JP2022091742A5 - - Google Patents

Download PDF

Info

Publication number
JP2022091742A5
JP2022091742A5 JP2022020539A JP2022020539A JP2022091742A5 JP 2022091742 A5 JP2022091742 A5 JP 2022091742A5 JP 2022020539 A JP2022020539 A JP 2022020539A JP 2022020539 A JP2022020539 A JP 2022020539A JP 2022091742 A5 JP2022091742 A5 JP 2022091742A5
Authority
JP
Japan
Prior art keywords
cable
cylindrical body
resin composition
wound around
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022020539A
Other languages
Japanese (ja)
Other versions
JP2022091742A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2022020539A priority Critical patent/JP2022091742A/en
Priority claimed from JP2022020539A external-priority patent/JP2022091742A/en
Publication of JP2022091742A publication Critical patent/JP2022091742A/en
Publication of JP2022091742A5 publication Critical patent/JP2022091742A5/ja
Pending legal-status Critical Current

Links

Description

本発明は、ケーブルの製造方法に関する。より詳しくは、本発明は、例えば、パソコンとスマートフォンを接続するため、または、壁などに設けられたコンセントとスマートフォンとを接続するために用いられるケーブルの製造方法に関する。 The present invention relates to a method of manufacturing a cable. More specifically, the present invention relates to a method of manufacturing a cable used , for example , to connect a personal computer and a smartphone , or to connect a smartphone to an outlet provided on a wall or the like.

即ち、本発明に係るケーブルの製造方法は、
線状の導体からなる芯材の外周がオレフィン系熱可塑性エラストマー樹脂を含む樹脂組成物で被覆され、前記樹脂組成物によって最外層が構成されたケーブルを、筒体に巻き付ける巻付け工程と、
前記筒体に巻き付けた前記ケーブルを、79℃以上91℃以下の範囲内の温度に維持しつつ、60分以上加熱する加熱工程と、
加熱した前記ケーブルを、前記筒体に巻き付けた状態で9℃以上36℃以下の範囲内の温度まで冷却する冷却工程と、を備え
前記ケーブルがスマートフォンの接続に用いられるものである
That is, the method for manufacturing a cable according to the present invention includes:
A winding step in which the outer periphery of a core material made of a linear conductor is coated with a resin composition containing an olefin-based thermoplastic elastomer resin, and the cable whose outermost layer is constituted by the resin composition is wound around a cylindrical body;
a heating step of heating the cable wound around the cylindrical body for 60 minutes or more while maintaining the cable at a temperature within a range of 79° C. or higher and 91° C. or lower;
a cooling step of cooling the heated cable while being wound around the cylinder to a temperature within a range of 9°C or more and 36°C or less ,
The cable is used to connect a smartphone .

[引張試験]
以下のようにして引張試験用の検体を得た。
まず、導体(外周が樹脂組成物で被覆された導体(銅線)を複数本撚り合わせたもの)からなる芯材の外周がオレフィン系熱可塑性エラストマー樹脂(ハードセグメントたるオレフィン系樹脂としてポリプロピレン(PP)を含み、ソフトセグメントたるゴム成分として水添スチレンブタジエンゴム(HSBR)を含むオレフィン系熱可塑性エラストマー樹脂)で被覆された長さ約1m(1m±1cm)の3本のケーブル(ケーブルA、ケーブルB、及び、ケーブルC)を、ピッチ幅0mmで円筒状の筒体(直径(外径)3.8cm×高さ200cm)にスパイラル状に巻き付けて、ケーブルが巻き付けられた筒体(以下、ケーブル付の筒体ともいう)を得た。
次に、これらのケーブル付の筒体(ケーブルAが巻き付けられた筒体、ケーブルBが巻き付けられた筒体、及び、ケーブルCが巻き付けられた筒体)を加熱炉内に入れて、90±1℃で60分処理した。
次に、これらのケーブル付の筒体を加熱炉内で室温(23±2℃)まで自然放冷することにより、引張試験用の検体を得た。なお、直径(外径)3.8cmの筒体に巻き付けて加熱処理することにより得られた各ケーブルにおける一巻きの最長長さ(以下、巻き直径ともいう)は、5.5±1.5cmであった。
ケーブルA、ケーブルB、及び、ケーブルCは、いずれも、断面の形状が円形状であった。
また、ケーブルAにおいては、芯材の太さ(外径)は3.2mmであり、被覆厚さは0.35mmであり、ケーブルBにおいては、芯材の太さ(外径)は3.3mmであり、被覆厚さは0.35mmであり、ケーブルCにおいては、芯材の太さ(外径)は4mmであり、被覆厚さは0.35mmであった。
なお、ケーブルA~Cについて、被覆厚さは、上記の実施形態の項で説明した方法にしたがって測定した。
また、ケーブルA~Cについて、ケーブルの太さは、上記の実施形態の項で説明した方法にしたがって測定した。
引張試験用の検体は、各ケーブルごとに、3本ずつ(計9検体)作製した。
そして、各検体(計9検体)について、以下の手順にしたがって引張試験を行った。

