舒性のさらなる性能向上に加えて、エラストマー繊維からの飛散を抑制する性能の向上が求められている。 In recent years, in the spinning process of elastomer fibers, high-magnification drawing has been performed along with high speed. The oil agent applied in the spinning process at high speed tends to scatter without adhering to the elastomer fiber. Therefore, in the treatment agent for the elastomer fiber high-speed spinning process as an oil agent used in the high-speed spinning process, in addition to further improving the unwinding performance of stably unwinding the elastomer fiber from the package, the elastomer fiber can be used. There is a need to improve the performance of suppressing scattering.
上記課題を解決するためのエラストマー繊維高速紡糸工程用処理剤は、ジメチルシリコーン、シリコーンレジン、及び鉱物油の含有割合の合計を100質量%とすると、前記ジメチルシリコーンを70~99.9質量%、前記シリコーンレジンを0.1~25質量%、及び前記鉱物油を0~13質量%の割合で含有し、30℃における動粘度が8~70mm2/sであることを要旨とする。 The treatment agent for the elastomer fiber high-speed spinning process for solving the above problems contains 70 to 99.9% by mass of the dimethylsilicone, assuming that the total content of the dimethylsilicone, the silicone resin, and the mineral oil is 100% by mass. The gist is that the silicone resin is contained in a proportion of 0.1 to 25% by mass and the mineral oil is contained in a proportion of 0 to 13% by mass, and the kinematic viscosity at 30 ° C. is 8 to 70 mm 2 / s.
上記エラストマー繊維高速紡糸工程用処理剤は、更に、アミノ基を有する変性シリコーンを含有することが好ましい。
上記エラストマー繊維高速紡糸工程用処理剤は、前記ジメチルシリコーン、前記シリコーンレジン、前記鉱物油、及び前記アミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、前記ジメチルシリコーンを70~97質量%、前記シリコーンレジンを0.1~25質量%、前記鉱物油を0~10質量%、及び前記変性シリコーンを0.5~5質量%の割合で含有することが好ましい。
The treatment agent for the high-speed spinning process of elastomer fibers preferably further contains a modified silicone having an amino group.
The treatment agent for the elastomer fiber high-speed spinning process contains 70 to 97 of the dimethyl silicone, assuming that the total content of the dimethyl silicone, the silicone resin, the mineral oil, and the modified silicone having an amino group is 100% by mass. It is preferable to contain the silicone resin in a proportion of 0.1 to 25% by mass, the mineral oil in an amount of 0 to 10% by mass, and the modified silicone in a proportion of 0.5 to 5% by mass.
上記エラストマー繊維高速紡糸工程用処理剤は、30℃における動粘度が、8~40mm2/sであることが好ましい。
上記エラストマー繊維高速紡糸工程用処理剤は、前記エラストマー繊維が、ポリウレタン系エラストマー繊維であることが好ましい。
The treatment agent for the elastomer fiber high-speed spinning process preferably has a kinematic viscosity at 30 ° C. of 8 to 40 mm 2 / s.
In the treatment agent for the high-speed spinning process of elastomer fibers, it is preferable that the elastomer fibers are polyurethane-based elastomer fibers.
上記課題を解決するためのエラストマー繊維の製造方法は、上記エラストマー繊維高速紡糸工程用処理剤を紡糸工程でエラストマー繊維に付着させることを要旨とする。
上記エラストマー繊維高速紡糸工程用処理剤の製造方法は、前記紡糸工程での巻き取り速度が、1000~10000m/minであることが好ましい。
The gist of the method for producing an elastomer fiber for solving the above problems is to attach the treatment agent for the elastomer fiber high-speed spinning process to the elastomer fiber in the spinning process.
In the method for producing the treatment agent for the elastomer fiber high-speed spinning process, the winding speed in the spinning process is preferably 1000 to 10000 m / min.
本発明のエラストマー繊維高速紡糸工程用処理剤によると、エラストマー繊維の解舒性を好適に向上させることができるとともに、エラストマー繊維からの飛散が抑制される。 According to the treatment agent for the high-speed spinning process of the elastomer fiber of the present invention, the unfoldability of the elastomer fiber can be suitably improved and the scattering from the elastomer fiber is suppressed.
(第1実施形態)
本発明に係るエラストマー繊維高速紡糸工程用処理剤(以下、単に処理剤ともいう。)を具体化した第1実施形態について説明する。
(First Embodiment)
A first embodiment embodying a treatment agent for an elastomer fiber high-speed spinning process according to the present invention (hereinafter, also simply referred to as a treatment agent) will be described.
本実施形態の処理剤は、ジメチルシリコーン、シリコーンレジン、及び鉱物油の含有割合の合計を100質量%とすると、ジメチルシリコーンを70~99.9質量%、シリコーンレジンを0.1~25質量%、及び鉱物油を0~13質量%の割合で含有し、30℃における動粘度が8~70mm2/sである。 Assuming that the total content of dimethyl silicone, silicone resin, and mineral oil is 100% by mass, the treatment agent of the present embodiment contains 70 to 99.9% by mass of dimethyl silicone and 0.1 to 25% by mass of silicone resin. , And mineral oil in a proportion of 0 to 13% by mass, and a kinematic viscosity at 30 ° C. is 8 to 70 mm 2 / s.
処理剤の各成分の含有割合が上記数値範囲であるとともに、動粘度が上記数値範囲であることにより、エラストマー繊維の解舒性を好適に向上させることができる。また、処理剤の飛散を抑制することができる。 When the content ratio of each component of the treatment agent is in the above numerical range and the kinematic viscosity is in the above numerical range, the unfoldability of the elastomer fiber can be suitably improved. In addition, it is possible to suppress the scattering of the treatment agent.
なお、上記エラストマー繊維高速紡糸工程用処理剤における「高速」とは、紡糸工程での巻き取り速度が1000m/min以上を意味するものとする。
上記処理剤は、30℃における動粘度が、8~40mm2/sであることが好ましい。処理剤の動粘度が上記数値範囲であることにより、エラストマー繊維に処理剤を付与した際に処理剤をより均一に付着させることができる。動粘度の測定方法については後述する。
The term "high speed" in the treatment agent for the high-speed spinning process of elastomer fibers means that the winding speed in the spinning process is 1000 m / min or more.
The treatment agent preferably has a kinematic viscosity at 30 ° C. of 8 to 40 mm 2 / s. When the kinematic viscosity of the treatment agent is within the above numerical range, the treatment agent can be more uniformly adhered when the treatment agent is applied to the elastomer fiber. The method for measuring the kinematic viscosity will be described later.
上記ジメチルシリコーンとしては、特に制限はないが、25℃における動粘度が5~1000mm2/sであるものが好ましい。
上記ジメチルシリコーンの具体例としては、例えば25℃における動粘度が10mm2/sであるジメチルシリコーン、25℃における動粘度が100mm2/sであるジメチルシリコーン、25℃における動粘度が1000mm2/sであるジメチルシリコーン、25℃における動粘度が6mm2/sであるジメチルシリコーン、25℃における動粘度が5mm2/sであるジメチルシリコーン等が挙げられる。
The dimethyl silicone is not particularly limited, but preferably has a kinematic viscosity of 5 to 1000 mm 2 / s at 25 ° C.
Specific examples of the dimethyl silicone include dimethyl silicone having a kinematic viscosity of 10 mm 2 / s at 25 ° C, dimethyl silicone having a kinematic viscosity of 100 mm 2 / s at 25 ° C, and a kinematic viscosity of 1000 mm 2 / s at 25 ° C. Examples thereof include dimethyl silicone having a kinematic viscosity of 6 mm 2 / s at 25 ° C, dimethyl silicone having a kinematic viscosity of 5 mm 2 / s at 25 ° C, and the like.
上記ジメチルシリコーンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
上記シリコーンレジンとしては、特に制限はないが、下記の化1で示されるM単位、下記の化2で示されるシロキサン単位、下記の化3で示されるQ単位、及び下記の化4で示されるシロキサン単位から選ばれる2つ以上の構成単位から構成されていることが好ましい。
The above-mentioned dimethyl silicone may be used alone or in combination of two or more.
The silicone resin is not particularly limited, but is represented by the M unit shown in Chemical formula 1 below, the siloxane unit shown in Chemical formula 2 below, the Q unit shown in Chemical formula 3 below, and the chemical resin 4 below. It is preferably composed of two or more structural units selected from siloxane units.
R1,R2,R3:炭素数1~24の炭化水素基。)
R 1 , R 2 , R 3 : Hydrocarbon groups having 1 to 24 carbon atoms. )
R4:炭素数1~24の炭化水素基。
R 4 : Hydrocarbon group having 1 to 24 carbon atoms.
R5,R6:炭素数1~5のアルキレン基。
R7:水素原子、炭素数1~5のアルキル基、フェニル基、炭素数4~22の1~4価の脂肪族カルボン酸から一つの水酸基を除いた残基、又は炭素数6~22の1~4価の芳香族カルボン酸から一つの水酸基を除いた残基。
R5, R6: An alkylene group having 1 to 5 carbon atoms.
R 7 : Hydrogen atom, alkyl group having 1 to 5 carbon atoms, phenyl group, 1 to 4 valent aliphatic carboxylic acid having 4 to 22 carbon atoms minus one hydroxyl group, or a residue having 6 to 22 carbon atoms. A residue obtained by removing one hydroxyl group from a 1- to tetravalent aromatic carboxylic acid.
f:0~1の整数。) f: An integer from 0 to 1. )
R8,R9:炭素数1~24の炭化水素基。)
上記シリコーンレジンは、上記M単位とQ単位とのモル比率(以下、「MQ比」ともいう。)が、0.5~1.2であることが好ましい。
R 8 and R 9 : Hydrocarbon groups having 1 to 24 carbon atoms. )
The silicone resin preferably has a molar ratio of M units to Q units (hereinafter, also referred to as “MQ ratio”) of 0.5 to 1.2.
上記化1、化2、化4のR1、R2、R3、R4、R8、R9において、炭素数1~24の炭化水素基としては、特に制限されず、飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよい。また、直鎖の炭化水素基であってもよいし、分岐鎖を有する炭化水素基であってもよい。 In R 1 , R 2 , R 3 , R 4 , R 8 , and R 9 of Chemical formula 1, Chemical formula 2, and Chemical formula 4, the hydrocarbon group having 1 to 24 carbon atoms is not particularly limited, and is a saturated hydrocarbon group. It may be an unsaturated hydrocarbon group or an unsaturated hydrocarbon group. Further, it may be a linear hydrocarbon group or a hydrocarbon group having a branched chain.
上記炭素数1~24の炭化水素基としては、例えば、1)メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、へキシル基、イソへキシル基、オクチル基、イソオクチル基、デシル基、イソデシル基、ドデシル基、イソドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、イソテトラデシル基、ヘキサデシル基(セチル基)、イソヘキサデシル基、オクタデシル基(ステアリル基)、イソオクタデシイル基、エイコシル基、イソエイコシル基、ドコシル基、イソドコシル基、テトラコシル基、イソテトラコシル基等の炭素数1~24脂肪族炭化水素基、2)シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、3-ピナニル基等の炭素数3~24の脂環族炭化水素基、3)フェニル基、ナフチル基、ベンジル基、アントラセニル基、ピレニル基、ナフトピレニル基、2-ナフタレンドデシル基等の炭素数6~24の芳香族炭化水素基が挙げられる。 Examples of the hydrocarbon group having 1 to 24 carbon atoms include 1) methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, isopentyl group, hexyl group and isohexyl group. Octyl group, isooctyl group, decyl group, isodecyl group, dodecyl group, isododecyl group, tridecyl group, isotridecyl group, tetradecyl group, isotetradecyl group, hexadecyl group (cetyl group), isohexadecyl group, octadecyl group (stearyl group) , Isooctadecyl group, Eicosyl group, Isoeicosyl group, Docosyl group, Isodocosyl group, Tetracosyl group, Isotetracosyl group and other 1 to 24 aliphatic hydrocarbon groups, 2) Cyclopropyl group, Cyclopentyl group, Cyclohexyl group, Cyclo Alicyclic hydrocarbon groups having 3 to 24 carbon atoms such as octyl group and 3-pinanyl group, 3) carbons such as phenyl group, naphthyl group, benzyl group, anthracenyl group, pyrenyl group, naphthopylenyl group and 2-naphthalenddecyl group. The number 6 to 24 aromatic hydrocarbon groups can be mentioned.
上記化2のR5、R6において、炭素数1~5のアルキレン基としては、例えばメチレン基、エチレン基、プロピレン基、ブチレン基、へプチレン基等が挙げられる。
上記化2のR7-NH(-R6-NH)f-R5-としては、下記の(1)~(10)を挙げることができる。
Examples of the alkylene group having 1 to 5 carbon atoms in R5 and R6 of Chemical formula 2 include a methylene group, an ethylene group, a propylene group, a butylene group, and a heptylene group.
Examples of R 7 -NH (-R 6 -NH) f -R 5- of the above-mentioned Chemical formula 2 include the following (1) to (10).
(1)fが0であってR7が水素原子であるアミノアルキル基。
(2)fが0であってR7が炭素数1~5のアルキル基である置換イミノアルキル基。
(3)fが0であってR7がフェニル基であるN-フェニルイミノアルキル基。
(1) An aminoalkyl group in which f is 0 and R 7 is a hydrogen atom.
(2) A substituted iminoalkyl group in which f is 0 and R 7 is an alkyl group having 1 to 5 carbon atoms.
(3) An N-phenyliminoalkyl group in which f is 0 and R 7 is a phenyl group.
(4)fが0であってR7が炭素数4~22の1~4価の脂肪族カルボン酸から一つの水酸基を除いた残基であるN-置換脂肪族アミドアルキル基。
(5)fが0であってR7が炭素数6~22の1~4価の芳香族カルボン酸から一つの水酸基を除いた残基であるN-置換芳香族アミドアルキル基。
(4) An N-substituted aliphatic amide alkyl group in which f is 0 and R 7 is a residue obtained by removing one hydroxyl group from a 1 to 4 valent aliphatic carboxylic acid having 4 to 22 carbon atoms.
(5) An N-substituted aromatic amide alkyl group in which f is 0 and R 7 is a residue obtained by removing one hydroxyl group from a 1 to 4 valent aromatic carboxylic acid having 6 to 22 carbon atoms.
(6)fが1であってR7が水素原子であるアミノアルキルイミノアルキル基。
(7)fが1であってR7が炭素数1~5のアルキル基である置換イミノアルキルイミノアルキル基。
(6) An aminoalkyliminoalkyl group in which f is 1 and R7 is a hydrogen atom.
(7) A substituted iminoalkyl iminoalkyl group in which f is 1 and R 7 is an alkyl group having 1 to 5 carbon atoms.
(8)fが1であってR7がフェニル基であるN-フェニルイミノアルキルイミノアルキル基。
(9)fが1であってR7が炭素数4~22の1~4価の脂肪族カルボン酸から一つの水酸基を除いた残基であるN-置換脂肪族アミドアルキルイミノアルキル基。
(8) N-phenyliminoalkyl iminoalkyl group in which f is 1 and R 7 is a phenyl group.
(9) An N-substituted aliphatic amide alkyl iminoalkyl group in which f is 1 and R 7 is a residue obtained by removing one hydroxyl group from a 1 to 4 valent aliphatic carboxylic acid having 4 to 22 carbon atoms.
(10)fが1であってR7が炭素数6~22の1~4価の芳香族カルボン酸から一つの水酸基を除いた残基であるN-置換芳香族アミドアルキルイミノアルキル基。
上記(1)のアミノアルキル基としては、例えばアミノエチル基、3-アミノプロピル基、4-アミノブチル基等が挙げられる。
(10) An N-substituted aromatic amide alkyl iminoalkyl group in which f is 1 and R 7 is a residue obtained by removing one hydroxyl group from a 1 to 4 valent aromatic carboxylic acid having 6 to 22 carbon atoms.
Examples of the aminoalkyl group of (1) above include an aminoethyl group, a 3-aminopropyl group, a 4-aminobutyl group and the like.
上記(2)の置換イミノアルキル基としては、例えばN-エチル-3-イミノプロピル基、N-エチル-2-イミノエチル基等が挙げられる。
上記(3)のN-フェニルイミノアルキル基としては、例えばN-フェニル-3-イミノプロピル基、N-フェニル-2-イミノエチル基等が挙げられる。
Examples of the substituted iminoalkyl group of (2) above include N-ethyl-3-iminopropyl group and N-ethyl-2-iminoethyl group.
Examples of the N-phenyliminoalkyl group of (3) above include an N-phenyl-3-iminopropyl group and an N-phenyl-2-iminoethyl group.
上記(4)のN-置換脂肪族アミドアルキル基としては、例えばN-アセトイル-2-イミノエチル基、N-ドデカノイル-2-イミノエチル基、N-オクタデカノイル-2-イミノエチル基、N-オクタデセノイル-2-イミノエチル基、N-アセトイル-3-イミノプロピル基、N-ドデカノイル-3-イミノプロピル基、N-オクタデカノイル-3-イミノプロピル基、N-オクタデセノイル-3-イミノプロピル基、N-アセトイル-4-イミノブチル基、N-ドデカノイル-4-イミノブチル基、N-オクタデカノイル-4-イミノブチル基、N-オクタデセノイル-4-イミノブチル基、N-(2-カルボキシエチルカルボニル)-2-イミノエチル基、N-(2-カルボキシエチルカルボニル)-3-イミノプロピル基、N-(2-カルボキシエチルカルボニル)-4-イミノブチル基等が挙げられる。 Examples of the N-substituted aliphatic amide alkyl group of (4) above include N-acetoyl-2-iminoethyl group, N-dodecanoyl-2-iminoethyl group, N-octadecanoyl-2-iminoethyl group and N-octadecenoyl-. 2-Iminoethyl group, N-acetoyl-3-iminopropyl group, N-dodecanoyl-3-iminopropyl group, N-octadecanoyl-3-iminopropyl group, N-octadecenoyl-3-iminopropyl group, N-acetoyl -4-Iminobutyl group, N-dodecanoyl-4-iminobutyl group, N-octadecanoyl-4-iminobutyl group, N-octadecenoyl-4-iminobutyl group, N- (2-carboxyethylcarbonyl) -2-iminoethyl group, Examples thereof include N- (2-carboxyethylcarbonyl) -3-iminopropyl group, N- (2-carboxyethylcarbonyl) -4-iminobutyl group and the like.
上記(5)のN-置換芳香族アミドアルキル基としては、例えばN-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(2,4-ジカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(2,5-ジカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(3,4-ジカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(2,4-ジカルボキシベンゼン-カルボニル)-4-イミノブチル基、N-(2,5-ジカルボキシベンゼン-カルボニル)-4-イミノブチル基、N-(3,4-ジカルボキシベンゼン-カルボニル)-4-イミノブチル基、N-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(2,4,5-トリカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(2,4,5-トリカルボキシベンゼン-カルボニル)-4-イミノブチル基等が挙げられる。 Examples of the N-substituted aromatic amide alkyl group in (5) above include N- (2,4-dicarboxybenzene-carbonyl) -2-iminoethyl group and N- (2,5-dicarboxybenzene-carbonyl)-. 2-Iminoethyl group, N- (3,4-dicarboxybenzene-carbonyl) -2-Iminoethyl group, N- (2,4-dicarboxybenzene-carbonyl) -3-Iminopropyl group, N- (2,5) -Dicarboxybenzene-carbonyl) -3-iminopropyl group, N- (3,4-dicarboxybenzene-carbonyl) -3-iminopropyl group, N- (2,4-dicarboxybenzene-carbonyl) -4- Iminobutyl group, N- (2,5-dicarboxybenzene-carbonyl) -4-iminobutyl group, N- (3,4-dicarboxybenzene-carbonyl) -4-iminobutyl group, N- (2,4,5- Tricarboxybenzene-carbonyl) -2-iminoethyl group, N- (2,4,5-tricarboxybenzene-carbonyl) -3-iminopropyl group, N- (2,4,5-tricarboxybenzene-carbonyl)- 4-Iminobutyl group and the like can be mentioned.
上記(6)のアミノアルキルイミノアルキル基としては、例えばN-(2-アミノエチル)-2-イミノエチル基、N-(2-アミノエチル)-3-イミノプロピル基、N-(2-アミノエチル)-4-イミノブチル基等が挙げられる。 Examples of the aminoalkyl iminoalkyl group of (6) above include N- (2-aminoethyl) -2-iminoethyl group, N- (2-aminoethyl) -3-iminopropyl group, and N- (2-aminoethyl). ) -4-Iminobutyl group and the like.
上記(7)の置換イミノアルキルイミノアルキル基としては、例えばN-(N’-エチル-2-イミノエチル)-3-イミノプロピル基、N-(N’-プロピル-2-イミノエチル)-3-イミノプロピル基等が挙げられる。 Examples of the substituted iminoalkyl iminoalkyl group of (7) above include N- (N'-ethyl-2-iminoethyl) -3-iminopropyl group and N- (N'-propyl-2-iminoethyl) -3-imino. Examples include propyl groups.
上記(8)のN-フェニルイミノアルキルイミノアルキル基としては、例えばN-(N’-フェニル-2-イミノエチル)-3-イミノプロピル基、N-(N’-フェニル-2-イミノエチル)-2-イミノエチル基等が挙げられる。 Examples of the N-phenyliminoalkyl iminoalkyl group of (8) above include N- (N'-phenyl-2-iminoethyl) -3-iminopropyl group and N- (N'-phenyl-2-iminoethyl) -2. -Iminoethyl group and the like can be mentioned.
上記(9)のN-置換脂肪族アミドアルキルイミノアルキル基としては、N-(N’-アセトイル-2-イミノエチル)-2-イミノエチル基、N-(N’-ドデカノイル-2-イミノエチル)-2-イミノエチル基、N-(N’-オクタデカノイル-2-イミノエチル)-2-イミノエチル基、N-(N’-オクタデセノイル-2-イミノエチル)-2-イミノエチル基、N-(N’-アセトイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-ドデカノイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-オクタデカノイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-オクタデセノイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-アセトイル-2-イミノエチル)-4-イミノブチル基、N-(N’-ドデカノイル-2-イミノエチル)-4-イミノブチル基、N-(N’-オクタデカノイル-2-イミノエチル)-4-イミノブチル基、N-(N’-オクタデセノイル-2-イミノエチル)-4-イミノブチル基、N-[N’-(2-カルボキシエチルカルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(2-カルボキシエチルカルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2-カルボキシエチルカルボニル)-2-イミノエチル]-4-イミノブチル基等が挙げられる。 Examples of the N-substituted aliphatic amidoalkyliminoalkyl group of (9) above include N- (N'-acetoyl-2-iminoethyl) -2-iminoethyl group and N- (N'-dodecanoyl-2-iminoethyl) -2. -Iminoethyl group, N- (N'-octadecanoyl-2-iminoethyl) -2-iminoethyl group, N- (N'-octadecenoyl-2-iminoethyl) -2-iminoethyl group, N- (N'-acetoyl- 2-Iminoethyl) -3-iminopropyl group, N- (N'-dodecanoyl-2-iminoethyl) -3-iminopropyl group, N- (N'-octadecanoyl-2-iminoethyl) -3-iminopropyl group , N- (N'-octadecenoyl-2-iminoethyl) -3-iminopropyl group, N- (N'-acetoyl-2-iminoethyl) -4-iminobutyl group, N- (N'-dodecanoyl-2-iminoethyl) -4-Iminobutyl group, N- (N'-octadecanoyl-2-iminoethyl) -4-iminobutyl group, N- (N'-octadecenoyl-2-iminoethyl) -4-iminobutyl group, N- [N'- (2-carboxyethylcarbonyl) -2-iminoethyl] -2-iminoethyl group, N- [N'-(2-carboxyethylcarbonyl) -2-iminoethyl] -3-iminopropyl group, N- [N'-( 2-carboxyethylcarbonyl) -2-iminoethyl] -4-iminobutyl group and the like can be mentioned.
上記(10)のN-置換芳香族アミドアルキルイミノアルキル基としては、例えばN-[N’-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N'-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基、N-[N’-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基、N-[N’-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基、N-[N’-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基等が挙げられる。 Examples of the N-substituted aromatic amidoalkyl iminoalkyl group of (10) include N- [N'-(2,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -2-iminoethyl group and N- [. N'-(2,5-dicarboxybenzene-carbonyl) -2-iminoethyl] -2-iminoethyl group, N- [N'-(3,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -2- Iminoethyl group, N- [N'-(2,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -3-iminopropyl group, N- [N'-(2,5-dicarboxybenzene-carbonyl)- 2-Iminoethyl] -3-iminopropyl group, N- [N'-(3,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -3-iminopropyl group, N- [N'-(2,4) -Dicarboxybenzene-carbonyl) -2-iminoethyl] -4-iminobutyl group, N- [N'-(2,5-dicarboxybenzene-carbonyl) -2-iminoethyl] -4-iminobutyl group, N- [N '-(3,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -4-iminobutyl group, N- [N'-(2,4,5-tricarboxybenzene-carbonyl) -2-iminoethyl] -2 -Iminoethyl group, N- [N'-(2,4,5-tricarboxybenzene-carbonyl) -2-Iminoethyl] -3-Iminopropyl group, N- [N'-(2,4,5-tricarboxy) Benzene-carbonyl) -2-iminoethyl] -4-iminobutyl group and the like can be mentioned.
