JP2022091485A - Buffer - Google Patents

Buffer Download PDF

Info

Publication number
JP2022091485A
JP2022091485A JP2020204345A JP2020204345A JP2022091485A JP 2022091485 A JP2022091485 A JP 2022091485A JP 2020204345 A JP2020204345 A JP 2020204345A JP 2020204345 A JP2020204345 A JP 2020204345A JP 2022091485 A JP2022091485 A JP 2022091485A
Authority
JP
Japan
Prior art keywords
valve
valve body
cylinder
chamber
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020204345A
Other languages
Japanese (ja)
Inventor
一樹 高橋
Kazuki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2020204345A priority Critical patent/JP2022091485A/en
Publication of JP2022091485A publication Critical patent/JP2022091485A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a buffer having three stages or more of damping force properties in a single valve.SOLUTION: The buffer generates a first damping force property by an orifice having a certain opening area at a first operation pressure, generates a second damping force property by a flow passage in which the opening area of the valve is increased after a second operation pressure higher than the first operation pressure is reached, and generates a third damping force property by the flow passage in which the opening area of the valve is increased after a third operation pressure higher than the second operation pressure is reached.SELECTED DRAWING: Figure 2

Description

本発明は、例えば鉄道等の車両に設けられ、車両の振動を抑制する緩衝器に関するものである。 The present invention relates to a shock absorber which is provided in a vehicle such as a railway and suppresses vibration of the vehicle.

特許文献1には、緩衝器の閉塞部材に弁機構が設けられたものが開示されている。 Patent Document 1 discloses a shock absorber in which a valve mechanism is provided in a closing member.

特開2014-62643号公報Japanese Unexamined Patent Publication No. 2014-62643

従来の緩衝器では、1つの弁機構により、オリフィス領域とリリーフ領域の2つの特性を作っている。この減衰力特性を増やす場合、異なる特性の弁機構をさらに設けることで3つ以上の領域の特性を作りだすことができる。しかし、コスト面や緩衝器のサイズ、形状によっては弁機構を複数備えることが困難なものがあり、減衰力特性を増やすことが困難という課題があった。 In a conventional shock absorber, one valve mechanism creates two characteristics, an orifice region and a relief region. When increasing this damping force characteristic, it is possible to create characteristics in three or more regions by further providing valve mechanisms having different characteristics. However, depending on the cost, the size and shape of the shock absorber, it may be difficult to provide a plurality of valve mechanisms, and there is a problem that it is difficult to increase the damping force characteristics.

本発明は、緩衝器の減衰力特性を単一弁にて領域に応じて3つ以上の特性を発生させることを目的とする。 An object of the present invention is to generate three or more damping force characteristics of a shock absorber according to a region with a single valve.

上記の課題を解決するために、本発明は、内部に作動流体が封入されたシリンダと、前記シリンダ内に移動可能に挿入されて前記シリンダ内を第1流体室と第2流体室とに区分するピストンと、前記シリンダ内で前記ピストンに連結され、先端が前記シリンダの外部へ延びるピストンロッドと、前記シリンダの外周に配置され、前記シリンダとの間にリザーバ室を形成する外筒と、前記シリンダの一方の端部の開口部を閉塞する閉塞部材と、前記シリンダ内と前記リザーバ室とを連通し、前記作動流体が流通する流路と、前記流路に設けられ、前記ピストンの移動に伴って生じる前記作動流体の流れを抑制して作動圧を発生させる弁機構と、前記ピストンの移動に伴って生じる前記作動流体の流れを常に流路抵抗を持って許すオリフィス通路と、を備えた緩衝器であって、前記弁機構は、弁体と、該弁体が移動可能に収容される弁体室と、前記弁体を閉塞する方向に付勢するバネ手段とからなり、前記弁機構は、前記弁体が開弁方向に移動した際に異なる位置で開閉される複数の開弁流路を有していることを特徴とする。 In order to solve the above problems, the present invention divides the inside of the cylinder into a first fluid chamber and a second fluid chamber by being movably inserted into the cylinder and a cylinder in which the working fluid is sealed. A piston rod that is connected to the piston in the cylinder and whose tip extends to the outside of the cylinder, an outer cylinder that is arranged on the outer periphery of the cylinder and forms a reservoir chamber between the cylinder, and the cylinder. A closing member that closes the opening at one end of the cylinder, a flow path that communicates the inside of the cylinder with the reservoir chamber, and a flow path through which the working fluid flows, and a flow path provided in the flow path for the movement of the piston. It is provided with a valve mechanism that suppresses the flow of the working fluid that accompanies it to generate an operating pressure, and an orifice passage that always allows the flow of the working fluid that accompanies the movement of the piston with a flow path resistance. The valve mechanism is a shock absorber, and the valve mechanism includes a valve body, a valve body chamber in which the valve body is movably housed, and a spring means for urging the valve body in a direction of closing the valve body. Is characterized by having a plurality of valve opening flow paths that are opened and closed at different positions when the valve body moves in the valve opening direction.

本発明によれば、1つの弁機構の作用で3つ以上の減衰力特性を作りだすことが可能である。 According to the present invention, it is possible to create three or more damping force characteristics by the action of one valve mechanism.

