JP2022092077A - Carbonaceous material for battery - Google Patents
Carbonaceous material for battery Download PDFInfo
- Publication number
- JP2022092077A JP2022092077A JP2019086222A JP2019086222A JP2022092077A JP 2022092077 A JP2022092077 A JP 2022092077A JP 2019086222 A JP2019086222 A JP 2019086222A JP 2019086222 A JP2019086222 A JP 2019086222A JP 2022092077 A JP2022092077 A JP 2022092077A
- Authority
- JP
- Japan
- Prior art keywords
- carbonaceous material
- battery
- less
- electrode
- element content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本発明は、電池用炭素質材料及びその製造方法、該電池用炭素質材料を含む電極ならびに該電極を有する電池に関する。 The present invention relates to a carbonaceous material for a battery and a method for producing the same, an electrode containing the carbonaceous material for a battery, and a battery having the electrode.
炭素質材料は、鉛炭素電池のような水系電解質電池、リチウムイオン電池、ナトリウムイオン電池のような非水系電解質電池、全固体電池、燃料電池等の様々な電極に用いられており、用途に応じた特性を有する炭素質材料が求められている。例えば、電気自動車やハイブリッド自動車に搭載される非水系電解質電池は、その大きさ故に高い出力特性が求められる。また、該電池の充放電はブレーキやアクセルの踏込み時に行われるため、短時間での急速な充放電特性が求められる。 Carbonaceous materials are used for various electrodes such as water-based electrolyte batteries such as lead carbon batteries, lithium ion batteries, non-aqueous electrolyte batteries such as sodium ion batteries, all-solid-state batteries, and fuel cells, depending on the application. There is a demand for a carbonaceous material having such properties. For example, non-aqueous electrolyte batteries mounted on electric vehicles and hybrid vehicles are required to have high output characteristics due to their size. Further, since charging / discharging of the battery is performed when the brake or the accelerator is depressed, rapid charging / discharging characteristics in a short time are required.
このような非水系電解質電池の電極には難黒鉛化炭素由来の炭素質材料が使用されている。これまで難黒鉛性炭素の炭素源としては、石油ピッチ又は石炭ピッチなどが用いられていたが、近年、地球環境への影響や埋蔵量の減少を懸念して、これらに代わる炭素源を利用した炭素質材料が求められている。製紙業のパルプの製造工程で、副生成物として大量に排出されるリグニンを炭素源として用いた炭素質材料はその一例である。非特許文献1には、水酸化カリウム溶液に溶解したリグニンを炭化して得られた炭素質材料が記載されている。 A carbonaceous material derived from graphitized carbon is used for the electrodes of such a non-aqueous electrolyte battery. Until now, petroleum pitch or coal pitch has been used as the carbon source for graphitic carbon, but in recent years, due to concerns about the impact on the global environment and the decrease in reserves, carbon sources have been used instead. There is a demand for carbonaceous materials. One example is a carbonaceous material that uses lignin as a carbon source, which is discharged in large quantities as a by-product in the pulp manufacturing process of the paper industry. Non-Patent Document 1 describes a carbonaceous material obtained by carbonizing lignin dissolved in a potassium hydroxide solution.
非特許文献2には、窒素を導入するポリマーとしてメラミンとリグニンとをホルムアルデヒドに溶解して作製した、リグニン-メラミン樹脂を炭化および焼成して得られた炭素質材料が記載されている。 Non-Patent Document 2 describes a carbonaceous material obtained by carbonizing and firing a lignin-melamine resin prepared by dissolving melamine and lignin in formaldehyde as a polymer for introducing nitrogen.
非特許文献3には、リグニンとエポキシ樹脂をアルコール溶液に溶解し、硬化後炭化して得られた炭素質材料が記載されている。 Non-Patent Document 3 describes a carbonaceous material obtained by dissolving lignin and an epoxy resin in an alcohol solution and carbonizing after curing.
しかし、非特許文献1に記載された方法では、反応に使用したアルカリ金属の除去など工程数が多い。また、非特許文献2および非特許文献3にそれぞれ記載された方法は、他の物質と複合化するなど、工程が複雑であるという課題があった。さらに、いずれの方法で得られた炭素質材料も、充電効率が低く放電容量が小さいことから電池材料としての性能が十分なものではなかった。 However, the method described in Non-Patent Document 1 has a large number of steps such as removal of the alkali metal used in the reaction. Further, the methods described in Non-Patent Document 2 and Non-Patent Document 3 have a problem that the process is complicated, such as compounding with other substances. Further, the carbonaceous material obtained by either method has low charging efficiency and a small discharge capacity, so that the performance as a battery material is not sufficient.
したがって本発明の課題は、放電容量、充放電効率、抵抗および出力特性に優れた電池が得られる、少ない工程で作製された電池用炭素質材料とその製造方法、該電池用炭素質材料を含む電極および該電極を用いた電池を提供することである。 Therefore, the subject of the present invention includes a carbonaceous material for a battery manufactured in a small number of steps, a method for producing the same, and the carbonaceous material for the battery, which can obtain a battery excellent in discharge capacity, charge / discharge efficiency, resistance and output characteristics. It is to provide an electrode and a battery using the electrode.
本発明者らは鋭意検討した結果、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of diligent studies, the present inventors have found that the above problems can be solved, and have completed the present invention.
即ち、本発明は、以下の好適な態様を包含する。
〔1〕硫黄元素含有量は0.8質量%以上であり、ブタノール法により求めた真密度は1.48g/cm3以上1.62g/cm3以下である、電池用炭素質材料。
〔2〕前記炭素質材料の酸素元素含有量は0.7質量%以下である、〔1〕に記載の電池用炭素質材料。
〔3〕前記炭素質材料の六角網面積層方向Lcの大きさは10Å以下である、〔1〕または〔2〕に記載の電池用炭素質材料。
〔4〕平均粒径は2μm以上200μm以下である、〔1〕~〔3〕のいずれかに記載の電池用炭素質材料。
〔5〕CuKα線を用いて測定される前記炭素質材料の(002)面の面間隔d002は、3.8Å以上である、〔1〕~〔4〕のいずれかに記載の電池用炭素質材料。
〔6〕硫黄元素含有量が0.1質量%以上であり、融点が300℃以上のリグニンを炭化して、炭化物を得る炭化工程と、
前記炭化物を非酸化性雰囲気中で、1000℃以上1400℃以下で焼成して、炭素質材料を得る焼成工程と、
を含む、〔1〕~〔5〕のいずれかに記載の電池用炭素質材料の製造方法。
〔7〕前記炭化物を平均粒径200μm以下に粉砕する微粒化工程をさらに含む、〔6〕に記載の方法。
〔8〕前記炭化工程は、前記リグニンを非酸化性雰囲気中で300℃以上800℃以下で加熱することを含む、〔6〕または〔7〕に記載の方法。
〔9〕〔1〕~〔5〕のいずれかに記載の電池用炭素質材料を含む、電極。
〔10〕〔9〕に記載の電極を含む、電池。
That is, the present invention includes the following preferred embodiments.
[1] A carbonaceous material for a battery, which has a sulfur element content of 0.8% by mass or more and a true density determined by the butanol method of 1.48 g / cm 3 or more and 1.62 g / cm 3 or less.
[2] The carbonaceous material for a battery according to [1], wherein the carbonaceous material has an oxygen element content of 0.7% by mass or less.
[3] The carbonaceous material for a battery according to [1] or [2], wherein the carbonaceous material has a size of Lc in the hexagonal net area layer direction of 10 Å or less.
[4] The carbonaceous material for a battery according to any one of [1] to [3], wherein the average particle size is 2 μm or more and 200 μm or less.
[5] The carbon for batteries according to any one of [1] to [4], wherein the surface spacing d 002 of the (002) plane of the carbonaceous material measured using CuKα rays is 3.8 Å or more. Quality material.
[6] A carbonization step of carbonizing lignin having a sulfur element content of 0.1% by mass or more and a melting point of 300 ° C. or more to obtain a carbide.
A firing step of calcining the carbide at 1000 ° C. or higher and 1400 ° C. or lower in a non-oxidizing atmosphere to obtain a carbonaceous material.
The method for producing a carbonaceous material for a battery according to any one of [1] to [5].
[7] The method according to [6], further comprising an atomization step of pulverizing the carbide to an average particle size of 200 μm or less.
[8] The method according to [6] or [7], wherein the carbonization step comprises heating the lignin in a non-oxidizing atmosphere at 300 ° C. or higher and 800 ° C. or lower.
[9] An electrode comprising the carbonaceous material for a battery according to any one of [1] to [5].
[10] A battery comprising the electrodes according to [9].
放電容量、充放電効率、抵抗および出力特性に優れた電池が得られる、少ない工程で作製された電池用炭素質材料とその製造方法、該電池用炭素質材料を含む電極および該電極を用いた電池を提供することができる。 A carbonaceous material for a battery and a manufacturing method thereof, which can obtain a battery having excellent discharge capacity, charge / discharge efficiency, resistance and output characteristics, and an electrode containing the carbonaceous material for the battery and the electrode were used. Batteries can be provided.
以下は本発明の実施形態を例示する説明であって、本発明を以下の実施形態に限定することは意図されていない。 The following is an example of an embodiment of the present invention, and is not intended to limit the present invention to the following embodiments.
<電池用炭素質材料>
本発明の電池用炭素質材料は、硫黄元素含有量が0.8質量%以上、ブタノール法により求めた真密度が1.48g/cm3以上1.62g/cm3以下である。
<Carbonaceous material for batteries>
The carbonaceous material for a battery of the present invention has a sulfur element content of 0.8% by mass or more and a true density determined by the butanol method of 1.48 g / cm 3 or more and 1.62 g / cm 3 or less.
<硫黄元素含有量>
本発明の電池用炭素質材料の硫黄元素含有量は、0.8質量%以上であり、好ましくは0.9質量%以上、より好ましくは1.0質量%以上である。また、本発明の電池用炭素質材料の硫黄元素含有量は、特に限定されないが、通常は3.0質量%以下であり、好ましくは2.0質量%以下、より好ましくは1.8質量%以下である。電池用炭素質材料の硫黄元素含有量が上記範囲内であることにより、電池容量の優れた電池を得ることができる。
<Sulfur element content>
The sulfur element content of the carbonaceous material for a battery of the present invention is 0.8% by mass or more, preferably 0.9% by mass or more, and more preferably 1.0% by mass or more. The sulfur element content of the carbonaceous material for a battery of the present invention is not particularly limited, but is usually 3.0% by mass or less, preferably 2.0% by mass or less, and more preferably 1.8% by mass. It is as follows. When the sulfur element content of the carbonaceous material for a battery is within the above range, a battery having an excellent battery capacity can be obtained.
硫黄元素含有量を上記範囲内に調整する方法としては、例えば、炭素質材料の原料となる物質を苛性ソーダ水溶液と加熱するなど加水分解を行う、あるいは炭素質材料の原料となる物質を硫酸などの硫黄を含む成分で変性し、その変性量を調整する等の方法が挙げられる。硫黄元素含有量は、例えば元素分析、蛍光X線分析によって、求めることができる。 As a method for adjusting the sulfur element content within the above range, for example, hydrolysis is performed by heating a substance that is a raw material of a carbonaceous material with a caustic soda aqueous solution, or a substance that is a raw material of a carbonaceous material is sulfuric acid or the like. Examples thereof include a method of modifying with a component containing sulfur and adjusting the amount of the modification. The sulfur element content can be determined, for example, by elemental analysis or fluorescent X-ray analysis.