シリコーンレジンのM単位やQ単位等のシロキサン単位の分析は、特に制限されないが、元素分析、FT-IRスペクトル分析、CP/MASのNMRスペクトル分析等によって行うことができる。例えば、上記分析方法によって原料に用いた各シラン化合物の炭素数を測定することによって、構成シロキサン単位の割合を算出することができる。そして、構成シロキサン単位の割合、シリコーンレジンを構成するシロキサン単位の理論分子量、及び、後述する質量平均分子量の測定値から、分子中のシロキサン単位のモル数を算出して、モル比率を算出することができる。 The analysis of siloxane units such as M unit and Q unit of silicone resin is not particularly limited, but can be performed by elemental analysis, FT-IR spectrum analysis, CP / MAS NMR spectrum analysis and the like. For example, the ratio of the constituent siloxane units can be calculated by measuring the carbon number of each silane compound used as a raw material by the above analysis method. Then, the number of moles of the siloxane unit in the molecule is calculated from the measured values of the ratio of the constituent siloxane units, the theoretical molecular weight of the siloxane units constituting the silicone resin, and the mass average molecular weight described later, and the molar ratio is calculated. Can be done.
上記シリコーンレジンの具体例としては、例えば質量平均分子量が12000であり、MQ比が0.8であるメチルシリコーンレジン、質量平均分子量が16000であり、MQ比が0.8であるアミノ変性シリコーンレジン、質量平均分子量が9000であり、MQ比が0.85であるメチルシリコーンレジン、質量平均分子量が16000であり、MQ比が0.91であるアミノ変性シリコーンレジン等が挙げられる。 Specific examples of the above-mentioned silicone resin include, for example, a methyl silicone resin having a mass average molecular weight of 12000 and an MQ ratio of 0.8, and an amino-modified silicone resin having a mass average molecular weight of 16000 and an MQ ratio of 0.8. Examples thereof include a methyl silicone resin having a mass average molecular weight of 9000 and an MQ ratio of 0.85, and an amino-modified silicone resin having a mass average molecular weight of 16000 and an MQ ratio of 0.91.
上記シリコーンレジンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
上記処理剤に含まれる鉱物油としては、特に制限はないが、例えば芳香族系炭化水素、パラフィン系炭化水素、ナフテン系炭化水素等が挙げられる。より具体的には、例えばスピンドル油、流動パラフィン等が挙げられる。
The above silicone resin may be used alone or in combination of two or more.
The mineral oil contained in the above-mentioned treatment agent is not particularly limited, and examples thereof include aromatic hydrocarbons, paraffinic hydrocarbons, and naphthenic hydrocarbons. More specifically, for example, spindle oil, liquid paraffin and the like can be mentioned.
また、上記鉱物油は、40℃における動粘度が5~10mm2/sであるものが好ましい。
上記鉱物油の具体例としては、例えば40℃における動粘度が10mm2/sである鉱物油、40℃における動粘度が5mm2/sである鉱物油、40℃における動粘度が7mm2/sである鉱物油等が挙げられる。
Further, the mineral oil preferably has a kinematic viscosity of 5 to 10 mm 2 / s at 40 ° C.
Specific examples of the above mineral oil include, for example, a mineral oil having a kinematic viscosity of 10 mm 2 / s at 40 ° C, a mineral oil having a kinematic viscosity of 5 mm 2 / s at 40 ° C, and a kinematic viscosity of 7 mm 2 / s at 40 ° C. Mineral oil and the like.
上記鉱物油は、市販品を適宜採用することができる。
上記鉱物油は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
As the above-mentioned mineral oil, a commercially available product can be appropriately adopted.
The above mineral oil may be used alone or in combination of two or more.
上記処理剤は、更に、アミノ基を有する変性シリコーンを含有することが好ましい。処理剤がアミノ基を有する変性シリコーンを含有することにより、処理剤の飛散をより好適に抑制することができる。 The treatment agent preferably further contains a modified silicone having an amino group. By containing the modified silicone having an amino group in the treating agent, the scattering of the treating agent can be more preferably suppressed.
アミノ基を有する変性シリコーンとしては、特に制限はなく、ジアミン型のアミノ変性シリコーンや、モノアミン型のアミノ変性シリコーンを用いることができる。
アミノ基を有する変性シリコーンの具体例としては、例えば25℃における動粘度が60mm2/sであり、当量が4100g/molであるモノアミン型のアミノ変性シリコーン、25℃における動粘度が90mm2/sであり、当量が8800g/molであるモノアミン型のアミノ変性シリコーン、25℃における動粘度が450mm2/sであり、当量が5700g/molであるジアミン型のアミノ変性シリコーン等が挙げられる。
The modified silicone having an amino group is not particularly limited, and a diamine-type amino-modified silicone or a monoamine-type amino-modified silicone can be used.
Specific examples of the modified silicone having an amino group include a monoamine type amino-modified silicone having an kinematic viscosity of 60 mm 2 / s at 25 ° C and an equivalent of 4100 g / mol, and a kinematic viscosity of 90 mm 2 / s at 25 ° C. Examples thereof include monoamine-type amino-modified silicone having an equivalent of 8800 g / mol, and diamine-type amino-modified silicone having a kinematic viscosity of 450 mm 2 / s at 25 ° C. and an equivalent of 5700 g / mol.
上記アミノ基を有する変性シリコーンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
ジメチルシリコーン、シリコーンレジン、鉱物油、及びアミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、ジメチルシリコーンを70~97質量%、シリコーンレジンを0.1~25質量%、鉱物油を0~10質量%、及びアミノ基を有する変性シリコーンを0.5~5質量%の割合で含有することが好ましい。
The modified silicone having an amino group may be used alone or in combination of two or more.
Assuming that the total content of dimethyl silicone, silicone resin, mineral oil, and modified silicone having an amino group is 100% by mass, dimethyl silicone is 70 to 97% by mass, silicone resin is 0.1 to 25% by mass, and mineral oil. It is preferable to contain 0 to 10% by mass and 0.5 to 5% by mass of the modified silicone having an amino group.
処理剤の各成分の含有割合が上記数値範囲であることにより、エラストマー繊維を紡糸してパッケージに巻き取った際の形状をより良好に保持することができる。
(第2実施形態)
本発明に係るエラストマー繊維を具体化した第2実施形態について説明する。本実施形態のエラストマー繊維は、第1実施形態の処理剤が付着しているエラストマー繊維である。エラストマー繊維に対する第1実施形態の処理剤(溶媒を含まない)の付着量は、特に制限はないが、本発明の効果をより向上させる観点から0.1~10質量%の割合で付着していることが好ましい。
When the content ratio of each component of the treatment agent is within the above numerical range, the shape of the elastomer fiber when it is spun and wound into a package can be better maintained.
(Second Embodiment)
A second embodiment in which the elastomer fiber according to the present invention is embodied will be described. The elastomer fiber of the present embodiment is an elastomer fiber to which the treatment agent of the first embodiment is attached. The amount of the treatment agent (without solvent) adhered to the elastomer fiber of the first embodiment is not particularly limited, but is adhered at a ratio of 0.1 to 10% by mass from the viewpoint of further improving the effect of the present invention. It is preferable to have.
エラストマー繊維としては、特に制限はないが、例えばポリエステル系エラストマー繊維、ポリアミド系エラストマー繊維、ポリオレフィン系エラストマー繊維、ポリウレタン系エラストマー繊維等が挙げられる。これらの中でもポリウレタン系エラストマー繊維が好ましく、さらにこの中でも溶融紡糸法で紡糸されたポリウレタン系エラストマー繊維が好ましい。かかる場合に本発明の効果の発現をより高くすることができる。 The elastomer fiber is not particularly limited, and examples thereof include a polyester-based elastomer fiber, a polyamide-based elastomer fiber, a polyolefin-based elastomer fiber, and a polyurethane-based elastomer fiber. Among these, polyurethane-based elastomer fibers are preferable, and among these, polyurethane-based elastomer fibers spun by the melt spinning method are preferable. In such a case, the manifestation of the effect of the present invention can be further enhanced.
ここで、エラストマー繊維とは、弾力性に富んだ繊維であって、引張り応力を付与すると伸長することができるとともに、引張り応力が解除されると元の長さに戻る繊維を意味するものとする。そのため、エラストマー繊維は、弾性繊維と言い換えることができる。 Here, the elastomer fiber means a fiber having a high elasticity, which can be stretched when a tensile stress is applied and returns to the original length when the tensile stress is released. .. Therefore, the elastomer fiber can be paraphrased as an elastic fiber.
本実施形態のエラストマー繊維の製造方法は、第1実施形態の処理剤を紡糸工程でエラストマー繊維に給油することにより得られる。処理剤の給油方法としては、希釈することなくニート給油法により、エラストマー繊維の紡糸工程においてエラストマー繊維に付着させる方法が好ましい。付着方法としては、例えばローラー給油法、ガイド給油法、スプレー給油法等の公知の方法が適用できる。 The method for producing an elastomer fiber of the present embodiment is obtained by supplying the elastomer fiber with the treatment agent of the first embodiment in a spinning step. As a method for refueling the treatment agent, a method of adhering to the elastomer fiber in the spinning step of the elastomer fiber by a neat refueling method without diluting is preferable. As the adhesion method, for example, a known method such as a roller lubrication method, a guide lubrication method, or a spray lubrication method can be applied.
本実施形態に適用されるエラストマー繊維自体の製造方法は、特に限定されず、公知の方法で製造が可能である。例えば湿式紡糸法、溶融紡糸法、乾式紡糸法等が挙げられる。これらの中でも、溶媒を使用しないことで作業環境への負荷が少ない点、より安価に製造ができる観点から溶融紡糸法が好ましく適用される。 The method for producing the elastomer fiber itself applied to the present embodiment is not particularly limited, and the elastomer fiber itself can be produced by a known method. For example, a wet spinning method, a melt spinning method, a dry spinning method and the like can be mentioned. Among these, the melt spinning method is preferably applied from the viewpoint that the load on the working environment is small because no solvent is used and the production can be performed at a lower cost.
紡糸工程におけるエラストマー繊維の巻き取り速度に特に制限はないが、1000/min以上の高速紡糸であることが好ましい。紡糸工程での巻き取り速度は、1000~10000m/minであることがより好ましい。 The winding speed of the elastomer fiber in the spinning step is not particularly limited, but high-speed spinning of 1000 / min or more is preferable. The winding speed in the spinning step is more preferably 1000 to 10000 m / min.
第1実施形態の処理剤、及び第2実施形態のエラストマー繊維によれば、以下のような効果を得ることができる。
(1)ジメチルシリコーン、シリコーンレジン、及び鉱物油の含有割合の合計を100質量%とすると、ジメチルシリコーンを70~99.9質量%、シリコーンレジンを0.1~25質量%、及び鉱物油を0~13質量%の割合で含有し、30℃における動粘度が8~70mm2/sである。
According to the treatment agent of the first embodiment and the elastomer fiber of the second embodiment, the following effects can be obtained.
(1) Assuming that the total content of dimethyl silicone, silicone resin, and mineral oil is 100% by mass, dimethyl silicone is 70 to 99.9% by mass, silicone resin is 0.1 to 25% by mass, and mineral oil is used. It is contained in a proportion of 0 to 13% by mass, and has a kinematic viscosity at 30 ° C. of 8 to 70 mm 2 / s.
処理剤の各成分の含有割合が上記数値範囲であるとともに、動粘度が上記数値範囲であることにより、エラストマー繊維の解舒性を好適に向上させることができる。また、エラストマー繊維からの処理剤の飛散が抑制される。 When the content ratio of each component of the treatment agent is in the above numerical range and the kinematic viscosity is in the above numerical range, the unfoldability of the elastomer fiber can be suitably improved. In addition, the scattering of the treatment agent from the elastomer fiber is suppressed.
(2)更に、アミノ基を有する変性シリコーンを含有する。したがって、エラストマー繊維からの処理剤の飛散をより好適に抑制することができる。
(3)ジメチルシリコーン、シリコーンレジン、鉱物油、及びアミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、ジメチルシリコーンを70~97質量%、シリコーンレジンを0.1~25質量%、鉱物油を0~10質量%、及びアミノ基を有する変性シリコーンを0.5~5質量%の割合で含有する。処理剤の各成分の含有割合が上記数値範囲であることにより、エラストマー繊維を紡糸してパッケージに巻き取った際の形状をより良好に保持することができる。
(2) Further, it contains a modified silicone having an amino group. Therefore, it is possible to more preferably suppress the scattering of the treatment agent from the elastomer fiber.
(3) Assuming that the total content of dimethyl silicone, silicone resin, mineral oil, and modified silicone having an amino group is 100% by mass, dimethyl silicone is 70 to 97% by mass and silicone resin is 0.1 to 25% by mass. , Mineral oil is contained in a proportion of 0 to 10% by mass, and modified silicone having an amino group is contained in a proportion of 0.5 to 5% by mass. When the content ratio of each component of the treatment agent is within the above numerical range, the shape of the elastomer fiber when it is spun and wound into a package can be better maintained.
(4)処理剤は、30℃における動粘度が、8~40mm2/sである。処理剤の動粘度が上記数値範囲であることにより、エラストマー繊維に処理剤を付与した際に処理剤をより均一に付着させることができる。 (4) The treatment agent has a kinematic viscosity at 30 ° C. of 8 to 40 mm 2 / s. When the kinematic viscosity of the treatment agent is within the above numerical range, the treatment agent can be more uniformly adhered when the treatment agent is applied to the elastomer fiber.
上記実施形態は、以下のように変更して実施できる。上記実施形態、及び、以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施できる。
本実施形態の処理剤には、本発明の効果を阻害しない範囲内において、処理剤の品質保持のための安定化剤や制電剤、帯電防止剤、つなぎ剤、酸化防止剤、紫外線吸収剤等の通常処理剤に用いられる成分(以下、その他成分ともいう。)をさらに配合してもよい。
The above embodiment can be modified and implemented as follows. The above embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
The treatment agent of the present embodiment includes a stabilizer, an antistatic agent, an antistatic agent, a binder, an antioxidant, and an ultraviolet absorber for maintaining the quality of the treatment agent, as long as the effects of the present invention are not impaired. Ingredients used in ordinary treatment agents such as (hereinafter, also referred to as other ingredients) may be further blended.
以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明がこれらの実施例に限定されるというものではない。
試験区分1(エラストマー繊維高速紡糸工程用処理剤の調製)
(実施例1~15及び比較例1~10)
以下の方法により、表1に示すシリコーンレジン(B1)を合成した。
Hereinafter, examples and the like will be given in order to make the configuration and effects of the present invention more specific, but the present invention is not limited to these examples.
Test Category 1 (Preparation of treatment agent for high-speed spinning process of elastomer fiber)
(Examples 1 to 15 and Comparative Examples 1 to 10)
The silicone resin (B1) shown in Table 1 was synthesized by the following method.
B1は、M単位を構成することになる原料として、トリメチルメトキシシラン833.76g(8.0モル)、水800g、メタンスルホン酸2.0g、及びQ単位を構成することになる原料として、テトラエトキシシラン2083.3g(10モル)を反応容器に仕込み、78℃で24時間加温撹拌した。次いで、反応容器に炭酸水素ナトリウム1.78gを加えて中和した後、78℃に保ちながら5時間還流熟成を行った。さらに、キシレン2000gを加え、水、及び反応により副生したメタノールとエタノールを留去して、キシレン溶液に置換後、濾過した。得られた濾液の有効濃度(キシレン溶液中のレジン濃度)を50%に調整した後、その200gを別の反応容器に仕込み、反応溶液からキシレン、水を留去して、シリコーンレジン(B1)を得た。 B1 contains 833.76 g (8.0 mol) of trimethylmethoxysilane as a raw material constituting the M unit, 800 g of water, 2.0 g of methanesulfonic acid, and tetra as a raw material constituting the Q unit. 2083.3 g (10 mol) of ethoxysilane was charged in a reaction vessel, and the mixture was heated and stirred at 78 ° C. for 24 hours. Then, 1.78 g of sodium hydrogen carbonate was added to the reaction vessel for neutralization, and then reflux aging was carried out for 5 hours while keeping the temperature at 78 ° C. Further, 2000 g of xylene was added, water and methanol and ethanol by-produced by the reaction were distilled off, replaced with a xylene solution, and then filtered. After adjusting the effective concentration (resin concentration in the xylene solution) of the obtained filtrate to 50%, 200 g of the filtrate was charged in another reaction vessel, and xylene and water were distilled off from the reaction solution to obtain a silicone resin (B1). Got
シリコーンレジン(B1)の分析を行ったところ、このシリコーンレジン(B1)は、1分子中に化1で示されるシロキサン単位(M体)としてトリメチルシロキサンを8.0モル%、化3で示されるシロキサン単位(Q体)を10モル%(合計18モル%)有し、M単位とQ単位のモル比率が0.8のシリコーンレジンであった。 When the silicone resin (B1) was analyzed, this silicone resin (B1) contained 8.0 mol% of trimethylsiloxane as the siloxane unit (M body) represented by Chemical formula 1 in one molecule, and was represented by Chemical formula 3. It was a silicone resin having 10 mol% (total 18 mol%) of siloxane units (Q-form) and having a molar ratio of M units to Q units of 0.8.
B2~B4の合成は、B1の合成方法に沿いつつ、各原料の種類、配合、及び反応時間を調整して行った。
表1に示される各成分を使用し、ジメチルシリコーン(A1)、ジメチルシリコーン(A2)、シリコーンレジン(B1)、鉱物油(C1)、及びアミノ変性シリコーン(D1)がそれぞれ、83質部、10質量部、0.1質量部、4.9質量部、及び2質量部となるようにビーカーに加えた。これらをよく撹拌して均一に混合し、実施例1のエラストマー繊維高速紡糸工程用処理剤を調製した。
The synthesis of B2 to B4 was carried out by adjusting the type, formulation and reaction time of each raw material while following the synthesis method of B1.
Using each component shown in Table 1, dimethyl silicone (A1), dimethyl silicone (A2), silicone resin (B1), mineral oil (C1), and amino-modified silicone (D1) were added to 83 parts and 10 parts, respectively. It was added to the beaker to be parts by mass, 0.1 parts by mass, 4.9 parts by mass, and 2 parts by mass. These were stirred well and mixed uniformly to prepare a treatment agent for the elastomer fiber high-speed spinning process of Example 1.
実施例2~15、及び比較例1~9のエラストマー繊維高速紡糸工程用処理剤は、各原料の配合を調整して、実施例1と同様の方法によって調製した。なお、比較例10は、エラストマー繊維高速紡糸工程用処理剤を用いることなく、エラストマー繊維を製造した。 The treating agents for the elastomer fiber high-speed spinning process of Examples 2 to 15 and Comparative Examples 1 to 9 were prepared by the same method as in Example 1 by adjusting the composition of each raw material. In Comparative Example 10, the elastomer fiber was produced without using a treatment agent for the elastomer fiber high-speed spinning process.
エラストマー繊維高速紡糸工程用処理剤に使用するジメチルシリコーン、シリコーンレジン、鉱物油、アミノ変性シリコーン、及びその他成分の種類と質量部は、表1の「ジメチルシリコーン(A)」欄、「シリコーンレジン(B)」欄、「鉱物油(C)」欄、「アミノ変性シリコーン(D)」欄、「その他成分(E)」欄にそれぞれ示す通りである。 The types and parts of dimethyl silicone, silicone resin, mineral oil, amino-modified silicone, and other components used in the treatment agent for the elastomer fiber high-speed spinning process are listed in the "Dimethyl Silicone (A)" column of Table 1, "Silicone Resin (Silicone Resin). As shown in the "B)" column, the "mineral oil (C)" column, the "amino-modified silicone (D)" column, and the "other component (E)" column, respectively.
A1:25℃における動粘度が10mm2/sであるジメチルシリコーン
A2:25℃における動粘度が100mm2/sであるジメチルシリコーン
A3:25℃における動粘度が1000mm2/sであるジメチルシリコーン
A4:25℃における動粘度が6mm2/sであるジメチルシリコーン
A5:25℃における動粘度が5mm2/sであるジメチルシリコーン等が挙げられる。
A1: Dimethyl silicone with kinematic viscosity at 25 ° C of 10 mm 2 / s A2: Dimethyl silicone with kinematic viscosity at 25 ° C of 100 mm 2 / s A3: Dimethyl silicone with kinematic viscosity at 25 ° C of 1000 mm 2 / s A4: Dimethyl silicone having a kinematic viscosity of 6 mm 2 / s at 25 ° C. A5: Dimethyl silicone having a kinematic viscosity of 5 mm 2 / s at 25 ° C. and the like can be mentioned.
(シリコーンレジン(B))
B1:質量平均分子量が12000であり、MQ比が0.8であるメチルシリコーンレジン
B2:質量平均分子量が16000であり、MQ比が0.8であるアミノ変性シリコーンレジン
B3:質量平均分子量が9000であり、MQ比が0.85であるメチルシリコーンレジン
B4:質量平均分子量が16000であり、MQ比が0.91であるアミノ変性シリコーンレジン
MQ比の算出方法について説明する。
(Silicone resin (B))
B1: Methyl silicone resin having a mass average molecular weight of 12000 and an MQ ratio of 0.8 B2: Amino-modified silicone resin having a mass average molecular weight of 16000 and an MQ ratio of 0.8 B3: Amino-modified silicone resin having a mass average molecular weight of 9000 Methyl silicone resin with an MQ ratio of 0.85 B4: Amino-modified silicone resin with an mass average molecular weight of 16000 and an MQ ratio of 0.91 The method for calculating the MQ ratio will be described.
MQ比は、以下の式で求められる。
MQ比=M単位のモル数/Q単位のモル数
M単位:化1で示される化合物
Q単位:化3で示される化合物
シリコーンレジンの質量平均分子量(以下、「Mw」という。)の測定方法について説明する。
The MQ ratio is calculated by the following formula.
MQ ratio = number of moles in M units / number of moles in Q units M unit: compound represented by Chemical formula Q unit: compound represented by chemical formula 3 Method for measuring mass average molecular weight of silicone resin (hereinafter referred to as “Mw”) Will be explained.
まず、表1のシリコーンレジン0.02gをバイアル瓶に採取した。これにテトラヒドロフランを30mL加えて希釈し、試料溶液を得た。この試料溶液1mLをゲル浸透クロマトグラフィー(以下、「GPC」という。)用濾過フィルターを装着した注射器を用いて異物を除去し、GPC用試料瓶に採取して試料溶液を調製した。 First, 0.02 g of the silicone resin shown in Table 1 was collected in a vial. To this, 30 mL of tetrahydrofuran was added and diluted to obtain a sample solution. Foreign matter was removed from 1 mL of this sample solution using a syringe equipped with a filter for gel permeation chromatography (hereinafter referred to as "GPC"), and the sample solution was collected in a sample bottle for GPC to prepare a sample solution.
リファレンスカラムとして、TSKgel SuperH-RCを装着した東ソー社製HLC-8320GPCを使用した。
また、測定用カラムとして、TSKguardcolumn SuperH-L、TSKgel SuperH4000、TSKgel Super3000、TSKgel Super2000を装着した東ソー社製HLC-8320GPCを使用した。
As a reference column, HLC-8320GPC manufactured by Tosoh Corporation equipped with TSKgel SuperH-RC was used.
Further, as a measurement column, an HLC-8320GPC manufactured by Tosoh Co., Ltd. equipped with TSKguardcolum SuperH-L, TSKgel SuperH4000, TSKgel Super3000, and TSKgel Super2000 was used.