本実施形態に係る緩衝器の全体を示す断面図である。It is sectional drawing which shows the whole of the shock absorber which concerns on this embodiment. 図1の緩衝器の弁構造周囲の拡大図である。It is an enlarged view around the valve structure of the shock absorber of FIG. 従来の緩衝器の弁構造により発生する減衰力特性図である。It is a damping force characteristic diagram generated by the valve structure of a conventional shock absorber. 図2の本実施形態に係る弁構造の閉弁時を拡大した図面で、(a)は弁構造の一軸平面による断面図、(b)は(a)のA―A断面図である。2 is an enlarged view of the valve structure according to the present embodiment when the valve is closed. FIG. 2A is a cross-sectional view taken along a uniaxial plane of the valve structure, and FIG. 2B is a cross-sectional view taken along the line AA of FIG. 2A. 図2の本実施形態に係る弁構造の開弁時を拡大した図面で、(a)は弁構造の一軸平面による断面図、(b)は(a)のA―A断面図である。2 is an enlarged drawing of the valve structure according to the present embodiment of FIG. 2, where (a) is a cross-sectional view taken along a uniaxial plane of the valve structure, and (b) is a cross-sectional view taken along the line AA of (a). 図2の本実施形態に係る弁構造を拡大した図面で、(a)は弁体を第2軸部方向から矢視した図、(b)は弁体の変形例で弁体を第2軸部方向から矢視した図である。2 is an enlarged view of the valve structure according to the present embodiment. FIG. 2A is a view of the valve body viewed from the direction of the second axis portion, and FIG. 2B is a modification of the valve body with the valve body as the second axis. It is a figure seen from the direction of the part. 図2の本実施形態に係る弁構造の変形例の閉弁時を拡大した図面で、(a)は弁構造の一軸平面による断面図、(b)は(a)のA―A断面図である。2 is an enlarged view of a modified example of the valve structure according to the present embodiment when the valve is closed. FIG. 2A is a cross-sectional view taken along the uniaxial plane of the valve structure, and FIG. 2B is a cross-sectional view taken along the line AA of FIG. be. 図2の本実施形態に係る弁構造の変形例の開弁時を拡大した図面で、(a)は弁構造の一軸平面による断面図、(b)は(a)のA―A断面図である。2 is an enlarged view of a modified example of the valve structure according to the present embodiment when the valve is opened. FIG. 2A is a cross-sectional view taken along the uniaxial plane of the valve structure, and FIG. 2B is a cross-sectional view taken along the line AA of FIG. be. 本実態形態に係る緩衝器の弁構造により発生する減衰力特性図である。It is a damping force characteristic diagram generated by the valve structure of the shock absorber which concerns on this actual form.

以下、本発明を実施するための形態を図1~図9に基づいて詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to FIGS. 1 to 9.

ここでは、垂直に配置される緩衝器1を用いて本発明について説明する。なお、取付状態の上方向(上側)及び下方向(下側)は、図1における上方向(上側)及び下方向(下側)と一致している。 Here, the present invention will be described using the shock absorber 1 arranged vertically. The upward direction (upper side) and the lower direction (lower side) of the mounted state coincide with the upper direction (upper side) and the lower direction (lower side) in FIG.

なお、本発明は、取付方向によるものではなく、水平方向や斜めに取付られる緩衝器であってもよい。 It should be noted that the present invention does not depend on the mounting direction, but may be a shock absorber mounted horizontally or diagonally.

第1実施形態を図1乃至図5に示し説明する。 The first embodiment is shown and described with reference to FIGS. 1 to 5.

図1に示されるように、緩衝器1は、円筒状のシリンダ2の外側に円筒状の外筒3が設けられる複筒構造であり、シリンダ2と外筒3との間に環状のリザーバ室4が形成され、リザーバ室4には、作動流体と大気や圧縮窒素等の気体が封入されている。シリンダ2及び外筒3の両端部の開口は、外周が円形状の上側閉塞部材70及び下側閉塞部材6によって閉塞される。 As shown in FIG. 1, the shock absorber 1 has a double-cylinder structure in which a cylindrical outer cylinder 3 is provided on the outside of a cylindrical cylinder 2, and an annular reservoir chamber is provided between the cylinder 2 and the outer cylinder 3. 4 is formed, and the working fluid and a gas such as the atmosphere and compressed nitrogen are sealed in the reservoir chamber 4. The openings at both ends of the cylinder 2 and the outer cylinder 3 are closed by the upper closing member 70 and the lower closing member 6 having a circular outer circumference.

上側閉塞部材70は、環状のロッドガイド5とシールキャップ15とから構成されている。 The upper closing member 70 is composed of an annular rod guide 5 and a seal cap 15.

また、下側閉塞部材6は、外筒3の下側端部の開口を閉塞させる第1蓋部材7(ボトムキャップ)とシリンダ2の下側端部の開口を閉塞させるボトムバルブ本体8とに分割して構成される。 Further, the lower closing member 6 includes a first lid member 7 (bottom cap) that closes the opening of the lower end portion of the outer cylinder 3 and a bottom valve main body 8 that closes the opening of the lower end portion of the cylinder 2. It is divided and configured.

シリンダ2の内側には、ピストンロッド9が挿入される。ピストンロッド9の下端部には、ピストン10が固定され、シリンダ2に摺動可能に嵌挿される。シリンダ2は、内側の空間がピストン10によって第1流体室2Aと第2流体室2Bとに分画される。ピストン10には、第2流体室2Bから第1流体室2Aへの作動流体の流れを許容する逆止弁11が設けられる。なお、ピストン10の逆止弁11に代えて、減衰力を発生させる調圧弁としてもよく、または、ピストン10に第1流体室2Aから第2流体室2Bへの作動流体の流れを許容する調圧弁や、圧力を解放するリリーフ弁をさらに備えても良い。 A piston rod 9 is inserted inside the cylinder 2. A piston 10 is fixed to the lower end of the piston rod 9 and is slidably fitted into the cylinder 2. The inner space of the cylinder 2 is divided into a first fluid chamber 2A and a second fluid chamber 2B by the piston 10. The piston 10 is provided with a check valve 11 that allows the flow of the working fluid from the second fluid chamber 2B to the first fluid chamber 2A. Instead of the check valve 11 of the piston 10, a pressure regulating valve that generates a damping force may be used, or the piston 10 is regulated to allow the flow of the working fluid from the first fluid chamber 2A to the second fluid chamber 2B. A pressure valve and a relief valve for releasing the pressure may be further provided.

また、下側閉塞部材6(第2蓋部材)のボトムバルブ本体8には、リザーバ室4から第2流体室2Bへの作動流体の流れのみを許容する逆止弁12が設けられる。なお、逆止弁12は減衰力を発生させる調圧弁としてもよく、また、第2流体室2Bからリザーバ室4への作動流体の流れを許し、圧力を解放するリリーフ弁を備えても良い。 Further, the bottom valve main body 8 of the lower closing member 6 (second lid member) is provided with a check valve 12 that allows only the flow of the working fluid from the reservoir chamber 4 to the second fluid chamber 2B. The check valve 12 may be a pressure regulating valve that generates a damping force, or may be provided with a relief valve that allows the flow of the working fluid from the second fluid chamber 2B to the reservoir chamber 4 and releases the pressure.

なお、ピストンロッド9に固定されるピストン10の位置は下端部に限らず、例えばピストン10が上端部と下端部の間に配置され、ピストンロッド9は、下側閉塞部材6まで延びていても良い。 The position of the piston 10 fixed to the piston rod 9 is not limited to the lower end portion, for example, even if the piston 10 is arranged between the upper end portion and the lower end portion and the piston rod 9 extends to the lower closing member 6. good.