<真密度>
本発明の電池用炭素質材料の真密度(ρBt)は、1.48g/cm3以上1.62g/cm3以下であり、好ましくは1.50g/cm3以上1.61g/cm3以下であり、より好ましくは1.51g/cm3以上1.61g/cm3以下である。電池用炭素質材料の真密度が上記範囲内であると、電池容量がより優れる傾向になる。
<True density>
The true density (ρBt) of the carbonaceous material for a battery of the present invention is 1.48 g / cm 3 or more and 1.62 g / cm 3 or less, preferably 1.50 g / cm 3 or more and 1.61 g / cm 3 or less. Yes, more preferably 1.51 g / cm 3 or more and 1.61 g / cm 3 or less. When the true density of the carbonaceous material for a battery is within the above range, the battery capacity tends to be better.
真密度を上記範囲に調整するためには、例えば加熱、焼成時の温度を変更することにより調整することができる。ここで、真密度は、例えばJIS R 7212に定められた方法に従い、求めることができる。 In order to adjust the true density within the above range, it can be adjusted, for example, by changing the temperature at the time of heating and firing. Here, the true density can be determined, for example, according to the method specified in JIS R 7212.
<酸素元素含有量>
本発明の電池用炭素質材料の酸素元素含有量は、好ましくは0.7質量%以下であり、より好ましくは0.6質量%以下である。また、本発明の電池用炭素質材料の酸素元素含有量は、通常は0.2質量%以上であり、好ましくは0.25質量%以上である。電池用炭素質材料の酸素元素含有量が上記範囲内であることにより、イオン吸着による不可逆性を抑制しつつ電解液親和性に優れた電池を得られる。
<Oxygen element content>
The oxygen element content of the carbonaceous material for a battery of the present invention is preferably 0.7% by mass or less, and more preferably 0.6% by mass or less. The oxygen element content of the carbonaceous material for a battery of the present invention is usually 0.2% by mass or more, preferably 0.25% by mass or more. When the oxygen element content of the carbonaceous material for a battery is within the above range, a battery having excellent electrolyte affinity while suppressing irreversibility due to ion adsorption can be obtained.
酸素元素含有量を上記範囲内に調整するためには、例えば加熱、焼成時の温度により調整することができる。酸素元素含有量は、例えば元素分析、蛍光X線分析によって、求めることができる。 In order to adjust the oxygen element content within the above range, it can be adjusted by, for example, the temperature at the time of heating and firing. The oxygen element content can be determined, for example, by elemental analysis or fluorescent X-ray analysis.
<六角網面積層方向Lcの大きさ>
本発明の電池用炭素質材料の六角網面積層方向Lcの大きさは、好ましくは10Å以下であり、より好ましくは9Å以下である。また、Lcの大きさの下限は、通常は4Å以上であり、好ましくは5Å以上である。Lcの大きさが上記範囲内であると、金属イオン、水素イオンの移動がしやすくなり、より出力特性に優れる電池が得られる。
<Size of hexagonal net area Lc in the layer direction>
The size of the hexagonal net area layer direction Lc of the carbonaceous material for a battery of the present invention is preferably 10 Å or less, more preferably 9 Å or less. The lower limit of the size of Lc is usually 4 Å or more, preferably 5 Å or more. When the size of Lc is within the above range, metal ions and hydrogen ions can easily move, and a battery having more excellent output characteristics can be obtained.
Lcの大きさは、適切な焼成温度により調整することができる。Lcの大きさはX線回折により、2θ=26°付近のピーク強度から得られる半価幅を基に求めることができる。また、上記のようなLcの大きさを有する炭素質材料は、出力特性が大きい傾向にあり、リチウムイオン二次電池のみならず、ナトリウムイオン二次電池、鉛電池にも好適なものとできる。 The size of Lc can be adjusted by an appropriate firing temperature. The magnitude of Lc can be determined by X-ray diffraction based on the half-value range obtained from the peak intensity near 2θ = 26 °. Further, the carbonaceous material having an Lc size as described above tends to have a large output characteristic, and can be suitable not only for a lithium ion secondary battery but also for a sodium ion secondary battery and a lead battery.
<平均粒径>
本発明の電池用炭素質材料の平均粒径(Dv50)は、2μm以上200μm以下であることが好ましい。平均粒径が2μm以上の場合、炭素質材料の比表面積の増大の要因である微粉が少量となり、電解液との過剰な反応が抑えられ、その結果、充電しても放電しない容量である不可逆容量が減少し、正極の容量が無駄になることを防ぐことができるため好ましい。平均粒径の下限は好ましくは2μm以上であり、より好ましくは2.2μm以上であり、更に好ましくは2.5μm以上である。一方、平均粒径が200μm以下の場合、粒子内での金属イオンや水素イオンの拡散自由行程が少なく、また、電子を伝導する導電材として粒子間の接触率を高めるために好ましい。また、本発明の電池用炭素質材料は、鉛電池等にも適用することができる。鉛電池として適用する場合は特に、平均粒径が80μm以上であることが好ましく、100μm以上であることが好ましい。この下限以上であると、鉛電池の電解液による酸化分解が抑制され電池寿命に優れる。平均粒径は後述の粉砕工程によって調整され、例えばレーザー回折散乱法やコールター法によって求めることができる。
<Average particle size>
The average particle size (Dv 50 ) of the carbonaceous material for batteries of the present invention is preferably 2 μm or more and 200 μm or less. When the average particle size is 2 μm or more, the amount of fine powder, which is a factor of increasing the specific surface area of the carbonaceous material, is small, excessive reaction with the electrolytic solution is suppressed, and as a result, the capacity is irreversible so that it does not discharge even when charged. It is preferable because the capacity can be reduced and the capacity of the positive electrode can be prevented from being wasted. The lower limit of the average particle size is preferably 2 μm or more, more preferably 2.2 μm or more, and further preferably 2.5 μm or more. On the other hand, when the average particle size is 200 μm or less, the diffusion free stroke of metal ions and hydrogen ions in the particles is small, and it is preferable as a conductive material for conducting electrons to increase the contact rate between the particles. Further, the carbonaceous material for a battery of the present invention can also be applied to a lead battery or the like. When applied as a lead battery, the average particle size is preferably 80 μm or more, and preferably 100 μm or more. When it is at least this lower limit, oxidative decomposition by the electrolytic solution of the lead battery is suppressed and the battery life is excellent. The average particle size is adjusted by the pulverization step described later, and can be obtained by, for example, a laser diffraction / scattering method or a Coulter method.
<(002)面の面間隔d002>
本発明の電池用炭素質材料の(002)面の面間隔d002は、好ましくは3.80Å以上であり、より好ましくは3.82Å以上である。また、上限は好ましくは3.95Å以下であり、より好ましくは3.92Å以下である。d002が上記範囲内であると、低温での容量維持率に優れる。また、イオンの侵入が容易になるため、リチウムイオン二次電池のみならず、ナトリウムイオン二次電池、鉛電池にも好適なものとできる。d002の大きさを上記範囲に調整するためには、例えば加熱、焼成時の温度により調整することができる。また、d002は例えばX線回折で求めることができる。
<Surface spacing of (002) plane d 002 >
The surface spacing d 002 of the (002) plane of the carbonaceous material for a battery of the present invention is preferably 3.80 Å or more, and more preferably 3.82 Å or more. The upper limit is preferably 3.95 Å or less, and more preferably 3.92 Å or less. When d 002 is within the above range, the capacity retention rate at low temperature is excellent. Further, since the invasion of ions becomes easy, it can be suitable not only for lithium ion secondary batteries but also for sodium ion secondary batteries and lead batteries. In order to adjust the size of d 002 within the above range, it can be adjusted, for example, by the temperature at the time of heating and firing. Further, d 002 can be obtained by, for example, X-ray diffraction.
<比表面積>
本発明の電池用炭素質材料のBET比表面積の下限は、好ましくは1m2/g以上であり、より好ましくは1.5m2/g以上であり、さらに好ましくは2m2/g以上であり、特に好ましくは3m2/g以上である。一方、本発明の電池用炭素質材料のBET比表面積の上限は、好ましくは130m2/g以下であり、より好ましくは90m2/g以下であり、さらに好ましくは80m2/g以下であり、よりさらに好ましくは75m2/g以下であり、特に好ましくは70m2/g以下であり、最も好ましくは65m2/g以下である。BET比表面積が上記範囲内であると、電解液との分解反応を抑制でき、入出力特性に優れる。BET比表面積を上述の範囲に調整するためには、例えば加熱、焼成時の温度により調整することができる。
<Specific surface area>
The lower limit of the BET specific surface area of the carbonaceous material for batteries of the present invention is preferably 1 m 2 / g or more, more preferably 1.5 m 2 / g or more, still more preferably 2 m 2 / g or more. Particularly preferably, it is 3 m 2 / g or more. On the other hand, the upper limit of the BET specific surface area of the carbonaceous material for a battery of the present invention is preferably 130 m 2 / g or less, more preferably 90 m 2 / g or less, still more preferably 80 m 2 / g or less. It is even more preferably 75 m 2 / g or less, particularly preferably 70 m 2 / g or less, and most preferably 65 m 2 / g or less. When the BET specific surface area is within the above range, the decomposition reaction with the electrolytic solution can be suppressed and the input / output characteristics are excellent. In order to adjust the BET specific surface area to the above range, it can be adjusted by, for example, the temperature at the time of heating and firing.
<電池用炭素質材料の製造方法>
本発明の電池用炭素質材料の出発原料としては特に限定されず、使用され得る原料として、例えばスルホン酸型イオン交換樹脂が挙げられるが、硫黄元素含有量が好ましくは0.1質量%以上、より好ましくは0.5質量%以上であり、融点が好ましくは300℃以上、より好ましくは320℃以上のリグニンを使用することが好ましい。このようなリグニンは、一般的にはクラフトリグニンと呼ばれており、製紙業で原料の木材からパルプを得る工程で出る、黒液とよばれる廃液を酸性化し、析出した沈殿を洗浄して得ることができる。このようにして得られたリグニンは、前記工程中で、その主要な結合であるエーテル結合が切断され、著しく低分子化されるので、その数平均分子量は通常3500~4500となっている。このため、炭化前に比較的低い温度でリグニンを融解させ、融解時に結晶状態を密度の高い状態に変化させるために、好ましくは300℃以上、より好ましくは320℃以上で融解するリグニンを使用することが特に好ましい。また、通常クラフトリグニンは他の方法で得られたリグニンに比べ、多量のフェノール性水酸基を有しており、化学的活性に富んでいることも、高い密度の炭素形成に好ましい。
<Manufacturing method of carbonaceous materials for batteries>
The starting material of the carbonaceous material for a battery of the present invention is not particularly limited, and examples of the raw material that can be used include sulfonic acid type ion exchange resins, but the sulfur element content is preferably 0.1% by mass or more. It is more preferable to use lignin having a melting point of 0.5% by mass or more, preferably 300 ° C. or higher, and more preferably 320 ° C. or higher. Such lignin is generally called kraft lignin, and is obtained by acidifying a waste liquid called black liquor, which is produced in the process of obtaining pulp from raw wood in the papermaking industry, and washing the precipitated precipitate. be able to. The number average molecular weight of the lignin thus obtained is usually 3500 to 4500 because the ether bond, which is the main bond thereof, is cleaved and the molecular weight is remarkably reduced in the step. Therefore, in order to melt the lignin at a relatively low temperature before carbonization and change the crystalline state to a dense state at the time of melting, a lignin that melts at preferably 300 ° C. or higher, more preferably 320 ° C. or higher is used. Is particularly preferred. In addition, kraft lignin usually has a large amount of phenolic hydroxyl groups as compared with lignin obtained by other methods, and is rich in chemical activity, which is also preferable for high-density carbon formation.