Mwは、標準試料として、TSKgel標準ポリスチレンを用いて検量線を作成し、各シリコーンレジンのMwを求めた。
(鉱物油(C))
C1:40℃における動粘度が10mm2/sである鉱物油
C2:40℃における動粘度が5mm2/sである鉱物油
C3:40℃における動粘度が7mm2/sである鉱物油
(アミノ変性シリコーン(D))
D1:25℃における動粘度が60mm2/sであり、当量が4100g/molであるモノアミン型のアミノ変性シリコーン
D2:25℃における動粘度が90mm2/sであり、当量が8800g/molであるモノアミン型のアミノ変性シリコーン
D3:25℃における動粘度が450mm2/sであり、当量が5700g/molであるジアミン型のアミノ変性シリコーン
(その他成分(E))
E1:25℃における動粘度が1000mm2/sであり、エチレンオキサイドとプロピレンオキサイドのモル比(EO:PO)が1:1であるエーテル変性シリコーン
エラストマー繊維高速紡糸工程用処理剤の動粘度は、キャノンフェンスケ粘度計を用いて、30℃の条件下で公知の方法によって測定した。同様に、鉱物油の動粘度は、キャノンフェンスケ粘度計を用いて、40℃の条件下で公知の方法によって測定した。ジメチルシリコーン、アミノ変性シリコーン、及びその他成分の動粘度は、キャノンフェンスケ粘度計を用いて、25℃の条件下で公知の方法によって測定した。
For Mw, a calibration curve was prepared using TSKgel standard polystyrene as a standard sample, and Mw of each silicone resin was obtained.
(Mineral oil (C))
C1: Mineral oil with kinematic viscosity of 10 mm 2 / s at 40 ° C C2: Mineral oil with kinematic viscosity of 5 mm 2 / s at 40 ° C C3: Mineral oil with kinematic viscosity of 7 mm 2 / s at 40 ° C (amino) Modified silicone (D))
D1: Monoamine-type amino-modified silicone having a kinematic viscosity at 25 ° C. of 60 mm 2 / s and an equivalent of 4100 g / mol D2: kinematic viscosity at 25 ° C. of 90 mm 2 / s and an equivalent of 8800 g / mol. Monoamine-type amino-modified silicone D3: Diamine-type amino-modified silicone having a kinematic viscosity of 450 mm 2 / s and an equivalent of 5700 g / mol at 25 ° C. (Other component (E))
E1: The kinematic viscosity of the treatment agent for the ether-modified silicone elastomer fiber high-speed spinning process, which has a kinematic viscosity of 1000 mm 2 / s at 25 ° C. and a molar ratio (EO: PO) of ethylene oxide to propylene oxide of 1: 1, is It was measured by a known method under the condition of 30 ° C. using a Canon Fenceke viscometer. Similarly, the kinematic viscosity of mineral oil was measured by a known method under the condition of 40 ° C. using a Canon Fenceke viscometer. The kinematic viscosities of dimethyl silicone, amino-modified silicone, and other components were measured by a known method under the condition of 25 ° C. using a Canon Fenceke viscometer.
試験区分2(エラストマー繊維の製造)
試験区分1で調製した処理剤を用いて、エラストマー繊維を製造した。
分子量1000のポリテトラメチレングリコールとジフェニルメタンジイソシアネートとから得られたポリウレタン系エラストマーを溶融紡糸し、ポリウレタン系エラストマー繊維を得た。
Test Category 2 (Manufacturing of Elastomer Fiber)
Elastomer fibers were produced using the treatment agent prepared in Test Category 1.
A polyurethane-based elastomer obtained from polytetramethylene glycol having a molecular weight of 1000 and diphenylmethane diisocyanate was melt-spun to obtain a polyurethane-based elastomer fiber.
巻き取り前の延伸ローラーと巻き取り部との間に位置する給油ガイドから、試験区分1で調製した処理剤をガイドオイリング法でニート給油した。引き続いて、処理剤を付与したポリウレタン系エラストマー繊維を、巻き取り速度500m/min、1000m/min、3000m/minの3種類の条件で、長さ58mmの円筒状紙管に巻き取った。 The treatment agent prepared in Test Category 1 was neatly refueled by the guide oiling method from the refueling guide located between the stretching roller before winding and the winding portion. Subsequently, the polyurethane-based elastomer fiber to which the treatment agent was applied was wound into a cylindrical paper tube having a length of 58 mm under three conditions of winding speeds of 500 m / min, 1000 m / min and 3000 m / min.
巻き取りは、巻き幅38mmを与えるトラバースガイドを介して、サーフェイスドライブの巻取機を用いて行った。この巻き取りによって、溶融紡糸ポリウレタン系エラストマー繊維のパッケージ500gを得た。処理剤の付着量の調節は、給油ガイドへの送液量を調整することで何れも5質量%となるように行った。 Winding was performed using a surface drive winder via a traverse guide that provides a winding width of 38 mm. By this winding, 500 g of a package of melt-spun polyurethane-based elastomer fibers was obtained. The amount of the treatment agent adhered was adjusted so that the amount of liquid sent to the refueling guide was adjusted to 5% by mass.
試験区分3(評価)
実施例1~15及び比較例1~10の処理剤について、処理剤を付着させたエラストマー繊維の油剤飛散性、形状保持性、油剤均一付着性、及び解舒性を評価した。各試験の手順について以下に示す。また、試験結果を表1の「油剤飛散性」欄、「形状保持性」欄、「油剤均一付着性」、及び「解舒性」欄にそれぞれ示す。
Test category 3 (evaluation)
With respect to the treatment agents of Examples 1 to 15 and Comparative Examples 1 to 10, the oil agent scattering property, shape retention property, oil agent uniform adhesion property, and unresolvability property of the elastomer fiber to which the treatment agent was attached were evaluated. The procedure for each test is shown below. Further, the test results are shown in the "oil agent scattering property" column, the "shape retention property" column, the "oil agent uniform adhesion" column, and the "dissolvability" column of Table 1, respectively.
(油剤飛散性)
試験区分2で、巻き取り速度500m/min、1000m/min、3000m/minの3種類の条件でポリウレタン系エラストマー繊維を製造した際に、巻取機付近の処理剤の飛散量を目視で観察して、以下の基準で評価した。
(Oil scattering property)
In test category 2, when polyurethane-based elastomer fibers were manufactured under three conditions of winding speeds of 500 m / min, 1000 m / min, and 3000 m / min, the amount of the treatment agent scattered near the winder was visually observed. The evaluation was made according to the following criteria.
・油剤飛散性の評価基準
◎:飛散が観察されなかった場合
○:僅かに飛散が観察された場合
×:かなりの飛散が観察された場合
(形状保持性)
150デニールのポリウレタン系エラストマー繊維を紡糸し、ガイド給油法にて処理剤を4.0質量%付着させた。巻き取り速度が500m/min、1000m/min、3000m/minの3種類の条件で巻き取った。
・ Evaluation criteria for oil scattering property ◎: When no scattering is observed ○: When slight scattering is observed ×: When considerable scattering is observed (shape retention)
A 150 denier polyurethane elastomer fiber was spun and a treatment agent was adhered in an amount of 4.0% by mass by a guide lubrication method. The winding speed was 500 m / min, 1000 m / min, and 3000 m / min.
図1に示すように、巻き取りは、長さ57mmの円筒状紙管11に、巻き幅42mmを与えるトラバースガイド(図示省略)を介して、サーフェイスドライブの巻取機(図示省略)を用いて行い、500gのパッケージ10を作製した。得られたパッケージ10について、巻き幅の最大値(Wmax)と最小幅(Wmin)を計測し、双方の差から下記の式でバルジを求めた。下記の基準で評価した。
As shown in FIG. 1, winding is performed by using a surface drive winder (not shown) via a traverse guide (not shown) that gives a winding width of 42 mm to a
バルジ=(Wmax-Wmin)/2
・形状保持性の評価基準
◎:バルジが3mm未満である場合
○:バルジが3mm以上、且つ6mm未満である場合
×:バルジが6mm以上である場合
(油剤均一付着性)
摩擦測定メーター(エイコー測器社製、SAMPLEFRICTION UNIT MODEL TB-1)を用いた。2つのフリーローラー間に直径1cmで表面粗度2Sのクロムメッキ梨地ピンを配置した。
Bullge = (Wmax-Wmin) / 2
・ Evaluation criteria for shape retention ◎: When the bulge is less than 3 mm ○: When the bulge is 3 mm or more and less than 6 mm ×: When the bulge is 6 mm or more (uniform oil adhesion)
A friction measuring meter (SAMPLEFRICTION UNIT MODEL TB-1 manufactured by Eiko Sokki Co., Ltd.) was used. A chrome-plated satin pin with a diameter of 1 cm and a surface roughness of 2S was placed between the two free rollers.
試験区分2で、巻き取り速度が500m/min、1000m/min、3000m/minの3種類の条件で製造したパッケージからポリウレタン系エラストマー繊維を引き出し、クロムメッキ梨地ピンに対して接触角度が90度となるようにセットした。 In test category 2, the polyurethane elastomer fiber was pulled out from the package manufactured under the three conditions of winding speeds of 500 m / min, 1000 m / min and 3000 m / min, and the contact angle with respect to the chrome-plated satin pin was 90 degrees. I set it to be.
25℃で60%RHの条件下、入側で初期張力(T1)5gをかけ、100m/minの速度で走行させたときの出側の2次張力(T2)を0.1秒毎に1分間測定した。この時のT2の標準偏差を求め、以下の基準で評価した。 Under the condition of 60% RH at 25 ° C., the initial tension (T 1 ) of 5 g is applied on the entry side, and the secondary tension (T 2 ) on the exit side when running at a speed of 100 m / min is applied every 0.1 seconds. Was measured for 1 minute. The standard deviation of T 2 at this time was obtained and evaluated according to the following criteria.
・油剤均一付着性の評価基準
◎:標準偏差が1.5未満である場合
○:標準偏差が1.5以上2.0未満である場合
×:標準偏差が2.0以上でる場合
なお、標準偏差が1.5未満である場合は、油剤が均一に付着しており、繊維がクロムメッキ梨地ピンと擦過した際に張力変動が少ない。
・ Evaluation criteria for uniform oil adhesion ◎: When the standard deviation is less than 1.5 ○: When the standard deviation is 1.5 or more and less than 2.0 ×: When the standard deviation is 2.0 or more Note that the standard When the deviation is less than 1.5, the oil is uniformly adhered and the tension fluctuation is small when the fiber is rubbed against the chrome-plated satin pin.
標準偏差が1.5以上2.0未満である場合は、油剤がほぼ均一に付着しており、繊維がクロムメッキ梨地ピンと擦過した際に張力変動はあるが操業に問題はない。
標準偏差が2.0以上である場合は、油剤が均一に付着しておらず、繊維がクロムメッキ梨地ピンと擦過した際に張力変動が大きく操業に問題が生じる。
When the standard deviation is 1.5 or more and less than 2.0, the oil agent adheres almost uniformly, and there is a tension fluctuation when the fiber is rubbed against the chromium-plated satin pin, but there is no problem in operation.
When the standard deviation is 2.0 or more, the oil does not adhere uniformly, and when the fiber is rubbed against the chrome-plated satin pin, the tension fluctuates greatly and a problem occurs in operation.
(解舒性)
第1駆動ローラーとこれに常時接する第1遊離ローラーとで送り出し部を形成した。また、第2駆動ローラーとこれに常時接する第2遊離ローラーとで巻き取り部を形成した。送り出し部と巻き取り部の間隔を、水平方向に沿って約20cmとした。
(Dissolvability)
A feeding portion was formed by a first driving roller and a first free roller in constant contact with the first driving roller. Further, a winding portion is formed by a second driving roller and a second free roller that is in constant contact with the second driving roller. The distance between the feeding part and the winding part was set to about 20 cm along the horizontal direction.
試験区分2で作製したパッケージ(500g巻き)を第1駆動ローラーに装着した。第1駆動ローラーを駆動させてポリウレタン系エラストマー繊維を送り出すとともに、第2駆動ローラーを駆動させてポリウレタン系エラストマー繊維を巻き取った。パッケージの糸巻の厚さが2mmになるまで解舒した。 The package (500 g roll) prepared in Test Category 2 was attached to the first drive roller. The first drive roller was driven to send out the polyurethane-based elastomer fiber, and the second drive roller was driven to wind up the polyurethane-based elastomer fiber. The package was unwound until the thickness of the spool was 2 mm.
その際、第1駆動ローラーの送り出し速度を50m/minで固定する一方、第2駆動ローラーの巻き取り速度を50m/minより徐々に上げて、ポリウレタン系エラストマー繊維をパッケージから強制解舒した。この強制解舒において、送り出し部と巻き取り部との間でポリウレタン系エラストマー繊維の踊りがなくなる時点、言い換えれば、糸の挙動が不安定にならず、スムーズにパッケージから送り出されるようになる時点での巻き取り速度V(m/min)を測定した。下記の式から解舒性(%)を求め、以下の基準で評価した。 At that time, the delivery speed of the first drive roller was fixed at 50 m / min, while the take-up speed of the second drive roller was gradually increased from 50 m / min, and the polyurethane-based elastomer fiber was forcibly unwound from the package. In this forced unwinding, when the dance of the polyurethane elastomer fiber disappears between the feeding part and the winding part, in other words, when the behavior of the yarn does not become unstable and the yarn is smoothly fed out of the package. The winding speed V (m / min) was measured. The solvability (%) was calculated from the following formula and evaluated according to the following criteria.
解舒性(%)=(V-50)×2
・解舒性の評価基準
◎(良好):解舒性が120%未満
○(可):解舒性が120%以上、140%未満
×(不良):解舒性が140%以上
なお、解舒性の評価基準において、解舒性が120%未満であると、糸切れの発生は無く、安定した状態で解舒することが可能になる。解舒性が120%以上、140%未満であると、糸の引き出しに若干の抵抗があるものの、糸切れの発生は無く、操業に問題はない。解舒性が140%以上であると、糸の引き出し時の抵抗がより大きくなり、糸切れも発生して操業に問題が生じる。
Decomposability (%) = (V-50) x 2
・ Evaluation criteria for solvability ◎ (good): solvability is less than 120% ○ (possible): solvability is 120% or more and less than 140% × (poor): solvability is 140% or more When the unleashable property is less than 120% in the evaluation criteria of the unleashable property, the yarn breakage does not occur and the unleashable state can be unraveled in a stable state. When the unwindability is 120% or more and less than 140%, there is some resistance to pulling out the yarn, but no yarn breakage occurs and there is no problem in operation. When the unwindability is 140% or more, the resistance at the time of pulling out the yarn becomes larger, the yarn breaks, and the operation becomes a problem.
表1の結果から、本発明によれば、巻き取り速度が高速であっても、エラストマー繊維の解舒性を好適に向上させることができるとともに、処理剤の飛散を抑制することができる。また、エラストマー繊維をパッケージに巻き取った際の形状をより良好に保持することができる。また、エラストマー繊維に処理剤を付与した際に処理剤をより均一に付着させることができる。 From the results in Table 1, according to the present invention, even if the winding speed is high, the unfoldability of the elastomer fiber can be suitably improved and the scattering of the treatment agent can be suppressed. In addition, the shape of the elastomer fiber when it is wound around the package can be better maintained. Further, when the treatment agent is applied to the elastomer fiber, the treatment agent can be adhered more uniformly.
10…パッケージ、11…円筒状紙管。 10 ... Package, 11 ... Cylindrical paper tube.
本発明は、巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤、及びエラストマー繊維の製造方法に関する。 The present invention relates to a treatment agent for an elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more , and a method for producing an elastomer fiber.
例えば合成繊維の一種であるエラストマー繊維は、他の合成繊維に比べて繊維間の粘着性が強い。例えばエラストマー繊維を紡糸してパッケージに巻き取った後、該パッケージから引き出して加工工程に供する際に、パッケージから安定して解舒することが難しい場合がある。そのため、パッケージから安定して解舒させるために、エラストマー繊維の紡糸工程において、エラストマー繊維に油剤を付与することがある。 For example, elastomer fibers, which are a type of synthetic fibers, have stronger adhesiveness between fibers than other synthetic fibers. For example, when an elastomer fiber is spun and wound into a package and then pulled out from the package and used for a processing process, it may be difficult to stably unwind the elastomer fiber from the package. Therefore, in order to stably unwind the elastomer fiber from the package, an oil agent may be applied to the elastomer fiber in the spinning process of the elastomer fiber.
特許文献1には、エラストマー繊維としての弾性繊維の製造方法について、熱可塑性ポリウレタンエラストマーを含む原料組成物を、2000~10000m/minの紡糸速度で溶融紡糸することが開示されている。 Patent Document 1 discloses, as a method for producing an elastic fiber as an elastomer fiber, a raw material composition containing a thermoplastic polyurethane elastomer is melt-spun at a spinning rate of 2000 to 10000 m / min.
特許文献2には、(a)ポリオルガノシロキサン又は鉱物油、(b)シリコンレジン、及び(c)エーテル変性ポリオルガノシロキサンからなり、30℃における粘度が50センチストーク以下の油剤が付与されたエラストマー繊維としてのポリウレタン弾性繊維が開示されている。 Patent Document 2 describes an elastomer composed of (a) polyorganosiloxane or mineral oil, (b) silicon resin, and (c) ether-modified polyorganosiloxane, to which an oil having a viscosity of 50 centistoke or less at 30 ° C. is applied. Polyurethane elastic fibers as fibers are disclosed.
特許文献3には、ベース成分、アミノ変性シリコーン、及びシリコーンレジンを含有する油剤としての弾性繊維用処理剤が開示されている。 Patent Document 3 discloses a treatment agent for elastic fibers as an oil agent containing a base component, an amino-modified silicone, and a silicone resin.
近年、エラストマー繊維の紡糸工程において、高速化とともに高倍率延伸が行われるようになってきている。高速での紡糸工程で付与された油剤は、エラストマー繊維に付着せずに飛散しやすい傾向がある。そのため、高速での紡糸工程に用いられる油剤としてのエラストマー繊維高速紡糸工程用処理剤には、エラストマー繊維をパッケージから安定して解舒する解舒性のさらなる性能向上に加えて、エラストマー繊維からの飛散を抑制する性能の向上が求められている。 In recent years, in the spinning process of elastomer fibers, high-magnification drawing has been performed along with high speed. The oil agent applied in the spinning process at high speed tends to scatter without adhering to the elastomer fiber. Therefore, in the treatment agent for the elastomer fiber high-speed spinning process as an oil agent used in the high-speed spinning process, in addition to further improving the unwinding performance of stably unwinding the elastomer fiber from the package, the elastomer fiber can be used. There is a need to improve the performance of suppressing scattering.
上記課題を解決するための巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤は、ジメチルシリコーン、シリコーンレジン、鉱物油、及びアミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、前記ジメチルシリコーンを70~97質量%、前記シリコーンレジンを0.1~10質量%、前記鉱物油を0~10質量%、及び前記変性シリコーンを0.5~5質量%の割合で含有し、30℃における動粘度が8~70mm2/sであることを要旨とする。 The treatment agent for the high-speed spinning process of elastomer fibers having a winding speed of 1000 m / min or more for solving the above problems has a total content ratio of dimethyl silicone, silicone resin , mineral oil , and modified silicone having an amino group of 100. By mass%, the dimethyl silicone is 70 to 97% by mass, the silicone resin is 0.1 to 10 % by mass , the mineral oil is 0 to 10% by mass , and the modified silicone is 0.5 to 5 % by mass. It is contained in a proportion of % by mass , and the kinematic viscosity at 30 ° C. is 8 to 70 mm 2 / s.
上記巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤は、30℃における動粘度が、8~40mm2/sであることが好ましい。
上記巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤は、前記エラストマー繊維が、ポリウレタン系エラストマー繊維であることが好ましい。
The treatment agent for the elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more preferably has a kinematic viscosity of 8 to 40 mm 2 / s at 30 ° C.
In the treating agent for the elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more, it is preferable that the elastomer fiber is a polyurethane-based elastomer fiber.
上記課題を解決するためのエラストマー繊維の製造方法は、上記巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤を巻き取り速度が1000m/min以上の紡糸工程でエラストマー繊維に付着させることを要旨とする。 The method for producing an elastomer fiber for solving the above problems is to attach a treatment agent for an elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more to the elastomer fiber in a spinning process having a winding speed of 1000 m / min or more. The gist is that.
上記エラストマー繊維の製造方法は、前記紡糸工程での巻き取り速度が、1000~10000m/minであることが好ましい。 In the method for producing an elastomer fiber , the winding speed in the spinning step is preferably 1000 to 10000 m / min.
本発明の巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤によると、エラストマー繊維の解舒性を好適に向上させることができるとともに、エラストマー繊維からの飛散が抑制される。 According to the treatment agent for the elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more of the present invention, the unwinding property of the elastomer fiber can be suitably improved and the scattering from the elastomer fiber is suppressed.
(第1実施形態)
本発明に係る巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤(以下、単に処理剤ともいう。)を具体化した第1実施形態について説明する。
(First Embodiment)
A first embodiment of a treatment agent for an elastomer fiber high-speed spinning process (hereinafter, also simply referred to as a treatment agent) having a take-up speed of 1000 m / min or more according to the present invention will be described.
本実施形態の処理剤は、ジメチルシリコーン、シリコーンレジン、鉱物油、及びアミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、前記ジメチルシリコーンを70~97質量%、前記シリコーンレジンを0.1~10質量%、前記鉱物油を0~10質量%、及び前記変性シリコーンを0.5~5質量%の割合で含有し、30℃における動粘度が8~70mm2/sである。 Assuming that the total content of dimethyl silicone, silicone resin , mineral oil , and modified silicone having an amino group is 100% by mass, the treatment agent of the present embodiment contains 70 to 97% by mass of the dimethyl silicone and the silicone. It contains 0.1 to 10 % by mass of resin, 0 to 10% by mass of the mineral oil , and 0.5 to 5% by mass of the modified silicone, and has a kinematic viscosity of 8 to 70 mm at 30 ° C. 2 / S.
処理剤の各成分の含有割合が上記数値範囲であるとともに、動粘度が上記数値範囲であることにより、エラストマー繊維の解舒性を好適に向上させることができる。また、処理剤の飛散をより好適に抑制することができる。また、エラストマー繊維を紡糸してパッケージに巻き取った際の形状をより良好に保持することができる。 When the content ratio of each component of the treatment agent is in the above numerical range and the kinematic viscosity is in the above numerical range, the unfoldability of the elastomer fiber can be suitably improved. In addition, it is possible to more preferably suppress the scattering of the treatment agent. In addition, the shape of the elastomer fiber when it is spun and wound into a package can be better maintained.
なお、上記巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤における「高速」とは、紡糸工程での巻き取り速度が1000m/min以上を意味するものとする。 The "high speed" in the treatment agent for the elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more means that the winding speed in the spinning process is 1000 m / min or more.
上記処理剤は、30℃における動粘度が、8~40mm2/sであることが好ましい。処理剤の動粘度が上記数値範囲であることにより、エラストマー繊維に処理剤を付与した際に処理剤をより均一に付着させることができる。動粘度の測定方法については後述する。 The treatment agent preferably has a kinematic viscosity at 30 ° C. of 8 to 40 mm 2 / s. When the kinematic viscosity of the treatment agent is within the above numerical range, the treatment agent can be more uniformly adhered when the treatment agent is applied to the elastomer fiber. The method for measuring the kinematic viscosity will be described later.
上記ジメチルシリコーンとしては、特に制限はないが、25℃における動粘度が5~1000mm2/sであるものが好ましい。
上記ジメチルシリコーンの具体例としては、例えば25℃における動粘度が10mm2/sであるジメチルシリコーン、25℃における動粘度が100mm2/sであるジメチルシリコーン、25℃における動粘度が1000mm2/sであるジメチルシリコーン、25℃における動粘度が6mm2/sであるジメチルシリコーン、25℃における動粘度が5mm2/sであるジメチルシリコーン等が挙げられる。
The dimethyl silicone is not particularly limited, but preferably has a kinematic viscosity of 5 to 1000 mm 2 / s at 25 ° C.
Specific examples of the dimethyl silicone include dimethyl silicone having a kinematic viscosity of 10 mm 2 / s at 25 ° C, dimethyl silicone having a kinematic viscosity of 100 mm 2 / s at 25 ° C, and a kinematic viscosity of 1000 mm 2 / s at 25 ° C. Examples thereof include dimethyl silicone having a kinematic viscosity of 6 mm 2 / s at 25 ° C, dimethyl silicone having a kinematic viscosity of 5 mm 2 / s at 25 ° C, and the like.
上記ジメチルシリコーンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
上記シリコーンレジンとしては、特に制限はないが、下記の化1で示されるM単位、下記の化2で示されるシロキサン単位、下記の化3で示されるQ単位、及び下記の化4で示されるシロキサン単位から選ばれる2つ以上の構成単位から構成されていることが好ましい。
The above-mentioned dimethyl silicone may be used alone or in combination of two or more.
The silicone resin is not particularly limited, but is represented by the M unit shown in Chemical formula 1 below, the siloxane unit shown in Chemical formula 2 below, the Q unit shown in Chemical formula 3 below, and the chemical resin 4 below. It is preferably composed of two or more structural units selected from siloxane units.