(1)天板を有する固定具の天板に、検体の一端側を固定する。
(2)天板から検体が垂れ下がった状態において、検体の一端側の固定箇所から検体の他端側の先端部までの長さ(錘装着前長さL1)を測定する。
(3)100gの錘を検体の他端側に取り付けて、60分放置する。
(4)検体の他端側から100gの錘を取り外す。
(5)検体の一端側の固定箇所から検体の他端側の先端部までの長さ(錘装着後長さL2)を測定する。
[Tensile test]
Specimens for tensile testing were obtained as follows.
First, the outer periphery of a core material made of a conductor (a plurality of twisted conductors (copper wires) whose outer periphery is coated with a resin composition) is made of an olefin thermoplastic elastomer resin (polypropylene (PP) is used as the olefin resin serving as the hard segment). ) and coated with an olefinic thermoplastic elastomer resin containing hydrogenated styrene butadiene rubber (HSBR) as a soft segment rubber component (cable A, cable B and cable C) are spirally wound around a cylindrical body (diameter (outer diameter) 3.8 cm x height 200 cm) with a pitch width of 0 mm, and the cylinder around which the cable is wound (hereinafter referred to as cable A cylindrical body (also called a cylindrical body) was obtained.
Next, these cylinders with cables (the cylinder around which cable A is wound, the cylinder around which cable B is wound, and the cylinder around which cable C is wound) are placed in a heating furnace, and heated to 90± It was treated at 1°C for 60 minutes.
Next, the cylindrical body with these cables was naturally cooled to room temperature (23±2° C.) in a heating furnace to obtain a specimen for a tensile test. In addition, the longest length of one turn (hereinafter also referred to as the winding diameter) of each cable obtained by winding it around a cylinder with a diameter (outer diameter) of 3.8 cm and heat treating it is 5.5 ± 1.5 cm. Met.
Cable A, cable B, and cable C all had circular cross-sectional shapes.
In addition, in cable A, the thickness (outer diameter) of the core material is 3.2 mm, and the thickness of the coating is 0.35 mm , and in cable B, the thickness (outer diameter) of the core material is 3.2 mm. In cable C, the thickness (outer diameter) of the core material was 4 mm and the coating thickness was 0.35 mm .
The coating thicknesses of cables A to C were measured according to the method described in the embodiment section above.
Furthermore, the thickness of the cables A to C was measured according to the method described in the embodiment section above.
Three specimens for the tensile test were prepared for each cable (9 specimens in total).
Then, a tensile test was conducted on each specimen (9 specimens in total) according to the following procedure.

(1) Fix one end of the specimen to the top plate of a fixture having a top plate.
(2) With the specimen hanging down from the top plate, measure the length from the fixing point on one end of the specimen to the tip of the other end of the specimen (length L1 before weight attachment).
(3) Attach a 100g weight to the other end of the specimen and leave it for 60 minutes.
(4) Remove the 100g weight from the other end of the specimen.
(5) Measure the length from the fixed point on one end of the specimen to the tip on the other end of the specimen (length L2 after attaching the weight).