<炭化工程>
本発明の電池用炭素質材料の製造方法では、リグニンの粒度を調整した後に炭化してもよい。好ましい粒度としては、0.001mm以上50mm以下の範囲、より好ましくは、0.01mm以上20mm以下の範囲、更に好ましくは、0.1mm以上10mm以下の範囲である。通常、炭化工程でリグニンは収縮せず、炭化工程前後で粒径は変化しない。細かすぎる粒度は、粉塵の吸引、粉塵爆発などの危険性が高まるため好ましくなく、大きすぎる粒子は、炭化時に発生する水により、リグニンが酸化され炭素物性を損なうことがあるため好ましくない。本発明で使用するリグニンは、使用前にさらに酸性水で洗浄し、残留する金属を低減させてもかまわない。
<Carbonization process>
In the method for producing a carbonaceous material for a battery of the present invention, carbonization may be performed after adjusting the particle size of lignin. The preferred particle size is 0.001 mm or more and 50 mm or less, more preferably 0.01 mm or more and 20 mm or less, and further preferably 0.1 mm or more and 10 mm or less. Normally, lignin does not shrink in the carbonization step, and the particle size does not change before and after the carbonization step. Particles that are too fine are not preferable because they increase the risk of dust suction and dust explosion, and particles that are too large are not preferable because lignin may be oxidized by water generated during carbonization and the carbon properties may be impaired. The lignin used in the present invention may be further washed with acidic water before use to reduce residual metals.
本発明の電池用炭素質材料の製造方法では、0.1質量%以上の硫黄元素を含むリグニンを好ましくは使用する。硫黄元素の含有量は通常、0.2質量%以上5質量%以下、好ましくは0.5質量%以上4.5質量%以下である。硫黄元素含有量が上記上限以下であると、使用する機器を腐食する可能性のある二酸化硫黄などの排出が抑制されるため好ましい。硫黄元素含有量が上記下限以上であると、リグニンの分子量が低下することを防ぐことができ、炭素縮合が十分に進むため好ましい。硫黄元素含有量を上記範囲内に調整するには、例えば苛性ソーダ水溶液と加熱するなどの加水分解を行う。硫黄元素含有量は例えば元素分析、蛍光X線分析によって測定できる。 In the method for producing a carbonaceous material for a battery of the present invention, lignin containing 0.1% by mass or more of sulfur element is preferably used. The content of the sulfur element is usually 0.2% by mass or more and 5% by mass or less, preferably 0.5% by mass or more and 4.5% by mass or less. When the sulfur element content is not more than the above upper limit, the emission of sulfur dioxide and the like which may corrode the equipment used is suppressed, which is preferable. When the sulfur element content is at least the above lower limit, it is possible to prevent the molecular weight of lignin from decreasing, and carbon condensation proceeds sufficiently, which is preferable. In order to adjust the sulfur element content within the above range, hydrolysis such as heating with an aqueous solution of caustic soda is performed. The sulfur element content can be measured by, for example, elemental analysis or fluorescent X-ray analysis.
本発明の電池用炭素質材料の製造方法における炭化温度は、400℃以上1000℃以下が好ましく、より好ましくは500℃以上900℃以下である。炭化温度が上記範囲内であると、炭素質材料のd002、六角網面積層方向の大きさ、元素含有量、真密度、比表面積等の構造を所望のものとしやすいため好ましい。 The carbonization temperature in the method for producing a carbonaceous material for a battery of the present invention is preferably 400 ° C. or higher and 1000 ° C. or lower, more preferably 500 ° C. or higher and 900 ° C. or lower. When the carbonization temperature is within the above range, it is preferable that the carbonic material has a desired structure such as d 002 , size in the hexagonal network area layer direction, element content, true density, and specific surface area.
炭化は、通常、窒素、アルゴンなどの不活性ガス下で実施する。使用するガス中の酸化性ガスの濃度は低ければ低いほど好ましい。酸化ガス、特に酸素の混入量としては、通常1%以下、より好ましくは0.1%以下である。酸素濃度が上記の値より小さい値であると、炭化物生成過程での酸化を抑制できるため、所望の特徴を有する構造を得ることができ、または生成した構造の酸化分解を抑制することができる。 Carbonization is usually carried out under an inert gas such as nitrogen or argon. The lower the concentration of the oxidizing gas in the gas used, the more preferable. The amount of the oxidizing gas, particularly oxygen, is usually 1% or less, more preferably 0.1% or less. When the oxygen concentration is smaller than the above value, oxidation in the carbide formation process can be suppressed, so that a structure having desired characteristics can be obtained, or oxidative decomposition of the produced structure can be suppressed.
また、加熱速度としては、特に限定されるものではなく、加熱の方法により異なるが、好ましくは1℃/分以上20℃/分以下、より好ましくは2℃/分以上18℃/分以下である。昇温速度が上記範囲内であれば、良好な生産性が得られ経済性の点から好ましい。また、発生する乾留ガスによる賦活の進行が抑制され、良好な炭素密度が得られる。 The heating rate is not particularly limited and varies depending on the heating method, but is preferably 1 ° C./min or more and 20 ° C./min or less, and more preferably 2 ° C./min or more and 18 ° C./min or less. .. When the rate of temperature rise is within the above range, good productivity can be obtained, which is preferable from the viewpoint of economy. In addition, the progress of activation by the carbonization gas generated is suppressed, and a good carbon density can be obtained.
加熱後、最高温度を保持する時間は、特に限定されるものではなく、好ましくは0.1時間以上20時間以下の範囲、より好ましくは0.5時間以上15時間以下の範囲である。最高温度を保持する時間が上記範囲内であれば、炭化が十分に進行し、発火が生じにくくなるため好ましい。また、経済性の観点から、適度な時間であるため好ましい。 The time for maintaining the maximum temperature after heating is not particularly limited, and is preferably in the range of 0.1 hours or more and 20 hours or less, and more preferably in the range of 0.5 hours or more and 15 hours or less. When the time for maintaining the maximum temperature is within the above range, carbonization proceeds sufficiently and ignition is less likely to occur, which is preferable. Further, from the viewpoint of economy, it is preferable because the time is appropriate.
<粉砕>
本発明の電池用炭素質材料の製造方法では、粉砕工程を含んでいてもよい。粉砕工程は、炭化工程を経た炭化物を、焼成後の平均粒径が目的の大きさになるように粉砕する工程である。更に、粉砕工程は、分級を含むことが好ましい。分級によって平均粒径を、より正確に調整することができ、粒径1μm以下の粒子を除くことも可能である。炭化されたリグニン由来の炭化物の粉砕工程の順番は、特に限定されないが、後述の焼成工程の前に行うことが好ましい。この理由は、表面積を大きくすることで、焼成で発生する酸化性ガスによる構造変化の影響を最小限にできること、また、最終の焼成後に実施した際には、粉砕により新たに生成した結晶面が、電池内で電解液等と反応し、電池機能を損なうため好ましくない。しかしながら、焼成工程の後に粉砕することを排除するものではない。
<Crushing>
The method for producing a carbonaceous material for a battery of the present invention may include a pulverization step. The pulverization step is a step of pulverizing the carbides that have undergone the carbonization step so that the average particle size after firing becomes a target size. Further, the pulverization step preferably includes classification. The average particle size can be adjusted more accurately by classification, and particles with a particle size of 1 μm or less can be excluded. The order of the pulverization step of the carbonized product derived from carbonized lignin is not particularly limited, but it is preferably performed before the firing step described later. The reason for this is that by increasing the surface area, the influence of structural changes due to the oxidizing gas generated during firing can be minimized, and when the final firing is performed, the crystal plane newly generated by pulverization is formed. , It is not preferable because it reacts with an electrolytic solution or the like in the battery and impairs the battery function. However, crushing after the firing step is not excluded.
粉砕に用いる粉砕機は、特に限定されるものではなく、例えばジェットミル、ボールミル、ハンマーミル、またはロッドミルなどを単独でまたは組み合わせて使用することができるが、微粉の発生が少ないという点で分級機能を備えたジェットミルが好ましい。一方、ボールミル、ハンマーミル、またはロッドミルなどを用いる場合は、粉砕後に分級を行うことで微粉を除くことができる。 The crusher used for crushing is not particularly limited, and for example, a jet mill, a ball mill, a hammer mill, a rod mill, or the like can be used alone or in combination, but the classification function is that the generation of fine powder is small. A jet mill equipped with is preferable. On the other hand, when a ball mill, a hammer mill, a rod mill or the like is used, fine powder can be removed by classifying after pulverization.
<分級>
分級として、篩による分級、湿式分級、または乾式分級を挙げることができる。湿式分級機としては、例えば重力分級、慣性分級、水力分級、または遠心分級などの原理を利用した分級機を挙げることができる。また、乾式分級機としては、沈降分級、機械的分級、または遠心分級の原理を利用した分級機を挙げることができる。粉砕工程において、粉砕と分級は1つの装置を用いて行うこともできる。例えば、乾式の分級機能を備えたジェットミルを用いて、粉砕と分級を行うことができる。更に、粉砕機と分級機とが独立した装置を用いることもできる。この場合、粉砕と分級とを連続して行うこともできるが、粉砕と分級とを不連続に行うこともできる。
<Classification>
As the classification, classification by sieving, wet classification, or dry classification can be mentioned. Examples of the wet classifier include a classifier using a principle such as gravity classification, inertial classification, hydraulic classification, or centrifugal classification. Further, examples of the dry classifier include a classifier using the principle of sedimentation classification, mechanical classification, or centrifugal classification. In the crushing step, crushing and classification can also be performed using one device. For example, pulverization and classification can be performed using a jet mill equipped with a dry classification function. Further, a device in which the crusher and the classifier are independent can be used. In this case, crushing and classification can be performed continuously, but crushing and classification can also be performed discontinuously.
<焼成工程>
本発明の電池用炭素質材料の製造方法における焼成工程は、炭化工程後の炭化物を、非酸化性ガス雰囲気下で1000℃以上1400℃以下で熱処理する工程である。
<Baking process>
The firing step in the method for producing a carbonaceous material for a battery of the present invention is a step of heat-treating the carbide after the carbonization step at 1000 ° C. or higher and 1400 ° C. or lower in a non-oxidizing gas atmosphere.