R1,R2,R3:炭素数1~24の炭化水素基。)
R 1 , R 2 , R 3 : Hydrocarbon groups having 1 to 24 carbon atoms. )
R4:炭素数1~24の炭化水素基。
R 4 : Hydrocarbon group having 1 to 24 carbon atoms.
R5,R6:炭素数1~5のアルキレン基。
R7:水素原子、炭素数1~5のアルキル基、フェニル基、炭素数4~22の1~4価の脂肪族カルボン酸から一つの水酸基を除いた残基、又は炭素数6~22の1~4価の芳香族カルボン酸から一つの水酸基を除いた残基。
R5, R6: An alkylene group having 1 to 5 carbon atoms.
R 7 : Hydrogen atom, alkyl group having 1 to 5 carbon atoms, phenyl group, 1 to 4 valent aliphatic carboxylic acid having 4 to 22 carbon atoms minus one hydroxyl group, or a residue having 6 to 22 carbon atoms. A residue obtained by removing one hydroxyl group from a 1- to tetravalent aromatic carboxylic acid.
f:0~1の整数。) f: An integer from 0 to 1. )
R8,R9:炭素数1~24の炭化水素基。)
上記シリコーンレジンは、上記M単位とQ単位とのモル比率(以下、「MQ比」ともいう。)が、0.5~1.2であることが好ましい。
R 8 and R 9 : Hydrocarbon groups having 1 to 24 carbon atoms. )
The silicone resin preferably has a molar ratio of M units to Q units (hereinafter, also referred to as “MQ ratio”) of 0.5 to 1.2.
上記化1、化2、化4のR1、R2、R3、R4、R8、R9において、炭素数1~24の炭化水素基としては、特に制限されず、飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよい。また、直鎖の炭化水素基であってもよいし、分岐鎖を有する炭化水素基であってもよい。 In R 1 , R 2 , R 3 , R 4 , R 8 , and R 9 of Chemical formula 1, Chemical formula 2, and Chemical formula 4, the hydrocarbon group having 1 to 24 carbon atoms is not particularly limited, and is a saturated hydrocarbon group. It may be an unsaturated hydrocarbon group or an unsaturated hydrocarbon group. Further, it may be a linear hydrocarbon group or a hydrocarbon group having a branched chain.
上記炭素数1~24の炭化水素基としては、例えば、1)メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、へキシル基、イソへキシル基、オクチル基、イソオクチル基、デシル基、イソデシル基、ドデシル基、イソドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、イソテトラデシル基、ヘキサデシル基(セチル基)、イソヘキサデシル基、オクタデシル基(ステアリル基)、イソオクタデシイル基、エイコシル基、イソエイコシル基、ドコシル基、イソドコシル基、テトラコシル基、イソテトラコシル基等の炭素数1~24脂肪族炭化水素基、2)シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、3-ピナニル基等の炭素数3~24の脂環族炭化水素基、3)フェニル基、ナフチル基、ベンジル基、アントラセニル基、ピレニル基、ナフトピレニル基、2-ナフタレンドデシル基等の炭素数6~24の芳香族炭化水素基が挙げられる。 Examples of the hydrocarbon group having 1 to 24 carbon atoms include 1) methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, isopentyl group, hexyl group and isohexyl group. Octyl group, isooctyl group, decyl group, isodecyl group, dodecyl group, isododecyl group, tridecyl group, isotridecyl group, tetradecyl group, isotetradecyl group, hexadecyl group (cetyl group), isohexadecyl group, octadecyl group (stearyl group) , Isooctadecyl group, Eicosyl group, Isoeicosyl group, Docosyl group, Isodocosyl group, Tetracosyl group, Isotetracosyl group and other 1 to 24 aliphatic hydrocarbon groups, 2) Cyclopropyl group, Cyclopentyl group, Cyclohexyl group, Cyclo Alicyclic hydrocarbon groups having 3 to 24 carbon atoms such as octyl group and 3-pinanyl group, 3) carbons such as phenyl group, naphthyl group, benzyl group, anthracenyl group, pyrenyl group, naphthopylenyl group and 2-naphthalenddecyl group. The number 6 to 24 aromatic hydrocarbon groups can be mentioned.
上記化2のR5、R6において、炭素数1~5のアルキレン基としては、例えばメチレン基、エチレン基、プロピレン基、ブチレン基、へプチレン基等が挙げられる。
上記化2のR7-NH(-R6-NH)f-R5-としては、下記の(1)~(10)を挙げることができる。
Examples of the alkylene group having 1 to 5 carbon atoms in R5 and R6 of Chemical formula 2 include a methylene group, an ethylene group, a propylene group, a butylene group, and a heptylene group.
Examples of R 7 -NH (-R 6 -NH) f -R 5- of the above-mentioned Chemical formula 2 include the following (1) to (10).
(1)fが0であってR7が水素原子であるアミノアルキル基。
(2)fが0であってR7が炭素数1~5のアルキル基である置換イミノアルキル基。
(3)fが0であってR7がフェニル基であるN-フェニルイミノアルキル基。
(1) An aminoalkyl group in which f is 0 and R 7 is a hydrogen atom.
(2) A substituted iminoalkyl group in which f is 0 and R 7 is an alkyl group having 1 to 5 carbon atoms.
(3) An N-phenyliminoalkyl group in which f is 0 and R 7 is a phenyl group.
(4)fが0であってR7が炭素数4~22の1~4価の脂肪族カルボン酸から一つの水酸基を除いた残基であるN-置換脂肪族アミドアルキル基。
(5)fが0であってR7が炭素数6~22の1~4価の芳香族カルボン酸から一つの水酸基を除いた残基であるN-置換芳香族アミドアルキル基。
(4) An N-substituted aliphatic amide alkyl group in which f is 0 and R 7 is a residue obtained by removing one hydroxyl group from a 1 to 4 valent aliphatic carboxylic acid having 4 to 22 carbon atoms.
(5) An N-substituted aromatic amide alkyl group in which f is 0 and R 7 is a residue obtained by removing one hydroxyl group from a 1 to 4 valent aromatic carboxylic acid having 6 to 22 carbon atoms.
(6)fが1であってR7が水素原子であるアミノアルキルイミノアルキル基。
(7)fが1であってR7が炭素数1~5のアルキル基である置換イミノアルキルイミノアルキル基。
(6) An aminoalkyliminoalkyl group in which f is 1 and R7 is a hydrogen atom.
(7) A substituted iminoalkyl iminoalkyl group in which f is 1 and R 7 is an alkyl group having 1 to 5 carbon atoms.
(8)fが1であってR7がフェニル基であるN-フェニルイミノアルキルイミノアルキル基。
(9)fが1であってR7が炭素数4~22の1~4価の脂肪族カルボン酸から一つの水酸基を除いた残基であるN-置換脂肪族アミドアルキルイミノアルキル基。
(8) N-phenyliminoalkyl iminoalkyl group in which f is 1 and R 7 is a phenyl group.
(9) An N-substituted aliphatic amide alkyl iminoalkyl group in which f is 1 and R 7 is a residue obtained by removing one hydroxyl group from a 1 to 4 valent aliphatic carboxylic acid having 4 to 22 carbon atoms.
(10)fが1であってR7が炭素数6~22の1~4価の芳香族カルボン酸から一つの水酸基を除いた残基であるN-置換芳香族アミドアルキルイミノアルキル基。
上記(1)のアミノアルキル基としては、例えばアミノエチル基、3-アミノプロピル基、4-アミノブチル基等が挙げられる。
(10) An N-substituted aromatic amide alkyl iminoalkyl group in which f is 1 and R 7 is a residue obtained by removing one hydroxyl group from a 1 to 4 valent aromatic carboxylic acid having 6 to 22 carbon atoms.
Examples of the aminoalkyl group of (1) above include an aminoethyl group, a 3-aminopropyl group, a 4-aminobutyl group and the like.
上記(2)の置換イミノアルキル基としては、例えばN-エチル-3-イミノプロピル基、N-エチル-2-イミノエチル基等が挙げられる。
上記(3)のN-フェニルイミノアルキル基としては、例えばN-フェニル-3-イミノプロピル基、N-フェニル-2-イミノエチル基等が挙げられる。
Examples of the substituted iminoalkyl group of (2) above include N-ethyl-3-iminopropyl group and N-ethyl-2-iminoethyl group.
Examples of the N-phenyliminoalkyl group of (3) above include an N-phenyl-3-iminopropyl group and an N-phenyl-2-iminoethyl group.
上記(4)のN-置換脂肪族アミドアルキル基としては、例えばN-アセトイル-2-イミノエチル基、N-ドデカノイル-2-イミノエチル基、N-オクタデカノイル-2-イミノエチル基、N-オクタデセノイル-2-イミノエチル基、N-アセトイル-3-イミノプロピル基、N-ドデカノイル-3-イミノプロピル基、N-オクタデカノイル-3-イミノプロピル基、N-オクタデセノイル-3-イミノプロピル基、N-アセトイル-4-イミノブチル基、N-ドデカノイル-4-イミノブチル基、N-オクタデカノイル-4-イミノブチル基、N-オクタデセノイル-4-イミノブチル基、N-(2-カルボキシエチルカルボニル)-2-イミノエチル基、N-(2-カルボキシエチルカルボニル)-3-イミノプロピル基、N-(2-カルボキシエチルカルボニル)-4-イミノブチル基等が挙げられる。 Examples of the N-substituted aliphatic amide alkyl group of (4) above include N-acetoyl-2-iminoethyl group, N-dodecanoyl-2-iminoethyl group, N-octadecanoyl-2-iminoethyl group and N-octadecenoyl-. 2-Iminoethyl group, N-acetoyl-3-iminopropyl group, N-dodecanoyl-3-iminopropyl group, N-octadecanoyl-3-iminopropyl group, N-octadecenoyl-3-iminopropyl group, N-acetoyl -4-Iminobutyl group, N-dodecanoyl-4-iminobutyl group, N-octadecanoyl-4-iminobutyl group, N-octadecenoyl-4-iminobutyl group, N- (2-carboxyethylcarbonyl) -2-iminoethyl group, Examples thereof include N- (2-carboxyethylcarbonyl) -3-iminopropyl group, N- (2-carboxyethylcarbonyl) -4-iminobutyl group and the like.
上記(5)のN-置換芳香族アミドアルキル基としては、例えばN-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(2,4-ジカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(2,5-ジカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(3,4-ジカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(2,4-ジカルボキシベンゼン-カルボニル)-4-イミノブチル基、N-(2,5-ジカルボキシベンゼン-カルボニル)-4-イミノブチル基、N-(3,4-ジカルボキシベンゼン-カルボニル)-4-イミノブチル基、N-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(2,4,5-トリカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(2,4,5-トリカルボキシベンゼン-カルボニル)-4-イミノブチル基等が挙げられる。 Examples of the N-substituted aromatic amide alkyl group in (5) above include N- (2,4-dicarboxybenzene-carbonyl) -2-iminoethyl group and N- (2,5-dicarboxybenzene-carbonyl)-. 2-Iminoethyl group, N- (3,4-dicarboxybenzene-carbonyl) -2-Iminoethyl group, N- (2,4-dicarboxybenzene-carbonyl) -3-Iminopropyl group, N- (2,5) -Dicarboxybenzene-carbonyl) -3-iminopropyl group, N- (3,4-dicarboxybenzene-carbonyl) -3-iminopropyl group, N- (2,4-dicarboxybenzene-carbonyl) -4- Iminobutyl group, N- (2,5-dicarboxybenzene-carbonyl) -4-iminobutyl group, N- (3,4-dicarboxybenzene-carbonyl) -4-iminobutyl group, N- (2,4,5- Tricarboxybenzene-carbonyl) -2-iminoethyl group, N- (2,4,5-tricarboxybenzene-carbonyl) -3-iminopropyl group, N- (2,4,5-tricarboxybenzene-carbonyl)- 4-Iminobutyl group and the like can be mentioned.
上記(6)のアミノアルキルイミノアルキル基としては、例えばN-(2-アミノエチル)-2-イミノエチル基、N-(2-アミノエチル)-3-イミノプロピル基、N-(2-アミノエチル)-4-イミノブチル基等が挙げられる。 Examples of the aminoalkyl iminoalkyl group of (6) above include N- (2-aminoethyl) -2-iminoethyl group, N- (2-aminoethyl) -3-iminopropyl group, and N- (2-aminoethyl). ) -4-Iminobutyl group and the like.
上記(7)の置換イミノアルキルイミノアルキル基としては、例えばN-(N’-エチル-2-イミノエチル)-3-イミノプロピル基、N-(N’-プロピル-2-イミノエチル)-3-イミノプロピル基等が挙げられる。 Examples of the substituted iminoalkyl iminoalkyl group of (7) above include N- (N'-ethyl-2-iminoethyl) -3-iminopropyl group and N- (N'-propyl-2-iminoethyl) -3-imino. Examples include propyl groups.
上記(8)のN-フェニルイミノアルキルイミノアルキル基としては、例えばN-(N’-フェニル-2-イミノエチル)-3-イミノプロピル基、N-(N’-フェニル-2-イミノエチル)-2-イミノエチル基等が挙げられる。 Examples of the N-phenyliminoalkyl iminoalkyl group of (8) above include N- (N'-phenyl-2-iminoethyl) -3-iminopropyl group and N- (N'-phenyl-2-iminoethyl) -2. -Iminoethyl group and the like can be mentioned.
上記(9)のN-置換脂肪族アミドアルキルイミノアルキル基としては、N-(N’-アセトイル-2-イミノエチル)-2-イミノエチル基、N-(N’-ドデカノイル-2-イミノエチル)-2-イミノエチル基、N-(N’-オクタデカノイル-2-イミノエチル)-2-イミノエチル基、N-(N’-オクタデセノイル-2-イミノエチル)-2-イミノエチル基、N-(N’-アセトイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-ドデカノイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-オクタデカノイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-オクタデセノイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-アセトイル-2-イミノエチル)-4-イミノブチル基、N-(N’-ドデカノイル-2-イミノエチル)-4-イミノブチル基、N-(N’-オクタデカノイル-2-イミノエチル)-4-イミノブチル基、N-(N’-オクタデセノイル-2-イミノエチル)-4-イミノブチル基、N-[N’-(2-カルボキシエチルカルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(2-カルボキシエチルカルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2-カルボキシエチルカルボニル)-2-イミノエチル]-4-イミノブチル基等が挙げられる。 Examples of the N-substituted aliphatic amidoalkyliminoalkyl group of (9) above include N- (N'-acetoyl-2-iminoethyl) -2-iminoethyl group and N- (N'-dodecanoyl-2-iminoethyl) -2. -Iminoethyl group, N- (N'-octadecanoyl-2-iminoethyl) -2-iminoethyl group, N- (N'-octadecenoyl-2-iminoethyl) -2-iminoethyl group, N- (N'-acetoyl- 2-Iminoethyl) -3-iminopropyl group, N- (N'-dodecanoyl-2-iminoethyl) -3-iminopropyl group, N- (N'-octadecanoyl-2-iminoethyl) -3-iminopropyl group , N- (N'-octadecenoyl-2-iminoethyl) -3-iminopropyl group, N- (N'-acetoyl-2-iminoethyl) -4-iminobutyl group, N- (N'-dodecanoyl-2-iminoethyl) -4-Iminobutyl group, N- (N'-octadecanoyl-2-iminoethyl) -4-iminobutyl group, N- (N'-octadecenoyl-2-iminoethyl) -4-iminobutyl group, N- [N'- (2-carboxyethylcarbonyl) -2-iminoethyl] -2-iminoethyl group, N- [N'-(2-carboxyethylcarbonyl) -2-iminoethyl] -3-iminopropyl group, N- [N'-( 2-carboxyethylcarbonyl) -2-iminoethyl] -4-iminobutyl group and the like can be mentioned.
上記(10)のN-置換芳香族アミドアルキルイミノアルキル基としては、例えばN-[N’-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N'-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基、N-[N’-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基、N-[N’-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基、N-[N’-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基等が挙げられる。 Examples of the N-substituted aromatic amidoalkyl iminoalkyl group of (10) include N- [N'-(2,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -2-iminoethyl group and N- [. N'-(2,5-dicarboxybenzene-carbonyl) -2-iminoethyl] -2-iminoethyl group, N- [N'-(3,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -2- Iminoethyl group, N- [N'-(2,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -3-iminopropyl group, N- [N'-(2,5-dicarboxybenzene-carbonyl)- 2-Iminoethyl] -3-iminopropyl group, N- [N'-(3,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -3-iminopropyl group, N- [N'-(2,4) -Dicarboxybenzene-carbonyl) -2-iminoethyl] -4-iminobutyl group, N- [N'-(2,5-dicarboxybenzene-carbonyl) -2-iminoethyl] -4-iminobutyl group, N- [N '-(3,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -4-iminobutyl group, N- [N'-(2,4,5-tricarboxybenzene-carbonyl) -2-iminoethyl] -2 -Iminoethyl group, N- [N'-(2,4,5-tricarboxybenzene-carbonyl) -2-Iminoethyl] -3-Iminopropyl group, N- [N'-(2,4,5-tricarboxy) Benzene-carbonyl) -2-iminoethyl] -4-iminobutyl group and the like can be mentioned.
シリコーンレジンのM単位やQ単位等のシロキサン単位の分析は、特に制限されないが、元素分析、FT-IRスペクトル分析、CP/MASのNMRスペクトル分析等によって行うことができる。例えば、上記分析方法によって原料に用いた各シラン化合物の炭素数を測定することによって、構成シロキサン単位の割合を算出することができる。そして、構成シロキサン単位の割合、シリコーンレジンを構成するシロキサン単位の理論分子量、及び、後述する質量平均分子量の測定値から、分子中のシロキサン単位のモル数を算出して、モル比率を算出することができる。 The analysis of siloxane units such as M unit and Q unit of silicone resin is not particularly limited, but can be performed by elemental analysis, FT-IR spectrum analysis, CP / MAS NMR spectrum analysis and the like. For example, the ratio of the constituent siloxane units can be calculated by measuring the carbon number of each silane compound used as a raw material by the above analysis method. Then, the number of moles of the siloxane unit in the molecule is calculated from the measured values of the ratio of the constituent siloxane units, the theoretical molecular weight of the siloxane units constituting the silicone resin, and the mass average molecular weight described later, and the molar ratio is calculated. Can be done.
上記シリコーンレジンの具体例としては、例えば質量平均分子量が12000であり、MQ比が0.8であるメチルシリコーンレジン、質量平均分子量が16000であり、MQ比が0.8であるアミノ変性シリコーンレジン、質量平均分子量が9000であり、MQ比が0.85であるメチルシリコーンレジン、質量平均分子量が16000であり、MQ比が0.91であるアミノ変性シリコーンレジン等が挙げられる。 Specific examples of the above-mentioned silicone resin include, for example, a methyl silicone resin having a mass average molecular weight of 12000 and an MQ ratio of 0.8, and an amino-modified silicone resin having a mass average molecular weight of 16000 and an MQ ratio of 0.8. Examples thereof include a methyl silicone resin having a mass average molecular weight of 9000 and an MQ ratio of 0.85, and an amino-modified silicone resin having a mass average molecular weight of 16000 and an MQ ratio of 0.91.
上記シリコーンレジンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
上記処理剤に含まれる鉱物油としては、特に制限はないが、例えば芳香族系炭化水素、パラフィン系炭化水素、ナフテン系炭化水素等が挙げられる。より具体的には、例えばスピンドル油、流動パラフィン等が挙げられる。
The above silicone resin may be used alone or in combination of two or more.
The mineral oil contained in the above-mentioned treatment agent is not particularly limited, and examples thereof include aromatic hydrocarbons, paraffinic hydrocarbons, and naphthenic hydrocarbons. More specifically, for example, spindle oil, liquid paraffin and the like can be mentioned.
また、上記鉱物油は、40℃における動粘度が5~10mm2/sであるものが好ましい。
上記鉱物油の具体例としては、例えば40℃における動粘度が10mm2/sである鉱物油、40℃における動粘度が5mm2/sである鉱物油、40℃における動粘度が7mm2/sである鉱物油等が挙げられる。
Further, the mineral oil preferably has a kinematic viscosity of 5 to 10 mm 2 / s at 40 ° C.
Specific examples of the above mineral oil include, for example, a mineral oil having a kinematic viscosity of 10 mm 2 / s at 40 ° C, a mineral oil having a kinematic viscosity of 5 mm 2 / s at 40 ° C, and a kinematic viscosity of 7 mm 2 / s at 40 ° C. Mineral oil and the like.
上記鉱物油は、市販品を適宜採用することができる。
上記鉱物油は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
As the above-mentioned mineral oil, a commercially available product can be appropriately adopted.
The above mineral oil may be used alone or in combination of two or more.
アミノ基を有する変性シリコーンとしては、特に制限はなく、ジアミン型のアミノ変性シリコーンや、モノアミン型のアミノ変性シリコーンを用いることができる。
アミノ基を有する変性シリコーンの具体例としては、例えば25℃における動粘度が60mm2/sであり、当量が4100g/molであるモノアミン型のアミノ変性シリコーン、25℃における動粘度が90mm2/sであり、当量が8800g/molであるモノアミン型のアミノ変性シリコーン、25℃における動粘度が450mm2/sであり、当量が5700g/molであるジアミン型のアミノ変性シリコーン等が挙げられる。
The modified silicone having an amino group is not particularly limited, and a diamine-type amino-modified silicone or a monoamine-type amino-modified silicone can be used.
Specific examples of the modified silicone having an amino group include a monoamine type amino-modified silicone having an kinematic viscosity of 60 mm 2 / s at 25 ° C and an equivalent of 4100 g / mol, and a kinematic viscosity of 90 mm 2 / s at 25 ° C. Examples thereof include monoamine-type amino-modified silicone having an equivalent of 8800 g / mol, and diamine-type amino-modified silicone having a kinematic viscosity of 450 mm 2 / s at 25 ° C. and an equivalent of 5700 g / mol.
上記アミノ基を有する変性シリコーンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(第2実施形態)
本発明に係るエラストマー繊維を具体化した第2実施形態について説明する。本実施形態のエラストマー繊維は、第1実施形態の処理剤が付着しているエラストマー繊維である。エラストマー繊維に対する第1実施形態の処理剤(溶媒を含まない)の付着量は、特に制限はないが、本発明の効果をより向上させる観点から0.1~10質量%の割合で付着していることが好ましい。
The modified silicone having an amino group may be used alone or in combination of two or more .
( Second Embodiment)
A second embodiment in which the elastomer fiber according to the present invention is embodied will be described. The elastomer fiber of the present embodiment is an elastomer fiber to which the treatment agent of the first embodiment is attached. The amount of the treatment agent (without solvent) adhered to the elastomer fiber of the first embodiment is not particularly limited, but is adhered at a ratio of 0.1 to 10% by mass from the viewpoint of further improving the effect of the present invention. It is preferable to have.
エラストマー繊維としては、特に制限はないが、例えばポリエステル系エラストマー繊維、ポリアミド系エラストマー繊維、ポリオレフィン系エラストマー繊維、ポリウレタン系エラストマー繊維等が挙げられる。これらの中でもポリウレタン系エラストマー繊維が好ましく、さらにこの中でも溶融紡糸法で紡糸されたポリウレタン系エラストマー繊維が好ましい。かかる場合に本発明の効果の発現をより高くすることができる。 The elastomer fiber is not particularly limited, and examples thereof include a polyester-based elastomer fiber, a polyamide-based elastomer fiber, a polyolefin-based elastomer fiber, and a polyurethane-based elastomer fiber. Among these, polyurethane-based elastomer fibers are preferable, and among these, polyurethane-based elastomer fibers spun by the melt spinning method are preferable. In such a case, the manifestation of the effect of the present invention can be further enhanced.
ここで、エラストマー繊維とは、弾力性に富んだ繊維であって、引張り応力を付与すると伸長することができるとともに、引張り応力が解除されると元の長さに戻る繊維を意味するものとする。そのため、エラストマー繊維は、弾性繊維と言い換えることができる。 Here, the elastomer fiber means a fiber having a high elasticity, which can be stretched when a tensile stress is applied and returns to the original length when the tensile stress is released. .. Therefore, the elastomer fiber can be paraphrased as an elastic fiber.
本実施形態のエラストマー繊維の製造方法は、第1実施形態の処理剤を紡糸工程でエラストマー繊維に給油することにより得られる。処理剤の給油方法としては、希釈することなくニート給油法により、エラストマー繊維の紡糸工程においてエラストマー繊維に付着させる方法が好ましい。付着方法としては、例えばローラー給油法、ガイド給油法、スプレー給油法等の公知の方法が適用できる。 The method for producing an elastomer fiber of the present embodiment is obtained by supplying the elastomer fiber with the treatment agent of the first embodiment in a spinning step. As a method for refueling the treatment agent, a method of adhering to the elastomer fiber in the spinning step of the elastomer fiber by a neat refueling method without diluting is preferable. As the adhesion method, for example, a known method such as a roller lubrication method, a guide lubrication method, or a spray lubrication method can be applied.