ピストンロッド9の上端部側は、上側閉塞部材70のロッドガイド5及びシールキャップ15に挿通されてシリンダ2の外部へ延ばされる。シールキャップ15の内周には、ピストンロッド9に摺接するオイルシールとダストシール(図示せず)が設けられ、外周側には、外筒3とシールキャップ15との間をシールするシールリング(図示せず)が設けられている。 The upper end side of the piston rod 9 is inserted into the rod guide 5 and the seal cap 15 of the upper closing member 70 and extended to the outside of the cylinder 2. An oil seal and a dust seal (not shown) that are in sliding contact with the piston rod 9 are provided on the inner circumference of the seal cap 15, and a seal ring (not shown) that seals between the outer cylinder 3 and the seal cap 15 is provided on the outer peripheral side. Not shown) is provided.

ロッドガイド5には、ピストンロッド9が軸方向へ移動することによって作動流体が第1流体室2Aからリザーバ室4へ流れるための流路13が設けられる。流路13には、予め定められた圧力で開弁されて、圧力の変化に伴い変化する開弁量に応じて第1流体室2Aからリザーバ室4へ流れる流路面積が変化する弁機構14が設けられている。また、流路13は、第1流体室2Aと弁体室20を連通させる流入路16と、弁体室20と、弁体室20の流出口18Aとリザーバ室4とを連通させる流出路18とを含む。流出路18のリザーバ室4側には、パイプ17がピストンロッド9の軸方向下側に延びるように接続されている。パイプ17の下側端面は、リザーバ室4に溜められた作動流体内に入る長さを有する。 The rod guide 5 is provided with a flow path 13 for the working fluid to flow from the first fluid chamber 2A to the reservoir chamber 4 by moving the piston rod 9 in the axial direction. The valve mechanism 14 is opened in the flow path 13 at a predetermined pressure, and the area of the flow path from the first fluid chamber 2A to the reservoir chamber 4 changes according to the amount of valve opening that changes with the change in pressure. Is provided. Further, the flow path 13 is an inflow path 16 that communicates the first fluid chamber 2A and the valve body chamber 20, and an outflow passage 18 that communicates the valve body chamber 20, the outflow port 18A of the valve body chamber 20, and the reservoir chamber 4. And include. A pipe 17 is connected to the reservoir chamber 4 side of the outflow passage 18 so as to extend downward in the axial direction of the piston rod 9. The lower end face of the pipe 17 has a length that fits into the working fluid stored in the reservoir chamber 4.

弁機構14は、弁体室20とその内部に収容される弁体19から大略構成される。弁体室20は、円筒形状のロッドガイド5の外周面5Aに開口し、この開口から径方向内側に向け(図4における右から左方向)て形成された円形の底を有する穴によって形成される。弁体室20の底面には、中央に流入路16の径方向に延びる径方向部16Bが接続される流入口16Aが設けられ、この流入口16Aの周囲には、弁体19が着座される環状のシート29が突出している。このシート29と弁体19の接触部が第1弁部43を構成する。弁体室20の内周面の下側部分には、流出口18Aが接続され開口されている。また、弁体室20の内周面は、底部側に小径部20Aと開口側の大径部20Bを有する。 The valve mechanism 14 is roughly composed of a valve body chamber 20 and a valve body 19 housed therein. The valve body chamber 20 is formed by an opening in the outer peripheral surface 5A of the cylindrical rod guide 5 and a hole having a circular bottom formed radially inward from this opening (from right to left in FIG. 4). To. On the bottom surface of the valve body chamber 20, an inflow port 16A to which a radial portion 16B extending in the radial direction of the inflow path 16 is connected is provided in the center, and the valve body 19 is seated around the inflow port 16A. The annular sheet 29 is protruding. The contact portion between the seat 29 and the valve body 19 constitutes the first valve portion 43. An outlet 18A is connected and opened to the lower portion of the inner peripheral surface of the valve body chamber 20. Further, the inner peripheral surface of the valve body chamber 20 has a small diameter portion 20A on the bottom side and a large diameter portion 20B on the opening side.

さらに、弁体室20は、内周面の開口側端部に形成される雌ねじ21を有する。雌ねじ21には、弁体19に対して同軸上に配置されるばね受け部材22(軸部材)が螺着され、弁体室20の開口を閉塞している。ばね受け部材22は、雌ねじ21に螺合される雄ねじ23が外周面に形成されて弁ばね25の一端部を受け止める略円板形のばね受部26と、弁ばね25の一端部内側に挿入されて弁ばね25の径方向の位置決めをするとともに、弁体19のストロークを規制する弁体止め28を有する。なお、弁体室20の開口周縁部にはザグリ24が形成される。 Further, the valve body chamber 20 has a female screw 21 formed at the opening side end portion of the inner peripheral surface. A spring receiving member 22 (shaft member) coaxially arranged with respect to the valve body 19 is screwed onto the female screw 21 to close the opening of the valve body chamber 20. The spring receiving member 22 is inserted into a substantially disk-shaped spring receiving portion 26 in which a male screw 23 screwed into the female screw 21 is formed on the outer peripheral surface to receive one end of the valve spring 25, and inside one end of the valve spring 25. It has a valve body stopper 28 that regulates the stroke of the valve body 19 while positioning the valve spring 25 in the radial direction. A counterbore 24 is formed on the peripheral edge of the opening of the valve body chamber 20.

なお、弁体止め28には、弁体19が弁体止め28に当接した際、後述の弁体19に設けられたオリフィス穴37の小径部37Bから流れる作動流体を弁体室20に流すための直径方向へ延びる溝を設けてもよい。 In the valve body stopper 28, when the valve body 19 comes into contact with the valve body stopper 28, the working fluid flowing from the small diameter portion 37B of the orifice hole 37 provided in the valve body 19 described later flows into the valve body chamber 20. A groove extending in the radial direction may be provided.

弁体19は、弁ばね25の内側に挿入される円柱状の第1軸部31と、弁ばね25の他端部を受け止めるフランジ形のばね受部33と、ばね受部33から流入口16Aに向けて延びた円柱状の第2軸部32から構成される。 The valve body 19 has a columnar first shaft portion 31 inserted inside the valve spring 25, a flange-shaped spring receiving portion 33 for receiving the other end of the valve spring 25, and an inflow port 16A from the spring receiving portion 33. It is composed of a columnar second shaft portion 32 extending toward.