本発明の電池用炭素質材料の製造方法における焼成は、通常の手順に従って行うことができ、焼成を行うことにより、電池用炭素質材料を得ることができる。焼成温度は、好ましくは1000℃以上1400℃以下である。焼成温度の下限は1000℃以上であり、より好ましくは1100℃以上であり、特に好ましくは1150℃以上である。また焼成温度の上限は1400℃以下であり、より好ましくは1380℃以下であり、特に好ましくは1350℃以下である。焼成温度が上記範囲内であると、炭素質材料の官能基の残存量を減らすことができ、不可逆容量の増加に繋がるリチウムとの反応を抑えることができるため好ましい。また、炭素六角平面の選択的配向性の高まりによる放電容量の低下を抑えることができるため好ましい。 The firing in the method for producing a carbonaceous material for a battery of the present invention can be performed according to a normal procedure, and the carbonaceous material for a battery can be obtained by firing. The firing temperature is preferably 1000 ° C. or higher and 1400 ° C. or lower. The lower limit of the firing temperature is 1000 ° C. or higher, more preferably 1100 ° C. or higher, and particularly preferably 1150 ° C. or higher. The upper limit of the firing temperature is 1400 ° C. or lower, more preferably 1380 ° C. or lower, and particularly preferably 1350 ° C. or lower. When the firing temperature is within the above range, the residual amount of the functional group of the carbonaceous material can be reduced, and the reaction with lithium, which leads to an increase in the irreversible capacity, can be suppressed, which is preferable. Further, it is preferable because it is possible to suppress a decrease in the discharge capacity due to an increase in the selective orientation of the carbon hexagonal plane.
前記焼成は、非酸化性ガス雰囲気中で行うことが好ましい。非酸化性ガスとしては、ヘリウム、窒素またはアルゴンなどを挙げることができ、これらを単独または混合して用いることができる。更には塩素などのハロゲンガスを、上記非酸化性ガスと混合したガス雰囲気中で焼成を行うことも可能である。ガスの供給量(流通量)も、限定されるものではないが、炭化工程後の炭化物1g当たり、1mL/分以上、好ましくは5mL/分以上、更に好ましくは10mL/分以上である。また、本焼成は、減圧下で行うこともでき、例えば、10KPa以下で行うことも可能である。本焼成の時間も特に限定されるものではないが、例えば1000℃以上に滞留する時間としては、0.05時間以上10時間以下で行うことができ、0.05時間以上3時間以下が好ましく、0.05時間以上1時間以下がより好ましい。 The firing is preferably performed in a non-oxidizing gas atmosphere. Examples of the non-oxidizing gas include helium, nitrogen and argon, and these can be used alone or in combination. Further, it is also possible to perform firing in a gas atmosphere in which a halogen gas such as chlorine is mixed with the non-oxidizing gas. The supply amount (distribution amount) of the gas is also not limited, but is 1 mL / min or more, preferably 5 mL / min or more, and more preferably 10 mL / min or more per 1 g of the carbide after the carbonization step. Further, the main firing can be performed under reduced pressure, and can be performed at, for example, 10 KPa or less. The time of the main firing is also not particularly limited, but for example, the time for staying at 1000 ° C. or higher can be 0.05 hours or more and 10 hours or less, preferably 0.05 hours or more and 3 hours or less. More preferably, it is 0.05 hours or more and 1 hour or less.
<電極>
本発明の電池用炭素質材料は、電極に使用できる。
<Electrode>
The carbonaceous material for batteries of the present invention can be used for electrodes.
<電極の製造>
本発明の電池用炭素質材料を用いる電極は、炭素質材料に結合剤(バインダー)を添加し適当な溶媒を適量添加、混練し、電極合剤とした後に、金属板等からなる集電板に塗布・乾燥後、加圧成形することにより製造することができる。本発明の電池用炭素質材料を用いることにより特に導電助剤を添加しなくとも、高い導電性を有する電極を製造することができるが、更に高い導電性を賦与することを目的に、必要に応じて電極合剤を調製時に、導電助剤を添加することができる。導電助剤としては、導電性のカーボンブラック、気相成長炭素繊維(VGCF)、ナノチューブなどを用いることができ、添加量は使用する導電助剤の種類によっても異なるが、添加する量が少なすぎると期待する導電性が得られないので好ましくなく、多すぎると電極合剤中の分散が悪くなるので好ましくない。このような観点から、添加する導電助剤の好ましい割合は0.5重量%以上10重量%以下(ここで、活物質(炭素質材料)量+バインダー量+導電助剤量=100重量%とする)であり、更に好ましくは0.5重量%以上7重量%以下、とくに好ましくは0.5重量%以上5重量%以下である。結合剤としては、PVDF(ポリフッ化ビニリデン)、ポリテトラフルオロエチレン、およびSBR(スチレン・ブタジエン・ラバー)とCMC(カルボキシメチルセルロース)との混合物等の電解液と反応しないものであれば特に限定されない。中でもPVDFは、活物質表面に付着したPVDFがリチウムイオン移動を阻害することが少なく、良好な入出力特性を得るために好ましい。PVDFを溶解しスラリーを形成するためにN-メチルピロリドン(NMP)などの極性溶媒が好ましく用いられるが、SBRなどの水性エマルジョンやCMCを水に溶解して用いることもできる。結合剤の添加量が多すぎると、得られる電極の抵抗が大きくなるため、電池の内部抵抗が大きくなり電池特性を低下させるので好ましくない。また、結合剤の添加量が少なすぎると、負極材料粒子相互結合および集電材との結合が不十分となり好ましくない。結合剤の好ましい添加量は、使用するバインダーの種類によっても異なるが、PVDF系のバインダーでは好ましくは3重量%以上13重量%以下であり、更に好ましくは3重量%以上10重量%以下である。一方、溶媒に水を使用するバインダーでは、SBRとCMCとの混合物など、複数のバインダーを混合して使用することが多く、使用する全バインダーの総量として0.5重量%以上5重量%以下が好ましく、更に好ましくは1重量%以上4重量%以下である。電極活物質層は集電板の両面に形成するのが基本であるが、必要に応じて片面でもよい。電極活物質層が厚いほど、集電板やセパレータなどが少なくて済むため高容量化には好ましいが、対極と対向する電極面積が広いほど入出力特性の向上に有利なため活物質層が厚すぎると入出力特性が低下するため好ましくない。好ましい活物質層(片面当たり)の厚みは、10μm以上80μm以下であり、更に好ましくは20μm以上75μm以下、特に好ましくは20μm以上60μm以下である。なお、ここで得られる電極は負極として用いることが好適である。
<Manufacturing of electrodes>
The electrode using the carbonaceous material for a battery of the present invention is a current collector made of a metal plate or the like after adding a binder to the carbonaceous material, adding an appropriate amount of an appropriate solvent, kneading the mixture to prepare an electrode mixture, and the like. It can be manufactured by applying it to a coating material, drying it, and then pressure-molding it. By using the carbonaceous material for a battery of the present invention, it is possible to produce an electrode having high conductivity without adding a conductive additive, but it is necessary for the purpose of imparting higher conductivity. Accordingly, a conductive auxiliary agent can be added at the time of preparation of the electrode mixture. As the conductive auxiliary agent, conductive carbon black, vapor phase grown carbon fiber (VGCF), nanotubes and the like can be used, and the amount added varies depending on the type of the conductive auxiliary agent used, but the amount added is too small. It is not preferable because the expected conductivity cannot be obtained, and if it is too much, the dispersion in the electrode mixture becomes poor, which is not preferable. From this point of view, the preferable ratio of the conductive auxiliary agent to be added is 0.5% by weight or more and 10% by weight or less (here, the amount of the active material (carbonaceous material) + the amount of the binder + the amount of the conductive auxiliary agent = 100% by weight). It is more preferably 0.5% by weight or more and 7% by weight or less, and particularly preferably 0.5% by weight or more and 5% by weight or less. The binder is not particularly limited as long as it does not react with an electrolytic solution such as PVDF (polyvinylidene fluoride), polytetrafluoroethylene, and a mixture of SBR (styrene butadiene rubber) and CMC (carboxymethyl cellulose). Among them, PVDF is preferable because PVDF adhering to the surface of the active material does not hinder the movement of lithium ions and obtains good input / output characteristics. A polar solvent such as N-methylpyrrolidone (NMP) is preferably used to dissolve PVDF to form a slurry, but an aqueous emulsion such as SBR or CMC can also be used by dissolving it in water. If the amount of the binder added is too large, the resistance of the obtained electrode increases, which increases the internal resistance of the battery and deteriorates the battery characteristics, which is not preferable. Further, if the amount of the binder added is too small, the negative electrode material particles interconnect and the current collector are insufficiently bonded, which is not preferable. The preferable amount of the binder added varies depending on the type of binder used, but is preferably 3% by weight or more and 13% by weight or less, and more preferably 3% by weight or more and 10% by weight or less in the PVDF-based binder. On the other hand, in a binder that uses water as a solvent, a plurality of binders such as a mixture of SBR and CMC are often mixed and used, and the total amount of all the binders used is 0.5% by weight or more and 5% by weight or less. It is preferable, more preferably 1% by weight or more and 4% by weight or less. The electrode active material layer is basically formed on both sides of the current collector plate, but may be one side if necessary. The thicker the electrode active material layer, the smaller the number of current collector plates and separators, which is preferable for increasing the capacity. If it is too much, the input / output characteristics will deteriorate, which is not preferable. The thickness of the active material layer (per one side) is preferably 10 μm or more and 80 μm or less, more preferably 20 μm or more and 75 μm or less, and particularly preferably 20 μm or more and 60 μm or less. The electrode obtained here is preferably used as a negative electrode.
<電池>
本発明の電池用炭素質材料から製造された電極を電池に使用できる。本発明の炭素質材料を使用した電極を用いた電池、例えば、非水電解質二次電池は、放電容量、充放電効率、抵抗および出力特性に優れている。
<Battery>
Electrodes made from the carbonaceous material for batteries of the present invention can be used in batteries. The battery using the electrode using the carbonaceous material of the present invention, for example, the non-aqueous electrolyte secondary battery is excellent in discharge capacity, charge / discharge efficiency, resistance and output characteristics.
<非水電解質二次電池の製造>
本発明の電池用炭素質材料を用いて、非水電解質二次電池の負極電極を形成した場合、正極材料、セパレータ、及び電解液など電池を構成する他の材料は特に限定されることなく、非水電解質二次電池として従来使用され、あるいは提案されている種々の材料を使用することが可能である。例えば、正極材料としては、層状酸化物系(LiMO2と表されるもので、Mは金属:例えばLiCoO2、LiNiO2、LiMnO2、又はLiNixCoyMozO2(ここでx、y、zは組成比を表わす))、オリビン系(LiMPO4で表され、Mは金属:例えばLiFePO4など)、スピネル系(LiM2O4で表され、Mは金属:例えばLiMn2O4など)の複合金属カルコゲン化合物が好ましく、これらのカルコゲン化合物を必要に応じて混合してもよい。これらの正極材料を適当なバインダーと電極に導電性を付与するための炭素材料とともに成形して、導電性の集電材上に層形成することにより正極が形成される。
<Manufacturing of non-aqueous electrolyte secondary batteries>
When the negative electrode of the non-aqueous electrolyte secondary battery is formed by using the carbonaceous material for a battery of the present invention, other materials constituting the battery such as a positive electrode material, a separator, and an electrolytic solution are not particularly limited. It is possible to use various materials conventionally used or proposed as a non-aqueous electrolyte secondary battery. For example, as the positive electrode material, a layered oxide system (represented as LiMO 2 and M is a metal: for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , or LiNi x Coy Mo z O 2 (here x, y ). , Z represents the composition ratio)), olivine type (represented by LiMPO 4 , M is a metal: for example LiFePO 4 ), spinel type (represented by LiM 2 O 4 and M is a metal: for example LiMn 2 O 4 etc.) ), The composite metal chalcogen compound is preferable, and these chalcogen compounds may be mixed as necessary. A positive electrode is formed by molding these positive electrode materials together with an appropriate binder and a carbon material for imparting conductivity to the electrodes and forming a layer on the conductive current collector.