本実施形態に適用されるエラストマー繊維自体の製造方法は、特に限定されず、公知の方法で製造が可能である。例えば湿式紡糸法、溶融紡糸法、乾式紡糸法等が挙げられる。これらの中でも、溶媒を使用しないことで作業環境への負荷が少ない点、より安価に製造ができる観点から溶融紡糸法が好ましく適用される。 The method for producing the elastomer fiber itself applied to the present embodiment is not particularly limited, and the elastomer fiber itself can be produced by a known method. For example, a wet spinning method, a melt spinning method, a dry spinning method and the like can be mentioned. Among these, the melt spinning method is preferably applied from the viewpoint that the load on the working environment is small because no solvent is used and the production can be performed at a lower cost.
紡糸工程におけるエラストマー繊維の巻き取り速度は、1000/min以上の高速紡糸である。紡糸工程での巻き取り速度は、1000~10000m/minであることが好ましい。 The winding speed of the elastomer fiber in the spinning process is high speed spinning of 1000 / min or more . The winding speed in the spinning step is preferably 1000 to 10000 m / min.
第1実施形態の処理剤、及び第2実施形態のエラストマー繊維によれば、以下のような効果を得ることができる。
(1)ジメチルシリコーン、シリコーンレジン、鉱物油、及びアミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、前記ジメチルシリコーンを70~97質量%、前記シリコーンレジンを0.1~10質量%、前記鉱物油を0~10質量%、及び前記変性シリコーンを0.5~5質量%の割合で含有し、30℃における動粘度が8~70mm2/sである。
According to the treatment agent of the first embodiment and the elastomer fiber of the second embodiment, the following effects can be obtained.
(1) Assuming that the total content of dimethyl silicone, silicone resin , mineral oil , and modified silicone having an amino group is 100% by mass, the dimethyl silicone is 70 to 97% by mass, and the silicone resin is 0.1. It contains from 10% by mass of the mineral oil, 0 to 10 % by mass of the mineral oil , and 0.5 to 5% by mass of the modified silicone, and has a kinematic viscosity of 8 to 70 mm 2 / s at 30 ° C.
処理剤の各成分の含有割合が上記数値範囲であるとともに、動粘度が上記数値範囲であることにより、巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程に用いても、エラストマー繊維の解舒性を好適に向上させることができる。また、エラストマー繊維からの処理剤の飛散をより好適に抑制することができる。また、エラストマー繊維を紡糸してパッケージに巻き取った際の形状をより良好に保持することができる。 Since the content ratio of each component of the treatment agent is in the above numerical range and the kinematic viscosity is in the above numerical range, the elastomer fiber can be solved even when used in the elastomer fiber high-speed spinning step in which the winding speed is 1000 m / min or more. The kinematic properties can be suitably improved. In addition, it is possible to more preferably suppress the scattering of the treatment agent from the elastomer fiber . In addition, the shape of the elastomer fiber when it is spun and wound into a package can be better maintained.
(2)処理剤は、30℃における動粘度が、8~40mm2/sである。処理剤の動粘度が上記数値範囲であることにより、エラストマー繊維に処理剤を付与した際に処理剤をより均一に付着させることができる。 ( 2 ) The treatment agent has a kinematic viscosity at 30 ° C. of 8 to 40 mm 2 / s. When the kinematic viscosity of the treatment agent is within the above numerical range, the treatment agent can be more uniformly adhered when the treatment agent is applied to the elastomer fiber.
上記実施形態は、以下のように変更して実施できる。上記実施形態、及び、以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施できる。
本実施形態の処理剤には、本発明の効果を阻害しない範囲内において、処理剤の品質保持のための安定化剤や制電剤、帯電防止剤、つなぎ剤、酸化防止剤、紫外線吸収剤等の通常処理剤に用いられる成分(以下、その他成分ともいう。)をさらに配合してもよい。
The above embodiment can be modified and implemented as follows. The above embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
The treatment agent of the present embodiment includes a stabilizer, an antistatic agent, an antistatic agent, a binder, an antioxidant, and an ultraviolet absorber for maintaining the quality of the treatment agent, as long as the effects of the present invention are not impaired. Ingredients used in ordinary treatment agents such as (hereinafter, also referred to as other ingredients) may be further blended.
以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明がこれらの実施例に限定されるというものではない。
試験区分1(巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤の調製)
(実施例1~5、8、参考例1~9、及び比較例1~10)
以下の方法により、表1に示すシリコーンレジン(B1)を合成した。
Hereinafter, examples and the like will be given in order to make the configuration and effects of the present invention more specific, but the present invention is not limited to these examples.
Test Category 1 (Preparation of treatment agent for high-speed spinning process of elastomer fiber with winding speed of 1000 m / min or more )
(Examples 1 to 5, 8, Reference Examples 1 to 9, and Comparative Examples 1 to 10)
The silicone resin (B1) shown in Table 1 was synthesized by the following method.
B1は、M単位を構成することになる原料として、トリメチルメトキシシラン833.76g(8.0モル)、水800g、メタンスルホン酸2.0g、及びQ単位を構成することになる原料として、テトラエトキシシラン2083.3g(10モル)を反応容器に仕込み、78℃で24時間加温撹拌した。次いで、反応容器に炭酸水素ナトリウム1.78gを加えて中和した後、78℃に保ちながら5時間還流熟成を行った。さらに、キシレン2000gを加え、水、及び反応により副生したメタノールとエタノールを留去して、キシレン溶液に置換後、濾過した。得られた濾液の有効濃度(キシレン溶液中のレジン濃度)を50%に調整した後、その200gを別の反応容器に仕込み、反応溶液からキシレン、水を留去して、シリコーンレジン(B1)を得た。 B1 contains 833.76 g (8.0 mol) of trimethylmethoxysilane as a raw material constituting the M unit, 800 g of water, 2.0 g of methanesulfonic acid, and tetra as a raw material constituting the Q unit. 2083.3 g (10 mol) of ethoxysilane was charged in a reaction vessel, and the mixture was heated and stirred at 78 ° C. for 24 hours. Then, 1.78 g of sodium hydrogen carbonate was added to the reaction vessel for neutralization, and then reflux aging was carried out for 5 hours while keeping the temperature at 78 ° C. Further, 2000 g of xylene was added, water and methanol and ethanol by-produced by the reaction were distilled off, replaced with a xylene solution, and then filtered. After adjusting the effective concentration (resin concentration in the xylene solution) of the obtained filtrate to 50%, 200 g of the filtrate was charged in another reaction vessel, and xylene and water were distilled off from the reaction solution to obtain a silicone resin (B1). Got
シリコーンレジン(B1)の分析を行ったところ、このシリコーンレジン(B1)は、1分子中に化1で示されるシロキサン単位(M体)としてトリメチルシロキサンを8.0モル%、化3で示されるシロキサン単位(Q体)を10モル%(合計18モル%)有し、M単位とQ単位のモル比率が0.8のシリコーンレジンであった。 When the silicone resin (B1) was analyzed, this silicone resin (B1) contained 8.0 mol% of trimethylsiloxane as the siloxane unit (M body) represented by Chemical formula 1 in one molecule, and was represented by Chemical formula 3. It was a silicone resin having 10 mol% (total 18 mol%) of siloxane units (Q-form) and having a molar ratio of M units to Q units of 0.8.
B2~B4の合成は、B1の合成方法に沿いつつ、各原料の種類、配合、及び反応時間を調整して行った。
表1に示される各成分を使用し、ジメチルシリコーン(A1)、ジメチルシリコーン(A2)、シリコーンレジン(B1)、鉱物油(C1)、及びアミノ変性シリコーン(D1)がそれぞれ、83質部、10質量部、0.1質量部、4.9質量部、及び2質量部となるようにビーカーに加えた。これらをよく撹拌して均一に混合し、実施例1の巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤を調製した。
The synthesis of B2 to B4 was carried out by adjusting the type, formulation and reaction time of each raw material while following the synthesis method of B1.
Using each component shown in Table 1, dimethyl silicone (A1), dimethyl silicone (A2), silicone resin (B1), mineral oil (C1), and amino-modified silicone (D1) were added to 83 parts and 10 parts, respectively. It was added to the beaker to be parts by mass, 0.1 parts by mass, 4.9 parts by mass, and 2 parts by mass. These were stirred well and mixed uniformly to prepare a treatment agent for an elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more in Example 1.
実施例2~5、8、参考例1~9、及び比較例1~9の巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤は、各原料の配合を調整して、実施例1と同様の方法によって調製した。なお、比較例10は、巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤を用いることなく、エラストマー繊維を製造した。 The treatment agents for the elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more in Examples 2 to 5, 8, Reference Examples 1 to 9, and Comparative Examples 1 to 9 were carried out by adjusting the composition of each raw material. It was prepared by the same method as in Example 1. In Comparative Example 10, the elastomer fiber was produced without using a treatment agent for an elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more .
巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤に使用するジメチルシリコーン、シリコーンレジン、鉱物油、アミノ変性シリコーン、及びその他成分の種類と質量部は、表1の「ジメチルシリコーン(A)」欄、「シリコーンレジン(B)」欄、「鉱物油(C)」欄、「アミノ変性シリコーン(D)」欄、「その他成分(E)」欄にそれぞれ示す通りである。 The types and parts of dimethyl silicone, silicone resin, mineral oil, amino-modified silicone, and other components used in the treatment agent for the high-speed spinning process of elastomer fibers with a winding speed of 1000 m / min or more are shown in Table 1 "dimethyl silicone (" dimethyl silicone ( As shown in the "A)" column, the "silicone resin (B)" column, the "mineral oil (C)" column, the "amino-modified silicone (D)" column, and the "other component (E)" column, respectively.
A1:25℃における動粘度が10mm2/sであるジメチルシリコーン
A2:25℃における動粘度が100mm2/sであるジメチルシリコーン
A3:25℃における動粘度が1000mm2/sであるジメチルシリコーン
A4:25℃における動粘度が6mm2/sであるジメチルシリコーン
A5:25℃における動粘度が5mm2/sであるジメチルシリコーン等が挙げられる。
A1: Dimethyl silicone with kinematic viscosity at 25 ° C of 10 mm 2 / s A2: Dimethyl silicone with kinematic viscosity at 25 ° C of 100 mm 2 / s A3: Dimethyl silicone with kinematic viscosity at 25 ° C of 1000 mm 2 / s A4: Dimethyl silicone having a kinematic viscosity of 6 mm 2 / s at 25 ° C. A5: Dimethyl silicone having a kinematic viscosity of 5 mm 2 / s at 25 ° C. and the like can be mentioned.
(シリコーンレジン(B))
B1:質量平均分子量が12000であり、MQ比が0.8であるメチルシリコーンレジン
B2:質量平均分子量が16000であり、MQ比が0.8であるアミノ変性シリコーンレジン
B3:質量平均分子量が9000であり、MQ比が0.85であるメチルシリコーンレジン
B4:質量平均分子量が16000であり、MQ比が0.91であるアミノ変性シリコーンレジン
MQ比の算出方法について説明する。
(Silicone resin (B))
B1: Methyl silicone resin having a mass average molecular weight of 12000 and an MQ ratio of 0.8 B2: Amino-modified silicone resin having a mass average molecular weight of 16000 and an MQ ratio of 0.8 B3: Amino-modified silicone resin having a mass average molecular weight of 9000 Methyl silicone resin with an MQ ratio of 0.85 B4: Amino-modified silicone resin with an mass average molecular weight of 16000 and an MQ ratio of 0.91 The method for calculating the MQ ratio will be described.
MQ比は、以下の式で求められる。
MQ比=M単位のモル数/Q単位のモル数
M単位:化1で示される化合物
Q単位:化3で示される化合物
シリコーンレジンの質量平均分子量(以下、「Mw」という。)の測定方法について説明する。
The MQ ratio is calculated by the following formula.
MQ ratio = number of moles in M units / number of moles in Q units M unit: compound represented by Chemical formula Q unit: compound represented by chemical formula 3 Method for measuring mass average molecular weight of silicone resin (hereinafter referred to as “Mw”) Will be explained.
まず、表1のシリコーンレジン0.02gをバイアル瓶に採取した。これにテトラヒドロフランを30mL加えて希釈し、試料溶液を得た。この試料溶液1mLをゲル浸透クロマトグラフィー(以下、「GPC」という。)用濾過フィルターを装着した注射器を用いて異物を除去し、GPC用試料瓶に採取して試料溶液を調製した。 First, 0.02 g of the silicone resin shown in Table 1 was collected in a vial. To this, 30 mL of tetrahydrofuran was added and diluted to obtain a sample solution. Foreign matter was removed from 1 mL of this sample solution using a syringe equipped with a filter for gel permeation chromatography (hereinafter referred to as "GPC"), and the sample solution was collected in a sample bottle for GPC to prepare a sample solution.
リファレンスカラムとして、TSKgel SuperH-RCを装着した東ソー社製HLC-8320GPCを使用した。
また、測定用カラムとして、TSKguardcolumn SuperH-L、TSKgel SuperH4000、TSKgel Super3000、TSKgel Super2000を装着した東ソー社製HLC-8320GPCを使用した。
As a reference column, HLC-8320GPC manufactured by Tosoh Corporation equipped with TSKgel SuperH-RC was used.
Further, as a measurement column, an HLC-8320GPC manufactured by Tosoh Co., Ltd. equipped with TSKguardcolum SuperH-L, TSKgel SuperH4000, TSKgel Super3000, and TSKgel Super2000 was used.
Mwは、標準試料として、TSKgel標準ポリスチレンを用いて検量線を作成し、各シリコーンレジンのMwを求めた。
(鉱物油(C))
C1:40℃における動粘度が10mm2/sである鉱物油
C2:40℃における動粘度が5mm2/sである鉱物油
C3:40℃における動粘度が7mm2/sである鉱物油
(アミノ変性シリコーン(D))
D1:25℃における動粘度が60mm2/sであり、当量が4100g/molであるモノアミン型のアミノ変性シリコーン
D2:25℃における動粘度が90mm2/sであり、当量が8800g/molであるモノアミン型のアミノ変性シリコーン
D3:25℃における動粘度が450mm2/sであり、当量が5700g/molであるジアミン型のアミノ変性シリコーン
(その他成分(E))
E1:25℃における動粘度が1000mm2/sであり、エチレンオキサイドとプロピレンオキサイドのモル比(EO:PO)が1:1であるエーテル変性シリコーン
巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤の動粘度は、キャノンフェンスケ粘度計を用いて、30℃の条件下で公知の方法によって測定した。同様に、鉱物油の動粘度は、キャノンフェンスケ粘度計を用いて、40℃の条件下で公知の方法によって測定した。ジメチルシリコーン、アミノ変性シリコーン、及びその他成分の動粘度は、キャノンフェンスケ粘度計を用いて、25℃の条件下で公知の方法によって測定した。
For Mw, a calibration curve was prepared using TSKgel standard polystyrene as a standard sample, and Mw of each silicone resin was obtained.
(Mineral oil (C))
C1: Mineral oil with kinematic viscosity of 10 mm 2 / s at 40 ° C C2: Mineral oil with kinematic viscosity of 5 mm 2 / s at 40 ° C C3: Mineral oil with kinematic viscosity of 7 mm 2 / s at 40 ° C (amino) Modified silicone (D))
D1: Monoamine-type amino-modified silicone having a kinematic viscosity at 25 ° C. of 60 mm 2 / s and an equivalent of 4100 g / mol D2: kinematic viscosity at 25 ° C. of 90 mm 2 / s and an equivalent of 8800 g / mol. Monoamine-type amino-modified silicone D3: Diamine-type amino-modified silicone having a kinematic viscosity of 450 mm 2 / s and an equivalent of 5700 g / mol at 25 ° C. (Other component (E))
Ether-modified silicone having an E1: 25 ° C. kinematic viscosity of 1000 mm 2 / s and a molar ratio of ethylene oxide to propylene oxide (EO: PO) of 1: 1.
The kinematic viscosity of the treatment agent for the high-speed spinning process of elastomer fibers having a winding speed of 1000 m / min or more was measured by a known method under the condition of 30 ° C. using a Canon Fenceke viscometer. Similarly, the kinematic viscosity of mineral oil was measured by a known method under the condition of 40 ° C. using a Canon Fenceke viscometer. The kinematic viscosities of dimethyl silicone, amino-modified silicone, and other components were measured by a known method under the condition of 25 ° C. using a Canon Fenceke viscometer.
試験区分2(エラストマー繊維の製造)
試験区分1で調製した処理剤を用いて、エラストマー繊維を製造した。
分子量1000のポリテトラメチレングリコールとジフェニルメタンジイソシアネートとから得られたポリウレタン系エラストマーを溶融紡糸し、ポリウレタン系エラストマー繊維を得た。
Test Category 2 (Manufacturing of Elastomer Fiber)
Elastomer fibers were produced using the treatment agent prepared in Test Category 1.
A polyurethane-based elastomer obtained from polytetramethylene glycol having a molecular weight of 1000 and diphenylmethane diisocyanate was melt-spun to obtain a polyurethane-based elastomer fiber.
巻き取り前の延伸ローラーと巻き取り部との間に位置する給油ガイドから、試験区分1で調製した処理剤をガイドオイリング法でニート給油した。引き続いて、処理剤を付与したポリウレタン系エラストマー繊維を、巻き取り速度500m/min、1000m/min、3000m/minの3種類の条件で、長さ58mmの円筒状紙管に巻き取った。 The treatment agent prepared in Test Category 1 was neatly refueled by the guide oiling method from the refueling guide located between the stretching roller before winding and the winding portion. Subsequently, the polyurethane-based elastomer fiber to which the treatment agent was applied was wound into a cylindrical paper tube having a length of 58 mm under three conditions of winding speeds of 500 m / min, 1000 m / min and 3000 m / min.
巻き取りは、巻き幅38mmを与えるトラバースガイドを介して、サーフェイスドライブの巻取機を用いて行った。この巻き取りによって、溶融紡糸ポリウレタン系エラストマー繊維のパッケージ500gを得た。処理剤の付着量の調節は、給油ガイドへの送液量を調整することで何れも5質量%となるように行った。 Winding was performed using a surface drive winder via a traverse guide that provides a winding width of 38 mm. By this winding, 500 g of a package of melt-spun polyurethane-based elastomer fibers was obtained. The amount of the treatment agent adhered was adjusted so that the amount of liquid sent to the refueling guide was adjusted to 5% by mass.
試験区分3(評価)
実施例1~5、8、参考例1~9、及び比較例1~10の処理剤について、処理剤を付着させたエラストマー繊維の油剤飛散性、形状保持性、油剤均一付着性、及び解舒性を評価した。各試験の手順について以下に示す。また、試験結果を表1の「油剤飛散性」欄、「形状保持性」欄、「油剤均一付着性」、及び「解舒性」欄にそれぞれ示す。
Test category 3 (evaluation)
With respect to the treatment agents of Examples 1 to 5, 8 and Reference Examples 1 to 9, and Comparative Examples 1 to 10, the elastomer fiber to which the treatment agent was attached has the oil agent scattering property, shape retention property, oil agent uniform adhesion property, and unraveling. The sex was evaluated. The procedure for each test is shown below. Further, the test results are shown in the "oil agent scattering property" column, the "shape retention property" column, the "oil agent uniform adhesion" column, and the "dissolvability" column of Table 1, respectively.
(油剤飛散性)
試験区分2で、巻き取り速度500m/min、1000m/min、3000m/minの3種類の条件でポリウレタン系エラストマー繊維を製造した際に、巻取機付近の処理剤の飛散量を目視で観察して、以下の基準で評価した。
(Oil scattering property)
In test category 2, when polyurethane-based elastomer fibers were manufactured under three conditions of winding speeds of 500 m / min, 1000 m / min, and 3000 m / min, the amount of the treatment agent scattered near the winder was visually observed. The evaluation was made according to the following criteria.
・油剤飛散性の評価基準
◎:飛散が観察されなかった場合
○:僅かに飛散が観察された場合
×:かなりの飛散が観察された場合
(形状保持性)
150デニールのポリウレタン系エラストマー繊維を紡糸し、ガイド給油法にて処理剤を4.0質量%付着させた。巻き取り速度が500m/min、1000m/min、3000m/minの3種類の条件で巻き取った。
・ Evaluation criteria for oil scattering property ◎: When no scattering is observed ○: When slight scattering is observed ×: When considerable scattering is observed (shape retention)
A 150 denier polyurethane elastomer fiber was spun and a treatment agent was adhered in an amount of 4.0% by mass by a guide lubrication method. The winding speed was 500 m / min, 1000 m / min, and 3000 m / min.
図1に示すように、巻き取りは、長さ57mmの円筒状紙管11に、巻き幅42mmを与えるトラバースガイド(図示省略)を介して、サーフェイスドライブの巻取機(図示省略)を用いて行い、500gのパッケージ10を作製した。得られたパッケージ10について、巻き幅の最大値(Wmax)と最小幅(Wmin)を計測し、双方の差から下記の式でバルジを求めた。下記の基準で評価した。
As shown in FIG. 1, winding is performed by using a surface drive winder (not shown) via a traverse guide (not shown) that gives a winding width of 42 mm to a
バルジ=(Wmax-Wmin)/2
・形状保持性の評価基準
◎:バルジが3mm未満である場合
○:バルジが3mm以上、且つ6mm未満である場合
×:バルジが6mm以上である場合
(油剤均一付着性)
摩擦測定メーター(エイコー測器社製、SAMPLEFRICTION UNIT MODEL TB-1)を用いた。2つのフリーローラー間に直径1cmで表面粗度2Sのクロムメッキ梨地ピンを配置した。
Bullge = (Wmax-Wmin) / 2
・ Evaluation criteria for shape retention ◎: When the bulge is less than 3 mm ○: When the bulge is 3 mm or more and less than 6 mm ×: When the bulge is 6 mm or more (uniform oil adhesion)
A friction measuring meter (SAMPLEFRICTION UNIT MODEL TB-1 manufactured by Eiko Sokki Co., Ltd.) was used. A chrome-plated satin pin with a diameter of 1 cm and a surface roughness of 2S was placed between the two free rollers.
試験区分2で、巻き取り速度が500m/min、1000m/min、3000m/minの3種類の条件で製造したパッケージからポリウレタン系エラストマー繊維を引き出し、クロムメッキ梨地ピンに対して接触角度が90度となるようにセットした。 In test category 2, the polyurethane elastomer fiber was pulled out from the package manufactured under the three conditions of winding speeds of 500 m / min, 1000 m / min and 3000 m / min, and the contact angle with respect to the chrome-plated satin pin was 90 degrees. I set it to be.
25℃で60%RHの条件下、入側で初期張力(T1)5gをかけ、100m/minの速度で走行させたときの出側の2次張力(T2)を0.1秒毎に1分間測定した。この時のT2の標準偏差を求め、以下の基準で評価した。 Under the condition of 60% RH at 25 ° C., the initial tension (T 1 ) of 5 g is applied on the entry side, and the secondary tension (T 2 ) on the exit side when running at a speed of 100 m / min is applied every 0.1 seconds. Was measured for 1 minute. The standard deviation of T 2 at this time was obtained and evaluated according to the following criteria.
・油剤均一付着性の評価基準
◎:標準偏差が1.5未満である場合
○:標準偏差が1.5以上2.0未満である場合
×:標準偏差が2.0以上でる場合
なお、標準偏差が1.5未満である場合は、油剤が均一に付着しており、繊維がクロムメッキ梨地ピンと擦過した際に張力変動が少ない。
・ Evaluation criteria for uniform oil adhesion ◎: When the standard deviation is less than 1.5 ○: When the standard deviation is 1.5 or more and less than 2.0 ×: When the standard deviation is 2.0 or more Note that the standard When the deviation is less than 1.5, the oil is uniformly adhered and the tension fluctuation is small when the fiber is rubbed against the chrome-plated satin pin.
標準偏差が1.5以上2.0未満である場合は、油剤がほぼ均一に付着しており、繊維がクロムメッキ梨地ピンと擦過した際に張力変動はあるが操業に問題はない。
標準偏差が2.0以上である場合は、油剤が均一に付着しておらず、繊維がクロムメッキ梨地ピンと擦過した際に張力変動が大きく操業に問題が生じる。
When the standard deviation is 1.5 or more and less than 2.0, the oil agent adheres almost uniformly, and there is a tension fluctuation when the fiber is rubbed against the chromium-plated satin pin, but there is no problem in operation.
When the standard deviation is 2.0 or more, the oil does not adhere uniformly, and when the fiber is rubbed against the chrome-plated satin pin, the tension fluctuates greatly and a problem occurs in operation.