[巻き直径がケーブルの巻き状態に及ぼす影響]
ケーブルにおける一巻きの最長長さ(巻き直径)がケーブルの巻き状態に及ぼす影響を調べるために、以下のようにして、巻き状態の維持性を評価するための検体を得た。
まず、導体(外周が樹脂組成物で被覆された導体(銅線)の複数本を撚り合わせたもの)からなる芯材の外周がオレフィン系熱可塑性エラストマー樹脂(ハードセグメントたるオレフィン系樹脂としてポリプロピレン(PP)を含み、ソフトセグメントたるゴム成分として水添スチレンブタジエンゴム(HSBR)を含むオレフィン系熱可塑性エラストマー樹脂)を含む樹脂組成物で被覆された長さ約2m(2m±1cm)の2本のケーブル(ケーブルA、及び、ケーブルB)を、ピッチ幅0mmで円筒状の筒体(直径(外径)6.3cm×高さ200cm)にスパイラル状に巻き付けて、ケーブルが巻き付けられた筒体(以下、ケーブル付の筒体)を得た。
次に、これらのケーブル付の筒体(ケーブルAが巻き付けられた筒体、及び、ケーブルBが巻き付けられた筒体)を加熱炉内に入れて、温度60±1℃~120±1℃で、30分~210分処理した。
次に、これらのケーブル付の筒体を加熱炉内で室温まで自然放冷することにより、巻き状態の維持性を評価するための検体を得た。なお、直径(外径)6.3cmの筒体に巻き付けて加熱処理することにより得られた各ケーブルにおける巻き部分の最長長さ(巻き直径)は、9.5±1.5cmであった。
ケーブルA及びケーブルBは、いずれも、断面の形状が円形状であった。
また、ケーブルAにおいては、芯材の太さ(外径)は3.5mmであり、被覆厚さは0.4mmであり、ケーブルBにおいては、芯材の太さ(外径)は3.9mmであり、被覆厚さは0.4mmであった。
なお、ケーブルA及びBについて、被覆厚さは、上記の実施形態の項で説明した方法にしたがって測定した。
また、ケーブルA及びBについて、ケーブルの太さは、上記の実施形態の項で説明した方法にしたがって測定した。
巻き状態の維持性の評価用の検体は、各ケーブルにつき、各温度ごと(60±1℃、90±1℃、及び、120±1℃)及び各加熱時間ごとに3本ずつ作製した(各ケーブルごとに18検体。計36検体)。
[Effect of winding diameter on cable winding state]
In order to investigate the effect of the maximum length of one turn (winding diameter) on the winding state of the cable, a specimen for evaluating the maintainability of the winding state was obtained as follows.
First, the outer periphery of a core material made of a conductor (a plurality of strands of conductors (copper wires) whose outer periphery is coated with a resin composition) is made of olefin-based thermoplastic elastomer resin (polypropylene is used as the olefin-based resin serving as the hard segment). PP) and an olefinic thermoplastic elastomer resin containing hydrogenated styrene butadiene rubber (HSBR) as a rubber component as a soft segment. The cables (Cable A and Cable B) are spirally wound around a cylindrical body (diameter (outer diameter) 6.3 cm x height 200 cm) with a pitch width of 0 mm to form a cylinder around which the cables are wound ( Hereinafter, a cylindrical body with a cable was obtained.
Next, these cylinders with cables (the cylinder around which cable A is wound and the cylinder around which cable B is wound) are placed in a heating furnace and heated at a temperature of 60±1°C to 120±1°C. , treated for 30 minutes to 210 minutes.
Next, these tubes with cables were naturally cooled to room temperature in a heating furnace to obtain specimens for evaluating the maintainability of the wound state. The longest length (winding diameter) of the wound portion of each cable obtained by winding it around a cylinder having a diameter (outer diameter) of 6.3 cm and heat-treating it was 9.5±1.5 cm.
Both cable A and cable B had a circular cross-sectional shape.
In addition, in cable A, the thickness (outer diameter) of the core material is 3.5 mm, and the thickness of the coating is 0.4 mm , and in cable B, the thickness (outer diameter) of the core material is 3.5 mm. .9 mm, and the coating thickness was 0.4 mm .
The coating thicknesses of cables A and B were measured according to the method described in the embodiment section above.
Furthermore, the thickness of the cables A and B was measured according to the method described in the above embodiment section.
Three samples were prepared for each cable for each temperature (60 ± 1°C, 90 ± 1°C, and 120 ± 1°C) and for each heating time (each (18 samples per cable, 36 samples total).