弁体19の第1軸部31と、第2軸部32と、フランジ形のばね受部33の外径は、同軸状に形成されている。ばね受部33の周囲には、弁体室20の小径部20Aと略同径(スムーズに動く程度の隙間を持った大きさの径)の円形部33Aと、小径部20Aと離間する切欠部33Bとが形成されている。この切欠部33Bは、弁体19の開弁時に流入路16と弁体室20とを連通する第1開弁流路41を構成する。図6(a)に示すように、切欠部33Bは、例えば、ばね受部33の外周部分の3箇所に配置されている。これら3つの切欠部33Bは、ばね受部33の周方向に等間隔に離間して配置されている。なお、図6(b)に示す変形例のように、切欠部33Bは、例えば、ばね受部33の外周部分の2箇所に配置してもよい。 The outer diameters of the first shaft portion 31, the second shaft portion 32, and the flange-shaped spring receiving portion 33 of the valve body 19 are formed coaxially. Around the spring receiving portion 33, a circular portion 33A having substantially the same diameter as the small diameter portion 20A of the valve body chamber 20 (a diameter having a size having a gap enough to move smoothly) and a notch portion separated from the small diameter portion 20A. 33B is formed. The notch 33B constitutes a first valve opening flow path 41 that communicates the inflow path 16 and the valve body chamber 20 when the valve body 19 is opened. As shown in FIG. 6A, the cutout portions 33B are arranged at three locations, for example, the outer peripheral portion of the spring receiving portion 33. These three notches 33B are arranged at equal intervals in the circumferential direction of the spring receiving portion 33. As in the modified example shown in FIG. 6B, the notch 33B may be arranged at two locations, for example, the outer peripheral portion of the spring receiving portion 33.

弁体19の第2軸部32には、径方向へ貫通し、流入路16方向の端面まで延びる溝部34が形成されている。溝部34のばね受部33側の端部は、弁体19の軸線に対して略垂直な底面34Aとなっている。なお、底面34Aの形状は、円弧形状でもよい。底面34Aの位置は必要とされる減衰力特性に応じ任意で設定される。また、弁体19には、底面34Aに一端が開口して、弁体19の軸方向に延び、流入路16と弁体室20とを連通するオリフィス穴37が形成されている。オリフィス穴37は、流入路16側の大径部37Aと弁体室20側の小径部37Bを有し、この小径部37Bは大きさにより減衰力値が変化し、常時減衰力を発生する固定オリフィスとなっている。ばね受部33の内部には、ばね受部33の円形部33Aの外周に一端が開口し、他端がオリフィス穴37の大径部37Aに開口する弁体19の径方向に延びる径方向穴37Cが形成されている。この径方向穴37Cは、ばね受部33が弁体室20の小径部20Aと対向しているときに閉塞(実質的に減衰力特性に影響がない程度のわずかな漏れは生じる)され、大径部20Bに対向した際に開口する構成となっている。この径方向穴37Cと小径部20Aとの間が、第2弁部44を構成し、このオリフィス穴37の大径部37Aから径方向穴37Cの流路が第2開弁流路42を構成する。 The second shaft portion 32 of the valve body 19 is formed with a groove portion 34 that penetrates in the radial direction and extends to the end face in the inflow path 16 direction. The end of the groove 34 on the spring receiving portion 33 side has a bottom surface 34A substantially perpendicular to the axis of the valve body 19. The shape of the bottom surface 34A may be an arc shape. The position of the bottom surface 34A is arbitrarily set according to the required damping force characteristics. Further, the valve body 19 is formed with an orifice hole 37 having an opening at one end in the bottom surface 34A, extending in the axial direction of the valve body 19 and communicating the inflow path 16 and the valve body chamber 20. The orifice hole 37 has a large diameter portion 37A on the inflow path 16 side and a small diameter portion 37B on the valve body chamber 20 side, and the small diameter portion 37B has a fixed damping force value that changes depending on the size and constantly generates a damping force. It is an orifice. Inside the spring receiving portion 33, one end is opened at the outer periphery of the circular portion 33A of the spring receiving portion 33, and the other end is a radial hole extending in the radial direction of the valve body 19 opening at the large diameter portion 37A of the orifice hole 37. 37C is formed. The radial hole 37C is closed when the spring receiving portion 33 faces the small diameter portion 20A of the valve body chamber 20 (a slight leakage that does not substantially affect the damping force characteristics occurs), and the hole 37C is large. It is configured to open when facing the diameter portion 20B. The second valve portion 44 is formed between the radial hole 37C and the small diameter portion 20A, and the flow path from the large diameter portion 37A of the orifice hole 37 to the radial hole 37C constitutes the second valve opening flow path 42. do.

次に、実施形態の緩衝器1の作用を説明する。 Next, the operation of the shock absorber 1 of the embodiment will be described.

ピストンロッド9の伸び行程時には、ピストン10に設けられた逆止弁11が閉弁し、第1流体室2Aの作動流体の圧力が上昇し、作動流体が弁機構14に流入する。そして、弁体19が移動を開始する第1の作動圧力までは、流入路16に流入し、オリフィス穴37を通過する。これにより、作動流体は第1流体室2Aからリザーバ室4へ流れ、オリフィス穴37の小径部37Bの流路面積に応じた図9のオリフィス特性Aの減衰力が発生する。図4に示す状態である。 During the extension stroke of the piston rod 9, the check valve 11 provided in the piston 10 closes, the pressure of the working fluid in the first fluid chamber 2A rises, and the working fluid flows into the valve mechanism 14. Then, until the first operating pressure at which the valve body 19 starts to move, the valve body 19 flows into the inflow path 16 and passes through the orifice hole 37. As a result, the working fluid flows from the first fluid chamber 2A to the reservoir chamber 4, and the damping force of the orifice characteristic A in FIG. 9 corresponding to the flow path area of the small diameter portion 37B of the orifice hole 37 is generated. This is the state shown in FIG.

作動圧が上昇し、第1の作動圧を超え第2の作動圧力に到達すると、弁ばね25のばね力に抗して弁体19が開弁し、第1弁部43が開弁される。このとき、オリフィス穴37の径方向穴37Cは閉塞されており、第2開弁流路42は遮断状態を継続している。これにより、作動流体は第1流体室2Aから第1開弁流路41を通過し、リザーバ室4へ流れ、作動流体が弁体19とシート29との間の流路面積に応じた図9のバルブ特性Bの減衰力が発生する。 When the working pressure rises, exceeds the first working pressure and reaches the second working pressure, the valve body 19 opens against the spring force of the valve spring 25, and the first valve portion 43 is opened. .. At this time, the radial hole 37C of the orifice hole 37 is closed, and the second valve opening flow path 42 continues to be shut off. As a result, the working fluid passes from the first fluid chamber 2A through the first valve opening flow path 41 and flows to the reservoir chamber 4, and the working fluid flows from the first fluid chamber 2A to the reservoir chamber 4, and the working fluid corresponds to the flow path area between the valve body 19 and the seat 29. The damping force of the valve characteristic B is generated.

なお、弁体19とシート29との間の流路面積より、第1開弁流路41の流路面積は大きく、弁体19とシート29との間で減衰力を支配的に発生する。 The flow path area of the first valve opening flow path 41 is larger than the flow path area between the valve body 19 and the seat 29, and a damping force is predominantly generated between the valve body 19 and the seat 29.

さらに、作動圧が上昇し、第1の作動圧よりも高い第2の作動圧力に到達すると、弁体19の開弁量が増加し、オリフィス穴37の径方向穴37Cが開口することで、第2弁部44が開弁し、第2開弁流路42は連通状態となる。これにより、作動流体は第1流体室2Aから第2開弁流路42を通過し、リザーバ室4へ流れ、流路面積に応じた図9のリリーフ特性Cの減衰力が発生する。図5に示す状態である。 Further, when the working pressure rises and reaches the second working pressure higher than the first working pressure, the valve opening amount of the valve body 19 increases, and the radial hole 37C of the orifice hole 37 opens. The second valve portion 44 opens, and the second valve opening flow path 42 enters a communicating state. As a result, the working fluid passes from the first fluid chamber 2A through the second valve opening flow path 42 and flows to the reservoir chamber 4, and the damping force of the relief characteristic C of FIG. 9 according to the flow path area is generated. This is the state shown in FIG.

以上のように、第1流体室2Aの作動圧力に対応するピストン10の移動速度に応じた伸び側の減衰力が発生する。なお、伸び側行程時には、ピストンロッド9がシリンダ2から退出された分の作動流体が、リザーバ室4から逆止弁12を経由して第2流体室2Bへ補給される。 As described above, the damping force on the extension side corresponding to the moving speed of the piston 10 corresponding to the operating pressure of the first fluid chamber 2A is generated. At the time of the extension side stroke, the working fluid corresponding to the amount of the piston rod 9 ejected from the cylinder 2 is replenished from the reservoir chamber 4 to the second fluid chamber 2B via the check valve 12.

他方、ピストンロッド9の縮み行程時には、ボトムバルブ本体8に設けられた逆止弁12が開弁し、第2流体室2Bの作動流体の圧力が上昇し、作動流体が第2流体室2Bからピストン10の逆止弁11を経由して第1流体室2Aへ流れる。これにより、第1流体室2A内の作動流体の圧力と第2流体室2B内の作動流体の圧力とが平衡される。また、ピストンロッド9がシリンダ2内に進入された分の作動流体が、第1流体室2Aから、弁体19を経由してリザーバ室4へ流れる。これにより、ピストン10の移動速度に応じて、第1流体室2A及び第2流体室2Bの作動圧力が上昇して縮み側の減衰力が発生する。 On the other hand, during the contraction stroke of the piston rod 9, the check valve 12 provided in the bottom valve main body 8 opens, the pressure of the working fluid in the second fluid chamber 2B rises, and the working fluid moves from the second fluid chamber 2B. It flows to the first fluid chamber 2A via the check valve 11 of the piston 10. As a result, the pressure of the working fluid in the first fluid chamber 2A and the pressure of the working fluid in the second fluid chamber 2B are balanced. Further, the working fluid for which the piston rod 9 has entered the cylinder 2 flows from the first fluid chamber 2A to the reservoir chamber 4 via the valve body 19. As a result, the working pressure of the first fluid chamber 2A and the second fluid chamber 2B increases according to the moving speed of the piston 10, and a damping force on the contraction side is generated.

減衰力の発生原理及び特性は、ピストンロッド9の伸び行程時と同様である。 The principle and characteristics of generating the damping force are the same as those at the time of the extension stroke of the piston rod 9.

第1実施形態によれば、緩衝器1の動作においてピストン10の移動速度の低速領域(弁体19が開弁される前の状態)では、作動流体は、第1流体室2Aから、流入路16、溝部34、オリフィス穴37の小径部37B、弁体室20、流出路18、パイプ17を経由してリザーバ室4へ流れ、これにより、オリフィス特性の減衰力(オリフィス特性A)を得ることができる。また、ピストン10の移動速度が中速領域では、ピストン10の移動速度に応じた弁体19が開弁し、第1開弁流路41を介して作動流体が流れる。このとき、ピストン10の移動速度により流路面積が変化し、減衰力(バルブ特性B)を得る。さらに、ピストン10の移動速度の高速領域では、弁体19に設けられた第2開弁流路42が開放されて、第2開弁流路42の流れが生じる。この第2開弁流路42は、これにより、ピストン10の移動速度に応じた弁体19の移動により流路面積が大きく変化し減衰力が殆ど変化しない特性(リリーフ特性C)を得る。 According to the first embodiment, in the low speed region of the moving speed of the piston 10 (the state before the valve body 19 is opened) in the operation of the shock absorber 1, the working fluid flows from the first fluid chamber 2A to the inflow path. 16 flows to the reservoir chamber 4 via the groove portion 34, the small diameter portion 37B of the orifice hole 37, the valve body chamber 20, the outflow passage 18, and the pipe 17, thereby obtaining the damping force of the orifice characteristic (orifice characteristic A). Can be done. Further, in the region where the moving speed of the piston 10 is in the medium speed region, the valve body 19 corresponding to the moving speed of the piston 10 opens, and the working fluid flows through the first valve opening flow path 41. At this time, the flow path area changes depending on the moving speed of the piston 10, and a damping force (valve characteristic B) is obtained. Further, in the high speed region of the moving speed of the piston 10, the second valve opening flow path 42 provided in the valve body 19 is opened, and the flow of the second valve opening flow path 42 is generated. As a result, the second valve opening flow path 42 obtains a characteristic (relief characteristic C) in which the flow path area is greatly changed by the movement of the valve body 19 according to the movement speed of the piston 10 and the damping force is hardly changed.

このように、弁体19の移動量に応じて、異なる流路を前記作動流体が流通するので、前記弁流路の流路面積の変化率が変化し、この単一の弁体によりバルブ特性及びリリーフ特性の減衰力特性を得る。 In this way, since the working fluid flows through different flow paths according to the amount of movement of the valve body 19, the rate of change in the flow path area of the valve flow path changes, and the valve characteristics are changed by this single valve body. And the damping force characteristic of the relief characteristic is obtained.

このように、第1実施形態では、1つの弁機構の弁体に第1開弁流路41と第2開弁流路42と言う異なる流路を有し、これらの開弁流路は、それぞれに開閉する第1弁部43と第2弁部44となる。このため、一つの弁機構の作用により、図3に示す従来技術のように、開弁前のオリフィス特性A、開弁後にバルブ特性Bが得られるのに加え、図9に示すリリーフ特性Cも得ることが可能である。 As described above, in the first embodiment, the valve body of one valve mechanism has different flow paths called the first valve opening flow path 41 and the second valve opening flow path 42, and these valve opening flow paths are The first valve portion 43 and the second valve portion 44 open and close respectively. Therefore, by the action of one valve mechanism, the orifice characteristic A before valve opening and the valve characteristic B after valve opening are obtained as in the prior art shown in FIG. 3, and the relief characteristic C shown in FIG. 9 is also obtained. It is possible to get it.

また、第1実施形態では、オリフィス特性Aを発生するオリフィス穴も弁体19に設けたので、弁体部分の変更、すなわち、弁体19の形状変更及び弁ばね25の変更のみで、オリフィス特性A、バルブ特性B、リリーフ特性Cを変更することができる。 Further, in the first embodiment, since the orifice hole for generating the orifice characteristic A is also provided in the valve body 19, the orifice characteristic can be changed only by changing the valve body portion, that is, changing the shape of the valve body 19 and changing the valve spring 25. A, valve characteristic B, and relief characteristic C can be changed.

なお、上記実施形態では、オリフィス穴37を弁体19に設けたが、これに限らず、ピストン部などに設けてもよい。この場合も、一つの弁機構の採用で、開弁前のオリフィス特性Aから開弁後のバルブ特性B、リリーフ特性Cを得ることができる。また、弁体部分による特性変更は、バルブ特性B、リリーフ特性Cのみを変更することで可能となる。 In the above embodiment, the orifice hole 37 is provided in the valve body 19, but the present invention is not limited to this, and the orifice hole 37 may be provided in the piston portion or the like. Also in this case, by adopting one valve mechanism, the valve characteristic B and the relief characteristic C after the valve opening can be obtained from the orifice characteristic A before the valve opening. Further, the characteristic can be changed by the valve body portion by changing only the valve characteristic B and the relief characteristic C.

次に、本発明の第2実施形態を図7、図8を参照して説明する。なお、第1実施形態に対して同一又は相当の構成要素については、同一の名称及び符号を付与するとともに詳細な説明を省略する。 Next, a second embodiment of the present invention will be described with reference to FIGS. 7 and 8. The same or equivalent components as those of the first embodiment are given the same name and reference numeral, and detailed description thereof will be omitted.

本第2実施形態は、第1実施形態の弁機構14の第2開弁流路42の設ける位置を変更したもので、その他の構成は、第1実施形態と同様である。 In the second embodiment, the position of the second valve opening flow path 42 of the valve mechanism 14 of the first embodiment is changed, and other configurations are the same as those of the first embodiment.

弁機構50の弁体室51は、内周面が第1実施形態とは異なり小径部を有しない単一径となっている。内周面に設けられた雌ねじ21には、弁体室51内に設けられた弁体52と同軸上に配置される弁座部材53(軸部材)が螺着される。弁座部材53の外周には、雌ねじ21に螺合される雄ねじ23が形成されて弁ばね25の一端部を受け止める略円板形のばね受部26と、弁ばね25の一端部内側に挿入される有底筒状の弁体止め54を有する。 Unlike the first embodiment, the valve body chamber 51 of the valve mechanism 50 has a single inner peripheral surface having a single diameter having no small diameter portion. A valve seat member 53 (shaft member) arranged coaxially with the valve body 52 provided in the valve body chamber 51 is screwed onto the female screw 21 provided on the inner peripheral surface. A male screw 23 screwed into the female screw 21 is formed on the outer periphery of the valve seat member 53 to receive a substantially disk-shaped spring receiving portion 26 for receiving one end of the valve spring 25, and the spring receiving portion 26 is inserted inside one end of the valve spring 25. It has a bottomed tubular valve body stopper 54 to be formed.

弁体止め54には、弁体52の第3軸部52Bが摺動可能に嵌挿される小径部54A(挿入部)とその底部側で内径が小径部54Aより大径の大径部54Bが形成されている。さらに、弁体止め54の大径部54B内は、流体室55が形成され、大径部54Bには、流体室55と弁体室51を径方向に連通する連通路59(連通穴)が形成される。 The valve body stopper 54 has a small diameter portion 54A (insertion portion) into which the third shaft portion 52B of the valve body 52 is slidably inserted, and a large diameter portion 54B having an inner diameter larger than the small diameter portion 54A on the bottom side thereof. It is formed. Further, a fluid chamber 55 is formed in the large diameter portion 54B of the valve body stopper 54, and the large diameter portion 54B has a communication passage 59 (communication hole) for communicating the fluid chamber 55 and the valve body chamber 51 in the radial direction. It is formed.

弁体52は、弁ばね25の内側に挿入される第1軸部31と、第1軸部31の軸方向に第1軸部31の外径よりも小径に突出する第3軸部52Bと、弁ばね25の他端部を受け止める外径が円形のフランジ形のばね受部33と、ばね受部33から流入口16Aに向けて延びる第2軸部32から構成される。弁体52とシート29との間及びばね受部33の外側が第1開弁流路58を構成する。第3軸部52Bは、弁体止め54の小径部54Aに挿入される挿入部53Bを構成する。 The valve body 52 includes a first shaft portion 31 inserted inside the valve spring 25, and a third shaft portion 52B protruding in the axial direction of the first shaft portion 31 to a diameter smaller than the outer diameter of the first shaft portion 31. It is composed of a flange-shaped spring receiving portion 33 having a circular outer diameter for receiving the other end of the valve spring 25, and a second shaft portion 32 extending from the spring receiving portion 33 toward the inflow port 16A. The space between the valve body 52 and the seat 29 and the outside of the spring receiving portion 33 form the first valve opening flow path 58. The third shaft portion 52B constitutes an insertion portion 53B to be inserted into the small diameter portion 54A of the valve body stopper 54.

第3軸部52Bには、底面34Bに一端が開口して、弁体52の軸方向に延び、流入路16と弁体室51とを連通するオリフィス穴56が形成されている。オリフィス穴56は、流入路16側の大径部56Aと弁体室51側の小径部56Bを有し、この小径部56Bは常時減衰力を発生する固定オリフィスとなっている。 The third shaft portion 52B is formed with an orifice hole 56 having an opening at one end in the bottom surface 34B, extending in the axial direction of the valve body 52, and communicating the inflow path 16 and the valve body chamber 51. The orifice hole 56 has a large diameter portion 56A on the inflow path 16 side and a small diameter portion 56B on the valve body chamber 51 side, and the small diameter portion 56B is a fixed orifice that constantly generates a damping force.

第3軸部52Bには、挿入部53Bの外周に一端が開口し、他端がオリフィス穴56の大径部56Aに開口し、径方向に延びる第2開弁流路60が形成されている。この第2開弁流路60は、弁体52が閉弁状態である図7の状態にあっては、弁体止め54の小径部54Aと対向し、閉塞され、弁体52が右側に移動し、図8の状態になったときは、大径部54Bと対向し、開口される。この第2開弁流路60と小径部54Aで第4弁部61を構成する。 A second valve opening flow path 60 extending in the radial direction is formed in the third shaft portion 52B by opening one end to the outer periphery of the insertion portion 53B and opening the other end to the large diameter portion 56A of the orifice hole 56. .. In the state of FIG. 7 in which the valve body 52 is in the closed state, the second valve opening flow path 60 faces the small diameter portion 54A of the valve body stop 54 and is closed, and the valve body 52 moves to the right side. Then, when the state shown in FIG. 8 is reached, the large diameter portion 54B is opposed to the large diameter portion 54B and is opened. The second valve opening flow path 60 and the small diameter portion 54A constitute the fourth valve portion 61.

第2実施形態によれば、緩衝器1の動作においてピストン10の移動速度の低速領域(弁体52が開弁される前の状態)では、作動流体は、第1流体室2Aから、流入路16、溝部34、弁体室51、流出路18、パイプ17を経由してリザーバ室4へ流れ、これにより、オリフィス特性の減衰力(オリフィス特性A)を得ることができる。また、ピストン10の移動速度が中速領域では、ピストン10の移動速度に応じた弁体52の移動量により、弁体52とシート29が離間し、この間の流路面積が変化し、第1開弁流路58が開き減衰力(バルブ特性B)を得る。さらに、ピストン10の移動速度の高速領域では、弁体52に設けられた第2開弁流路60が大径部54Bと対向して開放され、作動流体が弁体室51に流れる。これにより、ピストン10の移動速度に応じた弁体52の移動量により流路面積が大きく変化し、実質的に減衰力が殆ど変化しない特性(リリーフ特性C)を得る。このように、第1実施形態と同様に弁体の移動量に応じて前記作動流体が流通する前記弁流路の流路面積の変化率が可変し、単一の弁機構の作用により複数の減衰力特性を得る。 According to the second embodiment, in the low speed region of the moving speed of the piston 10 (the state before the valve body 52 is opened) in the operation of the shock absorber 1, the working fluid flows from the first fluid chamber 2A to the inflow path. The fluid flows to the reservoir chamber 4 via the 16, groove portion 34, the valve body chamber 51, the outflow passage 18, and the pipe 17, whereby the damping force of the orifice characteristic (orifice characteristic A) can be obtained. Further, in the region where the moving speed of the piston 10 is in the medium speed region, the valve body 52 and the seat 29 are separated from each other by the amount of movement of the valve body 52 according to the moving speed of the piston 10, and the flow path area between them changes. The valve opening flow path 58 opens to obtain a damping force (valve characteristic B). Further, in the high speed region of the moving speed of the piston 10, the second valve opening flow path 60 provided in the valve body 52 is opened facing the large diameter portion 54B, and the working fluid flows into the valve body chamber 51. As a result, the flow path area changes greatly depending on the amount of movement of the valve body 52 according to the movement speed of the piston 10, and a characteristic (relief characteristic C) in which the damping force hardly changes is obtained. In this way, as in the first embodiment, the rate of change in the flow path area of the valve flow path through which the working fluid flows varies according to the amount of movement of the valve body, and a plurality of elements are operated by the action of a single valve mechanism. Obtain damping force characteristics.

なお、上記各実施形態では、本発明をユニフロー構造緩衝器に用いた場合を示したが、これに限らず、ピストン部で両方向に流れを許すバイフロー構造の緩衝器にも用いることが可能である。この場合、弁機構14を下側閉塞部材6にも設けることになる。また、上記各実施形態は、弁機構を上側閉塞部材70に設けた例を示したが、弁機構はシリンダとリザーバとの間に設けられれば、どの部材に設けてもよい。 In each of the above embodiments, the case where the present invention is used for a uniflow structure shock absorber is shown, but the present invention is not limited to this, and it can also be used for a biflow structure shock absorber that allows flow in both directions at the piston portion. .. In this case, the valve mechanism 14 is also provided on the lower closing member 6. Further, although each of the above embodiments shows an example in which the valve mechanism is provided on the upper closing member 70, the valve mechanism may be provided on any member as long as it is provided between the cylinder and the reservoir.

さらに、上記各実施形態では、弁機構を1つ設けた例を示したが、これに限らず、複数設けてもよい。この場合、弁機構毎に特性を異ならせてもよい。 Further, in each of the above embodiments, an example in which one valve mechanism is provided is shown, but the present invention is not limited to this, and a plurality of valve mechanisms may be provided. In this case, the characteristics may be different for each valve mechanism.

なお、記各実施形態では、一の弁機構に弁部を有する開弁流路を2つ設けた例を示したが、一の弁機構に弁部を有する開弁流路を3つ以上設けてもよい。 In each of the above embodiments, an example in which two valve opening flow paths having a valve portion are provided in one valve mechanism is shown, but three or more valve opening flow paths having a valve portion are provided in one valve mechanism. You may.

1 緩衝器、2 シリンダ、2A 第1流体室、2B 第2流体室、3 外筒、4 リザーバ室、70 上側閉塞部材、5A 外周面、6 下側閉塞部材、7 第1蓋部材、8 ボトムバルブ本体、9 ピストンロッド、10 ピストン、11 逆止弁、12 逆止弁、13 流路、14 弁機構、16 流入路、16A 流入口、17 パイプ、18 流出路、18A 流出口、19 弁体、20 弁体室、20A 小径部、20B 大径部、21 雌ねじ、22 ばね受け部材、23 雄ねじ、24 ザグリ、25 弁ばね、26 ばね受部、28 弁体止め、29 シート、31 第1軸部、32 第2軸部、33 ばね受部、33A 円形部、33B 切欠部、34 溝部、34A 底面、34B 底面、37 オリフィス穴、37A 大径部、37B 小径部、37C 径方向穴、41 第1開弁流路、42 第2開弁流路、43 第1弁部、44 第2弁部、50 弁機構、51 弁体室、52 弁体、52B 第3軸部、53 弁座部材、53A ガイド、53B 挿入部、54 弁体止め、54A 小径部、54B 大径部、55 流体室、56 オリフィス穴、56A 大径部、56B 小径部、58 第1開弁流路、59 連通路、60 第2開弁流路 1 shock absorber, 2 cylinder, 2A 1st fluid chamber, 2B 2nd fluid chamber, 3 outer cylinder, 4 reservoir chamber, 70 upper closing member, 5A outer peripheral surface, 6 lower closing member, 7 1st lid member, 8 bottom Valve body, 9 piston rod, 10 piston, 11 check valve, 12 check valve, 13 flow path, 14 valve mechanism, 16 inflow path, 16A inlet, 17 pipe, 18 outflow path, 18A outlet, 19 valve body , 20 valve chamber, 20A small diameter part, 20B large diameter part, 21 female screw, 22 spring receiving member, 23 male screw, 24 counterbore, 25 valve spring, 26 spring receiving part, 28 valve body stopper, 29 seat, 31 1st axis Part, 32 2nd shaft part, 33 spring receiving part, 33A circular part, 33B notch part, 34 groove part, 34A bottom surface, 34B bottom surface, 37 orifice hole, 37A large diameter part, 37B small diameter part, 37C radial hole, 41st 1 valve opening flow path, 42 second valve opening flow path, 43 first valve section, 44 second valve section, 50 valve mechanism, 51 valve body chamber, 52 valve body, 52B third shaft section, 53 valve seat member, 53A guide, 53B insertion part, 54 valve body stop, 54A small diameter part, 54B large diameter part, 55 fluid chamber, 56 orifice hole, 56A large diameter part, 56B small diameter part, 58 first valve opening flow path, 59 continuous passages, 60 Second valve opening flow path

Claims (1)

内部に作動流体が封入されたシリンダと、
前記シリンダ内に移動可能に挿入されて前記シリンダ内を第1流体室と第2流体室とに区分するピストンと、
前記シリンダ内で前記ピストンに連結され、先端が前記シリンダの外部へ延びるピストンロッドと、
前記シリンダの外周に配置され、前記シリンダとの間にリザーバ室を形成する外筒と、
前記シリンダの一方の端部の開口部を閉塞する閉塞部材と、
前記シリンダ内と前記リザーバ室とを連通し、前記作動流体が流通する流路と、
前記流路に設けられ、前記ピストンの移動に伴って生じる前記作動流体の流れを抑制して作動圧を発生させる弁機構と、
前記ピストンの移動に伴って生じる前記作動流体の流れを常に流路抵抗を持って許すオリフィス通路と、
を備えた緩衝器であって、
前記弁機構は、弁体と、該弁体が移動可能に収容される弁体室と、前記弁体を閉塞する方向に付勢するバネ手段とからなり、
前記弁機構は、前記弁体が開弁方向に移動した際に異なる位置で開閉される複数の開弁流路を有していることを特徴とする緩衝器。
A cylinder with a working fluid inside and
A piston that is movably inserted into the cylinder and divides the inside of the cylinder into a first fluid chamber and a second fluid chamber.
A piston rod that is connected to the piston in the cylinder and whose tip extends to the outside of the cylinder.
An outer cylinder arranged on the outer periphery of the cylinder and forming a reservoir chamber between the cylinder and the outer cylinder.
A closing member that closes the opening at one end of the cylinder, and
A flow path that communicates the inside of the cylinder with the reservoir chamber and allows the working fluid to flow,
A valve mechanism provided in the flow path that suppresses the flow of the working fluid generated by the movement of the piston to generate working pressure.
An orifice passage that always allows the flow of the working fluid generated by the movement of the piston with a flow path resistance,
It is a shock absorber equipped with
The valve mechanism comprises a valve body, a valve body chamber in which the valve body is movably housed, and a spring means for urging the valve body in a direction of closing the valve body.
The valve mechanism is a shock absorber characterized by having a plurality of valve opening flow paths that are opened and closed at different positions when the valve body moves in the valve opening direction.
JP2020204345A 2020-12-09 2020-12-09 Buffer Pending JP2022091485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020204345A JP2022091485A (en) 2020-12-09 2020-12-09 Buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020204345A JP2022091485A (en) 2020-12-09 2020-12-09 Buffer

Publications (1)

Publication Number Publication Date
JP2022091485A true JP2022091485A (en) 2022-06-21

Family

ID=82067263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020204345A Pending JP2022091485A (en) 2020-12-09 2020-12-09 Buffer

Country Status (1)

Country Link
JP (1) JP2022091485A (en)

Similar Documents

Publication Publication Date Title
KR101773238B1 (en) Damping valve for shock absorber
US11655875B2 (en) Damping valve and shock absorber
US11199241B2 (en) Damper
WO2019239720A1 (en) Damping force generating mechanism and pressure shock absorber
WO2018061726A1 (en) Damping force-adjusting shock absorber
US20160356335A1 (en) Pressure damping device and elastic member
JP5694612B1 (en) Pressure shock absorber
US6840357B2 (en) Hydraulic damping device
WO2019131138A1 (en) Valve and buffer
US7240775B2 (en) Shock absorber
JPWO2019130682A1 (en) Buffer and solenoid
JP2022091485A (en) Buffer
JP6526247B2 (en) Cylinder device
JP6198926B1 (en) Hydraulic shock absorber
US20220074461A1 (en) Shock absorber
JP2008309214A (en) Damping force generating structure for hydraulic shock absorber
JP7378010B2 (en) Shock absorbers and valve devices
US20220065321A1 (en) Shock absorber
US20230341023A1 (en) Shock absorber
JP7154199B2 (en) buffer
JP2011149447A (en) Valve structure for shock absorber
JP6302148B1 (en) Pressure shock absorber
JP2009030789A (en) Valve structure for pneumatic shock absorber
JP2020180685A (en) Shock absorber
JPWO2020149224A1 (en) Buffer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240409