(解舒性)
第1駆動ローラーとこれに常時接する第1遊離ローラーとで送り出し部を形成した。また、第2駆動ローラーとこれに常時接する第2遊離ローラーとで巻き取り部を形成した。送り出し部と巻き取り部の間隔を、水平方向に沿って約20cmとした。
(Dissolvability)
A feeding portion was formed by a first driving roller and a first free roller in constant contact with the first driving roller. Further, a winding portion is formed by a second driving roller and a second free roller that is in constant contact with the second driving roller. The distance between the feeding part and the winding part was set to about 20 cm along the horizontal direction.
試験区分2で作製したパッケージ(500g巻き)を第1駆動ローラーに装着した。第1駆動ローラーを駆動させてポリウレタン系エラストマー繊維を送り出すとともに、第2駆動ローラーを駆動させてポリウレタン系エラストマー繊維を巻き取った。パッケージの糸巻の厚さが2mmになるまで解舒した。 The package (500 g roll) prepared in Test Category 2 was attached to the first drive roller. The first drive roller was driven to send out the polyurethane-based elastomer fiber, and the second drive roller was driven to wind up the polyurethane-based elastomer fiber. The package was unwound until the thickness of the spool was 2 mm.
その際、第1駆動ローラーの送り出し速度を50m/minで固定する一方、第2駆動ローラーの巻き取り速度を50m/minより徐々に上げて、ポリウレタン系エラストマー繊維をパッケージから強制解舒した。この強制解舒において、送り出し部と巻き取り部との間でポリウレタン系エラストマー繊維の踊りがなくなる時点、言い換えれば、糸の挙動が不安定にならず、スムーズにパッケージから送り出されるようになる時点での巻き取り速度V(m/min)を測定した。下記の式から解舒性(%)を求め、以下の基準で評価した。 At that time, the delivery speed of the first drive roller was fixed at 50 m / min, while the take-up speed of the second drive roller was gradually increased from 50 m / min, and the polyurethane-based elastomer fiber was forcibly unwound from the package. In this forced unwinding, when the dance of the polyurethane elastomer fiber disappears between the feeding part and the winding part, in other words, when the behavior of the yarn does not become unstable and the yarn is smoothly fed out of the package. The winding speed V (m / min) was measured. The solvability (%) was calculated from the following formula and evaluated according to the following criteria.
解舒性(%)=(V-50)×2
・解舒性の評価基準
◎(良好):解舒性が120%未満
○(可):解舒性が120%以上、140%未満
×(不良):解舒性が140%以上
なお、解舒性の評価基準において、解舒性が120%未満であると、糸切れの発生は無く、安定した状態で解舒することが可能になる。解舒性が120%以上、140%未満であると、糸の引き出しに若干の抵抗があるものの、糸切れの発生は無く、操業に問題はない。解舒性が140%以上であると、糸の引き出し時の抵抗がより大きくなり、糸切れも発生して操業に問題が生じる。
Decomposability (%) = (V-50) x 2
・ Evaluation criteria for solvability ◎ (good): solvability is less than 120% ○ (possible): solvability is 120% or more and less than 140% × (poor): solvability is 140% or more When the unleashable property is less than 120% in the evaluation criteria of the unleashable property, the yarn breakage does not occur and the unleashable state can be unraveled in a stable state. When the unwindability is 120% or more and less than 140%, there is some resistance to pulling out the yarn, but no yarn breakage occurs and there is no problem in operation. When the unwindability is 140% or more, the resistance at the time of pulling out the yarn becomes larger, the yarn breaks, and the operation becomes a problem.
表1の結果から、本発明によれば、巻き取り速度が高速であっても、エラストマー繊維の解舒性を好適に向上させることができるとともに、処理剤の飛散を抑制することができる。また、エラストマー繊維をパッケージに巻き取った際の形状をより良好に保持することができる。また、エラストマー繊維に処理剤を付与した際に処理剤をより均一に付着させることができる。 From the results in Table 1, according to the present invention, even if the winding speed is high, the unfoldability of the elastomer fiber can be suitably improved and the scattering of the treatment agent can be suppressed. In addition, the shape of the elastomer fiber when it is wound around the package can be better maintained. Further, when the treatment agent is applied to the elastomer fiber, the treatment agent can be adhered more uniformly.
10…パッケージ、11…円筒状紙管。 10 ... Package, 11 ... Cylindrical paper tube.
本発明は、巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤、及びエラストマー繊維の製造方法に関する。 The present invention relates to a treatment agent for an elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more, and a method for producing an elastomer fiber.
例えば合成繊維の一種であるエラストマー繊維は、他の合成繊維に比べて繊維間の粘着性が強い。例えばエラストマー繊維を紡糸してパッケージに巻き取った後、該パッケージから引き出して加工工程に供する際に、パッケージから安定して解舒することが難しい場合がある。そのため、パッケージから安定して解舒させるために、エラストマー繊維の紡糸工程において、エラストマー繊維に油剤を付与することがある。 For example, elastomer fibers, which are a type of synthetic fibers, have stronger adhesiveness between fibers than other synthetic fibers. For example, when an elastomer fiber is spun and wound into a package and then pulled out from the package and used for a processing process, it may be difficult to stably unwind the elastomer fiber from the package. Therefore, in order to stably unwind the elastomer fiber from the package, an oil agent may be applied to the elastomer fiber in the spinning process of the elastomer fiber.
特許文献1には、エラストマー繊維としての弾性繊維の製造方法について、熱可塑性ポリウレタンエラストマーを含む原料組成物を、2000~10000m/minの紡糸速度で溶融紡糸することが開示されている。 Patent Document 1 discloses, as a method for producing an elastic fiber as an elastomer fiber, a raw material composition containing a thermoplastic polyurethane elastomer is melt-spun at a spinning rate of 2000 to 10000 m / min.
特許文献2には、(a)ポリオルガノシロキサン又は鉱物油、(b)シリコンレジン、及び(c)エーテル変性ポリオルガノシロキサンからなり、30℃における粘度が50センチストーク以下の油剤が付与されたエラストマー繊維としてのポリウレタン弾性繊維が開示されている。 Patent Document 2 describes an elastomer composed of (a) polyorganosiloxane or mineral oil, (b) silicon resin, and (c) ether-modified polyorganosiloxane, to which an oil having a viscosity of 50 centistoke or less at 30 ° C. is applied. Polyurethane elastic fibers as fibers are disclosed.
特許文献3には、ベース成分、アミノ変性シリコーン、及びシリコーンレジンを含有する油剤としての弾性繊維用処理剤が開示されている。 Patent Document 3 discloses a treatment agent for elastic fibers as an oil agent containing a base component, an amino-modified silicone, and a silicone resin.
近年、エラストマー繊維の紡糸工程において、高速化とともに高倍率延伸が行われるようになってきている。高速での紡糸工程で付与された油剤は、エラストマー繊維に付着せずに飛散しやすい傾向がある。そのため、高速での紡糸工程に用いられる油剤としてのエラストマー繊維高速紡糸工程用処理剤には、エラストマー繊維をパッケージから安定して解舒する解舒性のさらなる性能向上に加えて、エラストマー繊維からの飛散を抑制する性能の向上が求められている。 In recent years, in the spinning process of elastomer fibers, high-magnification drawing has been performed along with high speed. The oil agent applied in the spinning process at high speed tends to scatter without adhering to the elastomer fiber. Therefore, in the treatment agent for the elastomer fiber high-speed spinning process as an oil agent used in the high-speed spinning process, in addition to further improving the unwinding performance of stably unwinding the elastomer fiber from the package, the elastomer fiber can be used. There is a need to improve the performance of suppressing scattering.
上記課題を解決するための巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤は、ジメチルシリコーン、シリコーンレジン、鉱物油、及びアミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、前記ジメチルシリコーンを70~97質量%、前記シリコーンレジンを0.1~10質量%、前記鉱物油を0~10質量%、及び前記変性シリコーンを2~5質量%の割合で含有し、30℃における動粘度が8~70mm2/sであることを要旨とする。 The treatment agent for the high-speed spinning process of elastomer fibers having a winding speed of 1000 m / min or more for solving the above problems has a total content ratio of dimethyl silicone, silicone resin, mineral oil, and modified silicone having an amino group of 100 mass. %, The dimethyl silicone is contained in an amount of 70 to 97% by mass, the silicone resin is contained in an amount of 0.1 to 10% by mass, the mineral oil is contained in an amount of 0 to 10% by mass, and the modified silicone is contained in a proportion of 2 to 5% by mass. However, the gist is that the kinematic viscosity at 30 ° C. is 8 to 70 mm 2 / s.
上記巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤は、30℃における動粘度が、8~40mm2/sであることが好ましい。
上記巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤は、前記エラストマー繊維が、ポリウレタン系エラストマー繊維であることが好ましい。
The treatment agent for the elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more preferably has a kinematic viscosity of 8 to 40 mm 2 / s at 30 ° C.
In the treating agent for the elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more, it is preferable that the elastomer fiber is a polyurethane-based elastomer fiber.
上記課題を解決するためのエラストマー繊維の製造方法は、上記巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤を巻き取り速度が1000m/min以上の紡糸工程でエラストマー繊維に付着させることを要旨とする。 The method for producing an elastomer fiber for solving the above problems is to attach a treatment agent for an elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more to the elastomer fiber in a spinning process having a winding speed of 1000 m / min or more. The gist is that.
上記エラストマー繊維の製造方法は、前記紡糸工程での巻き取り速度が、1000~10000m/minであることが好ましい。 In the method for producing an elastomer fiber, the winding speed in the spinning step is preferably 1000 to 10000 m / min.
本発明の巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤によると、エラストマー繊維の解舒性を好適に向上させることができるとともに、エラストマー繊維からの飛散が抑制される。 According to the treatment agent for the elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more of the present invention, the unwinding property of the elastomer fiber can be suitably improved and the scattering from the elastomer fiber is suppressed.
(第1実施形態)
本発明に係る巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤(以下、単に処理剤ともいう。)を具体化した第1実施形態について説明する。
(First Embodiment)
A first embodiment of a treatment agent for an elastomer fiber high-speed spinning process (hereinafter, also simply referred to as a treatment agent) having a take-up speed of 1000 m / min or more according to the present invention will be described.
本実施形態の処理剤は、ジメチルシリコーン、シリコーンレジン、鉱物油、及びアミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、前記ジメチルシリコーンを70~97質量%、前記シリコーンレジンを0.1~10質量%、前記鉱物油を0~10質量%、及び前記変性シリコーンを2~5質量%の割合で含有し、30℃における動粘度が8~70mm2/sである。 The treatment agent of the present embodiment contains 70 to 97% by mass of the dimethyl silicone and 70 to 97% by mass of the silicone resin, assuming that the total content of dimethyl silicone, silicone resin, mineral oil, and modified silicone having an amino group is 100% by mass. It contains 0.1 to 10% by mass of the mineral oil, 0 to 10% by mass of the modified silicone, and 2 to 5% by mass of the modified silicone, and has a kinematic viscosity at 30 ° C. of 8 to 70 mm 2 / s.
処理剤の各成分の含有割合が上記数値範囲であるとともに、動粘度が上記数値範囲であることにより、エラストマー繊維の解舒性を好適に向上させることができる。また、処理剤の飛散をより好適に抑制することができる。また、エラストマー繊維を紡糸してパッケージに巻き取った際の形状をより良好に保持することができる。 When the content ratio of each component of the treatment agent is in the above numerical range and the kinematic viscosity is in the above numerical range, the unfoldability of the elastomer fiber can be suitably improved. In addition, it is possible to more preferably suppress the scattering of the treatment agent. In addition, the shape of the elastomer fiber when it is spun and wound into a package can be better maintained.
なお、上記巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤における「高速」とは、紡糸工程での巻き取り速度が1000m/min以上を意味するものとする。 The "high speed" in the treatment agent for the elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more means that the winding speed in the spinning process is 1000 m / min or more.
上記処理剤は、30℃における動粘度が、8~40mm2/sであることが好ましい。処理剤の動粘度が上記数値範囲であることにより、エラストマー繊維に処理剤を付与した際に処理剤をより均一に付着させることができる。動粘度の測定方法については後述する。 The treatment agent preferably has a kinematic viscosity at 30 ° C. of 8 to 40 mm 2 / s. When the kinematic viscosity of the treatment agent is within the above numerical range, the treatment agent can be more uniformly adhered when the treatment agent is applied to the elastomer fiber. The method for measuring the kinematic viscosity will be described later.
上記ジメチルシリコーンとしては、特に制限はないが、25℃における動粘度が5~1000mm2/sであるものが好ましい。
上記ジメチルシリコーンの具体例としては、例えば25℃における動粘度が10mm2/sであるジメチルシリコーン、25℃における動粘度が100mm2/sであるジメチルシリコーン、25℃における動粘度が1000mm2/sであるジメチルシリコーン、25℃における動粘度が6mm2/sであるジメチルシリコーン、25℃における動粘度が5mm2/sであるジメチルシリコーン等が挙げられる。
The dimethyl silicone is not particularly limited, but preferably has a kinematic viscosity of 5 to 1000 mm 2 / s at 25 ° C.
Specific examples of the dimethyl silicone include dimethyl silicone having a kinematic viscosity of 10 mm 2 / s at 25 ° C, dimethyl silicone having a kinematic viscosity of 100 mm 2 / s at 25 ° C, and a kinematic viscosity of 1000 mm 2 / s at 25 ° C. Examples thereof include dimethyl silicone having a kinematic viscosity of 6 mm 2 / s at 25 ° C, dimethyl silicone having a kinematic viscosity of 5 mm 2 / s at 25 ° C, and the like.
上記ジメチルシリコーンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
上記シリコーンレジンとしては、特に制限はないが、下記の化1で示されるM単位、下記の化2で示されるシロキサン単位、下記の化3で示されるQ単位、及び下記の化4で示されるシロキサン単位から選ばれる2つ以上の構成単位から構成されていることが好ましい。
The above-mentioned dimethyl silicone may be used alone or in combination of two or more.
The silicone resin is not particularly limited, but is represented by the M unit shown in Chemical formula 1 below, the siloxane unit shown in Chemical formula 2 below, the Q unit shown in Chemical formula 3 below, and the chemical resin 4 below. It is preferably composed of two or more structural units selected from siloxane units.
R1,R2,R3:炭素数1~24の炭化水素基。)
R 1 , R 2 , R 3 : Hydrocarbon groups having 1 to 24 carbon atoms. )
R4:炭素数1~24の炭化水素基。
R 4 : Hydrocarbon group having 1 to 24 carbon atoms.
R5,R6:炭素数1~5のアルキレン基。
R7:水素原子、炭素数1~5のアルキル基、フェニル基、炭素数4~22の1~4価の脂肪族カルボン酸から一つの水酸基を除いた残基、又は炭素数6~22の1~4価の芳香族カルボン酸から一つの水酸基を除いた残基。
R5, R6: An alkylene group having 1 to 5 carbon atoms.
R 7 : Hydrogen atom, alkyl group having 1 to 5 carbon atoms, phenyl group, 1 to 4 valent aliphatic carboxylic acid having 4 to 22 carbon atoms minus one hydroxyl group, or a residue having 6 to 22 carbon atoms. A residue obtained by removing one hydroxyl group from a 1- to tetravalent aromatic carboxylic acid.
f:0~1の整数。) f: An integer from 0 to 1. )
R8,R9:炭素数1~24の炭化水素基。)
上記シリコーンレジンは、上記M単位とQ単位とのモル比率(以下、「MQ比」ともいう。)が、0.5~1.2であることが好ましい。
R 8 and R 9 : Hydrocarbon groups having 1 to 24 carbon atoms. )
The silicone resin preferably has a molar ratio of M units to Q units (hereinafter, also referred to as “MQ ratio”) of 0.5 to 1.2.
上記化1、化2、化4のR1、R2、R3、R4、R8、R9において、炭素数1~24の炭化水素基としては、特に制限されず、飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよい。また、直鎖の炭化水素基であってもよいし、分岐鎖を有する炭化水素基であってもよい。 In R 1 , R 2 , R 3 , R 4 , R 8 , and R 9 of Chemical formula 1, Chemical formula 2, and Chemical formula 4, the hydrocarbon group having 1 to 24 carbon atoms is not particularly limited, and is a saturated hydrocarbon group. It may be an unsaturated hydrocarbon group or an unsaturated hydrocarbon group. Further, it may be a linear hydrocarbon group or a hydrocarbon group having a branched chain.
上記炭素数1~24の炭化水素基としては、例えば、1)メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、へキシル基、イソへキシル基、オクチル基、イソオクチル基、デシル基、イソデシル基、ドデシル基、イソドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、イソテトラデシル基、ヘキサデシル基(セチル基)、イソヘキサデシル基、オクタデシル基(ステアリル基)、イソオクタデシイル基、エイコシル基、イソエイコシル基、ドコシル基、イソドコシル基、テトラコシル基、イソテトラコシル基等の炭素数1~24脂肪族炭化水素基、2)シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、3-ピナニル基等の炭素数3~24の脂環族炭化水素基、3)フェニル基、ナフチル基、ベンジル基、アントラセニル基、ピレニル基、ナフトピレニル基、2-ナフタレンドデシル基等の炭素数6~24の芳香族炭化水素基が挙げられる。 Examples of the hydrocarbon group having 1 to 24 carbon atoms include 1) methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, isopentyl group, hexyl group and isohexyl group. Octyl group, isooctyl group, decyl group, isodecyl group, dodecyl group, isododecyl group, tridecyl group, isotridecyl group, tetradecyl group, isotetradecyl group, hexadecyl group (cetyl group), isohexadecyl group, octadecyl group (stearyl group) , Isooctadecyl group, Eicosyl group, Isoeicosyl group, Docosyl group, Isodocosyl group, Tetracosyl group, Isotetracosyl group and other 1 to 24 aliphatic hydrocarbon groups, 2) Cyclopropyl group, Cyclopentyl group, Cyclohexyl group, Cyclo Alicyclic hydrocarbon groups having 3 to 24 carbon atoms such as octyl group and 3-pinanyl group, 3) carbons such as phenyl group, naphthyl group, benzyl group, anthracenyl group, pyrenyl group, naphthopylenyl group and 2-naphthalenddecyl group. The number 6 to 24 aromatic hydrocarbon groups can be mentioned.
上記化2のR5、R6において、炭素数1~5のアルキレン基としては、例えばメチレン基、エチレン基、プロピレン基、ブチレン基、へプチレン基等が挙げられる。
上記化2のR7-NH(-R6-NH)f-R5-としては、下記の(1)~(10)を挙げることができる。
Examples of the alkylene group having 1 to 5 carbon atoms in R5 and R6 of Chemical formula 2 include a methylene group, an ethylene group, a propylene group, a butylene group, and a heptylene group.
Examples of R 7 -NH (-R 6 -NH) f -R 5- of the above-mentioned Chemical formula 2 include the following (1) to (10).
(1)fが0であってR7が水素原子であるアミノアルキル基。
(2)fが0であってR7が炭素数1~5のアルキル基である置換イミノアルキル基。
(3)fが0であってR7がフェニル基であるN-フェニルイミノアルキル基。
(1) An aminoalkyl group in which f is 0 and R 7 is a hydrogen atom.
(2) A substituted iminoalkyl group in which f is 0 and R 7 is an alkyl group having 1 to 5 carbon atoms.
(3) An N-phenyliminoalkyl group in which f is 0 and R 7 is a phenyl group.
(4)fが0であってR7が炭素数4~22の1~4価の脂肪族カルボン酸から一つの水酸基を除いた残基であるN-置換脂肪族アミドアルキル基。
(5)fが0であってR7が炭素数6~22の1~4価の芳香族カルボン酸から一つの水酸基を除いた残基であるN-置換芳香族アミドアルキル基。
(4) An N-substituted aliphatic amide alkyl group in which f is 0 and R 7 is a residue obtained by removing one hydroxyl group from a 1 to 4 valent aliphatic carboxylic acid having 4 to 22 carbon atoms.
(5) An N-substituted aromatic amide alkyl group in which f is 0 and R 7 is a residue obtained by removing one hydroxyl group from a 1 to 4 valent aromatic carboxylic acid having 6 to 22 carbon atoms.
(6)fが1であってR7が水素原子であるアミノアルキルイミノアルキル基。
(7)fが1であってR7が炭素数1~5のアルキル基である置換イミノアルキルイミノアルキル基。
(6) An aminoalkyliminoalkyl group in which f is 1 and R7 is a hydrogen atom.
(7) A substituted iminoalkyl iminoalkyl group in which f is 1 and R 7 is an alkyl group having 1 to 5 carbon atoms.
(8)fが1であってR7がフェニル基であるN-フェニルイミノアルキルイミノアルキル基。
(9)fが1であってR7が炭素数4~22の1~4価の脂肪族カルボン酸から一つの水酸基を除いた残基であるN-置換脂肪族アミドアルキルイミノアルキル基。
(8) N-phenyliminoalkyl iminoalkyl group in which f is 1 and R 7 is a phenyl group.
(9) An N-substituted aliphatic amide alkyl iminoalkyl group in which f is 1 and R 7 is a residue obtained by removing one hydroxyl group from a 1 to 4 valent aliphatic carboxylic acid having 4 to 22 carbon atoms.
(10)fが1であってR7が炭素数6~22の1~4価の芳香族カルボン酸から一つの水酸基を除いた残基であるN-置換芳香族アミドアルキルイミノアルキル基。
上記(1)のアミノアルキル基としては、例えばアミノエチル基、3-アミノプロピル基、4-アミノブチル基等が挙げられる。
(10) An N-substituted aromatic amide alkyl iminoalkyl group in which f is 1 and R 7 is a residue obtained by removing one hydroxyl group from a 1 to 4 valent aromatic carboxylic acid having 6 to 22 carbon atoms.
Examples of the aminoalkyl group of (1) above include an aminoethyl group, a 3-aminopropyl group, a 4-aminobutyl group and the like.
上記(2)の置換イミノアルキル基としては、例えばN-エチル-3-イミノプロピル基、N-エチル-2-イミノエチル基等が挙げられる。
上記(3)のN-フェニルイミノアルキル基としては、例えばN-フェニル-3-イミノプロピル基、N-フェニル-2-イミノエチル基等が挙げられる。
Examples of the substituted iminoalkyl group of (2) above include N-ethyl-3-iminopropyl group and N-ethyl-2-iminoethyl group.
Examples of the N-phenyliminoalkyl group of (3) above include an N-phenyl-3-iminopropyl group and an N-phenyl-2-iminoethyl group.
上記(4)のN-置換脂肪族アミドアルキル基としては、例えばN-アセトイル-2-イミノエチル基、N-ドデカノイル-2-イミノエチル基、N-オクタデカノイル-2-イミノエチル基、N-オクタデセノイル-2-イミノエチル基、N-アセトイル-3-イミノプロピル基、N-ドデカノイル-3-イミノプロピル基、N-オクタデカノイル-3-イミノプロピル基、N-オクタデセノイル-3-イミノプロピル基、N-アセトイル-4-イミノブチル基、N-ドデカノイル-4-イミノブチル基、N-オクタデカノイル-4-イミノブチル基、N-オクタデセノイル-4-イミノブチル基、N-(2-カルボキシエチルカルボニル)-2-イミノエチル基、N-(2-カルボキシエチルカルボニル)-3-イミノプロピル基、N-(2-カルボキシエチルカルボニル)-4-イミノブチル基等が挙げられる。 Examples of the N-substituted aliphatic amide alkyl group of (4) above include N-acetoyl-2-iminoethyl group, N-dodecanoyl-2-iminoethyl group, N-octadecanoyl-2-iminoethyl group and N-octadecenoyl-. 2-Iminoethyl group, N-acetoyl-3-iminopropyl group, N-dodecanoyl-3-iminopropyl group, N-octadecanoyl-3-iminopropyl group, N-octadecenoyl-3-iminopropyl group, N-acetoyl -4-Iminobutyl group, N-dodecanoyl-4-iminobutyl group, N-octadecanoyl-4-iminobutyl group, N-octadecenoyl-4-iminobutyl group, N- (2-carboxyethylcarbonyl) -2-iminoethyl group, Examples thereof include N- (2-carboxyethylcarbonyl) -3-iminopropyl group, N- (2-carboxyethylcarbonyl) -4-iminobutyl group and the like.