Claims (2)

線状の導体からなる芯材の外周がオレフィン系熱可塑性エラストマー樹脂を含む樹脂組成物で被覆され、前記樹脂組成物によって最外層が構成されたケーブルを、筒体に巻き付ける巻付け工程と、
前記筒体に巻き付けた前記ケーブルを、79℃以上91℃以下の範囲内の温度に維持しつつ、60分以上加熱する加熱工程と、
加熱した前記ケーブルを、前記筒体に巻き付けた状態で9℃以上36℃以下の範囲内の温度まで冷却する冷却工程と、を備え
前記ケーブルがスマートフォンの接続に用いられるものである、
ケーブルの製造方法。
A winding step in which the outer periphery of a core material made of a linear conductor is coated with a resin composition containing an olefin-based thermoplastic elastomer resin, and the cable whose outermost layer is constituted by the resin composition is wound around a cylindrical body;
a heating step of heating the cable wound around the cylindrical body for 60 minutes or more while maintaining the cable at a temperature within a range of 79° C. or higher and 91° C. or lower;
a cooling step of cooling the heated cable while being wound around the cylinder to a temperature within a range of 9°C or more and 36°C or less ,
The cable is used for connecting a smartphone,
Cable manufacturing method.
前記樹脂組成物の被覆厚さは、0.2mm以上0.7mm以下である
請求項1に記載のケーブルの製造方法。
The method for manufacturing a cable according to claim 1, wherein the coating thickness of the resin composition is 0.2 mm or more and 0.7 mm or less.
JP2022020539A 2022-02-14 2022-02-14 Method for producing cable Pending JP2022091742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022020539A JP2022091742A (en) 2022-02-14 2022-02-14 Method for producing cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022020539A JP2022091742A (en) 2022-02-14 2022-02-14 Method for producing cable

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020204206 Division 2020-12-09

Publications (2)

Publication Number Publication Date
JP2022091742A JP2022091742A (en) 2022-06-21
JP2022091742A5 true JP2022091742A5 (en) 2023-12-18

Family

ID=87699536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022020539A Pending JP2022091742A (en) 2022-02-14 2022-02-14 Method for producing cable

Country Status (1)

Country Link
JP (1) JP2022091742A (en)

Similar Documents

Publication Publication Date Title
JP2017527964A5 (en)
WO2019114533A1 (en) Method for manufacturing water-tree retardant medium-voltage ethylene-propylene insulated cable, and cable
JP2022091742A5 (en)
FI91569B (en) Flexible electric cable
JP2022091743A5 (en)
JP2022091741A5 (en)
US10522272B2 (en) Method of manufacturing a twisted pair wire cable and a twisted pair wire cable formed by said method
CN109411158A (en) A kind of production technology of plastic cable
JP4319472B2 (en) Tube manufacturing method
CN103093892B (en) A kind of manufacture method of power-frequency electromagnetic fields
CN202940039U (en) High-temperature-resistant soft non-shielding instrument cable for offshore oil gas engineering
RU178395U1 (en) REACTOR WIRE WIRE WITH POLYIMIDE FILM
CN202940037U (en) High-temperature-resistant soft bulk shielding instrument cable for offshore oil gas engineering
CN105989932A (en) Processing method for novel environment-friendly high-elasticity spiral cable
JP7137139B2 (en) power cable
CN209183296U (en) A kind of thin-walled low smoke and zero halogen cross-linking radiation rolling stock cable
CN216957512U (en) Novel super-soft stretch-proof wire for medical equipment
CN202940059U (en) High-temperature-resistant soft power cable for offshore oil gas engineering
KR960003828B1 (en) Manufacturing process of insulated wire
CN114420363B (en) Cable and preparation method thereof
JP4174165B2 (en) Flame retardant wire
CN215577849U (en) High temperature resistant mobile cable
KR20110096598A (en) Assembly of twisted insulated electric wires
CN111403074B (en) Large-section direct-current traction cable for rail transit and manufacturing process thereof
CN208706305U (en) A kind of anti-oxidation cable of high temperature resistant