これら正極と負極との組み合わせで用いられる非水溶媒型電解液は、一般に非水溶媒に電解質を溶解することにより形成される。非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジエトキシエタン、γ-ブチルラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、スルホラン、又は1,3-ジオキソラン等の有機溶媒の一種又は二種以上を組み合わせて用いることができる。また、電解質としては、LiClO4、LiPF6、LiBF4、LiCF3SO3、LiAsF6、LiCl、LiBr、LiB(C6H5)4、又はLiN(SO3CF3)2等が用いられる。二次電池は、一般に上記のようにして形成した正極層と負極層とを必要に応じて不織布、その他の多孔質材料等からなる透液性セパレータを介して対向させ電解液中に浸漬させることにより形成される。セパレータとしては、二次電池に通常用いられる不織布、その他の多孔質材料からなる透過性セパレータを用いることができる。あるいはセパレータの代わりに、もしくはセパレータと一緒に、電解液を含浸させたポリマーゲルからなる固体電解質を用いることもできる。 The non-aqueous solvent type electrolytic solution used in combination with the positive electrode and the negative electrode is generally formed by dissolving the electrolyte in a non-aqueous solvent. Examples of the non-aqueous solvent include organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, γ-butyl lactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, and 1,3-dioxolane. Can be used alone or in combination of two or more. Further, as the electrolyte, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiCl, LiBr, LiB (C 6 H 5 ) 4, LiN (SO 3 CF 3 ) 2 , or the like is used. In a secondary battery, a positive electrode layer and a negative electrode layer formed as described above are generally opposed to each other via a liquid permeable separator made of a non-woven fabric, other porous material, etc., and immersed in an electrolytic solution, if necessary. Is formed by. As the separator, a permeable separator made of a non-woven fabric or other porous material usually used for a secondary battery can be used. Alternatively, instead of the separator or together with the separator, a solid electrolyte composed of a polymer gel impregnated with an electrolytic solution can be used.
<鉛電池の製造>
本発明の電池用炭素質材料を用いて、鉛電池の電極を形成した場合、対極材料、セパレータ、及び電解液など電池を構成する他の材料は特に限定されることなく、鉛電池として従来使用され、あるいは提案されている種々の材料を使用することが可能である。例えば、負極として本発明の電池用炭素質材料、平均一次粒子径が0.1~5μm程度の鉛粉、バインダーとしてリグニンスルホン酸ナトリウムおよび硫酸バリウムが使用できる。これらを混合ペースト化し、エキスパンド集電体(鉛-カルシウム-錫系合金)に負極材ペーストを充填して、負極板を作製できる。さらに、負極板を、温度50℃、湿度95%の雰囲気下で20時間熟成した後、温度50℃の雰囲気下で乾燥して、未化成負極板を得ることができる。正極として、平均一次粒子径が0.1~5μm程度の鉛粉、補強用短繊維(アクリル繊維)を乾式混合し、希硫酸及び水を加えて混練して、正極材ペーストを作製できる。エキスパンド集電体(鉛-カルシウム-錫系合金)に正極材ペーストを充填して、温度50℃、湿度95%の雰囲気下で20時間熟成した後、温度50℃の雰囲気下で乾燥して未化成正極板を得ることができる。こうして得られる、正極、負極を使用し交互に積層されるように、ポリエチレン製のセパレータを介して積層した後に、同極性の集電部同士をストラップで溶接させて極板群を作製し、極板群を電槽に挿入して2V単セル電池を組み立て、この電池に希硫酸を注液すると、鉛蓄電池が得られる。
<Manufacturing of lead-acid batteries>
When the electrode of a lead battery is formed by using the carbonaceous material for a battery of the present invention, other materials constituting the battery such as a counter electrode material, a separator, and an electrolytic solution are not particularly limited and are conventionally used as a lead battery. It is possible to use a variety of materials that have been or have been proposed. For example, the carbonaceous material for a battery of the present invention can be used as the negative electrode, lead powder having an average primary particle diameter of about 0.1 to 5 μm, and sodium lignin sulfonate and barium sulfate can be used as the binder. These can be mixed and pasted, and the expanded current collector (lead-calcium-tin alloy) is filled with the negative electrode material paste to prepare a negative electrode plate. Further, the negative electrode plate can be aged in an atmosphere of a temperature of 50 ° C. and a humidity of 95% for 20 hours, and then dried in an atmosphere of a temperature of 50 ° C. to obtain an unmodified negative electrode plate. As the positive electrode, lead powder having an average primary particle size of about 0.1 to 5 μm and reinforcing short fibers (acrylic fibers) are dry-mixed, and dilute sulfuric acid and water are added and kneaded to prepare a positive electrode material paste. An expanded current collector (lead-calcium-tin alloy) is filled with a positive electrode material paste and aged for 20 hours in an atmosphere of a temperature of 50 ° C. and a humidity of 95%, and then dried in an atmosphere of a temperature of 50 ° C. and not yet dried. A chemical positive electrode plate can be obtained. After laminating via a polyethylene separator so that the positive and negative electrodes obtained in this way are alternately laminated, the current collectors of the same polarity are welded together with a strap to form a electrode plate group, and the electrodes are formed. A lead storage battery is obtained by inserting a group of plates into an electric tank to assemble a 2V single cell battery and injecting dilute sulfuric acid into the battery.
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but these do not limit the scope of the present invention.
実施例中の物性値の測定は以下に記載の方法に従って行った。 The measurement of the physical property values in the examples was carried out according to the method described below.
<硫黄元素含有量>
硫黄元素含有量は、(株)堀場製作所製「炭素・硫黄分析装置EMIA-920V2 HORIBA製」を用いて測定した。この装置の検出方法は、硫黄:酸素気流中燃焼(高周波誘導加熱炉方式)-非分散赤外吸収法(NDIR)であり、校正は、(酸素・窒素)アルミナるつぼに助燃剤であるW(タングステン)とSn(スズ)のみを入れてブランクとし、標準物質であるJSS152-18[C:0.277%、S:0.0056%]およびJSS150-16 [S:0.0296%]を用いて行った。前処理として250℃で約10分間脱水処理を施した試料50mgを、粒子状タングステン1.5g、粒子状スズ0.3gをアルミナるつぼに量り取り、元素分析装置内で30秒間脱ガスした後、純酸素気流下で高周波により加熱燃焼させ測定を行った。3検体を分析し、その平均値を分析値とした。
<Sulfur element content>
The sulfur element content was measured using "Carbon / Sulfur Analyzer EMIA-920V2 HORIBA" manufactured by HORIBA, Ltd. The detection method of this device is sulfur: combustion in oxygen stream (high frequency induction heating furnace method) -non-dispersion infrared absorption method (NDIR), and the calibration is (oxygen / nitrogen) alumina crucible with W (fuel aid). (Tungsten) and Sn (tin) were added to make a blank, and the standard substances JSS152-18 [C: 0.277%, S: 0.0056%] and JSS150-16 [S: 0.0296%] were used. I went there. As a pretreatment, 50 mg of a sample that had been dehydrated at 250 ° C. for about 10 minutes was weighed into an alumina crucible with 1.5 g of particulate tungsten and 0.3 g of particulate tin, degassed in an elemental analyzer for 30 seconds, and then degassed. The measurement was carried out by heating and burning with a high frequency under a pure oxygen stream. Three samples were analyzed and the average value was used as the analysis value.
<真密度>
真密度ρBtは、JIS R 7212に定められた方法に従い、ブタノール法により測定した。内容積約40mLの側管付比重びんの質量(m1)を正確に量り、次に、その底部に試料を約10mmの厚さになるように平らに入れた後、その質量(m2)を正確に量った。これに1-ブタノールを静かに加えて、底から20mm程度の深さにした。次に比重びんに軽い振動を加えて、大きな気泡の発生がなくなったのを確かめた後、真空デシケーター中に入れ、徐々に排気して2.0~2.7kPaとした。その圧力に20分間以上保ち、気泡の発生が止まった後に、比重びんを取り出し、さらに1-ブタノールを満たし、栓をして恒温水槽(30±0.03℃に調節してあるもの)に15分間以上浸し、1-ブタノールの液面を標線に合わせた。次に、これを取り出して外部をよくぬぐって室温まで冷却した後、質量(m4)を正確に量った。次に、同じ比重びんに1-ブタノールだけを満たし、前記と同じようにして恒温水槽に浸し、標線を合わせた後、質量(m3)を量った。また使用直前に沸騰させて溶解した気体を除いた蒸留水を比重びんにとり、前記と同様に恒温水槽に浸し、標線を合わせた後、質量(m5)を量った。真密度ρBtは次の式により計算した。このとき、dは水の30℃における比重(0.9946)である。
(式1)
<True density>
The true density ρBt was measured by the butanol method according to the method specified in JIS R 7212. Accurately weigh the weight bottle with side tube (m 1 ) with an internal volume of about 40 mL, then place the sample flat on the bottom to a thickness of about 10 mm, and then the mass (m 2 ). Was measured accurately. 1-Butanol was gently added to this to a depth of about 20 mm from the bottom. Next, a light vibration was applied to the specific gravity bottle to confirm that the generation of large bubbles disappeared, and then the bottle was placed in a vacuum desiccator and gradually exhausted to 2.0 to 2.7 kPa. Keep the pressure at that pressure for 20 minutes or more, and after the generation of air bubbles has stopped, take out the specific gravity bottle, fill it with 1-butanol, plug it, and put it in a constant temperature water tank (adjusted to 30 ± 0.03 ° C). After soaking for more than a minute, the liquid level of 1-butanol was aligned with the marked line. Next, it was taken out, wiped well and cooled to room temperature, and then the mass (m 4 ) was accurately weighed. Next, the same density bottle was filled with only 1-butanol, immersed in a constant temperature water tank in the same manner as described above, marked with a line, and then weighed (m 3 ). Distilled water from which the gas dissolved by boiling immediately before use was removed was placed in a specific gravity bottle, immersed in a constant temperature water tank in the same manner as described above, aligned with the marked lines, and then weighed (m 5 ). The true density ρBt was calculated by the following formula. At this time, d is the specific gravity (0.9946) of water at 30 ° C.
(Equation 1)
<酸素元素含有量>
酸素元素含有量は(株)堀場製作所製「酸素・窒素・水素分析装置EMGA-930」を用いて測定した。この装置の検出方法は、酸素:不活性ガス融解-非分散型赤外線吸収法(NDIR)、窒素:不活性ガス融解-熱伝導度法(TCD)、水素:不活性ガス融解-非分散型赤外線吸収法(NDIR)であり、校正は、(酸素・窒素)Niカプセル、TiH2(H標準試料)、およびSS-3(N、O標準試料)により行った。前処理として250℃で約10分間脱水処理を施した試料20mgを、Niカプセルに量り取り、元素分析装置内で30秒間脱ガスした後、測定を行った。3検体を分析し、その平均値を分析値とした。
<Oxygen element content>
The oxygen element content was measured using "Oxygen / Nitrogen / Hydrogen Analyzer EMGA-930" manufactured by HORIBA, Ltd. The detection methods of this device are oxygen: inert gas melting-non-dispersive infrared absorption method (NDIR), nitrogen: inert gas melting-thermal conductivity method (TCD), hydrogen: inert gas melting-non-dispersive infrared rays. It was an absorption method (NDIR) and was calibrated by (oxygen / nitrogen) Ni capsules, TiH 2 (H standard sample), and SS-3 (N, O standard sample). As a pretreatment, 20 mg of a sample dehydrated at 250 ° C. for about 10 minutes was weighed into Ni capsules, degassed in an elemental analyzer for 30 seconds, and then measured. Three samples were analyzed and the average value was used as the analysis value.
<六角網面積層方向>
六角網面積層方向Lcは(株)リガク製「MiniFlexII」を用いたX線回折試験により求めた。炭素質材料粉末を試料ホルダーに充填し、Niフィルターにより単色化したCuKα線を線源とし、X線回折図形を得た。回折図形のピーク位置は重心法(回折線の重心位置を求め、これに対応する2θ値でピーク位置を求める方法)により求め、標準物質用高純度シリコン粉末の(111)面の回折ピークを用いて補正した。CuKα線の波長を0.15418nmとし、Scherrerの式に代入することによりLcを算出した。
(式2)
<Hexagonal net area layer direction>
The hexagonal net area layer direction Lc was determined by an X-ray diffraction test using "MiniFlexII" manufactured by Rigaku Co., Ltd. A sample holder was filled with carbonaceous material powder, and CuKα rays monochromaticized by a Ni filter were used as a radiation source to obtain an X-ray diffraction pattern. The peak position of the diffraction pattern is obtained by the center of gravity method (a method of obtaining the position of the center of gravity of the diffraction line and the peak position by the corresponding 2θ value), and the diffraction peak on the (111) plane of the high-purity silicon powder for a standard material is used. Corrected. The wavelength of the CuKα ray was set to 0.15418 nm, and Lc was calculated by substituting it into the Scherrer equation.
(Equation 2)
ここで、Kは形状因子(0.9)、λはX線の波長(CuKαm=0.15418nm)、θは回折角、βは半値幅を表す。 Here, K is a shape factor (0.9), λ is an X-ray wavelength (CuKαm = 0.15418 nm), θ is a diffraction angle, and β is a half width.
<平均粒径>
平均粒径(粒度分布)は、日機装(株)製「マイクロトラックM T3000」を用いて測定した。試料を界面活性剤(和光純薬工業(株)製「ToritonX100」)が0.3質量%含まれた水溶液に投入し、超音波洗浄器で10分以上処理し、水溶液中に分散させた。この分散液を用いて粒度分布を測定した。D50は、累積体積が50%となる粒径であり、この値を平均粒径として用いた。
<Average particle size>
The average particle size (particle size distribution) was measured using "Microtrac MT3000" manufactured by Nikkiso Co., Ltd. The sample was put into an aqueous solution containing 0.3% by mass of a surfactant (“Toriton X100” manufactured by Wako Pure Chemical Industries, Ltd.), treated with an ultrasonic cleaner for 10 minutes or more, and dispersed in the aqueous solution. The particle size distribution was measured using this dispersion. D50 is a particle size having a cumulative volume of 50%, and this value was used as the average particle size.
<平均面間隔>
平均面間隔d002は(株)リガク製「MiniFlexII」を用いたX線回折試験により求めた。炭素質材料粉末を試料ホルダーに充填し、Niフィルターにより単色化したCuKα線を線源とし、X線回折図形を得た。回折図形のピーク位置は重心法(回折線の重心位置を求め、これに対応する2θ値でピーク位置を求める方法)により求め、標準物質用高純度シリコン粉末の(111)面の回折ピークを用いて補正した。CuKα線の波長を0.15418nmとし、以下に示すBraggの公式によりd002を算出した。
(式3)
<Average surface spacing>
The average surface spacing d 002 was determined by an X-ray diffraction test using "MiniFlex II" manufactured by Rigaku Co., Ltd. A sample holder was filled with carbonaceous material powder, and CuKα rays monochromaticized by a Ni filter were used as a radiation source to obtain an X-ray diffraction pattern. The peak position of the diffraction pattern is obtained by the center of gravity method (a method of obtaining the position of the center of gravity of the diffraction line and the peak position by the corresponding 2θ value), and the diffraction peak on the (111) plane of the high-purity silicon powder for a standard material is used. Corrected. The wavelength of the CuKα ray was set to 0.15418 nm, and d002 was calculated by the Bragg's formula shown below.
(Equation 3)
<比表面積>
比表面積は窒素吸着法により測定した。式4にBETの式から誘導された近似式を記す。
(式4)
<Specific surface area>
The specific surface area was measured by the nitrogen adsorption method. Equation 4 describes an approximate equation derived from the equation of BET.
(Equation 4)
式4の近似式を用いて、液体窒素温度における、窒素吸着による3点法によりvmを求め、次の式5により試料の比表面積を計算した。
(式5)
Using the approximate formula of Equation 4, vm was obtained by the three-point method by nitrogen adsorption at the liquid nitrogen temperature, and the specific surface area of the sample was calculated by the following equation 5.
(Equation 5)
このとき、vmは試料表面に単分子層を形成するに必要な吸着量(cm3/g)、vは実測される吸着量(cm3/g)、p0は飽和蒸気圧、pは絶対圧、cは定数(吸着熱を反映)、Nはアボガドロ数6.022×1023、a(nm2)は吸着質分子が試料表面で占める面積(分子占有断面積)である。 At this time, v m is the adsorption amount (cm 3 / g) required to form a monomolecular layer on the sample surface, v is the measured adsorption amount (cm 3 / g), p 0 is the saturated vapor pressure, and p is p. Absolute pressure, c is a constant (reflecting heat of adsorption), N is Avogadro's number 6.022 × 10 23 , and a (nm 2 ) is the area occupied by the adsorbent molecule on the sample surface (molecular occupied cross-sectional area).
具体的には、日本BELL(株)社製「BELL MAX」を用いて、以下のようにして液体窒素温度における炭素質材料への窒素の吸着量を測定した。粒子径約5μmから50μmに粉砕した炭素質材料を試料管に充填し、試料管を-196℃に冷却した状態で、一旦減圧し、その後所望の相対圧にて炭素質材料に窒素(純度99.999%)を吸着させた。各所望の相対圧にて平衡圧に達した時の試料に吸着した窒素量を吸着ガス量vとした。 Specifically, using "BELL MAX" manufactured by Nippon BELL Co., Ltd., the amount of nitrogen adsorbed on the carbonaceous material at the liquid nitrogen temperature was measured as follows. The sample tube is filled with a carbonaceous material crushed to a particle size of about 5 μm to 50 μm, the sample tube is cooled to -196 ° C., the pressure is reduced once, and then nitrogen (purity 99) is added to the carbonaceous material at a desired relative pressure. .999%) was adsorbed. The amount of nitrogen adsorbed on the sample when the equilibrium pressure was reached at each desired relative pressure was defined as the adsorbed gas amount v.
<炭素質材料の作製>
(実施例1)
硫黄元素含有量が2質量%のリグニン18.0gを舟形坩堝に入れ、(株)モトヤマ製環状炉(管径200mmφ×1800mm)に導入した。10LN/分の流量で窒素を1時間導入し系内を窒素置換したのち、常温から600℃まで昇温(昇温速度2.5℃/分)させ、600℃で1時間保持し、12時間かけて600℃から常温に自然放冷したのち、炭化物を取り出した。8.18gの炭化物を得た(回収率45.4%)。得られた炭化物を、ミキサーミルで平均粒径8.13μmに粗粉砕した後、粉砕物7.06gを舟形坩堝に入れ、再び環状炉に導入、5LN/分の流量で窒素を1時間導入し系内を窒素置換したのち、常温から1000℃まで昇温(昇温速度10度/分)させ、1000℃で30分保持して焼成後、12時間かけて室温まで冷却し、6.37gの炭素質材料を得た(収率90.3%)。得られた炭素質材料の物性を表1に示す。
<Manufacturing of carbonaceous materials>
(Example 1)
18.0 g of lignin having a sulfur element content of 2% by mass was placed in a boat-shaped crucible and introduced into an annular furnace manufactured by Motoyama Co., Ltd. (tube diameter 200 mmφ × 1800 mm). Nitrogen was introduced at a flow rate of 10 LN / min for 1 hour to replace the inside of the system with nitrogen, then the temperature was raised from room temperature to 600 ° C (heating rate 2.5 ° C / min), held at 600 ° C for 1 hour, and 12 After allowing it to cool naturally from 600 ° C. to room temperature over time, the charcoal was taken out. 8.18 g of carbide was obtained (recovery rate 45.4%). The obtained carbide was coarsely pulverized with a mixer mill to an average particle size of 8.13 μm, then 7.06 g of the pulverized material was placed in a boat-shaped crucible and introduced again into an annular furnace, and nitrogen was introduced at a flow rate of 5 LN / min for 1 hour. After replacing the inside of the crucible with nitrogen, the temperature is raised from room temperature to 1000 ° C (heating rate 10 ° C / min), held at 1000 ° C for 30 minutes, fired, and then cooled to room temperature over 12 hours to reach 6.37 g. Carbonaceous material was obtained (yield 90.3%). Table 1 shows the physical characteristics of the obtained carbonaceous material.
(実施例2)
焼成温度を1200℃とした以外は、実施例1と同様にして炭素質材料を収率88.3%で得た。得られた炭素質材料の物性を表1に示す。
(Example 2)
A carbonaceous material was obtained in a yield of 88.3% in the same manner as in Example 1 except that the firing temperature was set to 1200 ° C. Table 1 shows the physical characteristics of the obtained carbonaceous material.
(実施例3)
硫黄元素含有量が2質量%のリグニン18.0gを舟形坩堝に入れ、(株)モトヤマ製環状炉(管径200mmφ×1800mm)に導入した。10LN/分の流量で窒素を1時間導入し系内を窒素置換したのち、常温から600℃まで昇温(昇温速度2.5℃/分)させ、600℃で1時間保持し、12時間かけて600℃から常温に自然放冷したのち、炭化物を取り出した。8.21gの炭化物を得た(回収率45.6%)。得られた炭化物を、乳鉢で平均粒径190μmに粗粉砕した後、粉砕物7.33gを舟形坩堝に入れ、再び環状炉に導入、5LN/分の流量で窒素を1時間導入し系内を窒素置換したのち、常温から1000℃まで昇温(昇温速度10度/分)させ、1000℃で30分保持して焼成後、12時間かけて室温まで冷却し、6.41gの炭素質材料を得た(収率87.4%)。得られた炭素質材料の物性を表1に示す。
(Example 3)
18.0 g of lignin having a sulfur element content of 2% by mass was placed in a boat-shaped crucible and introduced into an annular furnace manufactured by Motoyama Co., Ltd. (tube diameter 200 mmφ × 1800 mm). Nitrogen was introduced at a flow rate of 10 LN / min for 1 hour to replace the inside of the system with nitrogen, then the temperature was raised from room temperature to 600 ° C (heating rate 2.5 ° C / min), held at 600 ° C for 1 hour, and 12 After allowing it to cool naturally from 600 ° C. to room temperature over time, the charcoal was taken out. 8.21 g of carbide was obtained (recovery rate 45.6%). The obtained carbide is roughly pulverized in a dairy pot to an average particle size of 190 μm, then 7.33 g of the pulverized substance is placed in a boat-shaped crucible, introduced into the annular furnace again, and nitrogen is introduced into the system at a flow rate of 5 LN / min for 1 hour. After replacing with nitrogen, the temperature was raised from room temperature to 1000 ° C (heating rate 10 ° C / min), held at 1000 ° C for 30 minutes, calcined, and then cooled to room temperature over 12 hours to obtain 6.41 g of carbonaceous material. The material was obtained (yield 87.4%). Table 1 shows the physical characteristics of the obtained carbonaceous material.
(比較例1)
焼成温度を800℃とした以外は、実施例1と同様にして炭素質材料を収率98.4%で得た。得られた炭素質材料の物性を表1に示す。
(Comparative Example 1)
A carbonaceous material was obtained in a yield of 98.4% in the same manner as in Example 1 except that the firing temperature was set to 800 ° C. Table 1 shows the physical characteristics of the obtained carbonaceous material.
(比較例2)
硫黄元素含有量が0.1質量%、融点212℃のリグニンを用いた以外は、実施例1と同様にして炭素質材料を収率84.5%で得た。得られた炭素質材料の物性を表1に示す。
(Comparative Example 2)
A carbonaceous material was obtained in a yield of 84.5% in the same manner as in Example 1 except that lignin having a sulfur element content of 0.1% by mass and a melting point of 212 ° C. was used. Table 1 shows the physical characteristics of the obtained carbonaceous material.
(比較例3)
硫黄元素含有量が2質量%のリグニン25.0gを1Nの水酸化ナトリウム水溶液250gに添加、溶解して、20℃で8時間加熱攪拌した。1Nの塩酸300gを添加し、析出したリグニンを回収し、イオン交換水500gを使用し洗浄した。乾燥後、硫黄元素含有量が0.4%であることを確認した。得られたリグニン18.0gを舟形坩堝に入れ、(株)モトヤマ製環状炉(管径200mmφ×1800mm)に導入した。10LN/分の流量で窒素を1時間導入し系内を窒素置換したのち、常温から600℃まで昇温(昇温速度2.5℃/分)させ、600℃で1時間保持し、12時間かけて600℃から常温に自然放冷したのち、炭化物を取り出した。7.81gの炭化物を得た(回収率43.3%)。得られた炭化物を、乳鉢で平均粒径201μmに粗粉砕した後、粉砕物7.00gを舟形坩堝に入れ、再び環状炉に導入、5LN/分の流量で窒素を1時間導入し系内を窒素置換したのち、常温から800℃まで昇温(昇温速度10度/分)させ、800℃で30分保持して焼成後、12時間かけて室温まで冷却し、6.63gの炭素質材料を得た(収率94.8%)。得られた炭素質材料の物性を表1に示す。
(Comparative Example 3)
25.0 g of lignin having a sulfur element content of 2% by mass was added to 250 g of a 1N sodium hydroxide aqueous solution, dissolved, and heated and stirred at 20 ° C. for 8 hours. 300 g of 1N hydrochloric acid was added, and the precipitated lignin was recovered and washed with 500 g of ion-exchanged water. After drying, it was confirmed that the sulfur element content was 0.4%. 18.0 g of the obtained lignin was put into a boat-shaped crucible and introduced into an annular furnace manufactured by Motoyama Co., Ltd. (tube diameter 200 mmφ × 1800 mm). Nitrogen was introduced at a flow rate of 10 LN / min for 1 hour to replace the inside of the system with nitrogen, then the temperature was raised from room temperature to 600 ° C (heating rate 2.5 ° C / min), held at 600 ° C for 1 hour, and 12 After allowing it to cool naturally from 600 ° C. to room temperature over time, the charcoal was taken out. 7.81 g of carbide was obtained (recovery rate 43.3%). The obtained carbide is roughly pulverized in a dairy pot to an average particle size of 201 μm, then 7.00 g of the pulverized substance is placed in a boat-shaped crucible, introduced into the annular furnace again, and nitrogen is introduced into the system at a flow rate of 5 LN / min for 1 hour. After replacing with nitrogen, the temperature was raised from room temperature to 800 ° C (heating rate 10 ° C / min), held at 800 ° C for 30 minutes, calcined, and then cooled to room temperature over 12 hours to achieve 6.63 g of carbonaceous material. The material was obtained (yield 94.8%). Table 1 shows the physical characteristics of the obtained carbonaceous material.
(比較例4)
硫黄元素含有量が2質量%のリグニン25.0gを1Nの水酸化ナトリウム水溶液250gに添加、溶解して、20℃で8時間加熱攪拌した。1Nの塩酸300gを添加し、析出したリグニンを回収し、イオン交換水500gを使用し洗浄した。乾燥後、硫黄元素含有量が0.4%であることを確認した。得られたリグニン18.0gを舟形坩堝に入れ、(株)モトヤマ製環状炉(管径200mmφ×1800mm)に導入した。10LN/分の流量で窒素を1時間導入し系内を窒素置換したのち、常温から600℃まで昇温(昇温速度2.5℃/分)させ、600℃で1時間保持し、12時間かけて600℃から常温に自然放冷したのち、炭化物を取り出した。7.81gの炭化物を得た(回収率43.3%)。得られた炭化物を、乳鉢で平均粒径6.4μmに粗粉砕した後、粉砕物7.00gを舟形坩堝に入れ、再び環状炉に導入、5LN/分の流量で窒素を1時間導入し系内を窒素置換したのち、常温から800℃まで昇温(昇温速度10度/分)させ、800℃で30分保持して焼成後、12時間かけて室温まで冷却し、5.22gの炭素質材料を得た(収率74.6%)。得られた炭素質材料の物性を表1に示す。
25.0 g of lignin having a sulfur element content of 2% by mass was added to 250 g of a 1N sodium hydroxide aqueous solution, dissolved, and heated and stirred at 20 ° C. for 8 hours. 300 g of 1N hydrochloric acid was added, and the precipitated lignin was recovered and washed with 500 g of ion-exchanged water. After drying, it was confirmed that the sulfur element content was 0.4%. 18.0 g of the obtained lignin was put into a boat-shaped crucible and introduced into an annular furnace manufactured by Motoyama Co., Ltd. (tube diameter 200 mmφ × 1800 mm). Nitrogen was introduced at a flow rate of 10 LN / min for 1 hour to replace the inside of the system with nitrogen, then the temperature was raised from room temperature to 600 ° C (heating rate 2.5 ° C / min), held at 600 ° C for 1 hour, and 12 After allowing it to cool naturally from 600 ° C. to room temperature over time, the charcoal was taken out. 7.81 g of carbide was obtained (recovery rate 43.3%). The obtained carbide was coarsely pulverized in a dairy pot to an average particle size of 6.4 μm, then 7.00 g of the pulverized material was placed in a boat-shaped crucible and introduced again into an annular furnace, and nitrogen was introduced at a flow rate of 5 LN / min for 1 hour. After replacing the inside of the system with nitrogen, the temperature is raised from room temperature to 800 ° C (heating rate 10 ° C / min), held at 800 ° C for 30 minutes, fired, and then cooled to room temperature over 12 hours to 5.22 g. A carbonaceous material was obtained (yield 74.6%). Table 1 shows the physical characteristics of the obtained carbonaceous material.
<ドープ-脱ドープ試験>
実施例及び比較例で得られた炭素質材料用いて、負極電極及び非水電解質二次電池を作製し、性能の評価を行った。
<Dope-dedoping test>
Using the carbonaceous materials obtained in Examples and Comparative Examples, a negative electrode and a non-aqueous electrolyte secondary battery were prepared and their performance was evaluated.
・電極の作製
上記炭素質材料90重量部、ポリフッ化ビニリデン((株)クレハ製「KF#1100」)10重量部にNMPを加えてペースト状にし、銅箔上に均一に塗布した。乾燥した後、銅箔より直径15mmの円盤状に打ち抜き、これをプレスして電極とした。なお、電極中の炭素質材料の量は約10mgになるように調整した。
-Preparation of electrodes NMP was added to 90 parts by weight of the above carbonaceous material and 10 parts by weight of polyvinylidene fluoride ("KF # 1100" manufactured by Kureha Corporation) to form a paste, which was uniformly applied onto a copper foil. After drying, it was punched from a copper foil into a disk shape having a diameter of 15 mm, and this was pressed into an electrode. The amount of carbonaceous material in the electrode was adjusted to be about 10 mg.
・試験電池の作製
本発明の炭素質材料は非水電解質二次電池の負極電極を構成するのに適しているが、電池活物質の放電容量(脱ドープ量)および不可逆容量(非脱ドープ量)を、対極の性能のバラツキに影響されることなく精度良く評価するために、特性の安定したリチウム金属を対極として、上記で得られた電極を用いてリチウム二次電池を構成し、その特性を評価した。リチウム極の調製は、Ar雰囲気中のグローブボックス内で行った。予め2016サイズのコイン型電池用缶の外蓋に直径16mmのステンレススチール網円盤をスポット溶接した後、厚さ0.8mmの金属リチウム薄板を直径15mmの円盤状に打ち抜いたものをステンレススチール網円盤に圧着し、電極(対極)とした。このようにして製造した電極の対を用い、電解液としてはエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートを容量比で1:2:2で混合した混合溶媒に1.5mol/Lの割合でLiPF6を加えたものを使用し、直径19mmの硼珪酸塩ガラス繊維製微細細孔膜のセパレータとして、ポリエチレン製のガスケットを用いて、Arグローブボックス中で、2016サイズのコイン型非水電解質系リチウム二次電池を組み立てた。
-Manufacture of test battery The carbonaceous material of the present invention is suitable for forming the negative electrode of a non-aqueous electrolyte secondary battery, but the discharge capacity (dedoped amount) and irreversible capacity (non-dedoped amount) of the battery active material. ) Is evaluated accurately without being affected by the variation in the performance of the counter electrode, a lithium secondary battery is constructed using the electrodes obtained above with a lithium metal having stable characteristics as the counter electrode, and its characteristics. Was evaluated. Lithium poles were prepared in a glove box in an Ar atmosphere. A stainless steel mesh disk with a diameter of 16 mm is spot-welded to the outer lid of a 2016-size coin-cell battery can, and then a 0.8 mm-thick metal lithium thin plate is punched into a disk with a diameter of 15 mm. It was crimped to the electrode (counter electrode). Using the pair of electrodes produced in this way, the electrolyte was a mixture of ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate in a volume ratio of 1: 2: 2, and LiPF 6 at a ratio of 1.5 mol / L. 2016 size coin-type non-aqueous electrolyte-based lithium battery in an Ar glove box using a polyethylene gasket as a separator for fine pore membranes made of borosilicate glass fiber with a diameter of 19 mm. I assembled the next battery.