上記(5)のN-置換芳香族アミドアルキル基としては、例えばN-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(2,4-ジカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(2,5-ジカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(3,4-ジカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(2,4-ジカルボキシベンゼン-カルボニル)-4-イミノブチル基、N-(2,5-ジカルボキシベンゼン-カルボニル)-4-イミノブチル基、N-(3,4-ジカルボキシベンゼン-カルボニル)-4-イミノブチル基、N-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(2,4,5-トリカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(2,4,5-トリカルボキシベンゼン-カルボニル)-4-イミノブチル基等が挙げられる。 Examples of the N-substituted aromatic amide alkyl group in (5) above include N- (2,4-dicarboxybenzene-carbonyl) -2-iminoethyl group and N- (2,5-dicarboxybenzene-carbonyl)-. 2-Iminoethyl group, N- (3,4-dicarboxybenzene-carbonyl) -2-Iminoethyl group, N- (2,4-dicarboxybenzene-carbonyl) -3-Iminopropyl group, N- (2,5) -Dicarboxybenzene-carbonyl) -3-iminopropyl group, N- (3,4-dicarboxybenzene-carbonyl) -3-iminopropyl group, N- (2,4-dicarboxybenzene-carbonyl) -4- Iminobutyl group, N- (2,5-dicarboxybenzene-carbonyl) -4-iminobutyl group, N- (3,4-dicarboxybenzene-carbonyl) -4-iminobutyl group, N- (2,4,5- Tricarboxybenzene-carbonyl) -2-iminoethyl group, N- (2,4,5-tricarboxybenzene-carbonyl) -3-iminopropyl group, N- (2,4,5-tricarboxybenzene-carbonyl)- 4-Iminobutyl group and the like can be mentioned.
上記(6)のアミノアルキルイミノアルキル基としては、例えばN-(2-アミノエチル)-2-イミノエチル基、N-(2-アミノエチル)-3-イミノプロピル基、N-(2-アミノエチル)-4-イミノブチル基等が挙げられる。 Examples of the aminoalkyl iminoalkyl group of (6) above include N- (2-aminoethyl) -2-iminoethyl group, N- (2-aminoethyl) -3-iminopropyl group, and N- (2-aminoethyl). ) -4-Iminobutyl group and the like.
上記(7)の置換イミノアルキルイミノアルキル基としては、例えばN-(N’-エチル-2-イミノエチル)-3-イミノプロピル基、N-(N’-プロピル-2-イミノエチル)-3-イミノプロピル基等が挙げられる。 Examples of the substituted iminoalkyl iminoalkyl group of (7) above include N- (N'-ethyl-2-iminoethyl) -3-iminopropyl group and N- (N'-propyl-2-iminoethyl) -3-imino. Examples include propyl groups.
上記(8)のN-フェニルイミノアルキルイミノアルキル基としては、例えばN-(N’-フェニル-2-イミノエチル)-3-イミノプロピル基、N-(N’-フェニル-2-イミノエチル)-2-イミノエチル基等が挙げられる。 Examples of the N-phenyliminoalkyl iminoalkyl group of (8) above include N- (N'-phenyl-2-iminoethyl) -3-iminopropyl group and N- (N'-phenyl-2-iminoethyl) -2. -Iminoethyl group and the like can be mentioned.
上記(9)のN-置換脂肪族アミドアルキルイミノアルキル基としては、N-(N’-アセトイル-2-イミノエチル)-2-イミノエチル基、N-(N’-ドデカノイル-2-イミノエチル)-2-イミノエチル基、N-(N’-オクタデカノイル-2-イミノエチル)-2-イミノエチル基、N-(N’-オクタデセノイル-2-イミノエチル)-2-イミノエチル基、N-(N’-アセトイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-ドデカノイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-オクタデカノイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-オクタデセノイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-アセトイル-2-イミノエチル)-4-イミノブチル基、N-(N’-ドデカノイル-2-イミノエチル)-4-イミノブチル基、N-(N’-オクタデカノイル-2-イミノエチル)-4-イミノブチル基、N-(N’-オクタデセノイル-2-イミノエチル)-4-イミノブチル基、N-[N’-(2-カルボキシエチルカルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(2-カルボキシエチルカルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2-カルボキシエチルカルボニル)-2-イミノエチル]-4-イミノブチル基等が挙げられる。 Examples of the N-substituted aliphatic amidoalkyliminoalkyl group of (9) above include N- (N'-acetoyl-2-iminoethyl) -2-iminoethyl group and N- (N'-dodecanoyl-2-iminoethyl) -2. -Iminoethyl group, N- (N'-octadecanoyl-2-iminoethyl) -2-iminoethyl group, N- (N'-octadecenoyl-2-iminoethyl) -2-iminoethyl group, N- (N'-acetoyl- 2-Iminoethyl) -3-iminopropyl group, N- (N'-dodecanoyl-2-iminoethyl) -3-iminopropyl group, N- (N'-octadecanoyl-2-iminoethyl) -3-iminopropyl group , N- (N'-octadecenoyl-2-iminoethyl) -3-iminopropyl group, N- (N'-acetoyl-2-iminoethyl) -4-iminobutyl group, N- (N'-dodecanoyl-2-iminoethyl) -4-Iminobutyl group, N- (N'-octadecanoyl-2-iminoethyl) -4-iminobutyl group, N- (N'-octadecenoyl-2-iminoethyl) -4-iminobutyl group, N- [N'- (2-carboxyethylcarbonyl) -2-iminoethyl] -2-iminoethyl group, N- [N'-(2-carboxyethylcarbonyl) -2-iminoethyl] -3-iminopropyl group, N- [N'-( 2-carboxyethylcarbonyl) -2-iminoethyl] -4-iminobutyl group and the like can be mentioned.
上記(10)のN-置換芳香族アミドアルキルイミノアルキル基としては、例えばN-[N’-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N'-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基、N-[N’-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基、N-[N’-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基、N-[N’-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基等が挙げられる。 Examples of the N-substituted aromatic amidoalkyl iminoalkyl group of (10) include N- [N'-(2,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -2-iminoethyl group and N- [. N'-(2,5-dicarboxybenzene-carbonyl) -2-iminoethyl] -2-iminoethyl group, N- [N'-(3,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -2- Iminoethyl group, N- [N'-(2,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -3-iminopropyl group, N- [N'-(2,5-dicarboxybenzene-carbonyl)- 2-Iminoethyl] -3-iminopropyl group, N- [N'-(3,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -3-iminopropyl group, N- [N'-(2,4) -Dicarboxybenzene-carbonyl) -2-iminoethyl] -4-iminobutyl group, N- [N'-(2,5-dicarboxybenzene-carbonyl) -2-iminoethyl] -4-iminobutyl group, N- [N '-(3,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -4-iminobutyl group, N- [N'-(2,4,5-tricarboxybenzene-carbonyl) -2-iminoethyl] -2 -Iminoethyl group, N- [N'-(2,4,5-tricarboxybenzene-carbonyl) -2-Iminoethyl] -3-Iminopropyl group, N- [N'-(2,4,5-tricarboxy) Benzene-carbonyl) -2-iminoethyl] -4-iminobutyl group and the like can be mentioned.
シリコーンレジンのM単位やQ単位等のシロキサン単位の分析は、特に制限されないが、元素分析、FT-IRスペクトル分析、CP/MASのNMRスペクトル分析等によって行うことができる。例えば、上記分析方法によって原料に用いた各シラン化合物の炭素数を測定することによって、構成シロキサン単位の割合を算出することができる。そして、構成シロキサン単位の割合、シリコーンレジンを構成するシロキサン単位の理論分子量、及び、後述する質量平均分子量の測定値から、分子中のシロキサン単位のモル数を算出して、モル比率を算出することができる。 The analysis of siloxane units such as M unit and Q unit of silicone resin is not particularly limited, but can be performed by elemental analysis, FT-IR spectrum analysis, CP / MAS NMR spectrum analysis and the like. For example, the ratio of the constituent siloxane units can be calculated by measuring the carbon number of each silane compound used as a raw material by the above analysis method. Then, the number of moles of the siloxane unit in the molecule is calculated from the measured values of the ratio of the constituent siloxane units, the theoretical molecular weight of the siloxane units constituting the silicone resin, and the mass average molecular weight described later, and the molar ratio is calculated. Can be done.
上記シリコーンレジンの具体例としては、例えば質量平均分子量が12000であり、MQ比が0.8であるメチルシリコーンレジン、質量平均分子量が16000であり、MQ比が0.8であるアミノ変性シリコーンレジン、質量平均分子量が9000であり、MQ比が0.85であるメチルシリコーンレジン、質量平均分子量が16000であり、MQ比が0.91であるアミノ変性シリコーンレジン等が挙げられる。 Specific examples of the above-mentioned silicone resin include, for example, a methyl silicone resin having a mass average molecular weight of 12000 and an MQ ratio of 0.8, and an amino-modified silicone resin having a mass average molecular weight of 16000 and an MQ ratio of 0.8. Examples thereof include a methyl silicone resin having a mass average molecular weight of 9000 and an MQ ratio of 0.85, and an amino-modified silicone resin having a mass average molecular weight of 16000 and an MQ ratio of 0.91.
上記シリコーンレジンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
上記処理剤に含まれる鉱物油としては、特に制限はないが、例えば芳香族系炭化水素、パラフィン系炭化水素、ナフテン系炭化水素等が挙げられる。より具体的には、例えばスピンドル油、流動パラフィン等が挙げられる。
The above silicone resin may be used alone or in combination of two or more.
The mineral oil contained in the above-mentioned treatment agent is not particularly limited, and examples thereof include aromatic hydrocarbons, paraffinic hydrocarbons, and naphthenic hydrocarbons. More specifically, for example, spindle oil, liquid paraffin and the like can be mentioned.
また、上記鉱物油は、40℃における動粘度が5~10mm2/sであるものが好ましい。
上記鉱物油の具体例としては、例えば40℃における動粘度が10mm2/sである鉱物油、40℃における動粘度が5mm2/sである鉱物油、40℃における動粘度が7mm2/sである鉱物油等が挙げられる。
Further, the mineral oil preferably has a kinematic viscosity of 5 to 10 mm 2 / s at 40 ° C.
Specific examples of the above mineral oil include, for example, a mineral oil having a kinematic viscosity of 10 mm 2 / s at 40 ° C, a mineral oil having a kinematic viscosity of 5 mm 2 / s at 40 ° C, and a kinematic viscosity of 7 mm 2 / s at 40 ° C. Mineral oil and the like.
上記鉱物油は、市販品を適宜採用することができる。
上記鉱物油は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
As the above-mentioned mineral oil, a commercially available product can be appropriately adopted.
The above mineral oil may be used alone or in combination of two or more.
アミノ基を有する変性シリコーンとしては、特に制限はなく、ジアミン型のアミノ変性シリコーンや、モノアミン型のアミノ変性シリコーンを用いることができる。
アミノ基を有する変性シリコーンの具体例としては、例えば25℃における動粘度が60mm2/sであり、当量が4100g/molであるモノアミン型のアミノ変性シリコーン、25℃における動粘度が90mm2/sであり、当量が8800g/molであるモノアミン型のアミノ変性シリコーン、25℃における動粘度が450mm2/sであり、当量が5700g/molであるジアミン型のアミノ変性シリコーン等が挙げられる。
The modified silicone having an amino group is not particularly limited, and a diamine-type amino-modified silicone or a monoamine-type amino-modified silicone can be used.
Specific examples of the modified silicone having an amino group include a monoamine type amino-modified silicone having an kinematic viscosity of 60 mm 2 / s at 25 ° C and an equivalent of 4100 g / mol, and a kinematic viscosity of 90 mm 2 / s at 25 ° C. Examples thereof include monoamine-type amino-modified silicone having an equivalent of 8800 g / mol, and diamine-type amino-modified silicone having a kinematic viscosity of 450 mm 2 / s at 25 ° C. and an equivalent of 5700 g / mol.
上記アミノ基を有する変性シリコーンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(第2実施形態)
本発明に係るエラストマー繊維を具体化した第2実施形態について説明する。本実施形態のエラストマー繊維は、第1実施形態の処理剤が付着しているエラストマー繊維である。エラストマー繊維に対する第1実施形態の処理剤(溶媒を含まない)の付着量は、特に制限はないが、本発明の効果をより向上させる観点から0.1~10質量%の割合で付着していることが好ましい。
The modified silicone having an amino group may be used alone or in combination of two or more.
(Second Embodiment)
A second embodiment in which the elastomer fiber according to the present invention is embodied will be described. The elastomer fiber of the present embodiment is an elastomer fiber to which the treatment agent of the first embodiment is attached. The amount of the treatment agent (without solvent) adhered to the elastomer fiber of the first embodiment is not particularly limited, but is adhered at a ratio of 0.1 to 10% by mass from the viewpoint of further improving the effect of the present invention. It is preferable to have.
エラストマー繊維としては、特に制限はないが、例えばポリエステル系エラストマー繊維、ポリアミド系エラストマー繊維、ポリオレフィン系エラストマー繊維、ポリウレタン系エラストマー繊維等が挙げられる。これらの中でもポリウレタン系エラストマー繊維が好ましく、さらにこの中でも溶融紡糸法で紡糸されたポリウレタン系エラストマー繊維が好ましい。かかる場合に本発明の効果の発現をより高くすることができる。 The elastomer fiber is not particularly limited, and examples thereof include a polyester-based elastomer fiber, a polyamide-based elastomer fiber, a polyolefin-based elastomer fiber, and a polyurethane-based elastomer fiber. Among these, polyurethane-based elastomer fibers are preferable, and among these, polyurethane-based elastomer fibers spun by the melt spinning method are preferable. In such a case, the manifestation of the effect of the present invention can be further enhanced.
ここで、エラストマー繊維とは、弾力性に富んだ繊維であって、引張り応力を付与すると伸長することができるとともに、引張り応力が解除されると元の長さに戻る繊維を意味するものとする。そのため、エラストマー繊維は、弾性繊維と言い換えることができる。 Here, the elastomer fiber means a fiber having a high elasticity, which can be stretched when a tensile stress is applied and returns to the original length when the tensile stress is released. .. Therefore, the elastomer fiber can be paraphrased as an elastic fiber.
本実施形態のエラストマー繊維の製造方法は、第1実施形態の処理剤を紡糸工程でエラストマー繊維に給油することにより得られる。処理剤の給油方法としては、希釈することなくニート給油法により、エラストマー繊維の紡糸工程においてエラストマー繊維に付着させる方法が好ましい。付着方法としては、例えばローラー給油法、ガイド給油法、スプレー給油法等の公知の方法が適用できる。 The method for producing an elastomer fiber of the present embodiment is obtained by supplying the elastomer fiber with the treatment agent of the first embodiment in a spinning step. As a method for refueling the treatment agent, a method of adhering to the elastomer fiber in the spinning step of the elastomer fiber by a neat refueling method without diluting is preferable. As the adhesion method, for example, a known method such as a roller lubrication method, a guide lubrication method, or a spray lubrication method can be applied.
本実施形態に適用されるエラストマー繊維自体の製造方法は、特に限定されず、公知の方法で製造が可能である。例えば湿式紡糸法、溶融紡糸法、乾式紡糸法等が挙げられる。これらの中でも、溶媒を使用しないことで作業環境への負荷が少ない点、より安価に製造ができる観点から溶融紡糸法が好ましく適用される。 The method for producing the elastomer fiber itself applied to the present embodiment is not particularly limited, and the elastomer fiber itself can be produced by a known method. For example, a wet spinning method, a melt spinning method, a dry spinning method and the like can be mentioned. Among these, the melt spinning method is preferably applied from the viewpoint that the load on the working environment is small because no solvent is used and the production can be performed at a lower cost.
紡糸工程におけるエラストマー繊維の巻き取り速度は、1000/min以上の高速紡糸である。紡糸工程での巻き取り速度は、1000~10000m/minであることが好ましい。 The winding speed of the elastomer fiber in the spinning process is high speed spinning of 1000 / min or more. The winding speed in the spinning step is preferably 1000 to 10000 m / min.
第1実施形態の処理剤、及び第2実施形態のエラストマー繊維によれば、以下のような効果を得ることができる。
(1)ジメチルシリコーン、シリコーンレジン、鉱物油、及びアミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、前記ジメチルシリコーンを70~97質量%、前記シリコーンレジンを0.1~10質量%、前記鉱物油を0~10質量%、及び前記変性シリコーンを2~5質量%の割合で含有し、30℃における動粘度が8~70mm2/sである。
According to the treatment agent of the first embodiment and the elastomer fiber of the second embodiment, the following effects can be obtained.
(1) Assuming that the total content of dimethyl silicone, silicone resin, mineral oil, and modified silicone having an amino group is 100% by mass, the dimethyl silicone is 70 to 97% by mass, and the silicone resin is 0.1 to 10. It contains% by mass, the mineral oil in an amount of 0 to 10% by mass, and the modified silicone in a proportion of 2 to 5% by mass, and has a kinematic viscosity at 30 ° C. of 8 to 70 mm 2 / s.
処理剤の各成分の含有割合が上記数値範囲であるとともに、動粘度が上記数値範囲であることにより、巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程に用いても、エラストマー繊維の解舒性を好適に向上させることができる。また、エラストマー繊維からの処理剤の飛散をより好適に抑制することができる。また、エラストマー繊維を紡糸してパッケージに巻き取った際の形状をより良好に保持することができる。 Since the content ratio of each component of the treatment agent is in the above numerical range and the kinematic viscosity is in the above numerical range, the elastomer fiber can be solved even when used in the elastomer fiber high-speed spinning step in which the winding speed is 1000 m / min or more. The kinematic properties can be suitably improved. In addition, it is possible to more preferably suppress the scattering of the treatment agent from the elastomer fiber. In addition, the shape of the elastomer fiber when it is spun and wound into a package can be better maintained.
(2)処理剤は、30℃における動粘度が、8~40mm2/sである。処理剤の動粘度が上記数値範囲であることにより、エラストマー繊維に処理剤を付与した際に処理剤をより均一に付着させることができる。 (2) The treatment agent has a kinematic viscosity at 30 ° C. of 8 to 40 mm 2 / s. When the kinematic viscosity of the treatment agent is within the above numerical range, the treatment agent can be more uniformly adhered when the treatment agent is applied to the elastomer fiber.
上記実施形態は、以下のように変更して実施できる。上記実施形態、及び、以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施できる。
本実施形態の処理剤には、本発明の効果を阻害しない範囲内において、処理剤の品質保持のための安定化剤や制電剤、帯電防止剤、つなぎ剤、酸化防止剤、紫外線吸収剤等の通常処理剤に用いられる成分(以下、その他成分ともいう。)をさらに配合してもよい。
The above embodiment can be modified and implemented as follows. The above embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
The treatment agent of the present embodiment includes a stabilizer, an antistatic agent, an antistatic agent, a binder, an antioxidant, and an ultraviolet absorber for maintaining the quality of the treatment agent, as long as the effects of the present invention are not impaired. Ingredients used in ordinary treatment agents such as (hereinafter, also referred to as other ingredients) may be further blended.
以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明がこれらの実施例に限定されるというものではない。
試験区分1(巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤の調製)
(実施例1、3~5、8、参考例1~10、及び比較例1~10)
以下の方法により、表1に示すシリコーンレジン(B1)を合成した。
Hereinafter, examples and the like will be given in order to make the configuration and effects of the present invention more specific, but the present invention is not limited to these examples.
Test Category 1 (Preparation of treatment agent for high-speed spinning process of elastomer fiber with winding speed of 1000 m / min or more)
(Examples 1 , 3 to 5, 8, Reference Examples 1 to 10 , and Comparative Examples 1 to 10)
The silicone resin (B1) shown in Table 1 was synthesized by the following method.
B1は、M単位を構成することになる原料として、トリメチルメトキシシラン833.76g(8.0モル)、水800g、メタンスルホン酸2.0g、及びQ単位を構成することになる原料として、テトラエトキシシラン2083.3g(10モル)を反応容器に仕込み、78℃で24時間加温撹拌した。次いで、反応容器に炭酸水素ナトリウム1.78gを加えて中和した後、78℃に保ちながら5時間還流熟成を行った。さらに、キシレン2000gを加え、水、及び反応により副生したメタノールとエタノールを留去して、キシレン溶液に置換後、濾過した。得られた濾液の有効濃度(キシレン溶液中のレジン濃度)を50%に調整した後、その200gを別の反応容器に仕込み、反応溶液からキシレン、水を留去して、シリコーンレジン(B1)を得た。 B1 contains 833.76 g (8.0 mol) of trimethylmethoxysilane as a raw material constituting the M unit, 800 g of water, 2.0 g of methanesulfonic acid, and tetra as a raw material constituting the Q unit. 2083.3 g (10 mol) of ethoxysilane was charged in a reaction vessel, and the mixture was heated and stirred at 78 ° C. for 24 hours. Then, 1.78 g of sodium hydrogen carbonate was added to the reaction vessel for neutralization, and then reflux aging was carried out for 5 hours while keeping the temperature at 78 ° C. Further, 2000 g of xylene was added, water and methanol and ethanol by-produced by the reaction were distilled off, replaced with a xylene solution, and then filtered. After adjusting the effective concentration (resin concentration in the xylene solution) of the obtained filtrate to 50%, 200 g of the filtrate was charged in another reaction vessel, and xylene and water were distilled off from the reaction solution to obtain a silicone resin (B1). Got
シリコーンレジン(B1)の分析を行ったところ、このシリコーンレジン(B1)は、1分子中に化1で示されるシロキサン単位(M体)としてトリメチルシロキサンを8.0モル%、化3で示されるシロキサン単位(Q体)を10モル%(合計18モル%)有し、M単位とQ単位のモル比率が0.8のシリコーンレジンであった。 When the silicone resin (B1) was analyzed, this silicone resin (B1) contained 8.0 mol% of trimethylsiloxane as the siloxane unit (M body) represented by Chemical formula 1 in one molecule, and was represented by Chemical formula 3. It was a silicone resin having 10 mol% (total 18 mol%) of siloxane units (Q-form) and having a molar ratio of M units to Q units of 0.8.
B2~B4の合成は、B1の合成方法に沿いつつ、各原料の種類、配合、及び反応時間を調整して行った。
表1に示される各成分を使用し、ジメチルシリコーン(A1)、ジメチルシリコーン(A2)、シリコーンレジン(B1)、鉱物油(C1)、及びアミノ変性シリコーン(D1)がそれぞれ、83質部、10質量部、0.1質量部、4.9質量部、及び2質量部となるようにビーカーに加えた。これらをよく撹拌して均一に混合し、実施例1の巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤を調製した。
The synthesis of B2 to B4 was carried out by adjusting the type, formulation and reaction time of each raw material while following the synthesis method of B1.
Using each component shown in Table 1, dimethyl silicone (A1), dimethyl silicone (A2), silicone resin (B1), mineral oil (C1), and amino-modified silicone (D1) were added to 83 parts and 10 parts, respectively. It was added to the beaker to be parts by mass, 0.1 parts by mass, 4.9 parts by mass, and 2 parts by mass. These were stirred well and mixed uniformly to prepare a treatment agent for an elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more in Example 1.
実施例3~5、8、参考例1~10、及び比較例1~9の巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤は、各原料の配合を調整して、実施例1と同様の方法によって調製した。なお、比較例10は、巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤を用いることなく、エラストマー繊維を製造した。 The treating agents for the elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more in Examples 3 to 5, 8, Reference Examples 1 to 10 , and Comparative Examples 1 to 9 were carried out by adjusting the composition of each raw material. It was prepared by the same method as in Example 1. In Comparative Example 10, the elastomer fiber was produced without using a treatment agent for an elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more.
巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤に使用するジメチルシリコーン、シリコーンレジン、鉱物油、アミノ変性シリコーン、及びその他成分の種類と質量部は、表1の「ジメチルシリコーン(A)」欄、「シリコーンレジン(B)」欄、「鉱物油(C)」欄、「アミノ変性シリコーン(D)」欄、「その他成分(E)」欄にそれぞれ示す通りである。 The types and parts of dimethyl silicone, silicone resin, mineral oil, amino-modified silicone, and other components used in the treatment agent for the high-speed spinning process of elastomer fibers with a winding speed of 1000 m / min or more are shown in Table 1 "dimethyl silicone (" dimethyl silicone ( As shown in the "A)" column, the "silicone resin (B)" column, the "mineral oil (C)" column, the "amino-modified silicone (D)" column, and the "other component (E)" column, respectively.
A1:25℃における動粘度が10mm2/sであるジメチルシリコーン
A2:25℃における動粘度が100mm2/sであるジメチルシリコーン
A3:25℃における動粘度が1000mm2/sであるジメチルシリコーン
A4:25℃における動粘度が6mm2/sであるジメチルシリコーン
A5:25℃における動粘度が5mm2/sであるジメチルシリコーン等が挙げられる。
A1: Dimethyl silicone with kinematic viscosity at 25 ° C of 10 mm 2 / s A2: Dimethyl silicone with kinematic viscosity at 25 ° C of 100 mm 2 / s A3: Dimethyl silicone with kinematic viscosity at 25 ° C of 1000 mm 2 / s A4: Dimethyl silicone having a kinematic viscosity of 6 mm 2 / s at 25 ° C. A5: Dimethyl silicone having a kinematic viscosity of 5 mm 2 / s at 25 ° C. and the like can be mentioned.
