JP2022093316A - Production method of molten raw material, and molten raw material - Google Patents

Production method of molten raw material, and molten raw material Download PDF

Info

Publication number
JP2022093316A
JP2022093316A JP2021200886A JP2021200886A JP2022093316A JP 2022093316 A JP2022093316 A JP 2022093316A JP 2021200886 A JP2021200886 A JP 2021200886A JP 2021200886 A JP2021200886 A JP 2021200886A JP 2022093316 A JP2022093316 A JP 2022093316A
Authority
JP
Japan
Prior art keywords
raw material
powder
melting point
pressure
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021200886A
Other languages
Japanese (ja)
Other versions
JP7484875B2 (en
Inventor
孝介 桑原
Kosuke Kuwabara
秀峰 小関
Hidemine Koseki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2022093316A publication Critical patent/JP2022093316A/en
Priority to JP2024025281A priority Critical patent/JP2024054391A/en
Application granted granted Critical
Publication of JP7484875B2 publication Critical patent/JP7484875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

To provide a production method of a molten raw material in which an alloy powder used for, for example, metal lamination molding, powder compacting, powder metallurgy and metal injection molding with respect to an alloy powder containing a high melting point element may be stably produced, and to provide the molten raw material.SOLUTION: A production method of a molten raw material comprises a pressure sintering step of sintering mixed powders comprising a plurality of kinds of raw material powders at a temperature of 2 MPa min/3 or more and a pressure of 5 MPa or more where the melting point of an element having the lowest melting point among the elements constituting the raw material powder is MPmin (°C). The raw material powder contains a high melting point metal element having a melting point of 1600°C or higher.SELECTED DRAWING: Figure 1

Description

本発明は、溶解原料の製造方法と溶解原料に関するものであり、特に高融点元素を含む溶解原料の製造方法と溶解原料に関するものである。 The present invention relates to a method for producing a dissolved raw material and a dissolved raw material, and more particularly to a method for producing a dissolved raw material containing a refractory element and a dissolved raw material.

金属粉末は素形材分野においては圧粉成型、粉末冶金、金属射出成型(Metal Injection Molding、 MIM)などの素材として重要な基礎材料である。金属粉末を用いるこれらの素形材技術は強度と量産性に優れるために、各種工業製品に好適に用いられる。また、近年では金属積層造形(金属三次元プリンティング)の原料にも用いられるようになって型レスでの素形材製造も可能となり、その重要度が増している。 Metal powder is an important basic material as a material for powder molding, powder metallurgy, metal injection molding (MIM), etc. in the field of raw materials. These raw material techniques using metal powder are suitably used for various industrial products because of their excellent strength and mass productivity. Further, in recent years, it has come to be used as a raw material for metal laminated molding (metal three-dimensional printing), and it has become possible to manufacture raw materials without a mold, and its importance is increasing.

このような素形材技術に用いられる金属粉末としてはこれまでに鉄鋼、アルミ合金、銅合金、ニッケル基合金、チタン合金など数多くの合金が用いられてきた。さらには、タングステン、モリブデン、ニオブなどの高融点元素(金属)を加えることで耐熱性などを飛躍的に向上させる試みがなされている。 Many alloys such as steel, aluminum alloys, copper alloys, nickel-based alloys, and titanium alloys have been used as metal powders used in such raw material technology. Furthermore, attempts have been made to dramatically improve heat resistance by adding refractory elements (metals) such as tungsten, molybdenum, and niobium.

特許文献1には、チタン粉末とアルミ粉末を混合した原料粉末を冷間成形によって圧粉体の棒状原料とし、その棒状原料をガスアトマイズ法により粉末化する手法が開示されている。 Patent Document 1 discloses a method in which a raw material powder obtained by mixing titanium powder and aluminum powder is made into a rod-shaped raw material of a compact by cold molding, and the rod-shaped raw material is pulverized by a gas atomizing method.

特開2002-241807号JP-A-2002-241807

しかしながら、特許文献1に開示されている手法では、冷間での加工性に乏しい材料、例えば、高融点元素(高融点金属)を含む場合には、冷間成形された成形体の内部に空隙が生じやすい。そして、成形体を溶解させる際に、空隙が起点となって成形体が損傷したり、空隙中に残存する空気が成形体の溶解を不安定にしてしまうことで、安定的に合金粉末を製造することが困難であった。 However, in the method disclosed in Patent Document 1, when a material having poor cold workability, for example, a refractory element (melting point metal) is contained, voids are formed inside the cold-formed molded body. Is likely to occur. Then, when the molded body is melted, the voids are the starting point to damage the molded body, and the air remaining in the voids makes the melting of the molded body unstable, so that the alloy powder can be stably produced. It was difficult to do.

以上のことより、本発明の目的は、高融点元素を含む合金粉末について、例えば、金属積層造形、圧粉成型、粉末冶金、金属射出成型等に用いる合金粉末を安定的に製造できる溶解原料とその製造方法を提供することにある。 From the above, an object of the present invention is to provide a melting raw material for an alloy powder containing a refractory element, for example, which can stably produce an alloy powder used for metal laminated molding, powder molding, powder metallurgy, metal injection molding and the like. The purpose is to provide the manufacturing method.

本発明は、複数種の原料粉末からなる混合粉末を、前記原料粉末を構成する元素の中で最も融点が低い元素の融点をMPmin(℃)としたとき、2MPmin/3以上の温度で、かつ5MPa以上の圧力で焼結する加圧焼結工程と、を備え、前記原料粉末は、融点が1600℃以上の高融点金属元素を含むことを特徴とする溶解原料の製造方法である。 In the present invention, when a mixed powder composed of a plurality of kinds of raw material powders has a melting point of the element having the lowest melting point among the elements constituting the raw material powder as MP min (° C.), the temperature is 2 MP min / 3 or more. It is a method for producing a melting raw material, which comprises a pressure sintering step of sintering at a pressure of 5 MPa or more, and the raw material powder contains a high melting point metal element having a melting point of 1600 ° C. or more.

また、前記複数種の原料粉末のうち、少なくとも一つの原料粉末が2種類以上の高融点金属元素を含んでいることが好ましい。 Further, it is preferable that at least one of the plurality of kinds of raw material powders contains two or more kinds of refractory metal elements.

また、前記加圧焼結工程において、熱間等方加圧焼結法を用いることが好ましい。 Further, in the pressure sintering step, it is preferable to use a hot isotropic pressure sintering method.

また本発明は、溶解・噴霧させて合金粉末を得るために用いる溶解原料であって、融点が1600℃以上の高融点金属元素を少なくとも二種類含み、空隙率が5%未満の焼結体であることを特徴とする溶解原料である。 The present invention is a melted raw material used for melting and spraying to obtain an alloy powder, which is a sintered body containing at least two kinds of refractory metal elements having a melting point of 1600 ° C. or higher and a porosity of less than 5%. It is a dissolution raw material characterized by being present.

本発明によれば、高融点元素を含む合金粉末について、例えば、金属積層造形、圧粉成型、粉末冶金、金属射出成型等に用いる合金粉末を安定的に製造できる溶解原料の製造方法、および溶解原料を提供することができる。 According to the present invention, for an alloy powder containing a refractory element, for example, a method for producing a melting raw material capable of stably producing an alloy powder used for metal laminated molding, powder molding, powder metallurgy, metal injection molding, etc., and melting. Raw materials can be provided.

本発明に係る金属粉末の製造方法の一例を示す工程図である。It is a process drawing which shows an example of the manufacturing method of the metal powder which concerns on this invention. 本発明に係る金属粉末の製造方法について、溶解・噴霧工程の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the dissolution / spraying process about the manufacturing method of the metal powder which concerns on this invention. 本発明に係る金属粉末の製造方法について、溶解・噴霧工程の別実施形態を示す模式図である。It is a schematic diagram which shows the other embodiment of the melting / spraying process about the manufacturing method of the metal powder which concerns on this invention. 選択的レーザ溶融法の積層造形装置の構成および積層造形方法の例を示す断面模式図である。It is sectional drawing which shows the structure of the laminated modeling apparatus of the selective laser melting method, and the example of the laminated modeling method. レーザビーム粉末肉盛法の積層造形装置の構成および積層造形方法の例を示す断面模式図である。It is sectional drawing which shows the structure of the laminated modeling apparatus of the laser beam powder overlay method, and the example of the laminated modeling method.

まず、本発明者等は、既存の溶融(溶解)設備では均一に溶解することが難しい高融点の元素を多量に含む金属粉末の製法について鋭意研究を重ねた。その結果、融点が1600℃以上の金属元素を含む複数の原料粉末を目的とする組成となるように均一に混合して、これを所定の温度と圧力で焼結する事で製造したい金属粉末と略同一の組成を有する焼結体(原料棒材と言う場合もある)を製作する。そしてこの焼結体を局所的に溶解して得られる融液を粉末化することで所望の組成を有する合金粉末(プレアロイ粉)を安定して得られることを見出した。 First, the present inventors have conducted extensive research on a method for producing a metal powder containing a large amount of high melting point elements, which is difficult to uniformly dissolve with existing melting (melting) equipment. As a result, a plurality of raw material powders containing a metal element having a melting point of 1600 ° C. or higher are uniformly mixed so as to have a desired composition, and the metal powder to be produced is sintered at a predetermined temperature and pressure. A sintered body (sometimes called a raw material bar) having substantially the same composition is manufactured. Then, they have found that an alloy powder (pre-alloy powder) having a desired composition can be stably obtained by powdering the melt obtained by locally dissolving the sintered body.

<溶解原料の製造方法>
以下、図1を用いて、本発明の製造方法の実施形態を説明していく。図1は本発明の実施形態に係る溶解原料の製造方法と、溶解原料を用いて合金粉末を得る際の好適な製造方法を示す工程図である。
<Manufacturing method of dissolved raw materials>
Hereinafter, embodiments of the manufacturing method of the present invention will be described with reference to FIG. FIG. 1 is a process diagram showing a method for producing a dissolution raw material according to an embodiment of the present invention and a suitable production method for obtaining an alloy powder using the dissolution raw material.

[加圧焼結工程(S101)]
まず、原料粉末について説明する。所望の合金粉末の組成に合わせて高融点金属を含む原料粉末を混合して混合粉末を得る。このとき1つの原料粉末には、1600℃以上の融点を有する金属元素(高融点金属元素)を含むものであり、このような原料粉末を2つ以上混合することで少なくとも二種類以上の高融点金属元素を含む混合粉末を得る。高融点金属元素としては、例えば、タングステン(W)、レニウム(Re)、オスミウム(Os)、タンタル(Ta)、モリブデン(Mo)、ニオブ(Nb)、イリジウム(Ir)、ルテニウム(Ru)、ハフニウム(Hf)、テクチニウム(Tc)、ロジウム(Rh)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、トリウム(Th)、チタン(Ti)などがある。混合方法は特に限定しないが、例えば、ボールミル等の各種粉末混合機を用いることができる。原料粉末の製法としては、原料に応じて、化学還元法、粉砕法などが選択される。また、原料粉末にはアトマイズ法によって製造した粉末を含めても良い。
[Pressure sintering step (S101)]
First, the raw material powder will be described. A raw material powder containing a refractory metal is mixed according to the composition of a desired alloy powder to obtain a mixed powder. At this time, one raw material powder contains a metal element having a melting point of 1600 ° C. or higher (high melting point metal element), and by mixing two or more such raw material powders, at least two or more kinds of high melting points are obtained. Obtain a mixed powder containing a metallic element. Examples of the refractory metal element include tungsten (W), renium (Re), osmium (Os), tantalum (Ta), molybdenum (Mo), niobium (Nb), iridium (Ir), ruthenium (Ru), and hafnium. (Hf), technetium (Tc), rhodium (Rh), vanadium (V), chromium (Cr), zirconium (Zr), thorium (Th), titanium (Ti) and the like. The mixing method is not particularly limited, but for example, various powder mixers such as a ball mill can be used. As a method for producing the raw material powder, a chemical reduction method, a pulverization method, or the like is selected depending on the raw material. Further, the raw material powder may include the powder produced by the atomizing method.

また、原料粉末には、高融点の金属元素を含む粉末同士を予め混合し、二種類以上の高融点金属元素を予め含む原料粉末を用いても良く、混合方法としても上記同様、例えば、ボールミル等の各種粉末混合機を用いることで均一に混合しておくことが好ましい。 Further, as the raw material powder, powders containing a high melting point metal element may be mixed in advance, and a raw material powder containing two or more kinds of high melting point metal elements may be used in advance. The mixing method is the same as described above, for example, a ball mill. It is preferable to mix uniformly by using various powder mixers such as.

原料粉末の平均粒径としては、1μm以上1mm以下に設定することが好ましい。平均粒径が1μm以上であると粉末の流動性を確保でき、粉末が舞い上がることも抑制できる。そして、平均粒径を1mm以下とすることで、後述する加圧焼結工程において、粉末間の空隙が残存することを抑制できる。 The average particle size of the raw material powder is preferably set to 1 μm or more and 1 mm or less. When the average particle size is 1 μm or more, the fluidity of the powder can be ensured and the powder can be suppressed from flying up. By setting the average particle size to 1 mm or less, it is possible to suppress the remaining voids between the powders in the pressure sintering step described later.

次に、混合粉末を、加圧焼結して溶解原料を作製する方法を説明する。
本明細書でいう溶解原料は、溶解・噴霧させて合金粉末を得るためのものであり、原料粉末を混合することで少なくとも二種類以上の高融点金属元素を含む混合粉末を加圧焼結したものである。よって、焼結体になったものを指すが、溶解原料、原料棒材、消耗電極と換言することもできる。また、焼結体の形状は特に限定しないが、棒状にすると、溶解・噴霧工程において取扱い易いので好ましい。以下、加圧焼結工程(S101)から溶解・噴霧工程(S103)について、焼結体の形状を棒材とし、原料棒材と称して説明する。
Next, a method for producing a dissolved raw material by pressure sintering the mixed powder will be described.
The dissolution raw material referred to in the present specification is for dissolving and spraying to obtain an alloy powder, and by mixing the raw material powder, a mixed powder containing at least two kinds of refractory metal elements is pressure sintered. It is a thing. Therefore, although it refers to a sintered body, it can also be rephrased as a melting raw material, a raw material bar, and a consumable electrode. The shape of the sintered body is not particularly limited, but a rod shape is preferable because it is easy to handle in the melting / spraying step. Hereinafter, the pressure sintering step (S101) to the melting / spraying step (S103) will be described with the shape of the sintered body as a bar material and referred to as a raw material bar material.

加圧焼結工程は、原料粉末を構成する元素の中で最も融点が低い元素の融点をMPmin(℃)としたとき、2MPmin/3以上の温度で、且つ5MPa以上の圧力により混合粉末を加圧焼結することで原料棒材を得る工程である。原料粉末を構成する元素の中で最も融点が低い元素の融点MPminの2/3以上の温度と、5MPa以上の圧力という条件とすることで、焼結体の空隙率を5%未満とすることができる。これにより焼結体を溶解して粉末化する溶解・噴霧工程における焼結体の破損や空気の混入を防ぐことができるため好適である。より好ましい温度は、MPminの5/7以上であり、さらに好ましくは3/4以上の温度である。また、より好ましい圧力は20MPa以上であり、さらに好ましい圧力は40MPa以上である。また、温度の上限は特に限定しないが、温度をMPmin未満とすることで、原料粉末間で液相の反応が生じにくくでき、組成の均一性を確保しやすくなるため好適である。また、圧力の上限は炉体の強度に依存し、300MPa程度である。 In the pressure sintering step, when the melting point of the element having the lowest melting point among the elements constituting the raw material powder is set to MP min (° C), the mixed powder is mixed at a temperature of 2 MP min / 3 or more and a pressure of 5 MPa or more. Is a process of obtaining a raw material bar by pressure sintering. The porosity of the sintered body is set to less than 5% under the conditions that the temperature is 2/3 or more of the melting point MP min of the element having the lowest melting point among the elements constituting the raw material powder and the pressure is 5 MPa or more. be able to. This is suitable because it can prevent the sintered body from being damaged and air from being mixed in the melting / spraying process in which the sintered body is melted and powdered. A more preferable temperature is 5/7 or more of MP min , and a more preferable temperature is 3/4 or more. Further, a more preferable pressure is 20 MPa or more, and a more preferable pressure is 40 MPa or more. Further, the upper limit of the temperature is not particularly limited, but it is preferable that the temperature is set to less than MP min because the reaction of the liquid phase between the raw material powders can be less likely to occur and the uniformity of the composition can be easily ensured. The upper limit of the pressure depends on the strength of the furnace body and is about 300 MPa.

このような原料棒材を加圧焼結して製造する方法としては、圧粉焼結法、一軸加圧焼結法(ホットプレスや放電プラズマ焼結(SPS:Spark Plasma Sintering)、熱間等方加圧焼結法(HIP:Hot Isostatic Press)を用いることができるが、焼結密度などの点から、均等に圧縮することができる一軸加圧焼結法、もしくは熱間等方加圧焼結法を用いることが好ましい。 As a method for producing such a raw material bar by pressure sintering, a powder compaction method, a uniaxial pressure sintering method (hot press, discharge plasma sintering (SPS: Spark Plasma Sintering), hot or the like, etc. A method pressure sintering method (HIP: Hot Isostatic Press) can be used, but from the viewpoint of sintering density and the like, a uniaxial pressure sintering method capable of uniformly compressing or hot isotropic pressure firing can be used. It is preferable to use the method.

加圧焼結方法の中でも、均等に圧縮することができる一軸加圧焼結法(ホットプレス、SPS法)または熱間等方加圧焼結法(HIP法)を用いることが特に好ましい。これら加圧焼結方法であれば、原料粉末間の空隙をより効果的に低減し、空隙率が2%未満の原料棒材を得ることができるのでより好ましい。また、等方的に加圧できる熱間等方加圧焼結法は、材料を均一に収縮させて固化することができるので、さらに好ましい。このような加圧焼結工程を経て作製された焼結体であれば、溶解・噴霧工程(S103)における不良の発生をより一層抑制することができる。
なお、本明細書でいう空隙率とは、観察した領域(視野面積)に対して空隙が占める面積の比である。例えば、得られた溶解原料(試料)の任意箇所を切断し、切断面を研磨する。研磨された試料表面を200~1000倍の倍率で光学顕微鏡等を用いて観察し、観察した領域を写真などの画像データとして取得する。空隙箇所は画像上で黒く示されるので、画像を2値化するなどして、黒い箇所が占める面積、すなわち空隙が占める面積を算出すればよい。
Among the pressure sintering methods, it is particularly preferable to use a uniaxial pressure sintering method (hot press, SPS method) or a hot isotropic pressure sintering method (HIP method) capable of uniformly compressing. These pressure sintering methods are more preferable because they can more effectively reduce the voids between the raw material powders and obtain a raw material rod having a porosity of less than 2%. Further, the hot isotropic pressure sintering method capable of isotropically pressurizing is more preferable because the material can be uniformly shrunk and solidified. If the sintered body is produced through such a pressure sintering step, the occurrence of defects in the melting / spraying step (S103) can be further suppressed.
The porosity referred to in the present specification is the ratio of the area occupied by the void to the observed region (visual field area). For example, an arbitrary part of the obtained dissolved raw material (sample) is cut and the cut surface is polished. The surface of the polished sample is observed at a magnification of 200 to 1000 times using an optical microscope or the like, and the observed area is acquired as image data such as a photograph. Since the void portion is shown in black on the image, the area occupied by the black portion, that is, the area occupied by the void may be calculated by binarizing the image.

加圧焼結工程にHIP法を用いた場合について、より具体的に説明する。
まず、原料棒材の大きさに合わせたカプセル(容器)に原料粉末を封入し、脱気して密封する。カプセルの大きさはHIP処理後の形状収縮を考慮して適切に設定する。その後にHIP装置に装填し、前記の設定温度と設定圧力、即ち、最も融点が低い元素の融点をMPmin(℃)としたとき、2MPmin/3以上の温度と5MPa以上の圧力によってHIP処理を行う。処理後にカプセルを除去することで原料棒材を得る。なお、カプセルの代わりに他の手法にて仮成形した原料棒材の素材を準備し、HIP処理を行うカプセルフリー法(オープンHIP法)によっても原料棒材を作製する事は可能である。
The case where the HIP method is used in the pressure sintering step will be described more specifically.
First, the raw material powder is sealed in a capsule (container) that matches the size of the raw material bar, degassed, and sealed. The size of the capsule is appropriately set in consideration of the shape shrinkage after the HIP treatment. After that, it is loaded into the HIP device, and when the above-mentioned set temperature and set pressure, that is, the melting point of the element having the lowest melting point is set to MP min (° C.), the HIP treatment is performed by a temperature of 2 MP min / 3 or more and a pressure of 5 MPa or more. I do. The raw material bar is obtained by removing the capsules after the treatment. It is also possible to prepare a raw material rod material temporarily molded by another method instead of the capsule and to produce the raw material rod material by a capsule-free method (open HIP method) in which a HIP treatment is performed.

加圧焼結条件は上述の通りであるが、例えば、原料粉末である高融点材料を封入したカプセルを0.01MPa以下に脱気をして密封する。そして、カプセルをHIP設備に配して、100℃~2000℃の温度と、10MPa~200MPaの圧力で、1時間~10時間程度加圧保持し、カプセル中の原料粉末を固化させて、原料棒材を作製する。 The pressure sintering conditions are as described above. For example, a capsule containing a refractory material as a raw material powder is degassed to 0.01 MPa or less and sealed. Then, the capsule is placed in a HIP facility and held under pressure at a temperature of 100 ° C. to 2000 ° C. and a pressure of 10 MPa to 200 MPa for about 1 hour to 10 hours to solidify the raw material powder in the capsule and solidify the raw material stick. Make the material.

原料棒材は、例えば、溶解・噴霧工程で用いられる設備に応じて直径10mm以上500mm以下、長さ10mm以上3000mm以下に設定される。得られた原料棒材の断面観察による空隙面積の評価によって規定される原料粉末間の空隙は5%未満、より好ましくは2%未満とすることができる。かかる原料棒材は、原料棒材の溶解・噴霧工程における棒材の破損や空気の混入を防ぐことができ好適である。このように本工程で得られる原料棒材は機械強度に優れている。 The raw material bar is set to have a diameter of 10 mm or more and 500 mm or less and a length of 10 mm or more and 3000 mm or less, for example, depending on the equipment used in the melting / spraying step. The voids between the raw material powders defined by the evaluation of the void area by observing the cross section of the obtained raw material rod can be less than 5%, more preferably less than 2%. Such a raw material bar is suitable because it can prevent damage to the bar and mixing of air in the process of dissolving and spraying the raw material bar. As described above, the raw material bar obtained in this step has excellent mechanical strength.

[溶解・噴霧工程(S103)]
次に、原料棒材を用いて合金粉末を得る際の好適な溶解・噴霧工程について、図2および図3を用いて説明する。
図2は合金粉末の製造方法の溶解・噴霧工程の好適な一形態を示す図であり、直接溶解ガスアトマイズ法を示す。図3は、溶解・噴霧工程の別形態を示す図であり、プラズマアーク加熱法を示す。以下に述べる直接溶解ガスアトマイズ法およびプラズマアーク加熱法であれば、融液が坩堝等に触れることがなく、融液の清浄度を確保できるため好適である。
まず、図2を用いて、直接溶解ガスアトマイズ法を適用した場合の実施形態について説明する。
[Dissolution / spraying step (S103)]
Next, a suitable melting / spraying step for obtaining an alloy powder using a raw material bar will be described with reference to FIGS. 2 and 3.
FIG. 2 is a diagram showing a suitable form of the melting / spraying step of the method for producing an alloy powder, and shows a direct melting gas atomizing method. FIG. 3 is a diagram showing another form of the melting / spraying process, and shows a plasma arc heating method. The direct dissolution gas atomization method and the plasma arc heating method described below are suitable because the melt does not come into contact with the crucible or the like and the cleanliness of the melt can be ensured.
First, an embodiment in the case of directly applying the dissolved gas atomizing method will be described with reference to FIG. 2.

まず、原料棒材11を粉末製造装置12の誘導加熱装置13中に配置する。原料棒材は誘導加熱装置に対し、中心軸を合わせて固定しても良いし、原料棒材11の均熱化を図るために中心軸周りで回転させても良い。 First, the raw material bar 11 is placed in the induction heating device 13 of the powder manufacturing device 12. The raw material bar may be fixed to the induction heating device with its central axis aligned with each other, or may be rotated around the central axis in order to equalize the heat of the raw material bar 11.

その後、粉末製造装置12内の雰囲気を真空のような減圧雰囲気または不活性ガス雰囲気とし、誘導加熱装置13によって原料棒材11の一端を溶解していく。溶解されている原料棒材11の一端から融液14が形成され、重力により下方へ落下させる。このとき、誘導加熱によって生じる流れ場によって融液14は均一に攪拌されている。そして、下方へ落下した融液14に対してガスノズル15から噴出するアルゴン、窒素、空気などの高圧ガス16によって融液を噴霧し、飛散中に融液14を冷却、固化させることで噴霧粉末17を得る。 After that, the atmosphere in the powder manufacturing apparatus 12 is changed to a vacuum-like reduced pressure atmosphere or an inert gas atmosphere, and one end of the raw material bar 11 is melted by the induction heating apparatus 13. The melt 14 is formed from one end of the melted raw material bar 11, and is dropped downward by gravity. At this time, the melt 14 is uniformly agitated by the flow field generated by the induction heating. Then, the melt 14 is sprayed with a high-pressure gas 16 such as argon, nitrogen, and air ejected from the gas nozzle 15 to the melt 14 that has fallen downward, and the melt 14 is cooled and solidified during scattering to solidify the spray powder 17. To get.

より具体的には、得られた原料棒材11を、直接溶解ガスアトマイズ法を適用して合金粉末17を製造することができる。原料棒材11を直接溶解ガスアトマイズ装置に設置し、雰囲気を0.01MPa以下の減圧雰囲気とする。そして、原料棒材11の端部近傍に配した誘導加熱装置によって原料棒材11の端部を溶解して融液を得て、下方へ落下する融液に2~20MPa、100~1500L/分の純アルゴンガスを吹き付けて融液を噴霧し、飛散中に冷却、凝固することで噴霧粉末を得ることができる。 More specifically, the alloy powder 17 can be produced by directly applying the dissolved gas atomizing method to the obtained raw material bar 11. The raw material bar 11 is directly installed in the dissolved gas atomizing device, and the atmosphere is set to a reduced pressure atmosphere of 0.01 MPa or less. Then, the end portion of the raw material rod 11 is melted by an induction heating device arranged near the end portion of the raw material rod 11 to obtain a melt, and the melt falling downward is charged with 2 to 20 MPa and 100 to 1500 L / min. The sprayed powder can be obtained by spraying the melt with pure argon gas and cooling and solidifying during the scattering.

このとき、ガスノズルの配置並びにガス流量、流速、圧力などは、噴霧粉末17の粒度分布を所望の値とするように適宜調整すればよい。以上、本実施形態であれば、原料棒材11の融液14が坩堝などに触れることなく、噴霧粉末17を得ることができ、噴霧粉末17の清浄度を確保できる利点がある。また、上記の高圧ガス16は、特に限定せず、高温の融液に対する反応性を鑑みて、アルゴンガス、窒素ガスなどの不活性ガスを適宜選定すればよい。 At this time, the arrangement of the gas nozzles, the gas flow rate, the flow velocity, the pressure, and the like may be appropriately adjusted so that the particle size distribution of the spray powder 17 becomes a desired value. As described above, in the present embodiment, the spray powder 17 can be obtained without the melt 14 of the raw material bar 11 touching the crucible or the like, and there is an advantage that the cleanliness of the spray powder 17 can be ensured. The high-pressure gas 16 is not particularly limited, and an inert gas such as argon gas or nitrogen gas may be appropriately selected in consideration of the reactivity with the high-temperature melt.

溶解・噴霧工程において、原料棒材11の一端を局所的に溶解(溶融)していく方法としては、高周波誘導加熱法やプラズマアーク加熱法を用いることが好ましい。これにより、原料棒材11の一端を保持した状態で他端側を非接触で溶解することが可能となり、坩堝などに融液を接さずに供給することが可能となり、不純物の混入を抑制することができる。 In the melting / spraying step, it is preferable to use a high frequency induction heating method or a plasma arc heating method as a method for locally melting (melting) one end of the raw material bar 11. As a result, it is possible to melt the other end side of the raw material rod 11 in a non-contact manner while holding one end, and it is possible to supply the melt to a crucible or the like without contacting it, thereby suppressing the mixing of impurities. can do.

また、溶解棒材11は、プラズマアーク加熱法に用いてもよい。プラズマアーク加熱法は、溶解棒材をプラズマアーク熱により溶解させるが、得た融液を高圧ガスへ暴露したり、原料棒材を回転させながら溶解させる回転電極法を用いたりすることで、融液を遠心力で飛散させたり、融液に超音波を加えることもできる。具体例として、回転電極法を例に説明する。回転電極法はプラズマアーク熱によって原料棒材11を回転させながら溶解し、得た融液を遠心力で飛散させ、飛散中に固化し噴霧粉末を得る。これらは、溶解手段と合わせて選定でき、何れも坩堝などに融液を接さずに固化できるため、不純物の混入を抑制することができる。ここで、融液に付与する遠心力や微振動は、原料棒材に回転機構や振動機構を配すればよく、それら機構を用いて、噴霧粉末の粒度や円形度などに応じて、適宜設定すればよい。 Further, the melting rod 11 may be used in the plasma arc heating method. In the plasma arc heating method, the melting rod is melted by the heat of the plasma arc, but it is melted by exposing the obtained melt to a high-pressure gas or by using a rotary electrode method in which the raw material rod is melted while rotating. The liquid can be scattered by centrifugal force, or ultrasonic waves can be applied to the melt. As a specific example, the rotary electrode method will be described as an example. In the rotary electrode method, the raw material rod 11 is melted while rotating by plasma arc heat, and the obtained melt is scattered by centrifugal force and solidified during the scattering to obtain a spray powder. These can be selected together with the dissolving means, and all of them can be solidified without contacting the crucible or the like with the melt, so that the mixing of impurities can be suppressed. Here, the centrifugal force and slight vibration applied to the melt may be appropriately set according to the particle size, circularity, etc. of the spray powder by arranging a rotation mechanism or a vibration mechanism on the raw material bar. do it.

より具体的には、図3に示すように、原料棒材21を軸中心に回転できるよう、粉末製造装置22の電極回転機構23に固定する。その後、雰囲気を真空雰囲気または不活性ガス雰囲気とし、原料棒材21を中心軸周りで10000rpm以上の高速で回転させる。この回転速度は噴霧粉末26の粒径制御に用いられる。原料棒材21を回転した状態でプラズマ加熱装置24によって原料棒材21の一端を溶解し、生じた融液25を回転によって加わる遠心力で直ちに飛散させる。そして、飛散中に融液を冷却、凝固させることで噴霧粉末26を得る。 More specifically, as shown in FIG. 3, the raw material bar 21 is fixed to the electrode rotation mechanism 23 of the powder manufacturing apparatus 22 so as to be able to rotate about the axis. After that, the atmosphere is set to a vacuum atmosphere or an inert gas atmosphere, and the raw material bar 21 is rotated at a high speed of 10,000 rpm or more around the central axis. This rotation speed is used to control the particle size of the spray powder 26. In a state where the raw material bar 21 is rotated, one end of the raw material bar 21 is melted by the plasma heating device 24, and the generated melt 25 is immediately scattered by the centrifugal force applied by the rotation. Then, the spray powder 26 is obtained by cooling and coagulating the melt during scattering.

原料棒材を電極回転機構23に設置し、雰囲気を0.01MPa以下の減圧雰囲気とする。そして、原料棒材21を例えば10000rpmの回転速度にて、棒材の長軸を中心に回転させる。原料棒材21の端部近傍に配したプラズマ加熱装置によって回転する原料棒材21の端部を溶解して融液を得て、原料棒材21の回転で生じる遠心力によって側方へ飛散させる。そして、飛散中に融液を冷却、凝固することで噴霧粉末26を得る。 The raw material bar is installed in the electrode rotation mechanism 23, and the atmosphere is set to a reduced pressure atmosphere of 0.01 MPa or less. Then, the raw material bar 21 is rotated around the long axis of the bar at a rotation speed of, for example, 10000 rpm. A plasma heating device arranged near the end of the raw material bar 21 melts the end of the rotating raw material bar 21 to obtain a melt, which is then scattered laterally by the centrifugal force generated by the rotation of the raw material bar 21. .. Then, the spray powder 26 is obtained by cooling and solidifying the melt during scattering.

上記の溶解・噴霧工程であれば、焼結体(原料棒材)の融液から直接に噴霧粉末を得ることができ、噴霧粉末の清浄度を確保できる利点がある。また、噴霧粉末は高圧ガスとの相互作用無しに形成できるため、ガスアトマイズ法で得た合金粉末に比べて真球度の高い噴霧粉末とすることができる。 In the above dissolution / spraying step, the spray powder can be obtained directly from the melt of the sintered body (raw material bar), and there is an advantage that the cleanliness of the spray powder can be ensured. Further, since the spray powder can be formed without interaction with the high-pressure gas, it can be a spray powder having a higher sphericity than the alloy powder obtained by the gas atomizing method.

以上、上記のような合金粉末の製造方法の実施形態であれば、坩堝を用いることなく合金粉末を製造できるため、溶解した高融点金属を含む合金が坩堝に残置することがなく、溶け残りや坩堝との反応による組成の不均一性が生じることを抑制でき、所望組成の噴霧粉末(合金粉末と言うことがある)を得ることができる。 As described above, in the embodiment of the alloy powder manufacturing method as described above, since the alloy powder can be manufactured without using a crucible, the alloy containing the melted refractory metal does not remain in the crucible, and the undissolved residue or the like. It is possible to suppress the occurrence of compositional non-uniformity due to the reaction with the crucible, and it is possible to obtain a spray powder (sometimes referred to as an alloy powder) having a desired composition.

[分級工程(S105)]
上記工程(S101~S103)を経てから分級工程(S105)を追加することが好ましい。溶解・噴霧工程(S103)で得られた噴霧粉末(合金粉末)は、篩別分級法、旋回気流分級法などの手法で粒度分布を調整することが好ましい。具体的な合金粉末の平均粒径としては、ハンドリング性や充填性の観点から、10μm以上200μm以下が好ましい。平均粒径が10μm未満になると、合金粉末が舞い上がり易くなり、積層造形体の形状精度が低下する要因となる場合がある。一方、平均粒径が200μm超になると、積層造形体の表面粗さが増加するのみでなく、特に高融点を有する合金粉末20の溶融が不十分になる要因にもなる。また、この中で用いる製造方法によって好適な平均粒径は異なる。例えば金属積層造形法について例示すると、選択的レーザ溶融(Selective Laser Melting:SLM)法では10μm以上50μm以下、電子ビーム積層造形(Electron Beam Melting:EBM)法では45μm以上105μm以下がより好ましい。
[Classification step (S105)]
It is preferable to add the classification step (S105) after passing through the above steps (S101 to S103). It is preferable to adjust the particle size distribution of the spray powder (alloy powder) obtained in the dissolution / spray step (S103) by a method such as a sieving classification method or a swirling airflow classification method. The average particle size of the specific alloy powder is preferably 10 μm or more and 200 μm or less from the viewpoint of handleability and filling property. If the average particle size is less than 10 μm, the alloy powder tends to fly up, which may cause a decrease in the shape accuracy of the laminated model. On the other hand, when the average particle size exceeds 200 μm, not only the surface roughness of the laminated model increases, but also the melting of the alloy powder 20 having a particularly high melting point becomes insufficient. Further, the suitable average particle size differs depending on the production method used in this. For example, for example, the metal laminating method is more preferably 10 μm or more and 50 μm or less in the selective laser melting (SLM) method, and 45 μm or more and 105 μm or less in the electron beam laminating method (EBM).

また、レーザビーム粉末肉盛(Laser Metal Deposition:LMD)法では50μm以上200μm以下とすると良い。 Further, in the laser beam powder overlay (Laser Metal Deposition: LMD) method, it is preferable that the thickness is 50 μm or more and 200 μm or less.

また、本実施形態の溶解原料を用いた合金粉末の製造方法であれば、高融点元素などを多種類含んだNb、Mo、Ta、W等から成るハイエントロピー合金(HEA)の合金粉末を製造することも可能である。 Further, according to the method for producing an alloy powder using the melting raw material of the present embodiment, an alloy powder of a high entropy alloy (HEA) composed of Nb, Mo, Ta, W and the like containing many kinds of refractory elements and the like can be produced. It is also possible to do.

以上、上記の溶解原料の製造方法の一実施形態であれば、高融点金属を含んだHEAの合金粉末を製造できる。また、高融点の純金属粉を混合してSLM法で溶融する場合の課題であった、相対的に低融点のNbやMoと相対的に高融点のTaやWの偏析を抑制する効果も期待できるし、合金粉末を積層造形して得られた積層造形体の濃度変動をも抑制する効果も期待できる。 As described above, according to one embodiment of the above-mentioned method for producing a melting raw material, an alloy powder of HEA containing a refractory metal can be produced. In addition, there is also the effect of suppressing segregation of relatively low melting point Nb and Mo and relatively high melting point Ta and W, which was a problem when mixing high melting point pure metal powder and melting by the SLM method. It can be expected, and the effect of suppressing the concentration fluctuation of the laminated model obtained by laminating the alloy powder can also be expected.

<合金粉末>
上記した好適な合金粉末の製造方法の実施形態によって、高融点な元素、具体的には融点が1600℃以上の高融点金属元素を2種類以上含む合金粉末を得ることができる。さらに、円形度が0.5以上、好ましくは0.7以上であり、平均粒径が10μm以上200μm未満の合金粉末を得ることも可能である。なお合金粉末の組成は、誘導結合プラズマ発光分光分析法で評価することができる。
<Alloy powder>
By the above-described embodiment of the suitable method for producing an alloy powder, it is possible to obtain an alloy powder containing two or more kinds of high melting point elements, specifically, high melting point metal elements having a melting point of 1600 ° C. or higher. Further, it is also possible to obtain an alloy powder having a circularity of 0.5 or more, preferably 0.7 or more, and an average particle size of 10 μm or more and less than 200 μm. The composition of the alloy powder can be evaluated by inductively coupled plasma emission spectroscopy.

上記した合金粉末を用いて、図4に示すような粉末積層造形装置により、SLM法による造形部材を積層造形することもできる。造形条件としては、例えば、レーザ出力:100W~300W、レーザ走査速度:50~300mm/秒、走査間隔:0.01~0.10mmを適用することができるが、特に限定しない。 Using the alloy powder described above, it is also possible to perform additive manufacturing by additive manufacturing by the SLM method by the powder additive manufacturing device as shown in FIG. As the modeling conditions, for example, a laser output: 100 W to 300 W, a laser scanning speed: 50 to 300 mm / sec, and a scanning interval: 0.01 to 0.10 mm can be applied, but the modeling conditions are not particularly limited.

また、例えば、得られた合金粉末に対し、図5に示すような粉末積層造形装置を用いて、LMD法による造形部材を積層造形することもできる。造形条件として、例えば、レーザ出力:0.6~2.4kW、走査速度:100~1500mm/分、走査間隔:0.5~3.0mm、粉末供給量:4~14g/分を適用することができるが、特に限定しない。 Further, for example, a modeling member by the LMD method can be laminated and modeled on the obtained alloy powder by using a powder layered manufacturing apparatus as shown in FIG. As modeling conditions, for example, laser output: 0.6 to 2.4 kW, scanning speed: 100 to 1500 mm / min, scanning interval: 0.5 to 3.0 mm, powder supply amount: 4 to 14 g / min should be applied. However, there is no particular limitation.

[用途・製造物]
上述の好適な製造方法にて製造された合金粉末は、特に高融点金属を主成分に含む合金に対して有効であり、金属積層造形、圧粉成型、粉末冶金、金属射出成型などに好適に用いることができるが、用途や製造物は特に制限されない。
[Use / Manufacturing]
The alloy powder produced by the above-mentioned suitable production method is particularly effective for alloys containing refractory metal as a main component, and is suitable for metal laminated molding, powder molding, powder metallurgy, metal injection molding and the like. It can be used, but its use and product are not particularly limited.

本発明の合金粉末を用いた造形物及び成形物の用途の一例としては、高温環境に用いられる金型や電極部品や加熱熱源、熱処理炉および反応炉内構造体、X線及び粒子線フィルタ、加工工具などへの適用が好適である。本明細書でいう製造物とは、これらの機械、機器、部材、金型、部品等を総称する。 As an example of the use of the molded product and the molded product using the alloy powder of the present invention, a mold, an electrode component, a heating heat source, a heat treatment furnace and a structure in a reaction furnace, an X-ray and a particle beam filter, which are used in a high temperature environment, are used. It is suitable for application to machining tools and the like. The term "manufactured product" as used herein is a general term for these machines, devices, members, molds, parts, and the like.

以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to these examples.

[実験1]
(A1およびA2の混合粉末の作製)
表1に示す質量比で複数の原料粉末を混合し、A1およびA2の混合粉末を用意した。原料粉末は何れも化学還元法で得られた純合金粉末であり、表1に示すように何れも融点1600℃以上の金属元素の粉末を10質量%以上含んでいた。Vミキサーによって30分以上混合することで、各々の原料粉末内での複数の比重の異なる原料粉末を均一に混合した。
[Experiment 1]
(Preparation of mixed powder of A1 and A2)
A plurality of raw material powders were mixed at the mass ratio shown in Table 1 to prepare a mixed powder of A1 and A2. The raw material powders were all pure alloy powders obtained by the chemical reduction method, and as shown in Table 1, all of them contained 10% by mass or more of powders of metal elements having a melting point of 1600 ° C. or higher. By mixing with a V mixer for 30 minutes or more, a plurality of raw material powders having different specific densities in each raw material powder were uniformly mixed.

Figure 2022093316000002
Figure 2022093316000002

[実験2]
<原料棒材B1およびB2の製造>
実験1で用意した混合粉末A1とA2とを各々10kgを、カプセル(直径120mm、高さ600mm、SUS304製)に封入して0.01MPa以下に脱気をして密封した。そして、HIP設備に配して1250℃で、110MPaの加圧雰囲気下に5時間保持し、カプセル中で各々の原料粉末を固化した。これによりA1とA2に対応する、直径100mm、長さ500mmの原料棒材B1とB2を得た。
[Experiment 2]
<Manufacturing of raw material bars B1 and B2>
10 kg each of the mixed powders A1 and A2 prepared in Experiment 1 was encapsulated in a capsule (diameter 120 mm, height 600 mm, manufactured by SUS304), degassed to 0.01 MPa or less, and sealed. Then, it was placed in a HIP facility and kept at 1250 ° C. under a pressurized atmosphere of 110 MPa for 5 hours to solidify each raw material powder in a capsule. As a result, raw material rods B1 and B2 having a diameter of 100 mm and a length of 500 mm corresponding to A1 and A2 were obtained.

(実施例)
得られた原料棒材の断面観察による空隙面積の評価の結果、原料棒材B1は4%の空隙率、原料棒材B2は1%の空隙率であった。いずれも高融点組成の粉末を用いているものの、高温高圧下のHIP処理により、十分に空隙率の低い棒材に固化できた。
(Example)
As a result of evaluation of the void area by observing the cross section of the obtained raw material rod, the raw material rod B1 had a porosity of 4% and the raw material rod B2 had a porosity of 1%. Although all of them use powder having a high melting point composition, they could be solidified into a bar having a sufficiently low porosity by HIP treatment under high temperature and high pressure.

(比較例1)
A1を基に、冷間プレス(室温(22℃)、100MPa、10分間による原料棒材の作製を試みたが、プレスした原料は粉体同士の結合が起こらず、固化しないため、棒材を得ることができなかった。
(Comparative Example 1)
Based on A1, we tried to prepare a raw material bar by cold pressing (room temperature (22 ° C), 100 MPa, 10 minutes), but the pressed raw material did not bond with each other and did not solidify. I couldn't get it.

(比較例2)
A1を基に、該原料粉末を構成する元素の中で最も融点が低い元素であるZr(1855℃)の融点の2/3℃に満たない300℃にて熱間プレス(100MPa、10分間)による原料棒材作製を試みたが、空隙率は高く、固化しないため、緻密な棒材を得ることができなかった。この原料棒材の断面観察による空隙面積の評価の結果、空隙率は28%であった。
(Comparative Example 2)
Hot press (100 MPa, 10 minutes) at 300 ° C, which is less than 2/3 ° C of the melting point of Zr (1855 ° C), which is an element having the lowest melting point among the elements constituting the raw material powder based on A1. However, it was not possible to obtain a dense rod because the porosity was high and it did not solidify. As a result of evaluation of the void area by observing the cross section of this raw material bar, the porosity was 28%.

上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除したり、他の構成に置換したり、また他の構成の追加をすることが可能である。このような実施形態の調整により、本発明で開示した合金粉末は、高温部品やプラント機器、金型部材などで用いられる高融点金属部品を製造することに適用することが可能となる。 The above-described embodiments and examples have been described for the purpose of assisting the understanding of the present invention, and the present invention is not limited to the specific configuration described. For example, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. That is, the present invention can delete a part of the configurations of the embodiments and examples of the present specification, replace them with other configurations, or add other configurations. By adjusting such an embodiment, the alloy powder disclosed in the present invention can be applied to the production of high melting point metal parts used in high temperature parts, plant equipment, mold members and the like.

11:原料棒材
12:粉末製造装置
13:誘導加熱装置
14:融液
15:ガスノズル
16:高圧ガス
17:噴霧粉末
22:粉末製造装置
23:電極回転機構
24:プラズマ加熱装置
25:融液
26:噴霧粉末
100:SLM粉末積層造形装置
101:造形部材
102:ステージ
103:ベースプレート
104:パウダー供給用コンテナ
105:合金粉末
106:リコータ
107:粉末床(層状粉末)
108:レーザ発振器
109:レーザビーム
110:ガルバノメーターミラー
111:未溶融粉末回収用コンテナ
112:2Dスライス形状の凝固層
200:粉末積層造形装置
201:レーザヘッド
202:造形基材
203:バイス(固定治具)
204:テーブル
205:レーザ発振器
206:粉末供給機
210:装置外壁
211:全面ドア
212:操作パネル
220:ノズル
221:粉末
222:シールドガス
223:造形体

11: Raw material bar 12: Powder production device 13: Induction heating device 14: Melt 15: Gas nozzle 16: High pressure gas 17: Spray powder 22: Powder production device 23: Electrode rotation mechanism 24: Plasma heating device 25: Melt 26 : Spray powder 100: SLM powder laminated molding device 101: Modeling member 102: Stage 103: Base plate 104: Powder supply container 105: Alloy powder 106: Ricator 107: Powder bed (layered powder)
108: Laser oscillator 109: Laser beam 110: Galvanometer mirror 111: Container for collecting unmelted powder 112: Solidification layer 200 in 2D slice shape: Powder layered manufacturing device 201: Laser head 202: Modeling base material 203: Vise (fixed cure) Ingredients)
204: Table 205: Laser oscillator 206: Powder feeder 210: Device outer wall 211: Full door 212: Operation panel 220: Nozzle 221: Powder 222: Shield gas 223: Modeled body

Claims (4)

複数種の原料粉末からなる混合粉末を、前記原料粉末を構成する元素の中で最も融点が低い元素の融点をMPmin(℃)としたとき、2MPmin/3以上の温度で、かつ5MPa以上の圧力で焼結する加圧焼結工程と、を備え
前記原料粉末は、融点が1600℃以上の高融点金属元素を含むこと
を特徴とする溶解原料の製造方法。
When the melting point of the element having the lowest melting point among the elements constituting the raw material powder is MP min (° C.), the mixed powder composed of a plurality of kinds of raw material powders has a temperature of 2 MP min / 3 or more and 5 MPa or more. A method for producing a dissolved raw material, which comprises a pressure sintering step of sintering at the pressure of the above, wherein the raw material powder contains a high melting point metal element having a melting point of 1600 ° C. or higher.
前記複数種の原料粉末のうち、少なくとも一つの原料粉末が2種類以上の高融点金属元素を含んでいる
ことを特徴とする請求項1に記載の溶解原料の製造方法。
The method for producing a dissolved raw material according to claim 1, wherein at least one of the plurality of kinds of raw material powders contains two or more kinds of refractory metal elements.
前記加圧焼結工程において、熱間等方加圧焼結法を用いる
ことを特徴とする請求項1または請求項2に記載の溶解原料の製造方法。
The method for producing a dissolution raw material according to claim 1 or 2, wherein a hot isotropic pressure sintering method is used in the pressure sintering step.
溶解・噴霧させて合金粉末を得るために用いる溶解原料であって、
融点が1600℃以上の高融点金属元素を少なくとも二種類含み、
空隙率が5%未満の焼結体である
ことを特徴とする溶解原料。

It is a melting raw material used to melt and spray to obtain alloy powder.
Contains at least two types of refractory metal elements with a melting point of 1600 ° C or higher.
A dissolution raw material characterized by being a sintered body having a porosity of less than 5%.

JP2021200886A 2020-12-11 2021-12-10 Method for producing melting raw material, and melting raw material Active JP7484875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024025281A JP2024054391A (en) 2020-12-11 2024-02-22 Method for producing melting raw material, and melting raw material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020205906 2020-12-11
JP2020205906 2020-12-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024025281A Division JP2024054391A (en) 2020-12-11 2024-02-22 Method for producing melting raw material, and melting raw material

Publications (2)

Publication Number Publication Date
JP2022093316A true JP2022093316A (en) 2022-06-23
JP7484875B2 JP7484875B2 (en) 2024-05-16

Family

ID=82069103

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021200886A Active JP7484875B2 (en) 2020-12-11 2021-12-10 Method for producing melting raw material, and melting raw material
JP2024025281A Pending JP2024054391A (en) 2020-12-11 2024-02-22 Method for producing melting raw material, and melting raw material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024025281A Pending JP2024054391A (en) 2020-12-11 2024-02-22 Method for producing melting raw material, and melting raw material

Country Status (1)

Country Link
JP (2) JP7484875B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241807A (en) * 2001-02-13 2002-08-28 Sumitomo Titanium Corp Method for manufacturing titanium-aluminum alloy powder
JP2005298855A (en) * 2004-04-07 2005-10-27 Toyota Central Res & Dev Lab Inc Titanium alloy, titanium-alloy product and method for manufacturing them
JP2014227584A (en) * 2013-05-24 2014-12-08 山陽特殊製鋼株式会社 Method for producing anticorrosive wear-resistant alloy with controlled secondarily precipitated particle
JP2015132018A (en) * 2015-02-06 2015-07-23 山陽特殊製鋼株式会社 Alloy and sputtering target material for soft magnetic film layer for use in magnetic recording medium and having low saturation magnetic flux density
WO2020115201A1 (en) * 2018-12-07 2020-06-11 The Swatch Group Research And Development Ltd Method for manufacturing precious metal alloys and precious metal alloys thus obtained

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309266A1 (en) 2016-10-13 2018-04-18 MTU Aero Engines GmbH Method of making a molybdenum alloy having a high titanium content

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241807A (en) * 2001-02-13 2002-08-28 Sumitomo Titanium Corp Method for manufacturing titanium-aluminum alloy powder
JP2005298855A (en) * 2004-04-07 2005-10-27 Toyota Central Res & Dev Lab Inc Titanium alloy, titanium-alloy product and method for manufacturing them
JP2014227584A (en) * 2013-05-24 2014-12-08 山陽特殊製鋼株式会社 Method for producing anticorrosive wear-resistant alloy with controlled secondarily precipitated particle
JP2015132018A (en) * 2015-02-06 2015-07-23 山陽特殊製鋼株式会社 Alloy and sputtering target material for soft magnetic film layer for use in magnetic recording medium and having low saturation magnetic flux density
WO2020115201A1 (en) * 2018-12-07 2020-06-11 The Swatch Group Research And Development Ltd Method for manufacturing precious metal alloys and precious metal alloys thus obtained

Also Published As

Publication number Publication date
JP7484875B2 (en) 2024-05-16
JP2024054391A (en) 2024-04-16

Similar Documents

Publication Publication Date Title
Popovich et al. Metal powder additive manufacturing
Sun et al. Review of the methods for production of spherical Ti and Ti alloy powder
JP6553514B2 (en) Method for additive fabrication of parts by selective melting or selective sintering of tightly optimized powder beds using high energy beams
JP6388381B2 (en) Alloy structure
JP6162311B1 (en) Manufacturing method of powder metallurgy sintered body by additive manufacturing method
WO2016013497A1 (en) Alloy structure and method for producing alloy structure
JP6393885B2 (en) Method for producing alloy powder
WO2016013498A1 (en) Alloy structure and method for manufacturing alloy structure
CN115716134A (en) Method for manufacturing a mechanical component by incremental manufacturing
JP6459272B2 (en) Alloy structure
WO2016013495A1 (en) Alloy structure and manufacturing method of alloy structure
JP6455701B2 (en) Alloy structure
JP6455699B2 (en) Method for manufacturing alloy structure
JP6388277B2 (en) Method for manufacturing alloy structure
JP6455700B2 (en) Method for manufacturing alloy structure
WO2016013492A1 (en) Alloy powder used in fused deposition modeling
JP2009293108A (en) METHOD FOR PRODUCING Al-BASED ALLOY SPUTTERING TARGET MATERIAL
WO2016013496A1 (en) Relating to alloy structure and method for producing alloy structure.
Medina Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production
WO2016013494A1 (en) Alloy powder used in fused deposition modeling, and production method of said alloy powder
JP6536927B2 (en) Alloy structure
TWI387661B (en) Manufacturing method of nickel alloy target
JP7484875B2 (en) Method for producing melting raw material, and melting raw material
JP6432822B2 (en) Alloy powder used for melt lamination molding
JP2002241807A (en) Method for manufacturing titanium-aluminum alloy powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221102

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415