・電池容量の測定
上記構成のリチウム二次電池について、充放電試験装置((株)東洋システム製「TOSCAT」)を用いて25℃にて充放電試験を行った。炭素極へのリチウムのドープ反応を定電流定電圧法により行い、脱ドープ反応を定電流法で行った。ここで、正極にリチウムカルコゲン化合物を使用した電池では、炭素極へのリチウムのドープ反応が「充電」であり、本発明の試験電池のように対極にリチウム金属を使用した電池では、炭素極へのドープ反応が「放電」と呼ぶことになり、用いる対極により同じ炭素極へのリチウムのドープ反応の呼び方が異なる。そこで、ここでは、便宜上炭素極へのリチウムのドープ反応を「充電」と記述することにする。逆に「放電」とは試験電池では充電反応であるが、炭素質材料からのリチウムの脱ドープ反応であるため便宜上「放電」と記述することにする。ここで採用した充電方法は定電流定電圧法であり、具体的には端子電圧が0mVになるまで0.5mA/cm2で定電流充電を行い、端子電圧を0mVに達した後、端子電圧0mVで定電圧充電を行い電流値が20μAに達するまで充電を継続した。このとき、供給した電気量を電極の炭素質材料の重量で除した値を炭素質材料の単位重量当たりの全充電容量(mAh/g)と定義した。充電終了後、30分間電池回路を開放し、その後放電を行った。放電は0.5mA/cm2で定電流放電を行い、終止電圧を1.5Vとした。このとき放電した電気量を電極の炭素質材料の重量で除した値を炭素質材料の単位重量当たりの全放電容量(mAh/g)と定義する。不可逆容量は、充電容量-放電容量として計算される。同一試料を用いて作製した試験電池についてのn=3の測定値を平均して充放電容量および不可逆容量を決定した。全充電容量に対する全放電容量の割合を百分率で表したものを充放電効率とし、前記全充電容量および充放電容量の測定の際に得られる充放電曲線から計算してCC放電容量、CV放電容量および直流抵抗を求めた。結果を表2に示す。
-Measurement of battery capacity The lithium secondary battery having the above configuration was subjected to a charge / discharge test at 25 ° C. using a charge / discharge test device (“TOSCAT” manufactured by Toyo System Co., Ltd.). The lithium doping reaction to the carbon electrode was carried out by the constant current constant voltage method, and the dedoping reaction was carried out by the constant current method. Here, in a battery using a lithium chalcogen compound for the positive electrode, the doping reaction of lithium to the carbon electrode is "charging", and in a battery using a lithium metal as the counter electrode like the test battery of the present invention, the carbon electrode is used. The dope reaction of lithium is called "discharge", and the way of calling the dope reaction of lithium to the same carbon electrode differs depending on the counter electrode used. Therefore, here, for convenience, the doping reaction of lithium to the carbon electrode will be described as "charging". On the contrary, "discharge" is a charge reaction in a test battery, but since it is a dedoped reaction of lithium from a carbonaceous material, it is described as "discharge" for convenience. The charging method adopted here is a constant current constant voltage method. Specifically, constant current charging is performed at 0.5 mA / cm 2 until the terminal voltage reaches 0 mV, and after the terminal voltage reaches 0 mV, the terminal voltage is reached. Constant voltage charging was performed at 0 mV, and charging was continued until the current value reached 20 μA. At this time, the value obtained by dividing the amount of supplied electricity by the weight of the carbonaceous material of the electrode was defined as the total charge capacity (mAh / g) per unit weight of the carbonic material. After the charging was completed, the battery circuit was opened for 30 minutes, and then the battery was discharged. The discharge was a constant current discharge at 0.5 mA / cm 2 , and the final voltage was 1.5 V. The value obtained by dividing the amount of electricity discharged at this time by the weight of the carbonaceous material of the electrode is defined as the total discharge capacity (mAh / g) per unit weight of the carbonic material. The irreversible capacity is calculated as charge capacity-discharge capacity. The charge / discharge capacity and the irreversible capacity were determined by averaging the measured values of n = 3 for the test batteries prepared using the same sample. The charge / discharge efficiency is the ratio of the total discharge capacity to the total charge capacity expressed as a percentage, and the CC discharge capacity and CV discharge capacity are calculated from the charge / discharge curves obtained when measuring the total charge capacity and the charge / discharge capacity. And the DC resistance was calculated. The results are shown in Table 2.
・出力特性
電池容量測定において、測定温度を-20℃として測定し、得られた放電容量を25℃で放電した時の容量で除して-20℃での放電維持率とした。
表2で示される通り、本発明の電池用炭素質材料を使用することにより、放電容量、充放電効率、抵抗および出力特性に優れた電池となることが分かる。 As shown in Table 2, it can be seen that by using the carbonaceous material for a battery of the present invention, a battery having excellent discharge capacity, charge / discharge efficiency, resistance and output characteristics can be obtained.
また、実施例3で示されるように、硫黄元素含有量やブタノール真密度等本発明の炭素質材料の物性を維持した、比較的大きな粒子径の炭素質材料を得ることができ、これは、鉛電池用途にも適用できる。 Further, as shown in Example 3, it is possible to obtain a carbonaceous material having a relatively large particle size, which maintains the physical characteristics of the carbonaceous material of the present invention, such as the sulfur element content and the true density of butanol. It can also be applied to lead battery applications.
本発明の電池用炭素質材料は少ない工程で作製され、また該炭素質材料を使用した電極を用いた電池は、放電容量、充放電効率、抵抗および出力特性に優れている。従って、様々な電池に適用できる可能性がある。 The carbonaceous material for a battery of the present invention is produced in a small number of steps, and a battery using an electrode using the carbonaceous material is excellent in discharge capacity, charge / discharge efficiency, resistance and output characteristics. Therefore, it may be applicable to various batteries.
Claims (10)
前記炭化物を非酸化性雰囲気中で、1000℃以上1400℃以下で焼成して、炭素質材料を得る焼成工程と、
を含む、請求項1~5のいずれかに記載の電池用炭素質材料の製造方法。 A carbonization step of carbonizing lignin having a sulfur element content of 0.1% by mass or more and a melting point of 300 ° C. or more to obtain a carbide.
A firing step of calcining the carbide at 1000 ° C. or higher and 1400 ° C. or lower in a non-oxidizing atmosphere to obtain a carbonaceous material.
The method for producing a carbonaceous material for a battery according to any one of claims 1 to 5.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019086222A JP2022092077A (en) | 2019-04-26 | 2019-04-26 | Carbonaceous material for battery |
PCT/JP2020/017080 WO2020218250A1 (en) | 2019-04-26 | 2020-04-20 | Carbonaceous material for battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019086222A JP2022092077A (en) | 2019-04-26 | 2019-04-26 | Carbonaceous material for battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022092077A true JP2022092077A (en) | 2022-06-22 |
Family
ID=72942746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019086222A Pending JP2022092077A (en) | 2019-04-26 | 2019-04-26 | Carbonaceous material for battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022092077A (en) |
WO (1) | WO2020218250A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7549756B2 (en) | 2022-02-21 | 2024-09-11 | 株式会社クラレ | Carbonaceous Materials |
SE545789C2 (en) * | 2022-05-09 | 2024-02-06 | Stora Enso Oyj | Method for removing sulfur from a carbon material |
CN118005004B (en) * | 2024-04-09 | 2024-07-12 | 成都锂能科技有限公司 | Hard carbon negative electrode material for sodium ion battery and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07226202A (en) * | 1993-12-17 | 1995-08-22 | Mitsubishi Gas Chem Co Inc | Improved nonaqueous solvent lithium secondary battery |
JP4615416B2 (en) * | 2005-10-06 | 2011-01-19 | Jx日鉱日石エネルギー株式会社 | Carbonaceous material for activated carbon production |
JP5167713B2 (en) * | 2007-07-27 | 2013-03-21 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery |
JP5894688B2 (en) * | 2014-02-28 | 2016-03-30 | 株式会社クレハ | Non-aqueous electrolyte secondary battery carbonaceous material and manufacturing method thereof, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery |
JP2016152223A (en) * | 2015-02-19 | 2016-08-22 | 株式会社クレハ | Carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
JP7017296B2 (en) * | 2015-10-30 | 2022-02-08 | 株式会社クラレ | Carbonaceous material for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries |
-
2019
- 2019-04-26 JP JP2019086222A patent/JP2022092077A/en active Pending
-
2020
- 2020-04-20 WO PCT/JP2020/017080 patent/WO2020218250A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2020218250A1 (en) | 2020-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101494715B1 (en) | Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same | |
KR101461220B1 (en) | Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same | |
KR101786714B1 (en) | Negative active material for rechargeable lithium battery including core consisting of carbon, method of preparing the same, and rechargeable lithium battery including the same | |
KR101368474B1 (en) | Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
WO2015098551A1 (en) | Solid-state lithium battery, solid-state lithium battery module, and method for producing solid-state lithium battery | |
KR20170048211A (en) | Negative electrode active particle and method for manufacturing the same | |
KR101419792B1 (en) | Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
KR20180017796A (en) | Sulfur-carbon complex, preaparation method thereof, and lithium-sulfur battery comprising the same | |
KR101309241B1 (en) | Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
KR20150063620A (en) | Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
JP5478693B2 (en) | Positive electrode active material for secondary battery and method for producing the same | |
JP2010056087A (en) | Porous anode active substance, its manufacturing method, and anode and lithium cell containing the same | |
KR101992668B1 (en) | Method for producing mixed negative electrode material for non-aqueous electrolyte secondary battery and mixed negative electrode material for non-aqueous electrolyte secondary battery obtained by the method | |
KR101460774B1 (en) | Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same | |
KR101666874B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
JP2002348109A (en) | Anode material for lithium secondary battery, method for producing the same and secondary battery using the same | |
WO2020218250A1 (en) | Carbonaceous material for battery | |
TW201545976A (en) | Method for manufacturing carbonaceous material for non-aqueous electrolyte secondary cell | |
KR101651835B1 (en) | Method of preparing artificial graphite negative electrode material for rechargeable lithium battery and artificial graphite negative electrode material for rechargeable lithium battery prepared from the same | |
JP2019175851A (en) | Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor | |
KR102405983B1 (en) | Carbonaceous material for negative electrode active material of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of carbonaceous material | |
KR20150078068A (en) | Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery | |
KR101446698B1 (en) | Method of preparing negative active material for rechargeable lithium battery, and negative active material and rechargeable lithium battery prepared from the same | |
WO2017010365A1 (en) | Negative electrode active substance for lithium ion secondary battery and method for producing same | |
JP4069465B2 (en) | Carbonaceous negative electrode material for lithium secondary battery and method for producing the same |