(シリコーンレジン(B))
B1:質量平均分子量が12000であり、MQ比が0.8であるメチルシリコーンレジン
B2:質量平均分子量が16000であり、MQ比が0.8であるアミノ変性シリコーンレジン
B3:質量平均分子量が9000であり、MQ比が0.85であるメチルシリコーンレジン
B4:質量平均分子量が16000であり、MQ比が0.91であるアミノ変性シリコーンレジン
MQ比の算出方法について説明する。
(Silicone resin (B))
B1: Methyl silicone resin having a mass average molecular weight of 12000 and an MQ ratio of 0.8 B2: Amino-modified silicone resin having a mass average molecular weight of 16000 and an MQ ratio of 0.8 B3: Amino-modified silicone resin having a mass average molecular weight of 9000 Methyl silicone resin with an MQ ratio of 0.85 B4: Amino-modified silicone resin with an mass average molecular weight of 16000 and an MQ ratio of 0.91 The method for calculating the MQ ratio will be described.
MQ比は、以下の式で求められる。
MQ比=M単位のモル数/Q単位のモル数
M単位:化1で示される化合物
Q単位:化3で示される化合物
シリコーンレジンの質量平均分子量(以下、「Mw」という。)の測定方法について説明する。
The MQ ratio is calculated by the following formula.
MQ ratio = number of moles in M units / number of moles in Q units M unit: compound represented by Chemical formula Q unit: compound represented by chemical formula 3 Method for measuring mass average molecular weight of silicone resin (hereinafter referred to as “Mw”) Will be explained.
まず、表1のシリコーンレジン0.02gをバイアル瓶に採取した。これにテトラヒドロフランを30mL加えて希釈し、試料溶液を得た。この試料溶液1mLをゲル浸透クロマトグラフィー(以下、「GPC」という。)用濾過フィルターを装着した注射器を用いて異物を除去し、GPC用試料瓶に採取して試料溶液を調製した。 First, 0.02 g of the silicone resin shown in Table 1 was collected in a vial. To this, 30 mL of tetrahydrofuran was added and diluted to obtain a sample solution. Foreign matter was removed from 1 mL of this sample solution using a syringe equipped with a filter for gel permeation chromatography (hereinafter referred to as "GPC"), and the sample solution was collected in a sample bottle for GPC to prepare a sample solution.
リファレンスカラムとして、TSKgel SuperH-RCを装着した東ソー社製HLC-8320GPCを使用した。
また、測定用カラムとして、TSKguardcolumn SuperH-L、TSKgel SuperH4000、TSKgel Super3000、TSKgel Super2000を装着した東ソー社製HLC-8320GPCを使用した。
As a reference column, HLC-8320GPC manufactured by Tosoh Corporation equipped with TSKgel SuperH-RC was used.
Further, as a measurement column, an HLC-8320GPC manufactured by Tosoh Co., Ltd. equipped with TSKguardcolum SuperH-L, TSKgel SuperH4000, TSKgel Super3000, and TSKgel Super2000 was used.
Mwは、標準試料として、TSKgel標準ポリスチレンを用いて検量線を作成し、各シリコーンレジンのMwを求めた。
(鉱物油(C))
C1:40℃における動粘度が10mm2/sである鉱物油
C2:40℃における動粘度が5mm2/sである鉱物油
C3:40℃における動粘度が7mm2/sである鉱物油
(アミノ変性シリコーン(D))
D1:25℃における動粘度が60mm2/sであり、当量が4100g/molであるモノアミン型のアミノ変性シリコーン
D2:25℃における動粘度が90mm2/sであり、当量が8800g/molであるモノアミン型のアミノ変性シリコーン
D3:25℃における動粘度が450mm2/sであり、当量が5700g/molであるジアミン型のアミノ変性シリコーン
(その他成分(E))
E1:25℃における動粘度が1000mm2/sであり、エチレンオキサイドとプロピレンオキサイドのモル比(EO:PO)が1:1であるエーテル変性シリコーン
巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤の動粘度は、キャノンフェンスケ粘度計を用いて、30℃の条件下で公知の方法によって測定した。同様に、鉱物油の動粘度は、キャノンフェンスケ粘度計を用いて、40℃の条件下で公知の方法によって測定した。ジメチルシリコーン、アミノ変性シリコーン、及びその他成分の動粘度は、キャノンフェンスケ粘度計を用いて、25℃の条件下で公知の方法によって測定した。
For Mw, a calibration curve was prepared using TSKgel standard polystyrene as a standard sample, and Mw of each silicone resin was obtained.
(Mineral oil (C))
C1: Mineral oil with kinematic viscosity of 10 mm 2 / s at 40 ° C C2: Mineral oil with kinematic viscosity of 5 mm 2 / s at 40 ° C C3: Mineral oil with kinematic viscosity of 7 mm 2 / s at 40 ° C (amino) Modified silicone (D))
D1: Monoamine-type amino-modified silicone having a kinematic viscosity at 25 ° C. of 60 mm 2 / s and an equivalent of 4100 g / mol D2: kinematic viscosity at 25 ° C. of 90 mm 2 / s and an equivalent of 8800 g / mol. Monoamine-type amino-modified silicone D3: Diamine-type amino-modified silicone having a kinematic viscosity of 450 mm 2 / s and an equivalent of 5700 g / mol at 25 ° C. (Other component (E))
Elastomer fiber high-speed spinning with a kinematic viscosity of 1000 mm 2 / s at E1: 25 ° C. and an ether-modified silicone winding speed of 1000 m / min or more with a molar ratio (EO: PO) of ethylene oxide to propylene oxide of 1: 1. The kinematic viscosity of the process treatment agent was measured by a known method under the condition of 30 ° C. using a Canon Fenceke viscometer. Similarly, the kinematic viscosity of mineral oil was measured by a known method under the condition of 40 ° C. using a Canon Fenceke viscometer. The kinematic viscosities of dimethyl silicone, amino-modified silicone, and other components were measured by a known method under the condition of 25 ° C. using a Canon Fenceke viscometer.
試験区分2(エラストマー繊維の製造)
試験区分1で調製した処理剤を用いて、エラストマー繊維を製造した。
分子量1000のポリテトラメチレングリコールとジフェニルメタンジイソシアネートとから得られたポリウレタン系エラストマーを溶融紡糸し、ポリウレタン系エラストマー繊維を得た。
Test Category 2 (Manufacturing of Elastomer Fiber)
Elastomer fibers were produced using the treatment agent prepared in Test Category 1.
A polyurethane-based elastomer obtained from polytetramethylene glycol having a molecular weight of 1000 and diphenylmethane diisocyanate was melt-spun to obtain a polyurethane-based elastomer fiber.
巻き取り前の延伸ローラーと巻き取り部との間に位置する給油ガイドから、試験区分1で調製した処理剤をガイドオイリング法でニート給油した。引き続いて、処理剤を付与したポリウレタン系エラストマー繊維を、巻き取り速度500m/min、1000m/min、3000m/minの3種類の条件で、長さ58mmの円筒状紙管に巻き取った。 The treatment agent prepared in Test Category 1 was neatly refueled by the guide oiling method from the refueling guide located between the stretching roller before winding and the winding portion. Subsequently, the polyurethane-based elastomer fiber to which the treatment agent was applied was wound into a cylindrical paper tube having a length of 58 mm under three conditions of winding speeds of 500 m / min, 1000 m / min and 3000 m / min.
巻き取りは、巻き幅38mmを与えるトラバースガイドを介して、サーフェイスドライブの巻取機を用いて行った。この巻き取りによって、溶融紡糸ポリウレタン系エラストマー繊維のパッケージ500gを得た。処理剤の付着量の調節は、給油ガイドへの送液量を調整することで何れも5質量%となるように行った。 Winding was performed using a surface drive winder via a traverse guide that provides a winding width of 38 mm. By this winding, 500 g of a package of melt-spun polyurethane-based elastomer fibers was obtained. The amount of the treatment agent adhered was adjusted so that the amount of liquid sent to the refueling guide was adjusted to 5% by mass.
試験区分3(評価)
実施例1、3~5、8、参考例1~10、及び比較例1~10の処理剤について、処理剤を付着させたエラストマー繊維の油剤飛散性、形状保持性、油剤均一付着性、及び解舒性を評価した。各試験の手順について以下に示す。また、試験結果を表1の「油剤飛散性」欄、「形状保持性」欄、「油剤均一付着性」、及び「解舒性」欄にそれぞれ示す。
Test category 3 (evaluation)
Regarding the treatment agents of Examples 1 , 3 to 5, 8, Reference Examples 1 to 10 , and Comparative Examples 1 to 10, the oil agent scattering property, shape retention property, oil agent uniform adhesion property, and oil agent uniform adhesion of the elastomer fiber to which the treatment agent was attached, and Elastomer was evaluated. The procedure for each test is shown below. Further, the test results are shown in the "oil agent scattering property" column, the "shape retention property" column, the "oil agent uniform adhesion" column, and the "dissolvability" column of Table 1, respectively.
(油剤飛散性)
試験区分2で、巻き取り速度500m/min、1000m/min、3000m/minの3種類の条件でポリウレタン系エラストマー繊維を製造した際に、巻取機付近の処理剤の飛散量を目視で観察して、以下の基準で評価した。
(Oil scattering property)
In test category 2, when polyurethane-based elastomer fibers were manufactured under three conditions of winding speeds of 500 m / min, 1000 m / min, and 3000 m / min, the amount of the treatment agent scattered near the winder was visually observed. The evaluation was made according to the following criteria.
・油剤飛散性の評価基準
◎:飛散が観察されなかった場合
○:僅かに飛散が観察された場合
×:かなりの飛散が観察された場合
(形状保持性)
150デニールのポリウレタン系エラストマー繊維を紡糸し、ガイド給油法にて処理剤を4.0質量%付着させた。巻き取り速度が500m/min、1000m/min、3000m/minの3種類の条件で巻き取った。
・ Evaluation criteria for oil scattering property ◎: When no scattering is observed ○: When slight scattering is observed ×: When considerable scattering is observed (shape retention)
A 150 denier polyurethane elastomer fiber was spun and a treatment agent was adhered in an amount of 4.0% by mass by a guide lubrication method. The winding speed was 500 m / min, 1000 m / min, and 3000 m / min.
図1に示すように、巻き取りは、長さ57mmの円筒状紙管11に、巻き幅42mmを与えるトラバースガイド(図示省略)を介して、サーフェイスドライブの巻取機(図示省略)を用いて行い、500gのパッケージ10を作製した。得られたパッケージ10について、巻き幅の最大値(Wmax)と最小幅(Wmin)を計測し、双方の差から下記の式でバルジを求めた。下記の基準で評価した。
As shown in FIG. 1, winding is performed by using a surface drive winder (not shown) via a traverse guide (not shown) that gives a winding width of 42 mm to a
バルジ=(Wmax-Wmin)/2
・形状保持性の評価基準
◎:バルジが3mm未満である場合
○:バルジが3mm以上、且つ6mm未満である場合
×:バルジが6mm以上である場合
(油剤均一付着性)
摩擦測定メーター(エイコー測器社製、SAMPLEFRICTION UNIT MODEL TB-1)を用いた。2つのフリーローラー間に直径1cmで表面粗度2Sのクロムメッキ梨地ピンを配置した。
Bullge = (Wmax-Wmin) / 2
・ Evaluation criteria for shape retention ◎: When the bulge is less than 3 mm ○: When the bulge is 3 mm or more and less than 6 mm ×: When the bulge is 6 mm or more (uniform oil adhesion)
A friction measuring meter (SAMPLEFRICTION UNIT MODEL TB-1 manufactured by Eiko Sokki Co., Ltd.) was used. A chrome-plated satin pin with a diameter of 1 cm and a surface roughness of 2S was placed between the two free rollers.
試験区分2で、巻き取り速度が500m/min、1000m/min、3000m/minの3種類の条件で製造したパッケージからポリウレタン系エラストマー繊維を引き出し、クロムメッキ梨地ピンに対して接触角度が90度となるようにセットした。 In test category 2, the polyurethane elastomer fiber was pulled out from the package manufactured under the three conditions of winding speeds of 500 m / min, 1000 m / min and 3000 m / min, and the contact angle with respect to the chrome-plated satin pin was 90 degrees. I set it to be.
25℃で60%RHの条件下、入側で初期張力(T1)5gをかけ、100m/minの速度で走行させたときの出側の2次張力(T2)を0.1秒毎に1分間測定した。この時のT2の標準偏差を求め、以下の基準で評価した。 Under the condition of 60% RH at 25 ° C., the initial tension (T 1 ) of 5 g is applied on the entry side, and the secondary tension (T 2 ) on the exit side when running at a speed of 100 m / min is applied every 0.1 seconds. Was measured for 1 minute. The standard deviation of T 2 at this time was obtained and evaluated according to the following criteria.
・油剤均一付着性の評価基準
◎:標準偏差が1.5未満である場合
○:標準偏差が1.5以上2.0未満である場合
×:標準偏差が2.0以上でる場合
なお、標準偏差が1.5未満である場合は、油剤が均一に付着しており、繊維がクロムメッキ梨地ピンと擦過した際に張力変動が少ない。
・ Evaluation criteria for uniform oil adhesion ◎: When the standard deviation is less than 1.5 ○: When the standard deviation is 1.5 or more and less than 2.0 ×: When the standard deviation is 2.0 or more Note that the standard When the deviation is less than 1.5, the oil is uniformly adhered and the tension fluctuation is small when the fiber is rubbed against the chrome-plated satin pin.
標準偏差が1.5以上2.0未満である場合は、油剤がほぼ均一に付着しており、繊維がクロムメッキ梨地ピンと擦過した際に張力変動はあるが操業に問題はない。
標準偏差が2.0以上である場合は、油剤が均一に付着しておらず、繊維がクロムメッキ梨地ピンと擦過した際に張力変動が大きく操業に問題が生じる。
When the standard deviation is 1.5 or more and less than 2.0, the oil agent adheres almost uniformly, and there is a tension fluctuation when the fiber is rubbed against the chromium-plated satin pin, but there is no problem in operation.
When the standard deviation is 2.0 or more, the oil does not adhere uniformly, and when the fiber is rubbed against the chrome-plated satin pin, the tension fluctuates greatly and a problem occurs in operation.
(解舒性)
第1駆動ローラーとこれに常時接する第1遊離ローラーとで送り出し部を形成した。また、第2駆動ローラーとこれに常時接する第2遊離ローラーとで巻き取り部を形成した。送り出し部と巻き取り部の間隔を、水平方向に沿って約20cmとした。
(Dissolvability)
A feeding portion was formed by a first driving roller and a first free roller in constant contact with the first driving roller. Further, a winding portion is formed by a second driving roller and a second free roller that is in constant contact with the second driving roller. The distance between the feeding part and the winding part was set to about 20 cm along the horizontal direction.
試験区分2で作製したパッケージ(500g巻き)を第1駆動ローラーに装着した。第1駆動ローラーを駆動させてポリウレタン系エラストマー繊維を送り出すとともに、第2駆動ローラーを駆動させてポリウレタン系エラストマー繊維を巻き取った。パッケージの糸巻の厚さが2mmになるまで解舒した。 The package (500 g roll) prepared in Test Category 2 was attached to the first drive roller. The first drive roller was driven to send out the polyurethane-based elastomer fiber, and the second drive roller was driven to wind up the polyurethane-based elastomer fiber. The package was unwound until the thickness of the spool was 2 mm.
その際、第1駆動ローラーの送り出し速度を50m/minで固定する一方、第2駆動ローラーの巻き取り速度を50m/minより徐々に上げて、ポリウレタン系エラストマー繊維をパッケージから強制解舒した。この強制解舒において、送り出し部と巻き取り部との間でポリウレタン系エラストマー繊維の踊りがなくなる時点、言い換えれば、糸の挙動が不安定にならず、スムーズにパッケージから送り出されるようになる時点での巻き取り速度V(m/min)を測定した。下記の式から解舒性(%)を求め、以下の基準で評価した。 At that time, the delivery speed of the first drive roller was fixed at 50 m / min, while the take-up speed of the second drive roller was gradually increased from 50 m / min, and the polyurethane-based elastomer fiber was forcibly unwound from the package. In this forced unwinding, when the dance of the polyurethane elastomer fiber disappears between the feeding part and the winding part, in other words, when the behavior of the yarn does not become unstable and the yarn is smoothly fed out of the package. The winding speed V (m / min) was measured. The solvability (%) was calculated from the following formula and evaluated according to the following criteria.
解舒性(%)=(V-50)×2
・解舒性の評価基準
◎(良好):解舒性が120%未満
○(可):解舒性が120%以上、140%未満
×(不良):解舒性が140%以上
なお、解舒性の評価基準において、解舒性が120%未満であると、糸切れの発生は無く、安定した状態で解舒することが可能になる。解舒性が120%以上、140%未満であると、糸の引き出しに若干の抵抗があるものの、糸切れの発生は無く、操業に問題はない。解舒性が140%以上であると、糸の引き出し時の抵抗がより大きくなり、糸切れも発生して操業に問題が生じる。
Decomposability (%) = (V-50) x 2
・ Evaluation criteria for solvability ◎ (good): solvability is less than 120% ○ (possible): solvability is 120% or more and less than 140% × (poor): solvability is 140% or more When the unleashable property is less than 120% in the evaluation criteria of the unleashable property, the yarn breakage does not occur and the unleashable state can be unraveled in a stable state. When the unwindability is 120% or more and less than 140%, there is some resistance to pulling out the yarn, but no yarn breakage occurs and there is no problem in operation. When the unwindability is 140% or more, the resistance at the time of pulling out the yarn becomes larger, the yarn breaks, and the operation becomes a problem.
表1の結果から、本発明によれば、巻き取り速度が高速であっても、エラストマー繊維の解舒性を好適に向上させることができるとともに、処理剤の飛散を抑制することができる。また、エラストマー繊維をパッケージに巻き取った際の形状をより良好に保持することができる。また、エラストマー繊維に処理剤を付与した際に処理剤をより均一に付着させることができる。 From the results in Table 1, according to the present invention, even if the winding speed is high, the unfoldability of the elastomer fiber can be suitably improved and the scattering of the treatment agent can be suppressed. In addition, the shape of the elastomer fiber when it is wound around the package can be better maintained. Further, when the treatment agent is applied to the elastomer fiber, the treatment agent can be adhered more uniformly.
10…パッケージ、11…円筒状紙管。
10 ... Package, 11 ... Cylindrical paper tube.
Claims (7)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020211807A JP6910679B1 (en) | 2020-12-21 | 2020-12-21 | Elastomer fiber high-speed spinning process treatment agent with winding speed of 1000 m / min or more, and method for producing elastomer fiber |
CN202180084975.5A CN116685736B (en) | 2020-12-21 | 2021-12-20 | Treating agent for high-speed spinning process of elastomer fiber and method for producing elastomer fiber |
PCT/JP2021/047055 WO2022138571A1 (en) | 2020-12-21 | 2021-12-20 | Treatment agent for elstomer fiber high speed spinning process, and method for producing elstomer fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020211807A JP6910679B1 (en) | 2020-12-21 | 2020-12-21 | Elastomer fiber high-speed spinning process treatment agent with winding speed of 1000 m / min or more, and method for producing elastomer fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6910679B1 JP6910679B1 (en) | 2021-07-28 |
JP2022098325A true JP2022098325A (en) | 2022-07-01 |
Family
ID=76968306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020211807A Active JP6910679B1 (en) | 2020-12-21 | 2020-12-21 | Elastomer fiber high-speed spinning process treatment agent with winding speed of 1000 m / min or more, and method for producing elastomer fiber |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6910679B1 (en) |
CN (1) | CN116685736B (en) |
WO (1) | WO2022138571A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008133548A (en) * | 2006-11-27 | 2008-06-12 | Sanyo Chem Ind Ltd | Lubricant for elastic fiber |
JP2009197338A (en) * | 2008-02-19 | 2009-09-03 | Sanyo Chem Ind Ltd | Oil agent for elastic fiber |
JP5936293B1 (en) * | 2015-05-12 | 2016-06-22 | 竹本油脂株式会社 | Dry-spun polyurethane elastic fiber |
JP5936292B1 (en) * | 2015-05-11 | 2016-06-22 | 竹本油脂株式会社 | Dry-spun polyurethane elastic fiber |
JP6141554B1 (en) * | 2017-02-14 | 2017-06-07 | 竹本油脂株式会社 | Elastic fiber treatment agent and elastic fiber |
JP6480072B1 (en) * | 2018-09-20 | 2019-03-06 | 竹本油脂株式会社 | Elastic fiber treatment agent and elastic fiber |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6614628B1 (en) * | 2019-09-25 | 2019-12-04 | 竹本油脂株式会社 | Elastic fiber treatment agent and elastic fiber |
-
2020
- 2020-12-21 JP JP2020211807A patent/JP6910679B1/en active Active
-
2021
- 2021-12-20 CN CN202180084975.5A patent/CN116685736B/en active Active
- 2021-12-20 WO PCT/JP2021/047055 patent/WO2022138571A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008133548A (en) * | 2006-11-27 | 2008-06-12 | Sanyo Chem Ind Ltd | Lubricant for elastic fiber |
JP2009197338A (en) * | 2008-02-19 | 2009-09-03 | Sanyo Chem Ind Ltd | Oil agent for elastic fiber |
JP5936292B1 (en) * | 2015-05-11 | 2016-06-22 | 竹本油脂株式会社 | Dry-spun polyurethane elastic fiber |
JP5936293B1 (en) * | 2015-05-12 | 2016-06-22 | 竹本油脂株式会社 | Dry-spun polyurethane elastic fiber |
JP6141554B1 (en) * | 2017-02-14 | 2017-06-07 | 竹本油脂株式会社 | Elastic fiber treatment agent and elastic fiber |
JP6480072B1 (en) * | 2018-09-20 | 2019-03-06 | 竹本油脂株式会社 | Elastic fiber treatment agent and elastic fiber |
Also Published As
Publication number | Publication date |
---|---|
CN116685736A (en) | 2023-09-01 |
JP6910679B1 (en) | 2021-07-28 |
WO2022138571A1 (en) | 2022-06-30 |
CN116685736B (en) | 2024-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5665236B2 (en) | Coating type elastic fiber treatment agent, elastic fiber treatment method and elastic fiber | |
JP5936293B1 (en) | Dry-spun polyurethane elastic fiber | |
CN110791964B (en) | Treating agent for elastic fiber and elastic fiber | |
JP6951801B1 (en) | Elastic fiber treatment agent and elastic fiber | |
JP6549340B1 (en) | Treatment agent for polyurethane-based elastic fiber, method of treating polyurethane-based elastic fiber, and polyurethane-based elastic fiber | |
WO2022138571A1 (en) | Treatment agent for elstomer fiber high speed spinning process, and method for producing elstomer fiber | |
US7288209B2 (en) | Treating agent for elastic fibers and elastic fibers obtained by using the same | |
WO2022050409A1 (en) | Elastic fiber processing agent and elastic fiber | |
JP5936292B1 (en) | Dry-spun polyurethane elastic fiber | |
JP2007270414A (en) | Oil for elastic fiber, and elastic fiber attached thereto | |
JP6141554B1 (en) | Elastic fiber treatment agent and elastic fiber | |
JP2017186704A (en) | Treatment agent for elastic fiber, elastic fiber and method for producing elastic fiber and polyurethane-based elastic fiber | |
JP2009179889A (en) | Treating agent for elastic fiber and application thereof | |
JP4628094B2 (en) | Elastic fiber treatment agent and elastic fiber obtained using the same | |
JP4318282B2 (en) | Treatment agent for polyurethane elastic fiber and method for treating polyurethane elastic fiber | |
JP4223356B2 (en) | Elastic fiber treatment agent and elastic fiber | |
JPH10158938A (en) | Method for applying oil to elastic fiber | |
JP4443331B2 (en) | Treatment agent for elastic fiber and elastic fiber thereof | |
JP7522415B1 (en) | Treatment agent for elastic fibers and elastic fibers | |
JP7525152B2 (en) | Treatment agent for synthetic fibers, and synthetic fibers | |
JP2008007921A (en) | Treatment agent for elastic fiber and elastic fiber coated with the same | |
JP2960224B2 (en) | Oil agent for polyurethane fiber | |
JPH09188974A (en) | Lubricant for polyurethane elastic fiber | |
JP5665230B2 (en) | Additive modifier for elastic fiber, method for producing elastic fiber, and elastic fiber | |
JPH1112950A (en) | Treatment agent for polyurethane-based elastic fiber and polyurethane-based elastic fiber treated therewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201221 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20201221 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20210126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210427 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210630 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6910679 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |